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Projection Method for Saddle Points of Energy Functional in
H
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Abstract

Saddle points play important roles as the transition states of activated process in
gradient system driven by energy functional. However, for the same energy functional,
the saddle points, as well as other stationary points, are different in different metrics
such as the L2 metric and the H−1 metric. The saddle point calculation in H−1 metric
is more challenging with much higher computational cost since it involves higher order
derivative in space and the inner product calculation needs to solve another Possion
equation to get the ∆−1 operator. In this paper, we introduce the projection idea
to the existing saddle point search methods, gentlest ascent dynamics (GAD) and
iterative minimization formulation (IMF), to overcome this numerical challenge due
to H−1 metric. Our new method in the L2 metric only by carefully incorporates a
simple linear projection step. We show that our projection method maintains the same
convergence speed of the original GAD and IMF, but the new algorithm is much faster
than the direct method for H−1 problem. The numerical results of saddle points in
the one dimensional Ginzburg-Landau free energy and the two dimensional Landau-
Brazovskii free energy in H−1 metric are presented to demonstrate the efficiency of
this new method.

Keywords: saddle point, transition state, projection method, gentlest ascent dy-
namics
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1. Introduction

Saddle points have important physical meaning and have been of broad interest in
chemistry, physics, biology and material sciences. In computational chemistry [22],
one of the most important objects on the potential energy surface is the transition
state, a special type of the saddle point with index-1, which is defined as the critical
point with only one unstable direction. Such transition states are the bottlenecks on
the most probable transition paths between different local wells. In recent years, a
large number of numerical methods have been proposed and developed to efficiently
compute these saddle points. Generally speaking, there are two classes: path-finding
methods and surface-walking methods. The former includes the string method [20, 9]
and the nudged elastic band method [15]. These methods are to search the so-called
minimum energy path (MEP). The points along the MEP with locally maximum energy
value are then the index-1 saddle points. The later methods include the eigenvector
following method [5], the dimer method [14], the activation-relaxation techniques [19],
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the gentlest ascent dynamics(GAD) [10] and the iterative minimization formulation
(IMF) [11, 12]. They evolve a single state on the potential energy surface along the
unstable direction, for example, the min-mode direction.

There are different fixed points on different potential energy surfaces. Here we will
address that even for the same energy functional, different stationary points (metastable
states) and saddle points can be obtained in different metrics such as the L2 metric
and the H−1 metric. We take the Ginzburg-Landau free energy on a bounded domain
Ω for example

F (φ) =

∫

Ω

[κ2
2
|∇φ(x)|2 + f(φ)

]
dx, f(φ) = (φ2 − 1)2/4, (1)

and the following two gradient flows are commonly used in physics models, depending
on which metric is used for the gradient.

(1) In L2 metric: the (non-conserved) Allen-Cahn (AC) equation [1]

∂φ

∂t
= −

δF

δφ
(φ) = κ2∆φ− (φ3 − φ); (2)

and
(2) In H−1 metric: the (conserved) Cahn-Hilliard (CH) equation [4]

∂φ

∂t
= ∆

δF

δφ
= −κ2∆2φ+∆(φ3 − φ). (3)

Here δF
δφ

is the first order variation of F in the L2 sense. Nowadays, the Allen-Cahn and

Cahn-Hilliard equations have been widely used in many complicated moving interface
problems in materials science and fluid dynamics through a phase-field approach, for
instance, [21, 6, 2, 3].

The inner product and the norm in H−1 metric can be rewritten in terms of the L2

product as follows:

‖φ‖
2
H−1 =

〈
(−∆)−1φ, φ

〉
L2 , 〈φ, ψ〉H−1 =

〈
(−∆)−1φ, ψ

〉
L2 , (4)

where (−∆)−1, a bounded positive self-adjoint linear operator, is the inverse of −∆
subject to certain boundary condition[7]. The dynamics (2) and (3) are the gradient
flows of the same energy functional (1) in L2 metric and H−1 metric, respectively. It is
clear that these two gradient flows have distinctive dynamics and properties. The Cahn-
Hilliard equation (3) preserves the mass

∫
Ω φdx while the Allen-Cahn does not. We are

intertested in the stationary states of these two dynamics. With the same boundary
condition, the stationary states of dynamics (2) (with the sufficient regularity such as
in the Sobolev H4(Ω) space) are the stationary states of the dynamics (3), but not vice
versa.

It takes more computational cost to calculate the stationary points in CH equation
than that in AC equation, because the dynamics in the H−1 metric (3) is a fourth
order derivative equation in space, two order higher than that in the L2 metric (2).
What is worse is that any computation involving the inner product calculation in H−1

metric needs to calculate the ∆−1 operator (see (4)) by solving a Poisson equation. So
if one only wants to locate the fixed points(stationary points or saddle points) instead
of capturing the time evolution in H−1 metric, it is much less efficient to use dynamics
in H−1 metric such as the CH equation.

Since the main difference between the dynamics in L2 metric and H−1 metric is
whether the mass is conservation, our idea to handle the above challenges is to add
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mass conservation constrains into the L2 metric dynamics. This conservation can
be enforced by a projection operator. In the work of [18], the projected Allen-Cahn
equation

∂u

∂t
= P(−

δF

δu
) (5)

was proposed as a counterpart of the Cahn-Hillard equation to search different phases
in diblock copolymers. P in (5) is the orthogonal projection operator onto the confined
subspace satisfying the mass conservation. The Cahn-Hilliard equation (3) and the
projected Allen-Cahn equation (5) then both preserve the mass, although the gradient-
descent trajectories and the transition paths are different[25]. One important fact is
that (5) and (3) share the same stationary points (metastable states) and the saddle
points if they have the same mass. [25] further compared the stochastic models arising
from these two dynamics ((3) and (5)) for the noise-induced transitions. They showed
the subtle difference in transition rates and minimum energy paths in the two stochastic
models. For our purpose of locating the saddle point in this article, we utilize the
equivalence of saddle points of (3) and (5) and solve the saddle points of the Cahn-
Hilliard equation (3) by solving the projected Allen-Cahn equation (5) (in L2 metric).

Compared with the stationary points, people are more concerned about the saddle
points for rare event study. In [13], the IMF has been applied to locate the saddle point
of an energy functional in H−1 metric directly. However, as mentioned before, this di-
rectly is quite expensive in computation. Considering the equivalence of the fixed points
for CH equation and projected AC equation, we propose to locate the saddle points of
the AC equation with the mass conservation constrain. Recently, several methods have
been developed to locate the saddle point with constrains. [8] developed a constrained
string method for finding the saddle points subject to constraints. [24] studied the con-
strained shrinking dimer dynamics to locate saddle points associated with an energy
functional defined on a constrained manifold. [16] considered noise-induced transition
paths in randomly perturbed dynamical systems on a smooth manifold. Besides, the
papers of iterative minimization formulation (IMF) [11, 12] have included the discus-
sions on the projection idea for saddle point on manifold. But in these works, the
constraints are externally imposed and thus require higher computational cost than
the unconstrained problems. Our motivation here is totally different. The question
we considered here is essentially an unconstrained problem since the mass is conserved
automatically in H−1 metric. We transform a difficult unconstrained problem into a
less challenging constraint problem and we only work on the orthogonal projection for
mass conservation. This method can reduce the computational cost efficiently since it
can not only avoid a higher order equation solving but also escape from the ∆−1 oper-
ator calculation. Furthermore, we verify that the projected IMF can ensure the same
convergence rate as the original IMF. Finally, we remind the readers that if one really
looks for the noise-induced transition paths in H−1 sense, then the true dynamics like
the CH equation (3) is still necessary, although our method for saddle points can assist
this path-finding task; see details in [25].

The paper is organized as follows. Section 2 is a short review of two main methods
for saddle points: the IMF and the GAD. In section 3, we first present the application
of the IMF in the H−1 metric, and then propose the mathematical formulation of
the projected IMF and the convergence result of the projected IMF. The projected
GAD is also presented here. In section 4, in order to validate the efficiency of our new
method, we test two numerical examples: the saddle points of the one dimensional
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Ginzburg-Landau free energy and the two dimensional Landau-Bravoskii free energy
in H−1 metric. Finally we make the conclusion.

2. Review

In this section, we will review two main methods for saddle points: the IMF and the
GAD, from which the projected IMF and the projected GAD in the next Section will
be proposed.

2.1. Iterative minimization formulation(IMF). We first review the iteration min-
imization formulation (IMF) in [11]. Suppose M is a function space equipped with the
norm ‖·‖ and the inner product 〈·, ·〉. The IMF to locate the saddle point of an energy
functional F (φ) is the following iteration





v(k+1) = argmin
‖v‖=1

〈
φ,H(φ(k))φ

〉
, (6)

φ(k+1) = argmin
φ

L(φ;φ(k), v(k+1)), (7)

where H = δ2φF is the second order variational operator of F , and

L(φ;φ(k), v(k+1)) = (1 − α)F (φ) + αF
(
φ−

〈
v(k+1), φ− φ(k)

〉
v(k+1)

)

− βF
(
φ(k) +

〈
v(k+1), φ− φ(k)

〉
v(k+1)

)
.

(8)

α and β are two parameters, and α + β > 1. Two special choices for α and β are:
(i) (α, β) = (2, 0), then L(φ;φ(k), v) = −F (φ) + 2F (φ −

〈
v, φ− φ(k)

〉
v); (ii) (α, β) =

(0, 2), then L(φ;φ(k), v) = F (φ)− 2F (φ(k) +
〈
v, φ− φ(k)

〉
v). (6) is called the “rotation

step” and (7) is the “translation step”. The main properties of the auxiliary objective
functional L(φ;φ(k), v) when α+ β > 1 are listed here for reference.

Theorem 1 ([11]). Suppose that φ∗ is a (non-degenerate) index-1 saddle point of the
functional F (φ), and the auxiliary functional L is defined by (8) with α+ β > 1, then
(1) a neighbourhood U of φ∗ exists such that for any φ ∈ U , L(φ;φ(k), v) is strictly
convex in φ ∈ U and thus has a unique minimum in U ;
(2) define the mapping Φ : φ ∈ U → Φ(φ) ∈ U to be the unique minimizer of L in U
for any φ ∈ U . Further assume that U contains no other stationary points of F except
for φ∗. Then the mapping Φ has only one fixed point φ∗;
(3) the mapping φ→ Φ(φ) has a quadratic convergence rate.

2.2. Gentlest ascent dynamics(GAD). The GAD for a gradient system φ̇ = −δφF (φ)
is




φ̇ = −δφF (φ) + 2

〈δφF (φ), v〉

〈v, v〉
v, (9a)

γv̇(t) = −δ2φF (φ)v +
〈
v, δ2φF (φ)v

〉
v, (9b)

where δ2φF (φ) is the second order variational derivative of the energy functional F (φ).
γ > 0 is the relaxation parameter. A large γ means a fast dynamics for the direction
variable v(t) towards the steady state. For a frozen φ, this steady state is the min
mode of δ2φF (φ): the eigenvector corresponds to the smallest eigenvalue of δ2φF (φ).
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Theorem 2 ([10]). The (linearly) stable critical point of the GAD (9) corresponds to

the index-1 saddle point of the original dynamics φ̇ = −δφF (φ), i.e.,
(1) If (φ∗, v∗) is a stable critical point of the GAD, then φ∗ is a saddle point of F (φ);
(2) If φ∗ is an index-1 saddle point of F (φ) with the eigenvector v∗, then (φ∗, v∗) is

a stable critical point of the GAD.

Remark 1. In the IMF, there are two levels of iterations: the rotation step and the
translation step. In general, it requires many iteration steps to get φ(k+1) for the
translation step, but it is not necessary to do so in practice. If the two subproblems of
the IMF moves forward only one iteration step, the IMF becomes exactly the GAD in
continuous time limit minimizations.

3. Main methods

We present the main methods of projection here by starting with the formulation in
the H−1 space where the inner product 〈·, ·〉 becomes 〈·, ·〉H−1 .

3.1. The IMF in H−1 metric. Formally, the IMF in the spatially extended system
to locate the saddle point of F (φ), φ ∈ C(Ω) in H−1 metric is:




v(k+1) = argmin

‖v‖
H−1=1

〈
v, H̃(φ(k))v

〉
H−1

, (10)

φ(k+1) = argminL(φ;φ(k), v(k+1)), (11)

where

H̃ = δ2φF (φ)|H−1 = −∆δ2φF (φ) = −∆H, (12)

and

L(φ;φ(k), v(k+1)) = (1 − α)F (φ) + αF
(
φ−

〈
v(k+1), φ− φ(k)

〉
H−1

v(k+1)
)

− βF
(
φ(k) +

〈
v(k+1), φ− φ(k)

〉
H−1

v(k+1)
)
.

(13)

Recall H = δ2φF (φ) is the second order variational operator of F w.r.t. φ in L2 metric.
For convenience, in this paper, we take α = 0, β = 2, then

L(φ) = F (φ)− 2F (φ̂),

with

φ̂ = φ(k) +
〈
v(k+1), (φ− φ(k))

〉
H−1

v(k+1), (14)

where the inner product in H−1 metric is defined by the L2 product: 〈u, v〉H−1 =〈
(−∆)−1u, v

〉
L2 .

In H−1 metric, φ is mass conserved,
∫
Ω
φ(x) dx = m. So any eigenvectors of H̃

satisfies
∫
Ω ψ(x) dx = 0. Thus the eigenvalue problem (10) can be rewritten as

{
H̃(φ)ψ = λψ,∫
Ω ψ(x) dx = 0,

(15)

subject to some boundary condition. Define the Rayleigh quotient

R̃(ψ) =

〈
ψ, H̃ψ

〉
H−1

‖ψ‖
2
H−1

,
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and thus the min-mode is the minimizer of the problem

argmin
ψ

{
R̃(ψ) :

∫

Ω

ψ dx = 0, ‖ψ‖H−1 = 1

}
. (16)

After the min-mode is obtained, the subproblem of minimizing the auxiliary functional
(11) is then solved by evolving the gradient flow

∂φ

∂t
= ∆

δL

δφ
(φ) = ∆

(
δF

δφ
(φ)

)
+ 2

〈
δF

δφ̂
(φ̂), v

〉

L2

v, (17)

where φ̂ is defined in (14). By solving (16) and (17), one can get the saddle point of
F (φ) in H−1 metric. The readers can refer to [13] for details.

For the IMF in the H−1 metric, we can see in (14) that the H−1 inner product
calculation requires to get the −∆−1 operator first. This can be transformed to a
Poisson equation ∆w = −u and it takes large computational cost. This is why we
consider the projected method in this note to locate the saddle point in H−1 metric.
In the next two subsections, we first present the projected IMF and then propose the
projected GAD.

3.2. The Projected IMF. In this part, we propose the projected iterative minimiza-
tion formulation to locate the saddle point of an energy functional F (φ) in the H−1

metric. Since the mass is preserved in H−1 metric, we introduce the projection P

Pu := u−
1

|Ω|

∫

Ω

u(x) dx (18)

onto the linear subspace H0 =
{
u ∈ L2 :

∫
Ω
u(x)dx = 0

}
. One can show that P has

the following properties:

(1) P2 = P;
(2) Pu ∈ H0, ∀u ∈ L2;
(3) Pv = v, ∀v ∈ H0;
(4) 〈v,Pw〉L2 = 〈Pv, w〉L2 , ∀v ∈ L2 and ∀w ∈ H0 .

In fact,

P2u = P(u−
1

|Ω|

∫

Ω

u(x) dx)

= u−
1

|Ω|

∫

Ω

u(x) dx −
1

|Ω|

∫

Ω

(u(x) −
1

|Ω|

∫

Ω

u(x) dx) dx

= Pu, ∀u.

Besides, one can easily show Pu ∈ H0, since∫

Ω

Pu dx =

∫

Ω

(u −
1

|Ω|

∫

Ω

u(x) dx) dx = 0, ∀u. (19)

The third property is obvious. For the last one, when w ∈ H0, v ∈ L2, we have

〈v,Pw〉L2 − 〈Pv, w〉L2 =〈v, w〉L2 − 〈Pv, w〉L2 = 〈v −Pv, w〉L2 .

Since Pv ∈ H0, v ∈ L2 and P is the projection from L2 to H0, we obtain

v −Pv ∈ H⊥
0 ⇒ 〈v −Pv, w〉L2 = 0,

that is,

〈v,Pw〉L2 = 〈Pv, w〉L2 .
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For the rotation step (10) in the IMF, the following equivalence can be get
〈
v, H̃v

〉
H−1

= 〈v,−∆Hv〉H−1 =
〈
v,−(−∆)−1∆Hv

〉
L2 = 〈v,Hv〉L2 .

When v ∈ H0, by the last two properties of P, we have

〈v,Hv〉L2 = 〈Pv,HPv〉L2 = 〈v,PHPv〉L2 ,

so the eigenvector problem (10) can be equivalent transformed to

v(k+1) = argmin 〈v,PHPv〉L2

without regarding to the “length” (norm) of v since only the direction of v matters in
the translation step.

Besides, due to the equivalence of saddle points of F (φ) inH−1 metric (Cahn-Hilliard
equation) and in L2 metric with projection (projected Allen-Cahn equation), all the
terms in equation (10) and (11) including the (first-order and second-order) variation,
the inner-product and the norm in H−1 metric can be changed to the L2 metric onto
the confined subspace H0. It can be verified that the relation of the variations in L2

space and its subspace H0 is

µ1 = Pµ2, Ĥ = PHP,

where µ1 and µ2 are the first-order variations of F (φ) in H0 and L2, respectively. Ĥ
and H are the second-order variations of F (φ) in H0 and L2, respectively.

So the projected IMF written in terms of 〈·, ·〉L2 is




v(k+1) = argmin
‖v‖

L2=1

〈
v, Ĥ(φ(k))v

〉
L2
, (20)

φ(k+1) = argmin∫
Ω
φ(x)dx=m

L(φ;φ(k), v(k+1)), (21)

where Ĥ = PHP,H = δ2φF (φ). L(φ) = F (φ) − 2F (φ̂), with

φ̂ = φ(k) +
〈
v(k+1), (φ− φ(k))

〉
L2
v(k+1). (22)

The eigenvector problem (20) is equivalent to
{
PHPψ = λψ,∫
Ω
ψ(x) dx = 0,

(23)

subject to some boundary condition. In this paper, we consider the periodic boundary
condition only. The Rayleigh quotient in this case is

R̂(ψ) =
〈ψ,PHPψ〉L2

‖ψ‖
2
L2

,

and thus the min-mode of Ĥ is the minimizer of the problem

argmin
ψ

{
R̂(ψ) :

∫

Ω

ψ dx = 0, ‖ψ‖L2 = 1

}
. (24)

After the min-mode is obtained, the subproblem of minimizing the auxiliary functional
(21) is then solved by evolving the gradient flow

∂φ

∂t
= −P

δL

δφ
(φ) = −P

δF

δφ
(φ) + 2

〈
v,
δF

δφ̂
(φ̂)

〉

L2

Pv, (25)
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where

φ̂ = φ(k) +
〈
v(k+1), (φ− φ(k))

〉
L2
v(k+1).

We can show that (25) ensures mass conservation automatically

∂

∂t

∫

Ω

φ(x) dx = −

∫

Ω

P
δL

δφ
dx = 0,

thanks to (19). Thus, by solving (24) and (25), we can get the saddle point of F (φ) in
H−1 metric. It is easy to find that (25) is two order lower in spatial derivative than
(17), which is the gradient flow in H−1 metric directly. Besides, the inner product in
(25) is in L2 metric which avoids the ∆−1 operator calculation. We can also apply the
convex splitting method to (25) to construct a large time step size scheme as in [13].

Denote this mapping for the iteration as Φ(φ), we shall show that the Jacobian
matrix of Φ(φ) in the projection sense vanishes at the index-1 saddle point. This
implies that the projected IMF is of quadratic convergence rate.

3.3. Convergence Results.

Theorem 3. Suppose that φ∗ is a (non-degenerate) index-1 saddle point of the func-
tional F (φ), which satisfies that the second order variational derivative δ2φF (φ) is con-

tinuous. For each φ, v(φ) is the normalized eigenvector corresponding to the smallest

eigenvalue of the matrix Ĥ = PHP,H = δ2φF , i.e.,

v(φ) = argmin
‖u‖=1

uT Ĥ(φ)u.

Take α = 0, β = 2, and the auxiliary functional is L(φ) = F (φ) − 2F (φ̂), then
(1) φ∗ is local minimizer of L(φ;φ∗, v);
(2) a neighbourhood U of φ∗ exists such that for any φ ∈ U , L(φ;φ(k), v) is strictly
convex in φ ∈ U and thus has a unique minimum in U ;
(3) define the mapping Φ : φ ∈ U → Φ(φ) ∈ U to be the unique minimizer of L in U
for any φ ∈ U . Further assume that U contains no other stationary points of F except
for φ∗. Then the mapping Φ has only one fixed point φ∗;
(4) Φ(φ) is differentiable in U and PΦ′(φ∗)P = 0. Thus the mapping φ→ Φ(φ) has a
local quadratic convergence rate.

Proof. The proof of the first three conclusions can be generalized from the finite space
to the infinite space based on the proof of Theorem 3.1 in [11] without difficuty. The
main difference is the proof of the quadratic convergence rate. Here, we only give the
details of the final conclusion.

In fact, the first order variational derivative of L(φ;φ(k), v(φ)) can be calculated as

δφL(φ;φ
(k), v(φ)) = δφF (φ) − 2

〈
v, δ

φ̂
F (φ̂)

〉
L2
v.

At each φ(k) ∈ U , the mapping Φ(φ(k)) satisfies the first order equationPδφL(Φ(φ
(k)), φ(k), v(φ(k))) =

0, that is,

PδφF (Φ(φ
(k)))− 2

〈
v(φ(k)), δ

φ̂
F (φ̂)

〉
L2

Pv(φ(k)) = 0. (26)
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Take derivative w.r.t. φ(k) on both sides of (26), we get

P2H(Φ(φ(k)))P2Φ′(φ(k))P− 2
〈
v(φ(k)), δ

φ̂
F (φ̂)

〉
L2

P2J(φ(k))P

− 2
〈
PJ(φ(k))P, δ

φ̂
F (φ̂)

〉
L2

Pv(φ(k))

− 2
〈
v(φ(k)),PH(φ̂)Pφ̂′

〉
L2

Pv(φ(k)) = 0, (27)

where H = δ2φF, J(φ
(k)) = ∂v(φ(k))

∂φ(k) and

φ̂′(φ(k)) = P+
〈
v(φ(k)),Φ(φ(k))− φ(k)

〉
L2

PJ(φ(k))P

+
〈
PJ(φ(k))P,Φ(φ(k))− φ(k)

〉
L2
v(φ(k))

+
〈
v(φ(k)),PΦ′(φ(k))P−P

〉
L2
v(φ(k)).

Let φ(k) = φ∗ be the saddle point, we have Φ(φ∗) = φ∗, φ̂ = φ∗, δ
φ̂
F (φ∗) = 0 and

φ̂′ = P+
〈
v(φ(k)),PΦ′(φ∗)P−P

〉
L2 v(φ

∗), thus (27) becomes

PH(φ∗)P2Φ′(φ∗)P

= 2 〈v(φ∗),PH(φ∗)P[P + 〈v(φ∗),PΦ′(φ∗)P−P〉L2 v(φ
∗)]〉

L2 Pv(φ
∗),

which can be simplified as

(PH(φ∗)P− 2λvvT )PΦ′(φ∗)P = 0, (28)

by denoting uT v = 〈u, v〉, applying PHPv = λv and PHP(I−vvT )P = 0. (28) implies
that

PΦ′(φ∗)P = 0.

One can carry out the second order derivative of Φ(φ) at φ∗ further and observe that
PΦ′′(φ∗)P = 0 does not trivially hold. Thus the iteration φ → Φ(φ) locally converges
to φ∗ with the quadratic rate. �

Remark 2. Theorem 3 is also applicable for any auxiliary functional L only if α+β >
1. Here we take α = 0, β = 2 just for convenience. α and β are defined in Section 2.1.

Remark 3. We are dealing with a linear constraint here, so the projection P is the
standard orthogonal projection. For general nonlinear constraints giving rise to a sub-
manifold, the projection should follow the geodesic distance on the submanifold exactly
to ensure the quadratic convergence rate in IMF [12].

3.4. Projected GAD. We now present the projected GAD to calculate the saddle
point of the energy functional F (φ) in H−1 metric. For comparison, we put the original
GAD (9) in Section 2.2 here:





∂φ

∂t
= −δφF (φ) + 2

〈δφF (φ), v〉L2

〈v, v〉L2

v, (29)

γ
∂v

∂t
= −δ2φF (φ)v +

〈
v, δ2φF (φ)v

〉
L2 v. (30)

By using the projection P in (18), the projected GAD is given as follows:
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∂φ

∂t
= −PδφF (φ) + 2

〈δφF (φ), v〉L2

〈v, v〉L2

Pv, (31)

γ
∂v

∂t
= −Pδ2φF (φ)Pv +

〈
v,Pδ2φF (φ)Pv

〉
L2 v. (32)

By integrating w.r.t. x on both sides of (32), we get

γ
∂

∂t

∫

Ω

v dx = −

∫

Ω

Pδ2φF (φ)Pv dx+
〈
v,Pδ2φF (φ)Pv

〉
L2

∫

Ω

v dx

=
〈
v,Pδ2φF (φ)Pv

〉
L2

∫

Ω

v dx,

this is an ordinary differential equation of
∫
Ω v dx. Considering the initial condition,∫

Ω v0 dx = 0, one can easily get
∫

Ω

v(x) dx = 0, ∀v,

and thus

Pv = v −

∫

Ω

v(x) dx = v, ∀v.

Furthermore, by using the last property of P,

〈v,Pw〉L2 = 〈Pv, w〉L2 , ∀v ∈ L2, ∀w ∈ H0.

the projected GAD can be rewritten as





∂φ

∂t
= −PδφF (φ) + 2

〈δφF (φ), v〉L2

〈v, v〉L2

Pv, (33)

γ
∂v

∂t
= −Pδ2φF (φ)Pv +

〈
v, δ2φF (φ)v

〉
L2 v. (34)

By solving the equation (33) and (34), we can calculate the saddle points of F (φ) in
H−1 metric.

4. Numerical example

In this section, we will illustrate the above projection method by locating the transi-
tion state of the one dimensional Ginzburg-Landau free energy and the two dimensional
Landau-Brazovskii free energy in the H−1 metric.

4.1. 1D example: Ginzburg-Landau free energy. Consider the one dimensional
Ginzburg-Landau free energy on [0, 1],

F (φ) =

∫ 1

0

[κ2
2
(
∂φ

∂x
)2 + f(φ)

]
dx, (35)

where φ(x) is an order parameter and κ > 0. f(φ) = (φ2 − 1)2/4. The first and the
second order variation of F (φ) can be calculated as

δF

δφ
(φ) = −κ2∆φ+ φ3 − φ,

δ2F

δφ2
(φ) = −κ2∆+ 3φ2 − 1 := H.
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So the projected IMF is




v(k+1) = argmin
‖v‖=1

〈
v,PHP(φ(k))v

〉
L2
, (36)

φ(k+1) = argmin∫
Ω
φ(x)dx=m

L(φ;φ(k), v(k+1)), (37)

with L(φ) = F (φ) − F (φ̂), φ̂ is defined in (22). The second minimization sub-problem
(37) is solved by evolving the gradient flow:

∂φ

∂t
= −PδφL(φ),

where

−PδφL(φ) =−P
[
− κ2∆φ+ (φ3 − φ)

]
+2

〈
v,−κ2∆φ̂+ (φ̂3 − φ̂)

〉
L2

Pv,

here φ = φ(k+1). And the projected GAD is





∂φ

∂t
= −P(−κ2∆φ+ (φ3 − φ)) + 2

〈
v,−κ2∆φ+ (φ3 − φ)

〉
L2

〈v, v〉L2

Pv, (38)

γ
∂v

∂t
=−P(−κ2∆+(3φ2 − 1))Pv +

〈
v,−κ2∆v+(3φ2 − 1)v

〉
L2 v. (39)

We apply the finite difference scheme to achieve the numerical example. For the pro-
jected IMF, we further construct the following convex splitting scheme (40) to discrete
(37) in time.

φn+1 − φn

∆t
=P

[
κ2∆φ − 2φ− 2 〈v, φ〉 v

]n+1

+P
[
−φ3 + 3φ+ 2

〈
v,−κ2∆φ̂+ φ̂3

〉
v
]n
.

(40)

In the numerical test, we take κ = 0.04, the initial mass m = 0.6, and the mesh
grid is {xi = ih, i = 0, 1, 2, . . . , N}. h = 1/N. N = 100, ∆t = 0.1. We use the periodic
boundary condition in this example. We find that the saddle point of F (φ) in the H−1

metric calculated by the projected IMF or the projected GAD is exactly the same as
the result in [13] which applies the IMF in the H−1 metric directly, see Figure 1a.
Besides, the quadratic convergence rate can also be observed when using the projected
IMF; see Figure 1b for the convergence result. In order to illustrate the advantage
of this method, we make comparison of the CPU time required for the same iteration
number between the projected IMF in L2 metric and the original IMF in H−1 metric.
Table 1 shows the results for various initial states φ01, φ02 and φ03. One can find that
the projected IMF in L2 metric can save almost half computational cost compared with
the IMF in H−1 metric, especially for the large inner iteration number.

4.2. 2D example: Landau-Brazovskii free energy. In this section, we study the
nucleation problem of phase transition in diblock copolymers [17, 23], which have at-
tracted a lot attention because of their various and abundant microstructures. The
model is described by the two-dimensional Landau-Brazovskii energy functional of the
order parameter φ,

F (φ) =

∫

Ω

ξ2

2
[(∆ + 1)φ(r)]2 +Φ(φ) d r, (41)
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Figure 1. (A): initial state (dashed line); transition state by pro-
jected IMF or projected GAD (green line); transition state by IMF in
H−1 metric (red line). (B): The decay of the error ‖PδφF (φ

(k))‖L2

measured by the L2 norm of the projected force at each cycle k.

iterN 1e4 2e4 5e4 1e5 2e5

φ01
IMF 16.11 32.06 80.52 158.75 320.99

Projected IMF 9.14 18.14 45.94 91.07 182.68

φ02
IMF 15.73 32.42 80.55 158.87 316.28

Projected IMF 9.30 18.26 45.27 90.75 179.99

φ03
IMF 16.02 33.21 80.24 160.02 325.60

Projected IMF 9.17 18.43 45.71 91.13 183.00

Table 1. CPU time (seconds) comparison. “IMF” means the original
IMF in H−1 metric; “Projected IMF” is in L2 metric.

defined on Ω = [0, 16π√
3
]× [0, 8π], where Φ(φ) = τ

2φ
2 − γ

3!φ
3 + 1

4!φ
4. The parameters are

τ = −0.15, ξ = 1.0, γ = 0.25. We hope to calculate the transition state of F (φ) in the
H−1 metric. First we calculate the first and the second order variations as follows

δφF (φ) = ξ2(∆ + 1)2φ(r) + Φ′(φ),

δ2φF (φ) = ξ2(∆ + 1)2 +Φ′′(φ) := H,

where Φ′(φ) = τφ − γ
2φ

2 + 1
3!φ

3,Φ′′(φ) = τ − γφ+ 1
2φ

2. So the projected IMF is




v(k+1) = argmin
‖v‖=1

〈
v,PHP(φ(k))v

〉
L2
, (42)

φ(k+1) = argmin∫
Ω
φ(x)dx=m

L(φ;φ(k), v(k+1)), (43)

with L(φ) = F (φ) − F (φ̂), φ̂ is defined in (22). The second minimization sub-problem
is solved by evolving the gradient flow:

∂φ

∂t
= −PδφL(φ),
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where

−PδφL(φ) = −P
[
ξ2(∆ + 1)2φ+Φ′(φ)

]
+ 2

〈
v, ξ2(∆ + 1)2φ̂+Φ′(φ̂)

〉
L2

Pv,

here φ = φ(k+1). And the projected GAD is





∂φ

∂t
= −P

[
ξ2(∆ + 1)2φ+Φ′(φ)

]
+ 2

〈
ξ2(∆ + 1)2φ+Φ′(φ), v

〉
L2

〈v, v〉L2

Pv, (44)

γ
∂v

∂t
= −P

[
ξ2(∆ + 1)2 +Φ′′(φ)

]
Pv +

〈
v, ξ2(∆ + 1)2v +Φ′′(φ)v

〉
L2 v. (45)

For this two-dimensional numerical example, we consider the periodic boundary
condition again. And for the convenience of saving computational cost, we apply the
fast Fourier transform (FFT) for the two-dimensional case. We take the mesh points
Nx = Ny = 64 and the time step size ∆t = 0.1. The transition state can be obtained
by the projected IMF (or the projected GAD) in Figure 2a. The quadratic convergence
rate can also be obtained for the projected IMF shown in Figure 2b. Similarly to the
one-dimensional case, in order to illustrate the effect of the projected method, we
make comparison with the original IMF in H−1 metric. We fix various inner iteration
number for both cases and compare the required CPU time. Table 2 shows the CPU
time comparison between the projected IMF and the original IMF in H−1 metric with
various initial states. Results show that the projected method for this example can
save almost one-third computational cost.
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100
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Figure 2. (A): Transition state of the Landau Brazovskii free energy
in the H−1 metric by the projected IMF. (B): The decay of the error
‖PδφF (φ

(k))‖L2 measured by the L2 norm of the projected force at
each cycle k.

5. Conclusion

In this work, we present the projected method for the IMF and the GAD to calculate
the transition states of some energy functional in the H−1 metric. By introducing an
orthogonal projection operator onto the confined subspace satisfying the mass conser-
vation, the saddle points in H−1 metric calculation can be transformed equivalently
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iterN 5e3 6e3 7e3 8e3 9e3 1e4

φ01
IMF 12.62 15.27 17.67 20.35 22.71 25.84

Projected IMF 9.03 11.05 12.71 14.07 16.06 17.62

φ02
IMF 12.71 15.56 17.93 20.67 22.97 25.32

Projected IMF 9.05 10.71 12.67 14.47 16.34 17.76

φ03
IMF 12.77 15. 82 17.39 19.90 22.01 25.51

Projected IMF 9.07 11.15 12.95 14.56 16.19 18.07

Table 2. CPU time (seconds) comparison. “IMF” means the original
IMF in H−1 metric; “Projected IMF” is in L2 metric.

to the saddle points in L2 metric with projection. This method can reduce much
computational cost. Since it leads to a lower order spatial derivative equation for the
translation step in the IMF compared with that in H−1 metric directly; more impor-
tantly, it avoids the ∆−1 operator calculation. The same phenomenon can be obtained
for the projected GAD. This projected method maintains the same convergence speed
of the original GAD and IMF, but the new algorithm is much faster than the direct
method for H−1 problem.
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