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Superconvergence of Discontinuous Galerkin methods

for Elliptic Boundary Value Problems

LiminMa*

Abstract

In this paper, we present a unified analysis of the superconvergence property for a large class
of mixed discontinuous Galerkin methods. This analysis applies to both the Poisson equation and
linear elasticity problems with symmetric stress formulations. Based on this result, some locally
postprocess schemes are employed to improve the accuracy of displacement by order min(k+1, 2)
if polynomials of degree k are employed for displacement. Some numerical experiments are
carried out to validate the theoretical results.
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1 Introduction and Notation

1.1 Introduction

In this work, we investigate the superconvergence property and postprocess schemes of mixed
discontinuous Galerkin methods for two classes of problems. One is the second order model
problem



















cp − ∇u = 0 in Ω,

divp = f in Ω,

u = 0 on ΓD,

p · n = 0 on ΓN,

(1.1)

with Ω ⊂ Rn (n = 2, 3) and ∂Ω = ΓD ∪ ΓN, ΓD ∩ ΓN = ∅. Here c is a bounded and positive definite
matrix from Rn to Rn, u is a scalar function and p is a vector-valued function. The other one is the
linear elasticity problem



















Aσ − ǫ(u) = 0 in Ω,

divσ = f in Ω,

u = 0 on ΓD,

σn = 0 on ΓN,

(1.2)
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with Ω ⊂ Rn (n = 2, 3) and ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅. Here the displacement is denoted by
u : Ω → Rn and the stress tensor is denoted by σ : Ω → S, where S is the set of symmetric n × n
tensors. The linearized strain tensor ǫ(u) = 1

2 (∇u + ∇uT). The compliance tensor A : S → S

Aσ =
1 + ν

E
σ −

ν

E
tr(σ)I (1.3)

is assumed to be bounded and symmetric positive definite, where E and ν are the Young’s modulus
and Poisson ratio of the elastic material under consideration, respectively.

Postprocessing type of superconvergence property was discussed in literature, see [2, 6, 18, 35]
for instance. There are two main ingredients for this kind of superconvergence. One is the
superclose property of the projection of the exact solution, and the other one is an appropriate
postprocess scheme which is performed seperately on each element. For the scalar elliptic problem
(1.1), the postprocessing type of superconvergence has been analyzed for the conforming elements,
mixed element and nonconforming elements with superclose property, see for instance, [2, 5, 7–
10, 17, 22, 24, 26, 35] and the references therein. For some nonconforming elements, the lack
of this superclose property of the canonical interpolation leads to the difficulty in analyzing the
superconvergence result. Recently, a superconvergence of two nonconforming elements in this
case was analyzed in [28, 29] by employing the superclose property of a related mixed element.
The superconvergence property was also analyzed for various discontinuous Galerkin methods
[14, 15, 37]. For the linear elasticity problem (1.2), the strong symmetry of the stress tensor causes
a substantial additional difficulty for developing stable mixed elements for elasticity problem
[1, 4, 23, 30–33]. The mixed methods in [12, 20] and hybridizable discontinuous Galerkin methods in
[16] imposed weak symmetry on the stress tensor, and achieved optimal convergence for stress and
superconvergence for displacement by post processing. A postprocessing schemes was analyzed
for a mixed element methods solving the linear elasticity problems (1.2) in [34]. A superconvergent
hybridizable discontinuous Galerkin method with strong symmetry was analyzed in [11].

In this paper, a unified superconvergence analysis of a large class of mixed discontinuous
Galerkin methods is presented for both the scalar elliptic problem (1.1) and linear elasticity problem
(1.2) in [21, 25] . Mixed discontinuous Galerkin methods employ discontinuous polynomials with
degree k and k + 1 for the displacement u and the stress σ, respectively. Thanks to a conforming
projection and the corresponding commuting diagram, the L2 projections of u for (1.1) andu for (1.2)
admit a superclose property. Note that this property can be advantageously exploited to design
a high accuracy approximation to u and u. Indeed, following the idea in [2, 14, 15, 17, 35, 37],
we propose four postprocessing schemes for the mixed discontinuous Galerkin method in [25]
and get new approximations to u with high accuracy for second order scalar elliptic problem
(1.1). For some special choices of parameters, the mixed discontinuous Galerkin method in [25] is
hybridizable and leads to a much smaller system. The variable p̂h in the hybridized formulation is
an approximation top on edges. This p̂h, together with the aforementioned postprocessing scheme,
gives rise to a superconvergent approximation to the solution u of (1.1). For the elasticity problem
(1.2), a post processing scheme in [34] was analyzed for a mixed element method. In this paper, a
similar scheme is proposed for the discontinuous Galerkin method with symmetric stress in [21].
The proposed postprocessing scheme is analyzed to admit a desirable superconvergence property
when k ≥ n, which improves the accuracy of displacement by order min(k + 1, 2) if polynomials of
degree k is employed for displacement. The current result provides the first analysis for a number
of new methods [13, 21, 24, 36]. The numerical tests for linear elasticity problems also indicate that
there is no such conforming interpolation which admits the commuting diagram when k < n.

2



The rest of the paper is organized as follows. Section 2 and 3 analyze the postprocessing schemes
and the superconvergence property for scalar elliptic problems and linear elasticity problems,
respectively. Some numerical examples are tested in Section 4 to verify the theoretical results.

1.2 Notation

Given a nonnegative integer m and a bounded domain D ⊂ Rn, let Hm(D), ‖ · ‖m,D and | · |m,D be
the usual Sobolev space, norm and semi-norm, respectively. The L2-inner product on D and ∂D are
denoted by (·, ·)D and 〈·, ·〉∂D, respectively. Let ‖ · ‖0,D and ‖ · ‖0,∂D be the norms of L2(D) and L2(∂D),
respectively. The norms ‖ · ‖m,D and | · |m,D are abbreviated as ‖ · ‖m and | · |m, respectively, when D
is chosen as Ω. Suppose that Ω ⊂ Rn is a bounded polygonal domain covered exactly by a shape-
regular partition T into polyhedrons. Let hK be the diameter of element K ∈ T and h = maxK∈T hK.
Denote the set of all interior edges/faces of T by EI

h, and all edges/faces on boundary ΓD and ΓN

by ED
h and EN

h , respectively. Let Eh = E
I
h ∪ E

D
h ∪ E

N
h and he be the diameter of edge/face e ∈ Eh. For

any interior edge/face e = K+ ∩ K−, let ni = n|∂Ki be the unit outward normal vector on ∂Ki with
i = +,−. For K ⊂ Rn and any nonnegative integer r, let Pr(K,R) be the space of all polynomials of
degree not greater than r on K.

Throughout this paper, we shall use letter C, which is independent of mesh-size h, stabilization
parameters η, τ, γ, to denote a generic positive constant which may stand for different values at
different occurrences. Following [38], the notations x . y and x & y mean x ≤ Cy and x ≥ Cy,
respectively. Denote x . y . x by x � y.

2 Scalar elliptic problems

This section analyzes the postprocessing schemes and the superconvergence result for the scalar
elliptic problem (2.5).

2.1 Discontinuous Galerkin methods for scalar elliptic problems

Consider the second order elliptic model problem (1.1). For any scalar-valued function vh and
vector-valued function qh that are piecewise smooth with respect to T , let v±h = vh|∂K± , q

±
h = qh|∂K± .

Define the average {·} and the jump [·] on interior edges/faces e ∈ EI
h as follows:

{qh} =
1
2 (q+h + q

−
h ), [qh] = q+h · n

+ + q−h · n
−,

{vh} =
1
2 (v+h + v−h ), [vh] = v+hn

+ + v−hn
−.

(2.1)

For any boundary edge/face e ⊂ ∂Ω, define

{qh} = qh, [qh] = 0, {vh} = vh, [vh] = vhn, on ΓD,

{qh} = qh, [qh] = qh · n, {vh} = vh, [vh] = 0, on ΓN.
(2.2)
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For any scalar-valued function vh and vector-valued function qh, define the piecewise gradient ∇h

and piecewise divergence divh by

∇hvh

∣

∣

K
= ∇(vh|K), divhqh

∣

∣

K
= div(qh|K) ∀K ∈ T .

Define some inner products as follows:

(·, ·)T =
∑

K∈T

(·, ·)K, 〈·, ·〉 =
∑

e∈Eh

〈·, ·〉e, 〈·, ·〉∂T =
∑

K∈T

〈·, ·〉∂K. (2.3)

Whenever there is no ambiguity, we simplify (·, ·)T as (·, ·). With the aforementioned definitions,
the following DG identity [3] holds:

(qh,∇hvh) = −(divhqh, vh) + 〈[qh], {vh}〉 + 〈{qh}, [vh]〉. (2.4)

The four-field extended Galerkin formulation in [25] seeks (ph, p̌h, uh, ǔh) ∈ Qh × Q̌h ×Vh × V̌h such
that































(cph, qh) + (uh,divhqh) − 〈{uh} + ǔh − γ[uh], [qh]〉 = 0, ∀qh ∈ Qh,

−(divhph, vh) − 〈γ[ph] + p̌h, [vh]〉 + 〈[ph], {vh}〉 = −( f , vh) ∀vh ∈ Vh,

−〈τ−1p̌h + [uh], q̌h〉e = 0, ∀q̌h ∈ Q̌h,

〈η−1ǔh + [ph], v̌h〉e = 0, ∀v̌h ∈ V̌h,

(2.5)

where

Qh : = {qh ∈ L2(Ω,Rn) : qh|K ∈ Q(K), ∀K ∈ Th},

Q̌h : = {q̌h ∈ L2(Eh,R
n) : qh|K ∈ Q̌(K), ∀K ∈ Th},

Vh : = {vh ∈ L2(Ω,R) : qh|K ∈ V(K), ∀K ∈ Th},

V̌h : = {v̌h ∈ L2(Eh,R) : qh|K ∈ V̌(K), ∀K ∈ Th}.

Here γ is constant, p̌h and ǔh are the modifications to ph and uh on elementary boundaries, respec-
tively. Define the discontinuous spacesQh, Q̌h, Vh and V̌h with

Q(K) = Pk(K,Rn), Q̌(K) = Pk(K,Rn), V(K) = Pk(K,R), V̌(K) = Pk(K,R)

byQk
h, Q̌k

h, Vk
h and V̌k

h, respectively. Define

‖qh‖
2
div,h = (cqh, qh) + ‖divhqh‖

2
0 + ‖η

1/2[qh]‖20, ‖q̌h‖
2
0,h = ‖τ

−1/2q̌h‖
2
0,

‖vh‖
2
0,h = ‖vh‖

2
0 + ‖τ

1/2[vh]‖20 + ‖η
−1/2{vh}‖

2
0, ‖v̌h‖

2
0,h = ‖η

−1/2v̌h‖
2
0.

(2.6)

For H(div)-based formulations (2.5), the well-posedness and the error estimate is analyzed in
[25] under a set of assumptions as presented below. The error estimate of ph in L2-norm is similar
to the one for the stress tensor in [21], thus the details of the proof is omitted here.

Lemma 2.1. For H(div)-based four-field formulation (2.5) with η =
(

ρhe

)−1
, τ � η−1 = ρhe, if the spaces

Qh,Vh, V̌h satisfy the conditions
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(C1) LetRh := Qh ∩H(div,Ω) andRh × Vh is a stable pair for mixed method;

(C2) divhQh = Vh

(C3) {Vh} ⊂ V̌h

Then, the formulation (2.5) is uniformly well-posed with respect to the norms (2.6) when ρ ∈ (0, ρ0].
Namely, if (ph, p̌h, uh, ǔh) ∈ Qh × Q̌h × Vh × V̌h is the solution of (2.5), it holds that

‖ph‖div,h + ‖p̌h‖0,h + ‖uh‖0,h + ‖ǔh‖0,h . ‖ f ‖0,Ω.

If p ∈Hk+2(Ω,Rn), u ∈ Hk+1(Ω,R)(k ≥ 0), andQ × Q̌h × Vh × V̌h = Q
k+1
h × Q̌k

h × Vk
h × V̌k+1

h ,

‖p − ph‖div,h + ‖p̌h‖0,h + ‖u − uh‖0,h + ‖ǔh‖0,h . hk+1(|p|k+2 + |u|k+1). (2.7)

Furthermore, if p ∈Hk+2(Ω,Rn),

‖p − ph‖0 . hk+2(|p|k+2 + |u|k+1). (2.8)

We can establish the following superclose property for the extended Galerkin formulation (2.5).

Theorem 2.2. Suppose p ∈ Hk+2(Ω,Rn), u ∈ Hk+1(Ω,R)(k ≥ 0), and (ph, p̌h, uh, ǔh) ∈ Qk+1
h × Q̌k

h ×Vk
h ×

V̌k+1
h is the solution of the four-field formulation (2.5) with η =

(

ρhe

)−1
, τ � η−1 = ρhe. It holds that

‖Pk
hu − uh‖0,Ω . hmin(2k+2,k+3)(|p|k+2 + |u|k+1),

where Pk
h is the L2-projection onto Vk

h.

We omit the proof here since it is similar to the analysis for linear elasticity problems (1.2) in
the next section.

2.2 Postprocess techniques for scalar elliptic problems

Consider the H(div)-based four-field formulation (2.5) with Qh = Q
k+1
h , Q̌h = Q̌

k
h, Vh = Vk

h and

V̌h = V̌k+1
h . Define

p̂h = {ph} + γ[ph] + p̌h. (2.9)

Note that p̂h is an approximation to p on elementary boundaries.

We list three postprocessing techniques [2, 14, 15, 19, 34, 35] for the elliptic problem (1.1). Here
there are two choices of the projection operator Ph, one is the L2 projection to piecewise constant
space, namely

Phu = P0
hu,

where Pk
h is the L2 projection to Vk

h, and the other one is the L2 projection to the discrete space Vh,
namely

∫

Ω

Phuvh dx =

∫

Ω

uvh dx, ∀vh ∈ Vh.

For either choice of Ph, consider the following three postprocessing schemes:
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1. Let u∗1,h ∈ Vk+2
h be the solution of







∫

K
α∇u∗1,h · ∇vhdx = −

∫

K
f vhdx +

∫

∂K
ph · nvhds, ∀vh ∈ (I − Ph)Vk+2

h

∣

∣

K
,

Ph(u∗1,h − uh) = 0.
(2.10)

with α = c−1.

2. Let u∗2,h ∈ Vk+2
h be the solution of







∫

K
α∇u∗2,h · ∇vhdx = −

∫

K
f vhdx +

∫

∂K
p̂h · nvhds, ∀vh ∈ (I − Ph)Vk+2

h

∣

∣

K
,

Ph(u∗2,h − uh) = 0.
(2.11)

with α = c−1 and p̂h defined in (2.9).

3. Let u∗3,h ∈ Vk+2
h be the solution of







∫

K
∇u∗3,h · ∇vhdx =

∫

K
cph · ∇vhdx, ∀vh ∈ (I − P0

h)Vk+2
h

∣

∣

K
,

P0
h(u∗3,h − uh) = 0.

(2.12)

Note that the schemes (2.11) and (2.12) are identical in some special cases. If α is a constant matrix,
the first equation in (2.12) is equivalent to

∫

K
α∇u∗3,h · ∇vhdx =

∫

K
ph · ∇vhdx = −

∫

K
divhphvhdx +

∫

∂K
phnvhds

for any vh ∈ (I − P0
h)Vk+2

h

∣

∣

K
. By (2.5), the above equation reads

∫

K
α∇u∗3,h · ∇vhdx = −

∫

K
f vhdx +

∫

∂K
p̂hnvhds.

It implies that for this particular α, the postprocess algorithms (2.11) with Ph = P0
h and (2.12) are

the same.

We analyze in the following theorem that the above postprocessing techniques can improve the
accuracy for the mixed discontinuous Galerkin formulation (2.5).

Theorem 2.3. Suppose p ∈Hk+2(Ω), u ∈ Hk+3(Ω)(k ≥ 0), and (ph, p̌h, uh, ǔh) ∈ Qk+1
h × Q̌k

h × Vk
h × V̌k+1

h

is the solution of the four-field formulation (2.5) with η =
(

ρhe

)−1
, τ � η−1 = ρhe. It holds that

‖u − u∗h‖0 . hmin(2k+2,k+3)|u|k+3,

where u∗h = u∗1,h in (2.10), u∗2,h in (2.11) or u∗3,h in (2.12).

Proof. Let vh = (I − Ph)(Pk+2
h u − u∗h). Since P0

hvh = 0,

‖vh‖0,Ω = ‖vh − P0
hvh‖0,Ω . h|vh|1,h. (2.13)
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It follows from the trace inequality that

‖[vh]‖Eh
+ ‖{vh}‖Eh

. h−1/2‖vh‖0,Ω . h1/2|vh|1,h. (2.14)

By (2.10) and (2.11),

|vh|
2
1,h =(α∇h(Pk+2

h u − u∗h),∇hvh) − (α∇hPh(Pk+2
h u − u∗h),∇hvh)

=(α∇hPk+2
h u,∇hvh) + ( f , vh) − 〈[p̃h], {vh}〉 − 〈{p̃h}, [vh]〉

− (α∇hPh(Pk+2
h u − u∗h),∇hvh),

where p̃h = ph if u∗h = u∗1,h, and p̃h = p̂h if u∗h = u∗2,h. Since f = ∇ · (α∇u) and p = α∇u,

|vh|
2
1,h =(α∇h(Pk+2

h − I)u,∇vh) − 〈[p̃h], {vh}〉 + 〈{p − p̃h}, [vh]〉

− (α∇hPh(Pk+2
h u − u∗h),∇hvh).

(2.15)

If Ph = P0
h, the last term on the right hand side of the above equation equals zero. If Ph is the L2

projection to Vh, namely Ph = Pk
h, by the triangle inequality and the inverse estimate,

|(α∇hPh(Pk+2
h u − u∗h),∇hvh)| . h−1‖Ph(Pk+2

h u − u∗h)‖0|vh|1,h.

Since Phu∗h = Phuh,

|(α∇hPh(Pk+2
h u − u∗h),∇hvh)| . h−1‖Ph(Pk+2

h u − uh)‖0|vh|1,h.

If p̃h = ph, by the error estimates in (2.7) and (2.14),

|〈[p̃h], {vh}〉| ≤ η
−1/2‖η1/2[ph]‖Eh

‖{vh}‖Eh
≤ hk+2|vh|1,h(|p|k+2 + |u|k+1),

|〈{p − p̃h}, [vh]〉| ≤ h−1/2‖p − ph‖0‖{vh}‖Eh
≤ hk+2|vh|1,h(|p|k+2 + |u|k+1).

If p̃h = p̂h, p̃h · n is continuous on interior edges. Thus,

〈[p̃h], {vh}〉 = 0.

The error estimates in (2.7) and (2.14) imply that

|〈{p − p̃h}, [vh]〉| ≤ |〈{p − ph}, [vh]〉| +
∣

∣〈γ[ph] + p̌h, [vh]〉
∣

∣ . hk+2|vh|1,h(|p|k+2 + |u|k+1).

Substituting the above estimates, Theorem 2.2 and

|(Pk+2
h − I)u|1,h . hk+2|u|k+3

into (2.15),
|vh|1,h . ‖α∇h(Pk+2

h − I)u‖0,Ω + hk+2 + h−1‖Ph(Pk+2
h u − uh)‖0 . hk+2|u|k+3. (2.16)

By the definition of Pk
h, u∗h and the superconvergence result in Theorem 2.2,

‖Ph(Pk+2
h u − u∗h)‖0 = ‖Ph(Pk

hu − uh)‖0 . hmin(2k+2,k+3)(|p|k+2 + |u|k+1).

It follows (2.13), (2.16) and the above estimate that

‖u − u∗h‖0 ≤ ‖u − Pk+2
h u‖0 + ‖Ph(Pk+2

h u − u∗h)‖0 + ‖vh‖0 . hmin(2k+2,k+3)|u|k+3,

which completes the proof for u∗h = u∗1,h and u∗2,h. The proof for u∗h = u∗3,h is similar to the analysis in
Theorem 3.5 for linear elasticity problem, which is omitted here. �
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Remark 2.1. Similar to the analysis in [21] which is also presented in Section 3.1 for the linear elasticity
problem, the formulation (2.5) with

τ = O(h), η = τ−1, γ = 0 (2.17)

is hybridizable, and can be reduced to a formulation with p̂h. By solving this reduced formulation with much
less computational cost, we can construct an approximation u∗2,h to u with accuracy O(hmin(2k+2,k+3)) if the
solution u is smooth enough.

Remark 2.2. For the first two postprocessing procedures, we let u∗1,h and u∗2,h in the discrete space Vk+2
h to

guarantee the superconvergence in Theorem 2.3. For a general mixed discontinuous Galerkin formulation
with the conditions (C1)-(C3), if uh superconverges to the projection of the exact displacement, namely

‖Phu − uh‖0,Ω . hr inf
qh∈Qh,vh∈Vh

(‖p − qh‖div,h + ‖u − vh‖0,h),

and ‖p − ph‖0 . hmin(1,r−1) inf
qh∈Qh,vh∈Vh

(‖p − qh‖div,h + ‖u − vh‖0,h). We can choose a similar postprocessing

technique by replacing Vk+2
h in (2.10) and (2.11) by a large enough discrete space Ṽh with Vh ⊂ Ṽh and

inf
vh∈Ṽh

‖u − vh‖0 + h|u − vh|1,h . hmin(2,r) inf
qh∈Qh,vh∈Vh

(‖p − qh‖div,h + ‖u − vh‖0,h).

Then, a similar analysis proves the superconvergence result

‖u − u∗h‖0 . hmin(2,r) inf
qh∈Qh,vh∈Vh

(‖p − qh‖div,h + ‖u − vh‖0,h).

Next we introduce a Taylor expansion type postprocessing scheme, which follows [6]. Recall
that Pk

h is the L2-projection onto Vk
h. Define the operator P̃k+2

h onto Vk+2
h by







∫

K
∂α(u − P̃k+2

h u) dx = 0, ∀ k + 1 ≤ |α| ≤ k + 2,

Pk
h(u − P̃k+2

h u) = 0.

Define φα by φα|K =
1
α! (x −MK)α, where MK is the centroid of element K. There exists the Taylor

expansion

(P̃k+2
h − Pk

h)u = (I − Pk
h)P̃k+2

h u =

k+2
∑

|α|=k+1

cα(I − Pk
h)φα (2.18)

with constants cα to be determined. Since

P0
h∂
βφα = δαβ, ∂

βP̃k+2
h u =

k+2
∑

|α|=k+1

cα∂
βφα

for any k + 1 ≤ |α|, |β| ≤ k + 2, it holds that

cα = P0
h∂
αP̃k+2

h u = P0
h∂
αu, (2.19)
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which can be written as a function of p = c∇u, namely, cα = cα(p). Define the Taylor expansion
type postprocessing u∗4,h ∈ Vk+2

h in [6] by

u∗4,h = uh +

k+2
∑

|α|=k+1

cα(ph)(I − Pk
h)φα. (2.20)

The proof for the following theorem indicates that the same superconvergence result can be
obtained if ph in (2.20) is replaced by any high accuracy approximation to p.

Theorem 2.4. Suppose p ∈Hk+2(Ω), u ∈ Hk+3(Ω)(k ≥ 0), and (ph, p̌h, uh, ǔh) ∈ Qk+1
h × Q̌k

h × Vk
h × V̌k+1

h

is the solution of the four-field formulation (2.5) with η =
(

ρhe

)−1
, τ � η−1 = ρhe. It holds that

‖u − u∗4,h‖0 . hmin(2k+2,k+3)|u|k+3.

Proof. Note that

u − u∗4,h = (Pk
hu − uh) + (u − P̃k+2

h u) + (P̃k+2
h u − Pk

hu −

k+2
∑

|α|=k+1

cα(ph)(I − Pk
h)φα)

= (Pk
hu − uh) + (u − P̃k+2

h u) +

k+2
∑

|α|=k+1

(cα(p) − cα(ph))(I − Pk
h)φα.

By the definition of cα(·),

‖cα(p) − cα(ph)‖0 . h−|α|+1‖p − ph‖0. (2.21)

It follows from the above equation and the fact ‖(I − Pk
h)φα‖0 . h|α| that

‖u − u∗4,h‖0 ≤‖P
k
hu − uh‖0 + ‖u − Pk+2

h u‖0 +

k+2
∑

|α|=k+1

‖cα(p) − cα(ph)‖0‖(I − Pk
h)φα‖0 (2.22)

≤‖Pk
hu − uh‖0 + hk+3|u|k+3 + h‖p − ph‖0. (2.23)

A substitution of (2.8) and Theorem 2.2 into the above inequality leads to

‖u − u∗4,h‖0 . hmin(2k+2,k+3)(|p|k+2 + |u|k+1), (2.24)

which completes the proof. �

3 Linear elasticity problems

This section analyzes the superconvergence result for the linear elasticity problem (3.5).
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3.1 Discontinuous Galerkin method for linear elasticity problems

Consider the linear elasticity problem (1.2). Let

Σh : = {qh ∈ L2(Ω,S) : qh|K ∈ Q(K), ∀K ∈ Th},

Vh : = {vh ∈ L2(Ω,Rn) : qh|K ∈ V(K), ∀K ∈ Th},

Σ̌h : = {q̌h ∈ L2(Eh,S) : qh|K ∈ Q̌(K), ∀K ∈ Th},

V̌h : = {v̌h ∈ L2(Eh,R
n) : qh|K ∈ V̌(K), ∀K ∈ Th},

where Σh, Σ̌h,Vh, V̌h are subspaces of L2(Ω,S), L2(Eh,S), L2(Ω,Rn) and L2(Eh,Rn), respectively. For
any vector-valued function vh ∈ Vh and tensor-valued function τh ∈ Σh, let v±h = vh|∂K± , τ

±
h = τh|∂K± .

Define the average {·} and the jump [·] on interior edges/faces e ∈ EI
h as follows:

{τh} =
1
2 (τ+h + τ

−
h ), [τh] = τ+h n

+ + τ−h n
−,

{vh} =
1
2 (v+h + v

−
h ), [vh] = v+h ⊙ n

+ + v−h ⊙ n
− − (v+h · n

+ + v−h · n
−)I,

(3.1)

where vh ⊙ n = vhn
T + nvT

h . For any boundary edge/face e ⊂ ∂Ω, define

{τh} = τh, [τh] = 0, {vh} = vh, [vh] = vh ⊙ n − (vh · n)I, on ΓD,

{τh} = τh, [τh] = τhn, {vh} = vh, [vh] = 0, on ΓN.
(3.2)

With the aforementioned definitions, the following identities [3] holds:

〈τhn, vh〉∂Th
= 〈{τh}, [vh]〉 + 〈[τh], {vh}〉, ∀τh ∈ Σh, vh ∈ Vh. (3.3)

For any vector-valued function vh and tensor-valued function τh, define the piecewise symmetric
strain tensor ǫh and piecewise divergence divh by

ǫh(vh)
∣

∣

K
= ǫ(vh|K), divhτh

∣

∣

K
= div(τh|K), ∀K ∈ Th.

There exists a similar DG identity to (2.4) as below

(τh, ǫh(vh)) = −(divhτh, vh) + 〈[τh], {vh}〉 + 〈{τh}n, [vh]n〉, if τh ∈ Σh. (3.4)

For the linear elasticity problem (1.2), consider the four-field extended Galerkin formulation in
[21], which seeks (σh, σ̌h,uh, ǔh) ∈ Σh × Σ̌h × Vh × V̌h such that































(Aσh, τh) + (uh,divhτh) − 〈{uh} + ǔh − (γ · n)[uh]n, [τh]〉 = 0, ∀τh ∈ Σh,

(divhσh, vh) − 〈[σh], {vh}〉 + 〈σ̌h + [σh]γT, [vh]〉 = ( f , vh) ∀vh ∈ Vh,

〈τ−1σ̌h + [uh], τ̌h〉e = 0, ∀τ̌h ∈ Σ̌h,

〈η−1ǔh + [σh], v̌h〉e = 0, ∀v̌h ∈ V̌h.

(3.5)

For any (τh, τ̌h, vh, v̌h) ∈ Σh × Σ̌h × Vh × V̌h, define

‖τh‖
2
div,h = (Aτh, τh) + ‖divhτh‖

2
0 + ‖η

1/2[τh]‖2Eh
, ‖τ̌h‖

2
0,h = ‖τ

−1/2τ̌h‖
2
Eh
,

‖vh‖
2
0,h = ‖vh‖

2
0 + ‖τ

1/2[vh]‖2Eh
, ‖v̌h‖

2
0,h = ‖η

−1/2v̌h‖
2
Eh
,
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and the L2 norm of τh by
‖τh‖

2
A = (Aτh, τh), ∀τh ∈ L2(Ω,S).

For H(div)-based formulations (3.5), the well-posedness and the error estimate are analyzed in
[21] under a set of assumptions as listed in the following lemma.

Lemma 3.1. The four-field formulation (3.5) which satisfies the conditions

(A1) Σh = Σ
k+1
h , divhΣh = Vh ⊂ V

k
h , k ≥ 0;

(A2) V̌ k+1
h ⊂ V̌h;

(A3) τ = ρ1he, η = ρ−1
2 h−1

e and there exist positive constants C1, C2, C3 and C4 such that

0 ≤ ρ1 ≤ C1, C2 ≤ ρ2 ≤ C3, 0 ≤ γ ≤ C4,

is uniformly well-posed with respect to the norms when ρ1 and ρ2. Namely, if σ ∈ Hk+2(Ω,S), u ∈
Hk+1(Ω,Rn)(k ≥ 0) and let (σh, σ̌h,uh, ǔh) ∈ Σk+1

h × Σ̌k
h ×V

k
h × V̌

k+1
h be the solution of (3.5), then we have

the following error estimate:

‖σ − σh‖div,h + ‖σ̌h‖0,h + ‖u − uh‖0,h + ‖ǔh‖0,h . hk+1(|σ|k+2 + |u|k+1). (3.6)

Furthermore, if k ≥ n, it holds that

‖σ − σh‖A . hk+2(|σ|k+2 + |u|k+1). (3.7)

Here discrete spaces Σ
k
h, Σ̌k

h, V k
h and V̌ k

h are subspaces of L2(Ω,S), L2(Eh,S), L2(Ω,Rn) and
L2(Eh,Rn), respectively, and contain all piecewise polynomials of degree not larger than k.

The analysis in [21] shows that a special case of (3.5) is hybridizable as presented below. Denote

Zh = {uh ∈ Vh : ǫh(uh) = 0},

V ⊥h = {uh ∈ Vh : (uh, vh) = 0, ∀vh ∈ Zh}.

Theorem 3.2. The formulation (3.5) with discrete spaces satisfying the assumptions in Lemma 3.1 and
condition (2.17) can be decomposed into two sub-problems as:

(I) Local problems. For each element K, given σ̂h ∈ Σ̌h, find (σK
h ,u

K
h ) ∈ Σh × V

⊥
h such that for any

(τh, vh) ∈ Σh × V
⊥

h







(AσK
h , τh)K − (ǫh(uK

h ), qh)K + 〈ησK
h n, τhn〉∂K = 〈ησ̂hn, τhn〉∂K,

−(σK
h , ǫh(vh))K = ( f , vh)K − 〈σ̂hn, vh〉∂K.

(3.8)

Denote WΣ : Σ̌h → Σh and WV : Σ̌h → V ⊥h by

WΣ(σ̂h)|K = σ
K
h and WV (σ̂h)|K = u

K
h ,

respectively.
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(II) Global problem. Find (σ̂h,u0
h) ∈ Σ̌h × Zh such that for any v0

h ∈ Zh and τ̌h ∈ Σ̌h,






〈η(σ̂h −WQ(σ̂h))n, (τ̌h −WQ(τ̌h))n〉∂Th
+ 〈u0

h,WV(τ̌h)〉∂Th
= −( f ,WV (τ̌h)),

〈σ̌hn, v0
h〉∂Th

, = ( f ,v0
h).

(3.9)

Let (σ̂h,u0
h) be the solution of (3.9), (σK

h ,u
K
h ) be the solution of (3.8), and (σh, σ̌h,uh, ǔh) be the solution of

(3.5). Then,
σK

h = σh|K, u
K
h + u

0
h = uh|K, σ̂h = σ̌h + {σh}.

Theorem 3.2 indicates that the discontinuous Galerkin formulation (3.5) with this special choice
(2.17) of parameters can be written as a system of σ̂h and u0

h, which reduces the degree of freedom
and the computational cost.

3.2 Superclose analysis for linear elasticity problems

This section considers the superclose result for linear elasticity problems (3.5). The analysis for
the superclose property requires two main ingredients: a conforming interpolation onto Σh, and
the commuting property of this interpolation.

Let Ph be the standard L2-projection onto Vh, namely

(Phu, vh) = (u, vh), ∀vh ∈ Vh.

For Vh = V
k

h , denote the L2-projection by Pk
h. The analysis for the linear elasticity problem requires

the following assumption

Assumption 3.1. There exists a projection Πh onto a conforming subspace Σ
c
h of Σh, and the projection

Πh admits the commuting diagram

divΠhτ = Phdivτ , ∀τ ∈H(div,Ω). (3.10)

Let (σh, σ̌h,uh, ǔh) ∈ Σh × Σ̌h×Vh × V̌h be the solution of the four-field formulation (3.5). Define

eu = Phu − uh, dh = σ − σh. (3.11)

Lemma 3.3. Suppose that the conditions (A1)-(A3) and the Assumption 3.1 hold. For any ψ ∈ L2(Ω,Rn),
let φ be the solution of Problem (1.2) with f = ψ, which implies that div(A−1ǫ(φ)) = ψ. It holds that

(eu,ψ) =(divhdh, (I − Ph)φ) + (Adh, (I −Πh)(A−1ǫ(φ))) − 〈[σh], {(Ph − I)φ}〉

+ 〈σ̌h + [σh]γT, [Phφ]〉.
(3.12)

Proof. Note that the formulation (3.5) is consistant, namely, (σ, 0,u, 0) satisfies (3.5). Let

σ̂h = {σh} + [σh]γT + σ̌h, ûh = {uh} − (γ · n)[uh]n + ǔh (3.13)

with γ ∈ Rn×1. By the DG identity (3.4), the formulation (3.5) and divhΣh ⊂ Vh,
{

(Adh, τh) + (eu,divhτh) = 〈{u − ûh}, [τh]〉 ∀τh ∈ Σh

−(divhdh, vh) = 〈{σh − σ̂h}, [vh]〉 + 〈[σh], {vh}〉 ∀vh ∈ Vh.
(3.14)
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For any ψ ∈ Vh, since eu ∈ Vh, by the commuting diagram (3.10),

(eu,ψ) = (eu,divΠh(A−1ǫ(φ))). (3.15)

Let τh = Πh(A−1ǫ(φ)) in (3.14). It follows from [τh] = 0 that

(eu,ψ) = −(Adh,Πh(A−1ǫ(φ))) = −(dh, ǫ(φ)) + (Adh, (I −Πh)(A−1ǫ(φ))). (3.16)

Let vh = Phφ in (3.14). It holds that

(divhdh,φ) =(divhdh, (I − Ph)φ) − 〈{σh − σ̂h}, [Phφ]〉 − 〈[σh], {Phφ}〉. (3.17)

A combination of (3.16), (3.17) and

(dh, ǫ(φ)) = −(divhdh,φ) + 〈[dh], {φ}〉 (3.18)

gives

(eu,ψ) =(divhdh, (I − Ph)φ) + (Adh, (I −Πh)(A−1ǫ(φ))) − 〈[σh], {Phφ}〉

− 〈[dh], {φ}〉 − 〈{σh − σ̂h}, [Phφ]〉.
(3.19)

According to (3.11) and (3.13),

〈[σh], {Phφ}〉 + 〈[dh], {φ}〉 =〈[σh], {(Ph − I)φ}〉,

〈{σh − σ̂h}, [Phφ]〉 = − 〈σ̌h + [σh]γT, [Phφ]〉.
(3.20)

Substituting (3.20) into (3.19),

(eu,ψ) =(divhdh, (I − Ph)φ) + (Adh, (I −Πh)(A−1ǫ(φ))) − 〈[σh], {(Ph − I)φ}〉

+ 〈σ̌h + [σh]γT, [Phφ]〉,

which completes the proof. �

It was analyzed in [27] that there exists such a conforming interpolation Πh with commuting
property (3.10) for k ≥ n, and it holds that

‖σ −Πhσ‖0 . hk+2|σ|k+2. (3.21)

The following theorem shows that ‖eu‖0 converges at the rate k+ 3 if solutions are smooth enough.
The accuracy is presented in the form of hmin(2k+2,k+3) to be consistent with the result in Theorem 2.2
for scalar elliptic problems.

Theorem 3.4. Suppose σ ∈ Hk+2(Ω,S), u ∈ Hk+1(Ω,Rn)(k ≥ n), and (σh, σ̌h,uh, ǔh), which is in

Σ
k+1
h × Σ̌k

h ×V
k

h × V̌
k+1

h , is the solution of the four-field formulation (3.5) with η =
(

ρhe

)−1
, τ � η−1 = ρhe.

It holds that
‖Pk

hu − uh‖0,Ω . hmin(2k+2,k+3)(|σ|k+2 + |u|k+1). (3.22)

Proof. Since Pk
h is the L2-projection onto V k

h ,

‖(I − Pk
h)v‖0,K . hk+1|v|k+1,K, ∀v ∈ Hk+1(K,Rn). (3.23)
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By the triangle inequality, (3.6) and (3.23),

∣

∣(divhdh, (I − Pk
h)φ)

∣

∣ ≤ ‖divhdh‖0‖(I − Pk
h)φ‖0 . hmin(2k+2,k+3)|φ|2(|σ|k+2 + |u|k+1). (3.24)

The L2 error estimate of ‖dh‖0 in (3.7), (3.21) and (3.23) indicate that

∣

∣(Adh, (I −Πh)(A−1ǫ(φ))
∣

∣ ≤ ‖Adh‖0‖(I −Πh)(A−1ǫ(φ))‖0

. hmin(2k+4,k+3)|φ|2(|σ|k+2 + |u|k+1).
(3.25)

It follows from the error estimates (3.6), (3.23) and trace inequality that

∣

∣〈[σh], {(I − Pk
h)φ}〉

∣

∣ ≤ (ηh)−1/2‖η1/2[σh]‖Eh
‖(I − Pk

h)φ‖0

. hmin(2k+2,k+3)|φ|2(|σ|k+2 + |u|k+1),
(3.26)

∣

∣〈σ̌h + [σh]γT, [Pk
hφ]〉

∣

∣ ≤ h−
1
2 ‖σ̌h + [σh]γT‖Eh

‖(I − Pk
h)φ‖0

. hmin(2k+2,k+3)|φ|2(|σ|k+2 + |u|k+1).
(3.27)

A substitution of (3.24), (3.25), (3.26) and (3.27) into (3.12) leads to

|(eu,ψ)| . hmin(2k+2,k+3)|φ|2(|σ|k+2 + |u|k+1). (3.28)

Since |φ|2 . ‖ψ‖0,

‖eu‖0 = sup
0,ψ∈L2(Ω)

(eu,ψ)

‖ψ‖0
. hmin(2k+2,k+3)(|σ|k+2 + |u|k+1), (3.29)

which completes the proof. �

Remark 3.1. Since the four-field extended Galerkin method recovers most of discontinuous Galerkin methods
in literature [21, 25], Theorem 2.2 and Theorem 3.4 imply that most of the H(div)-based discontinuous
Galerkin methods in literature [13, 21, 24, 36] admit this superclose property.

3.3 Postprocess technique for linear elasticity problems

Consider the linear elasticity problems (1.2). Denote the rigid motion, the kernel of the sym-
metric gradient operator ǫ(·), by

RM(K,R2) = span











1

0



 ,





0

1



 ,





y

−x











.

For any v ∈ L2(K,R2), define L2-projection onto RM(K,R2) by P∗hv, namely,

∫

K
(I − P∗h)v ·whdx = 0, ∀wh ∈ RM(K,R2).

Note that for any positive integer k ≥ 1,

P∗hPk
hv = P∗hv. (3.30)
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Consider the H(div)-based four-field formulation (3.5) with Σh = Σ
k+1
h , Σ̌h = Σ̌

k
h, Vh = V

k
h

and V̌h = V̌
k+1

h . Lemma 3.1 guarantees the wellposedness of this problem. We introduce a new
postprocess procedure for linear elasticity problem. Let u∗h ∈ V

k+2
h be the solution of the following

problem
{

(ǫ(u∗h), ǫ(vh))K = (Aσh, ǫ(vh))K, ∀vh ∈ Pk+2(K,R2)

P∗h(u∗h − uh) = 0,
(3.31)

where (σh, σ̌h,uh, ǔh) is the solution of the mixed discontinuous Galerkin formulation (3.5).

The following theorem illustrates that the postprocessing solution u∗h admits a higher accuracy
compared to the approximation uh.

Theorem 3.5. Supposeσ ∈Hk+2(Ω), u ∈ Hk+3(Ω)(k ≥ n), and (σh, σ̌h,uh, ǔh) ∈ Σk+1
h × Σ̌k

h×V
k

h × V̌
k+1

h

is the solution of the four-field formulation (3.5) with η =
(

ρhe

)−1
, τ � η−1 = ρhe. It holds that

‖u − u∗h‖0 . hmin(2k+2,k+3)|u|k+3.

Proof. A combination of (1.2) and (3.31) gives

(ǫ(u∗h) − ǫ(Pk+2
h u), ǫ(vh)) = (A(σh − σ), ǫ(vh)) + (ǫ(u)− ǫ(Pk+2

h u), ǫ(vh)) (3.32)

According to Lemma 3.1 and the definition of Pk+2
h ,

‖σh − σ‖A . hk+2(|σ|k+2 + |u|k+1), ‖ǫ(u) − ǫ(Pk+2
h u)‖0 . hk+2|u|k+3.

Let vh = u
∗
h − Pk+2

h u in (3.32). It follows from (3.7) that

‖ǫ(vh)‖0 ≤ ‖A(σh − σ)‖0 + ‖ǫ(u)− ǫ(Pk+2
h u)‖0 . hk+2|u|k+3. (3.33)

Since k ≥ n ≥ 1, by (3.30) and Theorem 3.4,

‖P∗hvh‖0 = ‖P
∗
h(uh − Pk

hu)‖0 ≤ ‖uh − Pk
hu‖0 . hk+3|u|k+3. (3.34)

Since (I − P∗h)wh = 0 for any wh ∈ RM(K,R2), it follows from (3.33) and the scaling technique that

‖(I − P∗h)vh‖0 . h‖ǫ(vh)‖0 . hk+3|u|k+3. (3.35)

A combination of (3.34) and (3.35) gives

‖vh‖0 ≤ ‖P
∗
hvh‖0 + ‖(I − P∗h)vh‖0 . hk+3|u|k+3.

Consequently,

‖u∗h − u‖0 ≤ ‖vh‖0 + ‖P
k+2
h u − u‖0 . hk+3|u|k+3,

which completes the proof. �

Remark 3.2. For the case k < n, the analysis in [21] indicates that as long as Assumption 3.1 holds with

‖τ −Πhτ ‖0 . hk+2|τ |k+2, ∀τ ∈ Hk+2(Ω,S), (3.36)
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there exists
‖σ − σh‖0 . hk+2(|σ|k+2 + |u|k+1),

where (σh, σ̌h,uh, ǔh) is the solution of the discontinuous Galerkin formulation (3.5) in Σ
k+1
h × Σ̌

k
h ×

V k
h × V̌

k+1
h . This means that Assumption 3.1 guarantees the superclose property (3.22), which implies

the superconvergence of the postprocessed approximation u∗h following the analysis of Theorem 3.5. The
numerical results in Table 6 and 7 show that u∗h converges at the same rate as uh for k < n. This implies
that Assumption 3.1 is not true for k < n, namely there exists no such H(div)-conforming projection for
low order discrete spaces.

Remark 3.3. For a general mixed discontinuous Galerkin formulation (3.5) with the conditions (A1)-(A3),
if there holds

‖σ − σh‖0,Ω . hr inf
qh∈Σh,vh∈Vh

(‖σ − τh‖div,h + ‖u − vh‖0,h),

and
‖(I − Ph)φ‖0 . ht|φ|2, ‖(I −Πh)(A−1ǫ(φ))‖0 . hs|φ|2.

Then, a similar analysis proves the superconvergence result

‖u − u∗h‖0 . hmin(s+r,t) inf
τh∈Σh,vh∈Vh

(‖σ − τh‖div,h + ‖u − vh‖0,h).

4 Numerical Tests

In this section, some numerical experiments in 2D are presented to verify the estimate provided
in Theorem 2.2, 2.3, 3.4 and 3.5.

4.1 Example 1: scalar elliptic problems

We consider the model problem (1.1) on the unit squareΩ = (0, 1)2 with

u = sin(πx) sin(πy),

and set f and g to satisfy the above exact solution of (1.1). The domain is partitioned by uniform
triangles. The level one triangulation T1 consists of two right triangles, obtained by cutting the
unit square with a north-east line. Each triangulation Ti is refined into a half-sized triangulation
uniformly, to get a higher level triangulation Ti+1.

Consider the four-field formulation (2.5) with η = h−1
e , τ = he, γ = 1 and

Qh = Q
α1

h , Q̌h = Q̌
α2

h , Vh = Vα3

h , V̌h = V̌α4

h ,

whereα = (α1, α2, α3, α4) satisfiesα1 = α4 = k+1,α2 = α3 = k for k = 0, 1 and 2. According to Lemma
2.1, these formulations are well posed. Denote the corresponding solution by (ph, p̌h, uh, ǔh).

Table 1 - 3 record the errors ‖u − uh‖0, ‖Phu − uh‖0, ‖u − u∗1,h‖0, ‖u − u∗2,h‖0 and the corresponding

convergence rates for the aforementioned four-field formulations (2.5) with Ph = P0
h in (2.10) and

(2.11). It reveals in these tables that ‖Phu − uh‖0, ‖u − u∗1,h‖0 and ‖u − u∗2,h‖0 converge at the same
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‖u − uh‖0 rates ‖uh − Phu‖0 rates ‖u − u∗1,h‖0 rates ‖u − u∗2,h‖0 rates

T3 1.45E-01 0.92 6.81E-02 0.93 6.91E-02 1.00 6.87E-02 1.04

T4 6.89E-02 1.08 2.26E-02 1.59 2.27E-02 1.61 2.26E-02 1.60

T5 3.33E-02 1.05 6.24E-03 1.86 6.25E-03 1.86 6.24E-03 1.86

T6 1.64E-02 1.02 1.62E-03 1.95 1.62E-03 1.95 1.62E-03 1.95

T7 8.19E-03 1.00 4.11E-04 1.98 4.11E-04 1.98 4.11E-04 1.98

T8 4.09E-03 1.00 1.03E-04 1.99 1.03E-04 1.99 1.03E-04 1.99

Table 1: Superconvergence for the scalar elliptic problem using α = (1, 0, 0, 1).

‖u − uh‖0 rates ‖uh − Phu‖0 rates ‖u − u∗1,h‖0 rates ‖u − u∗2,h‖0 rates

T3 1.96E-02 1.95 1.99E-03 3.35 2.41E-03 3.42 2.22E-03 3.52

T4 4.95E-03 1.98 1.43E-04 3.80 1.68E-04 3.84 1.49E-04 3.89

T5 1.24E-03 1.99 9.40E-06 3.92 1.10E-05 3.94 9.63E-06 3.96

T6 3.11E-04 2.00 6.02E-07 3.97 7.00E-07 3.97 6.11E-07 3.98

T7 7.78E-05 2.00 3.80E-08 3.98 4.42E-08 3.99 3.85E-08 3.99

Table 2: Superconvergence for the scalar elliptic problem using α = (2, 1, 1, 2).

‖u − uh‖0 rates ‖uh − Phu‖0 rates ‖u − u∗1,h‖0 rates ‖u − u∗2,h‖0 rates

T3 2.17E-03 2.92 8.89E-05 4.42 3.48E-04 3.91 1.55E-04 3.78

T4 2.75E-04 2.98 3.20E-06 4.80 1.34E-05 4.70 6.07E-06 4.68

T5 3.45E-05 2.99 1.06E-07 4.92 4.50E-07 4.90 2.04E-07 4.89

T6 4.31E-06 3.00 3.39E-09 4.97 1.44E-08 4.96 6.56E-09 4.96

T7 5.39E-07 3.00 1.07E-10 4.98 4.57E-10 4.98 2.08E-10 4.98

Table 3: Superconvergence for the scalar elliptic problem using α = (3, 2, 2, 3).
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rate 2.00 if α = (1, 0, 0, 1), 4.00 if α = (2, 1, 1, 2) and 5.00 if α = (3, 2, 2, 3), which coincides with
the analysis in Theorem 2.2 and Theorem 2.3. The comparison between ‖u − u∗1,h‖0 and ‖u − u∗2,h‖0
shows that the postprocessing approximations u∗2,h admit a slightly higher accuracy than u∗1,h. It is

analyzed in [25] that the four-field formulation (2.5) with η = τ−1 and γ = 0 is hybridizable. For
this formulation, the postprocess technique (2.11) with p̃h = p̂h is better than the other one (2.10)
in two aspects, one is the higher accuracy of u∗2,h and the other one is that there is no need to solve
ph from the reduced formulation.

4.2 Example 2: linear elasticity problems

We consider the linear elasticity problem (1.2) on the unit square Ω = (0, 1)2 with the exact
displacement

u = (sin(πx) sin(πy), sin(πx) sin(πy))T,

and set f and g are chosen corresponding to the above exact solution of (1.2) with E = 1 and ν = 0.4.
The domain is partitioned by uniform triangles. The level one triangulation T1 consists of two
right triangles, obtained by cutting the unit square with a north-east line. Each triangulation Ti is
refined into a half-sized triangulation uniformly, to get a higher level triangulation Ti+1. For this
numerical tests, fix the parameters ρ1 = ρ2 = γ = 1.

‖u − uh‖0 rates ‖uh − Phu‖0 rates ‖u − u∗h‖0 rates

T1 9.87E-02 - 2.90E-02 - 3.68E-02 -

T2 2.37E-02 2.06 5.65E-03 2.36 6.83E-03 2.43

T3 3.08E-03 2.94 3.71E-04 3.93 3.74E-04 4.19

T4 3.89E-04 2.99 1.51E-05 4.62 1.43E-05 4.71

T5 4.87E-05 3.00 5.17E-07 4.87 4.79E-07 4.90

T6 6.10E-06 3.00 1.67E-08 4.95 1.54E-08 4.96

Table 4: Superconvergence for the elasticity problem with α = (3, 2, 2, 3)

‖u − uh‖0 rates ‖uh − Phu‖0 rates ‖u − u∗h‖0 rates

T1 7.17E-02 - 2.51E-02 - 3.47E-02 -

T2 4.12E-03 4.12 7.52E-04 5.06 8.82E-04 5.30

T3 2.69E-04 3.94 2.27E-05 5.05 2.28E-05 5.27

T4 1.70E-05 3.98 5.76E-07 5.30 5.29E-07 5.43

T5 1.06E-06 4.00 1.13E-08 5.68 1.01E-08 5.71

Table 5: Superconvergence for the elasticity problem with α = (4, 3, 3, 4)
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Table 4 and 5 list the errors ‖u−uh‖0, ‖Phu−uh‖0, ‖u−u∗h‖0 and the corresponding convergence
rates of the discontinuous Galerkin formulation (3.5) with k ≥ n for elasticity problem (1.2). It is
shown that both ‖Phu − uh‖0 and ‖u − u∗h‖0 of the discontinuous Galerkin formulation (3.5) with
k = 2 and k = 3 converge at the rates 5.00 and 6.00, respectively. This verifies that error estimates
in Theorem 3.5.

We also test the postprocessing scheme (3.31) on the formulation (3.5) with k < n, namely,

α = (1, 0, 0, 1) and (2, 1, 1, 2),

where the results are listed in Table 6 and 7, respectively. It shows that postprocessing solution u∗h
converges at the same rate as the finite element solution uh, which is k + 1 for the case k < n. This
implies that there is no such H(div)-conforming projection that admits the commuting diagram
(3.10).

‖u − uh‖0 rates ‖uh − Phu‖0 rates ‖u − u∗h‖0 rates

T2 4.25E-01 - 2.50E-01 - 3.45E-01 -

T3 2.13E-01 0.99 1.12E-01 1.16 1.29E-01 1.42

T4 1.00E-01 1.09 3.89E-02 1.53 4.61E-02 1.48

T5 4.83E-02 1.05 1.41E-02 1.46 1.84E-02 1.33

T6 2.39E-02 1.02 6.06E-03 1.22 8.39E-03 1.13

T7 1.19E-02 1.00 2.88E-03 1.07 4.08E-03 1.04

T8 5.96E-03 1.00 1.42E-03 1.02 2.03E-03 1.01

Table 6: Superconvergence for the elasticity problem with α = (1, 0, 0, 1)

‖u − uh‖0 rates ‖uh − Phu‖0 rates ‖u − u∗h‖0 rates

T1 4.74E-01 - 3.08E-01 - 4.00E-01 -

T2 1.11E-01 2.09 4.11E-02 2.90 5.27E-02 2.92

T3 2.85E-02 1.97 7.20E-03 2.51 8.57E-03 2.62

T4 7.22E-03 1.98 1.77E-03 2.02 1.89E-03 2.18

T5 1.82E-03 1.99 4.56E-04 1.96 4.64E-04 2.03

T6 4.55E-04 2.00 1.16E-04 1.98 1.16E-04 2.00

T7 1.14E-04 2.00 2.91E-05 1.99 2.91E-05 2.00

Table 7: Superconvergence for the elasticity problem with α = (2, 1, 1, 2)
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