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Abstract
The necessity of dealing with uncertainties is growing in many different fields of science and
engineering. Due to the constant development of computational capabilities, current solvers
must satisfy both statistical accuracy and computational efficiency. The aim of this work is to
introduce an asynchronous framework for Monte Carlo andMultilevel Monte Carlo methods
to achieve such a result. The proposed approach presents the same reliability of state of
the art techniques, and aims at improving the computational efficiency by adding a new
level of parallelism with respect to existing algorithms: between batches, where each batch
owns its hierarchy and is independent from the others. Two different numerical problems are
considered and solved in a supercomputer to show the behavior of the proposed approach.

Keywords Monte Carlo · Multilevel Monte Carlo · Asynchronous Algorithms · Distributed
Computing · High Performance Computing

Mathematics Subject Classification 65C05 · 68W15 · 65Y05

1 Introduction

The increasing necessity of handling data uncertainties in many different science and engi-
neering scenarios and the development of computational capabilities of supercomputers are
leading to the necessity of having a strict integration between Uncertainty Quantification
(UQ) techniques and efficient algorithms. UQ studies how uncertainties propagate in the

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 800898. This work has been supported by the Spanish Government
(contracts SEV2015- 0493 and TIN2015-65316-P), by the Generalitat de Catalunya (contract 2014-
SGR-1051). The authors thankfully acknowledge the computer resources at MareNostrum and the technical
support provided by Barcelona Supercomputing Center (IM-2020-1-0016).

B Riccardo Tosi
rtosi@cimne.upc.edu

1 International Centre for Numerical Methods in Engineering, Barcelona, Spain

2 Barcelona Supercomputing Center, Barcelona, Spain

3 Universitat Politècnica de Catalunya, Barcelona, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-021-01598-6&domain=pdf


28 Page 2 of 25 Journal of Scientific Computing (2021) 89 :28

problem of interest, and has already been applied in different engineering fields, spacing
from aerodynamics [26,36] to civil infrastructure [18] and finance [22]. The final aim of
these analyses is to perform a statistical study of an output quantity, hereafter called Quantity
of Interest (Q).

Nowadays, different UQ approaches exist in literature, such as stochastic Galerkin,
stochastic collocation and polynomial chaos, which are efficient when the number of uncer-
tain parameters is small. We refer to [19,24,37] for more details. Nevertheless, in this work,
we focus on Monte Carlo (MC) methods because we aim at describing the most general
scenario, in which the stochastic dimension can be arbitrarily big. For the sake of simplicity,
hereafter wewill refer to the whole class ofMonte Carlo algorithmswith the termMC family,
which will then include both MC and all the other strategies enhanced from it.

In literature, many applications of MC algorithms already exist. These have been success-
fully applied to hyperbolic conservation laws with stochastic input data [27,28], to elliptic
Partial Differential Equations [11], in engineering applications [7,29] and in software [1].

The MC techniques are not affected by the so-called curse of dimensionality, i.e. they
do not have a direct proportionality between the number of uncertain parameters and the
computational cost, and the convergence rate is independent from the stochastic dimension.
Another crucial advantage is that these approaches are non-intrusive, meaning that the phys-
ical system can be considered as a black-box. The key idea of the algorithms belonging to the
MC family is to draw many independent and identically distributed samples, and to perform
a statistical analysis from the results. It is known that the statistics converge to the exact ones
as the number of realizations grows. However, considering the standard MCmethod, its slow
convergence rate becomes unfeasible when dealing with complex engineering problems.

As a consequence, different techniques were developed inside the MC family in order
to overcome this slow convergence obstacle. An example is the Multilevel Monte Carlo
(MLMC) algorithm [20,21], which is based on a hierarchy of levels of increasing accuracy.
The key is to draw manyMC samples on the coarsest levels, in order to capture the statistical
variability, and only a few on the finest ones, to reduce the discretization error. This way,
the computational effort relies mainly on the coarsest levels, while for standard MC the
computational effort is performed on the finest. Therefore, this leads to notable computational
savings.

A huge potential of the MC family lies in the fact that such algorithms are highly paral-
lelizable. In standard approaches, three different layers of parallelism are available: between
levels, between samples per level, and on each realization at solver level. In order to exploit
such parallelisms when running in distributed environments, different scheduling strategies
can be adopted, depending on the problem under consideration. In [16], the authors propose
and discuss different static scheduling approaches for running in supercomputers. The hier-
archy, i.e. the number of levels and of samples per level, is defined before the execution starts
and optimizes the computational efficiency and the time to solution. Although efficient, this
procedure is problem dependent and only allows to run one iteration, without a check of the
convergence criteria on the fly. In addition, it does not take into account the fact that the
sampling in MC algorithms is always stochastic, so the execution time of each realization is
random. Hence, a static planning cannot adapt the scheduling, as the execution goes, in order
to optimize the available resources usage. In fact, as discussed in [16], dynamic scheduling
suites best for simulations whose run-time may vary, resulting to be faster than their static
counterparts.

Therefore,we aim for a dynamic scheduling approach for bothMCandMLMC, as problem
independent as possible, which optimally adapts to the length of each execution. Our dynamic
approach re-evaluates the scheduling each time a task execution finishes, while the static
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scheduling approach introduced in [16] defines the scheduling once, when all tasks are
launched. Even though this last approach can successfully handle heterogeneity in the task
duration and adapt the scheduling on it, it cannot react when the actual duration differs with
respect to the precomputed estimation. Instead, with our dynamic approach, the scheduling
decisions are takenon thefly, providing ahigher adaptability.Moreover, a dynamic scheduling
is preferred when the workload can vary depending on the partial results of the computation,
and therefore not predictable statically.

Knowing that MLMC has more levels and MC just has one, the amount of CPUs used
by the solver at each level should be tuned accordingly to the scalability limits of the solver
for the considered problem size. As general rule, since scalability improves as the problem
grows in size, the amount of assigned resources should be as high as possible, while keeping
a reasonable efficiency. In addition, it must be taken into account that the amount of CPUs set
for eachMLMC level should be defined in such away that the availablememory per processor
is enough to perform a typical execution of that level. This way, it is possible to keep a good
efficiency while reducing as much as possible the imbalance between the different levels.
Concerning the overall performance, the hierarchy size is the most impacting factor, and it
needs to be tuned accordingly to the problem under consideration.

Standard algorithms require the presence of synchronization points. Hence, they need to
wait until a certain parameter is computed in order to resume the execution.At this exact point,
the full machine is idle. This is highly inefficient when running in supercomputers, since it
may occur that the machine remains idle for long periods of time. This fact is particularly
important in UQ, where the run-time of each realization depends on some random data, and
may result in the whole algorithm waiting for a single realization to end before going on.

In order to achieve the desired accuracy, a tuning phase is needed in order to calibrate the
hierarchyof the simulation. This set-up takes place before the execution of themain algorithm,
and normally few samples per level are run. Nevertheless, the set-up is an expensive and
challenging phase, since, if wrongly calibrated, it may lead to oversampling. An improved
and verified approachmay be to update on the fly the hierarchy of the simulation, exploiting a
decreasing sequence of tolerances [12,32]. However, an initial screening phase is still needed.
We will refer to this class of algorithms estimating the hierarchy on the fly based on available
statistics as adaptive.

In this work, we propose an asynchronous version of the algorithms belonging to the
MC family, together with a reference implementation based on the Kratos Multiphysics
software [13,14] and the XMC library [3], exploiting the PyCOMPSs programming model
[2,25,34].We focus onMCandMLMC, but thework can be easily extended to othermethods.

The aim of this work is to develop an asynchronous framework, suitable for running in
supercomputers. The proposed framework allows to bypass the expensive tuning phase, to
preserve statistical reliability and to avoid the presence of classical synchronization points,
thus improving computational efficiency. The idea is to add a new level of parallelism,
between batches, where each batch is defined by its own hierarchy. This can be interpreted as
a sort of pre-fetching, which consists in optimistically performing computational work that
may turn out to be useful. Pre-fetching has been already applied with success to other Monte
Carlo methods, as shown in [5,8]. The update of the statistics of Q and the convergence check
of the algorithm are performed on the fly. Therefore, the estimation is reliable, because we
run until we reach a desired tolerance, and efficient, since the small batch hierarchy avoids
oversampling.

The structure of the article is the following. Section 2 introduces the physical problems we
are interested in. Section 3 presents an overview of the current state of the art ofMCmethods,
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of statistical analysis and of convergence criteria. Section 4 describes our asynchronous
proposal. Section 5 reports the numerical tests that were run in order to validate the approach.

2 Physical Problems Overview

In this section we introduce the governing equations describing the physical problems we
will consider later in Sect. 5: the steady-state potential equation and the incompressible
Navier–Stokes equations.

2.1 Compressible Potential Flow Problem

The first problem is the compressible potential flow around a NACA 0012 airfoil. We are
interested in computing the lift coefficient on the body. A sketch of the problem can be
observed in Fig. 1. It is known that when the fluid proceeds at high Reynolds number and
small angle of attack with respect to the airfoil, the flow can be considered steady-state,
compressible and isentropic [15,17]. Therefore, the analysis of such a two-dimensional flow
around a NACA 0012 is governed by the steady-state potential equation

∇ · (ρ∇u) = 0 on Ω, (1)

where ρ is the density, u = (ux , uy) the velocity potential, Ω the domain and x and y denote
the horizontal and vertical directions of the system, respectively. A stochastic inlet boundary
condition on ΓD is considered, that is

u = (u∞ cos(α), u∞ sin(α)) on ΓD, (2)

where u∞ = M∞a∞. The velocity potential is therefore function of the Mach number M∞,
of the angle of attack of the airfoil α and of the sound velocity a∞ = 340ms−1. The Mach
number and the angle of attack are random quantities. The probability distribution of the
two stochastic variables are M∞ ∼ N (0.3, 0.003) and α ∼ N (5.0, 0.05), respectively.
N (μ, σ 2) denotes a normal distribution of mean μ and variance σ 2, and the angle of attack
measures are expressed in degrees. Moreover, a Neumann condition is defined on ΓN and a
wake boundary condition is imposed in order to properly describe the wake generated by the
airfoil.

2.2 Wind Engineering Problem

The second problem we consider is the two-dimensional flow past a square building in a
domain Ω and a time interval [0, T ]. The objective is computing the drag force on the
building. The system can be observed in Fig. 2, and is described by the incompressible
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Fig. 2 Domain and velocity field
of the wind engineering
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Navier–Stokes equations [33]:

∂u
∂t

+ u · ∇u − ν	u + ∇ p = f on Ω, t ∈ [0, T ],
∇ · u = 0 on Ω, t ∈ [0, T ],

(3)

where u is the velocity field, p the pressure field, ν the kinematic viscosity and f the vector
field of body forces. The Reynolds number of the problem is 1. The boundary condition
defined in the inlet Γin is stochastic and constant in time. The flow in the inlet follows the
power law

u · n = u
(

z
z0

)α

on Γin,

u · n⊥ = 0 on Γin,
(4)

where n is the unit normal on boundary Γin , u ∼ N (10, 1.0), α ∼ N (0.12, 0.012), z
and z0 the vertical coordinate and a reference height, respectively, and N denotes a normal
distribution. Wall boundary conditions are applied to Γsurf, free slip conditions to Γup, zero
flux boundary conditions to Γout and no slip conditions to Γdown [4].

The stochastic nature of both problems requires to solve them using UQ techniques, to
analyze and study the propagation of uncertainties across the system and their influence on
the quantity of interest of the problem. The hierarchical Monte Carlo methods we use are
presented in Sects. 3 and 4.

3 Statistical Overview

We review the current state of the art of UQ, focusing mainly in the features we need to
describe the asynchronous framework development. Once more, we remark that with Monte
Carlo algorithms we will denote the whole class of schemes descending from Monte Carlo,
such as Monte Carlo or Multilevel Monte Carlo [32]. In the following, standard algorithms
will be also denoted as non-adaptive, due to the deterministic nature of the hierarchy update.

The above-mentioned UQ schemes allow to study the propagation of uncertainties in
stochastic problems through the statistical analysis of an output quantity of interest Q, which
can be both a scalar or a field. We are interested in the computation of the expected value
of the output quantity of interest E[Q], even though other statistics are computed in order to
verify the accuracy of the results.

Referring to the solution of the problem under consideration with u = f (w), we have
Q = f (u(w)), where w is the random variable (r.v.) of the system. We generically identify
the domain of the problem with Ω . The physical problems considered are solved exploiting
the Finite Element Method, thus we consider a discretized domain ΩH , where H is the
discretization parameter of the domain. The way of choosing H depends on the problem
under consideration, and an option can be the reciprocal of the minimal size.
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We start reviewing two Monte Carlo algorithms (MC, MLMC), and briefly a third one,
namely Continuation Multilevel Monte Carlo (CMLMC) [12,20,21,32]. Then, we focus
on the computation of the statistics of Q, which is a crucial part for the development of
asynchronous algorithms, since these quantities are needed for checking the convergence.
Successively, we describe the stopping criteria we consider. Finally, we report the algorithms
previously described.

3.1 Monte Carlo Algorithms

3.1.1 Monte Carlo

The MC method is the reference technique in the stochastic analysis of multi-physics prob-
lems with uncertainties in the data parameters. As previously mentioned, it gives origin to a
wide class of different algorithms, whose main idea is to repeat many times the realization
with uncorrelated r.v. w, and to estimate the desired statistics of Q a posteriori.

The MC potential lies in its basic property of convergence to the exact statistics as the
number of samples N tends to infinity, independently from thedimensionality of the stochastic
space. It also presents the advantage of considering the solver as a “black box”, since it is
non-intrusive and directly applicable to any simulation code, making it suitable for any kind
of problem.

Considering Q ≈ QH , where QH is the approximation on the discretized domain ΩH ,
the MC expected value estimator of the output quantity of interest is:

E
MC[QH ] := 1

N

N∑
n=1

QH (w(n)), (5)

where QH (w(n)), n = 1, . . . , N , are N independent, identically distributed values computed
on ΩH .

The MC estimation accuracy of the expectation can be evaluated through the mean square
error, that reads

e2MC := E[(EMC[QH ] − E[Q])2]
= (E[QH − Q])2 + V[QH ]

N
,

(6)

where E[Q] is the true expected value of Q and V[Q] := E[Q2] −E[Q]2 the variance of Q.
The term (E[QH − Q])2 is the discretization error (DE), it is independent from the statistics
of Q and only depends on the accuracy of the domain we are exploiting to solve the problem.
On the other hand, V[QH ]

N is the statistical error (SE), which decreases as long as the number
of samples grows, and is an indicator of the variance of the expected value estimator.

The main drawback of the MCmethod is its computational cost, which makes it unafford-
able for the stochastic analysis of industrial problems with complex geometries. In fact, e2MC

decreases proportionally to N− 1
2 . To try to overcome this limitation, different algorithms

have been developed [12,20,21,32], such as MLMC and CMLMC.

3.1.2 Multilevel Monte Carlo

Themain idea of theMLMCalgorithm is to drawMC instances simultaneously on a sequence
of levels of increasing accuracy, increasing computational cost and increasingly small dif-
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ference between outputs on successive levels. When the error is governed by the spatial
resolution, the standard procedure to build the hierarchy of levels is to perform uniform
refinement in space. This means that the mesh parameter H grows as long as the level
increases, i.e. H0 < H1 <…< HL , where L is the maximum number of levels the current
simulation may reach.

Due to the linearity of the expectation operator, themean ofQ can bewritten as a telescopic
sum of the expectations of Q. Therefore, the MLMC expected value of Q on level L is:

E
MLMC[QH ] := E

MC[QH0 ] +
L∑

l=1

E
MC[QHl − QHl−1 ]

=
L∑

l=0

E
MC[Yl ] =

L∑
l=0

1

Nl

Nl∑
n=1

Yl(w
(n,l)),

(7)

where Yl := QHl − QHl−1 and Y0 = QH0 . For the sake of simplicity, the dependence on the
random variable w is made explicit only in the last expression, from which we observe that
the two Quantities of Interest QHl and QHl−1 are computed using the same random variable
realization w(n,l).

Analogously to the MC algorithm, the mean square error of the MLMC expectation
estimator is the sum of a discretization error and a statistical error:

e2MLMC := E[(EMLMC[QH ] − E[Q])2]

= (E[QH − Q])2 +
L∑

l=0

V[Yl ]
Nl

,
(8)

where the first term represents the discretization error and the latter the statistical error. We
can observe matching Eqs. (6) and (8) that the only difference in the mean square error
evaluation is the statistical contribute. In fact, in Eq. (6) the variance of QH is computed,
while in Eq. (8) we consider the difference Yl on two consecutive levels, whose variance is
consistently smaller with respect to the one of QH .

3.1.3 Adaptivity

Three important considerations lie at the basis of both MC and MLMC algorithms:

– the cost of computing one sample QHl grows with the level accuracy Hl ,
– |E[QHl − Q]| decreases as Hl grows,
– • MC: V[QH ] more or less constant with respect to H ,

• MLMC: V[Yl ] decreases as the level grows.
The evaluation of the computational cost, the discretization error and the variance allows to
estimate the optimal hierarchy for reaching statistical convergence, i.e. number of levels L and
number of samples per level Nl , l = 0, . . . , L . Adaptive MC and adaptive MLMC require
a screening phase to assess properly the hierarchy. This set-up is executed with a predefined
number of levels and of samples per level, and may lead to inaccurate predictions in case L
and Nl , l = 0, . . . , L are too low, or may be too expensive in the opposite case.

3.1.4 Continuation Multilevel Monte Carlo

In [12], the authors introduce the ContinuationMultilevelMonte Carlo (CMLMC) algorithm,
whose idea is to update the optimal hierarchy on the fly, to decrease the risk of oversampling.
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The idea of CMLMC is to run, after the initial screening phase, a certain number of times I
the MLMC algorithm using a decreasing sequence of tolerances ε0 < ε1 <…< εI at each
iteration, in order to increase the accuracy of the parameters estimation as the number of
iterations performed grows. As a consequence, the optimal hierarchy is updated on the fly.
We refer to [12,32] for further details.

The main problem of CMLMC and the other approaches is their intrinsically serial nature.
The scope of this work is to propose an asynchronous alternative to the algorithms above
described, maximizing the parallelism and avoiding the highly inefficient idle times.

3.2 Computation of Moments

The computation of the statistics of Q is crucial for having high efficiency frameworks.
Different techniques are possible, and the two possibilities analyzed in this work are:

– online update of central moments (see [6,9,10,30]),
– online update of power sums (see [23,31]).

As we will see in Sect. 3.3, computing central moments is necessary in order to check the
convergence of the algorithm.Wedefine the centralmoment of order p asμp := E[(Q−μ)p],
where μ = E[Q].

3.2.1 Online Update of Central Moments

The first possibility is to directly update with a one-pass formula the central moments, where
one-passmeans thatwe update the centralmoment online, adding one value per time.We refer
to [30] as reference, and we report the dependencies of the update formula for an arbitrary
order P and number of samples N :

μN
P = f (μN−1

p , Q(w(i)), N , P), p ∈ [1, P]. (9)

Update formulas with arbitrary set decomposition exist, and the dependencies for an arbitrary
order P read as:

μ
NA+NB
P = f (μNA

p , μNB
p , NA, NB , P), p ∈ [1, P], (10)

where NA, NB are the sizes of the two sets.

3.2.2 Online Update of Power Sums

A second possibility is to update with one-pass algorithms the power sums, where a power
sum of order p is defined as Sp := ∑N

i=1 Q(w(i))p . From this definition, we can see the
dependencies of updating online for an arbitrary order P and number of samples N :

SNP = f (SN−1
P , Q(w(i)), N , P). (11)

The power sums allow the computation of the h-statistics, which is an unbiased estimator
with minimal variance of central moments. In other words, μp ≈ h p . The h-statistics, for
an arbitrary order P , is just function of the power sums and of the number of samples N ,
therefore

hP = f (Sp, N ), p ∈ [1, P]. (12)
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3.3 Stopping Criteria

Convergence is said to be accomplished if the estimator of the expected value (EMC[QH ] or
E
MLMC[QH ]) achieves a desired tolerance ε > 0, with respect to the true estimator E[Q],

with a confidence (1−φ) ∈ (0, 1). Intuitively speaking, the error of the sampled estimator is
smaller than the tolerance ε with probability (confidence) (1−φ). The higher the confidence,
the surer we are about the sampled estimator accuracy.

Then, we define a failure probability, and we want it to be met with a certain level of
confidence. The failure probability is defined as1

P[|EMC[QH ] − E[Q]| ≥ ε] ≤ φ, φ 
 1. (13)

The total error (τ ) can be bounded,with confidence (1−φ), by the sumof the discretization
and the root square of the statistical errors, multiplied by a confidence factor [12,32]:

τ := |EMC[QH ] − E[Q]|
≤ |E[Q − QH ]| + |EMC[QH ] − E[QH ]|
≤ |E[Q] − E[QH ]| + Cφ

√
V[EMC[QH ]],

(14)

where Cφ = 
−1(1− φ
2 ) and
 is theCumulativeDistribution Function (CDF) of the standard

normal distribution N (0, 1). The variance of the MLMC expected value estimator is

V[EMLMC[QH ]] =
L∑

l=0

V[Yl ]
Nl

, (15)

while for MC it simplifies to

V[EMC[QH ]] = V[QH ]
N

. (16)

For MC, the variance of QH can be estimated as

V[QH ] ≈ V
MC[QH ] =

∑N
n=1(QH (w(n)) − E

MC[QH ])2
n − 1

. (17)

However, as described above, we approximate V[QH ] exploiting h-statistics. Therefore

V[QH ] ≈ h2[QH ]. (18)

The same considerations apply to MLMC.
Therefore, the estimate of the total error is τ = DE+Cφ

√
SE, and the convergence criteria

is

τ ≤ ε. (19)

While for MLMC it is possible to approximate DE as EMC[QHL − QHL−1 ] [32], for MC the
same approximation is not possible. Then, in this case, we will consider just the statistical
error in the convergence criteria, which will read

Cφ

√
SE ≤ ε. (20)

1 For sake of simplicity, we use EMC[QH ] as sampled estimator. The same applies for EMLMC[QH ].
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3.4 Algorithms

We report MC and MLMC algorithms. To simplify comparisons with section 4, we exploit
the fact that μp ≈ h p and Eq. (12).

We define Sl,p as the power sum of level l and power p, where p ∈ [1, P] and P is the
maximum order we need. Similarly, the h-statistic of level l and power p is defined as hl,p .
Since for MC there is just one level, the dependency on l is omitted. The number of iterations
it is updated each time a convergence check is performed. The number of levels, of samples
per level and the mesh parameters are represented by L, N and H , respectively. The left
horizontal arrow denotes the update or the computation of the left value as a function of the
right values.

Non-adaptive and adaptive MC algorithms are described in Algorithm 1, while non-
adaptive and adaptive MLMC are reported in Algorithm 2. Concerning the adaptive version,
the initial screening phase is represented by the first iteration inside the while loop. After-
wards, the central moments are computed and then it is possible to estimate the optimal
hierarchy. As mentioned in Sect. 5, in both cases upper and lower thresholds are applied in
order to be able to control the number of levels and of samples per level estimated. This
allows us to better check and compare the results obtained from different algorithms.

Algorithm 1MC
N , H initial hierarchy
while convergence is not True do

if non-adaptive then
N ←− N , it

else if adaptive then
N ←− N , it, h p , p ∈ [1, P]

end if
for n = 0 : N do

Q(n)
H ←− solver(w(i))

S(n)
p ←− S(n−1)

p , Q(n)
H , n, p , p ∈ [1, P]

end for
h p ←− Sp, N , p ∈ [1, P]
convergence ←− equation (13)
it = it + 1

end while

We also present the dependency graph of one MC iteration in Fig. 3. The circles denote
tasks, that are the execution units that are sent to worker nodes to be executed in parallel.
Task executions are uniquely identified through a number, while the arrows mean that the
following task needs to wait for the previous one to finish before being launched, since it
requires a data produced by the previous task.

It is important to realize how the dependencies shown in Fig. 3 contain a unavoidable
synchronization point. In fact, we observe the requirement of waiting for the whole single
hierarchy to finish before performing the statistical analysis of Q. Therefore, to compute the
convergence (task 18), we need to wait for all the realizations to finish, and this may be highly
inefficient if, for example, we are waiting for a single execution to end that is taking longer
due to its random variable input value.

Figure 4 represents the theoretical trace of a synchronous algorithm execution, i.e. shows
how well we are filling-up the machine. The bottleneck of synchronous algorithms is clearly
visible: at each iteration there is a period in which the machine is empty, therefore not exe-
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Algorithm 2MLMC
L, N , H initial hierarchy
while convergence is not True do

if non-adaptive then
L ←− L, it
N ←− N , it

else if adaptive then
L ←− L, it, hl,p , l ∈ [0, L] , p ∈ [1, P]
N ←− N , it, hl,p , l ∈ [0, L] , p ∈ [1, P]

end if
for l = 0 : L do

for n = 0 : Nl do
Q(n)
Hl

←− solver(w(n,l))

Q(n)
Hl−1

←− solver(w(n,l))

Y (n)
Hl

= Q(n)
Hl

− Q(n)
Hl−1

S(n)
l,p ←− S(n−1)

l,p , Y (n)
Hl

, n, p , p ∈ [1, P]
end for

end for
hl,p ←− Sl,p, Nl , l ∈ [0, L] , p ∈ [1, P]
convergence ←− equation (13)
it = it + 1

end while
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Fig. 3 Graph connections of synchronous algorithm dependencies. The first iteration is represented. Each gray
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Fig. 4 Theoretical trace of the
synchronous framework. The
gray rectangles represent all the
different tasks, from the
execution of the instances
(ExecuteInstance) to the check of
the convergence
(CheckConvergence), which
implies a synchronization point.
The black rectangles are the
synchronization points. The
dashed vertical line denotes the
achievement of the algorithm
convergence after four iterations

batch tasks

synchronization point

convergence achievement
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Fig. 5 Graph connections of synchronous algorithm dependencies. Each gray tonality identifies a different
action: ExecuteInstance the simulation task, ComputeBatchesPassPowerSums and UpdateBatchesPassPow-
erSums the in-batch power sums update, UpdateGlobalPowerSums the global power sums update, Com-
puteHStatistics the h-statistics computation and CheckConvergence the convergence check. Each circle
represents a different task and is uniquely identified by a number

batch tasks
synchronization point
convergence achievement
discarded instances
stopped instances

Fig. 6 Theoretical trace of the asynchronous framework. Different gray colors of the rectangles represent
different bacthes. Each batch contains all the tasks from the execution of the instances (ExecuteInstance) to
the check of the convergence (CheckConvergence). The black rectangles are the synchronization points. The
dashed vertical line denotes the achievement of the algorithm convergence after four iterations. The two types
of parallel diagonal lines indicate that the instances of the unfinished batches are discarded (left with respect
to the dashed line) or stopped (right with respect to the dashed line)

cuting any computation, and this moment corresponds to the synchronization point towards
which all tasks need to converge at the end of each iteration. In case of Fig. 4 we have four
iterations, then four periods in which the computer is not doing any computation. As previ-
ously mentioned, these idle times can be very costly, since we cannot know a priori their time
length. As a consequence, to gain computational efficiency, the idea is to minimize as much
as possible the idle times, by developing an asynchronous framework, introduced in Sect. 4.
The dependency graph of MLMC follows as a consequence, and for the sake of simplicity
we choose to report only the MC dependency graph.

4 Asynchronous Framework

Aswehave seen in the previous section, a single slow simulation, for example due to particular
random variable values or to system malfunction, can simply lead to a huge hardware usage
inefficiency, caused by a high percentage of the available resources being idle during a
long time. We present here an asynchronous framework that can be applied to the above
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algorithms, allowing for a continuous feed of the machine, when running in a distributed
environment. The main idea of our approach is to fill the idle resources while finishing a
batch computation, just in case the convergence is not achieved. This way, part of the work
needed for an hypothetical new batch will be already started when checking the convergence.
It is clear that, when converging, we will always be discarding somework already done under
the non-convergence hypothesis. Nevertheless, thismethodology allows to have amuch better
usage of the resources.

As shown in Sect. 3.2, the two considered possibilities to compute central moments
are Eqs. (9) and (12). The strategy we follow is to update the central moments using the
second option, and the advantage of this choice is that in both Eqs. (11) and (12) there is no
dependency on the central moment values of previous steps.

Our idea is to work in batches, each one with its own hierarchy, hereafter called batch
hierarchy. Each batch updates its local power sums, which afterwards add their contribution
to the global power sums. To preserve the correctness of the statistical analysis, it is important
to avoid introducing bias, i.e. to consider only the fastest samples of our problem. Then, the
update from local (of a single batch) to global takes place only after all the simulations of a
single batch have finished, and the batches are considered in the same order that they have
been spawned. Therefore, we are able to update the statistics and to check the convergence
of the scheme while other batches are running. This approach avoids global synchronization,
thus keeping all the available resources busy. Each time convergence is not achieved, a new
batch is launched. When convergence is reached, the remaining analyses are stopped and all
the executions corresponding to incomplete batches are discarded.

We see the described behavior in Fig. 5. Here we start the simulation by running three
batches: tasks 1–10 , 16–25 and31–40 stand for batch number one, two and three, respectively.
Focusing on the first batch, we observe its instances update the local power sums on the fly and
all the contributions are taken into account to check the convergence. The synchronization
point of the first batch is local, not global, since it runs in parallel with other batches. In fact,
the local power sums of the second batch (task 55) is directly updating the global power sums
of the successive iteration (task 84), guaranteeing asynchronicity. Therefore, the difference
between Figs. 3 and 5 is clear, and we see how this framework allows to havemore executions
running while the statistical analysis of a single batch hierarchy is being computed.

Observing the trace in Fig. 6, we can appreciate how the machine is being filled-up and
the parallelism between the single-batch synchronization point and other batches. Moreover,
we acknowledge that all the tasks that would have been executed after the convergence
achievement are stopped, while the ones already computed and belonging to unfinished
batches are discarded.

The asynchronous approach adds one new level of parallelism to the MC family, which
now are:

– between batches,
– between levels,
– between samples per level,
– on the simulation of each sample.

The advantages of having many small batches running gives efficiency and reliability to
the method we propose. The former is guaranteed since the expensive screening phase is
no more needed and the number of samples is not exceeding much the optimal hierarchy
to achieve convergence, considering it is directly related to the batch size hierarchy, which
is non-adaptively updated. Reliability is ensured by the stopping criteria conditions and the
fact that unbiased estimators are exploited to estimate central moments.
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A final consideration is that power sums are computed from a sum that is both associative
and commutative. Therefore, it is possible to compute central moments following a tree
scheme, as we see in tasks 11–15, 46–49 of Fig. 5.

4.1 Asynchronous Algorithms

The update of the number of batches B, of the number of levels L and of the number of
samples per level N are only function of the iteration counter it and of their previous values.
We define Sb,l,p as the local power sum of batch b, level l and power p, where p ∈ [1, P]
and P is the maximum order we need. The global power sum of level l and order p is defined
as SG,l,p . Analogously, the h-statistic of level l and power p is denoted with hl,p . The left
horizontal arrow denotes the update or the computation of the left value as a function of the
right values.

We present in Algorithm 3 the asynchronous MC algorithm, where we omit to specify
level l = 0.

Algorithm 3 Asynchronous MC
B, N , H initial hierarchy
while convergence is not True do

B ←− B, it
N ←− N , it
for b = 0 : B do

for n = 0 : Nb do
Q(n)
H ←− solver(w(i))

S(n)
b,p ←− S(n−1)

b,p , Q(n)
H , n, p , p ∈ [1, P]

end for
N = N + Nb
SG,p = SG,p + Sb,p , p ∈ [1, P]

end for
h p ←− SG,p, N , p ∈ [1, P]
convergence ←− equation (13)
it = it + 1

end while

MLMC follows the same idea, as shown in Algorithm 4.
For the development of thiswork, also other algorithms, such asCMLMC,were developed.

At the current state of art, research about asynchronous-adaptive algorithms is still ongoing.

5 Numerical Experiments

In order to verify the accuracy, the efficiency and the computational improvements of the pro-
posedmethods, two different test cases have been performed. The first, presented in Sect. 5.1,
describes the two-dimensional steady-state compressible flow of the fluid around an airfoil
NACA 0012. Successively, in Sect. 5.2, a two-dimensional analysis simulating the wind flow
past a square structure is analyzed. Details about the physical systems are given in Sects. 2.1
and 2.2, respectively.

The analysis will be carried out comparing the computational cost and the time to solution
needed by each algorithm for satisfying the convergence criteria. The asynchronous frame-
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Algorithm 4 Asynchronous MLMC
B, L, N , H initial hierarchy
while convergence is not True do

B ←− B, it
L ←− L, it
N ←− N , it
for b = 0 : B do

for l = 0 : Lb do
for n = 0 : Nb,l do

Q(n)
Hl

←− solver(w(n,l))

Q(n)
Hl−1

←− solver(w(n,l))

Y (n)
Hl

= Q(n)
Hl

− Q(n)
Hl−1

S(n)
b,l,p ←− S(n−1)

b,l,p , Y (n)
Hl

, n, p , p ∈ [1, P]
end for
Nl = Nl + Nb,l
SG,l,p = SG,l,p + Sb,l,p , p ∈ [1, P]

end for
end for
hl,p ←− SG,l,p, N , l ∈ [0, L] , p ∈ [1, P]
convergence ←− equation (13)
it = it + 1

end while

work is compared with two synchronous approaches: the standard non-adaptive method and
one replicating the adaptive behavior, which minimizes the number of iterations. For the
adaptive approach, the update of the number of levels and realizations per level is controlled
by lower and upper thresholds, which balance the hierarchy of the execution to properly com-
pare the computational efforts of all algorithms. For all methods, the initial number of levels
L and the amount of samples per level Nl is the same, and is the result of an a priori strategy
which optimizes the batch execution. For MLMC, this is integrated with a MLMC estimate
based on precomputed variance and computational cost estimates.

The considered supercomputer for the analyses is the MareNostrum 4 system, with 11.15
Petaflops of peak performance, which consists of 3456 compute nodes equipped with two
Intel®XeonPlatinum8160 (24 cores at 2.1GHzeach) processors. The analyses are performed
exploiting 16 worker nodes, which accounts for 768 cores. Moreover, for the latter and more
challenging problem, a scalability test is provided.

In the tables presenting the results, B identifies the initial number of batches, defined by
the initial hierarchy, it the number of iterations, that is the amount of convergence checks
executed, N the total number of realizations computed per level at the end of the of the
execution, EMC[QH ] and EMLMC[QH ] the expected value estimate, SE the statistical error,
time to solution the total time the simulation required to finish, measured in seconds, and
C the computational cost of the algorithm run, expressed in CPU hours. The considered
algorithms are summarized in Table 1.

Even though the aim of this work is not to show the superiority of MLMC over MC, some
considerations regarding this topic are provided.

123



28 Page 16 of 25 Journal of Scientific Computing (2021) 89 :28

Table 1 Summary of considered
algorithms

Algorithm Abbreviation

Asynchronous non-adaptive MC AMC

Synchronous non-adaptive MC SMC

Synchronous adaptive MC SAMC

Asynchronous non-adaptive MLMC AMLMC

Synchronous non-adaptive MLMC SMLMC

Synchronous adaptive MLMC SAMLMC

Table 2 Results of the MC algorithms running the first benchmark problem

B it N E
MC[QH ] SE Time to solution [s] C [CPU h]

AMC 4 15 2700 0.6331 1.549e−6 177.7 37.9

SMC 1 15 2700 0.6340 1.538e−6 280.3 59.8

SAMC 1 3 2700 0.6340 1.525e−6 211.3 45.0

QH is the lift coefficient Cl , time to solution is measured in seconds, and the computational cost C in CPU
hours

5.1 Compressible Potential Flow Benchmark

The two-dimensional flow around aNACA0012 is described in Sect. 2.1. The output quantity
of interest of the problem is the lift coefficientCl of the airfoil, and the problem is studiedwith
both MC and MLMC strategies. MC realizations are performed on the finest MLMC level,
therefore the two strategies provide the same discretization error.

Even though the physical analysis of the results is outside the scope of this work, we want
to remark that in both scenarios the lift coefficient expected value estimation is consistent
with literature results.

5.1.1 MC Analysis

The problem is run considering a confidence (1− φ) = 0.99 and a tolerance ε = 0.004. We
exploit Eq. (20) for assessing convergence and results are presented in Table 2.

The asynchronous algorithm is faster and cheaper compared to the other two synchronous
strategies. The reason relies on the fact that asynchronous MC spawns many small batches
at the beginning, therefore the machine is continuously fed and the idle time is reduced
to the minimum. On the other hand, this is not happening in the other two scenarios, in
which the synchronization points leave themachine underutilized for longer times, producing
computational inefficiencies.

In addition, considering the synchronous algorithms, we can state that the computational
efficiency, for a given amount of samples, grows as the number of iterations it decreases. This
happens because we reduce the amount of synchronization points. Nevertheless, since the
convergence check is done less frequently, we risk to do much more computations than the
ones really needed to achieve the desired accuracy, if the hierarchy estimation is not accurate
enough.
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Table 3 Results of the MLMC algorithms running the first benchmark problem

B it N E
MLMC[QH ] SE Time to solution [s] C [CPU h]

AMLMC 4 7 4620,70,35 0.6319 8.983e−7 192.8 41.1

SMLMC 1 7 4620,70,35 0.6321 9.023e−7 466.3 99.4

SAMLMC 1 3 4620,70,35 0.6314 8.749e−7 448.1 95.6

QH is the lift coefficient Cl , time to solution is measured in seconds, and the computational cost C in CPU
hours

5.1.2 MLMC Analysis

For running MLMC, the tolerance is set to ε = 0.03 and the confidence is (1 − φ) = 0.99.
Convergence is assessed with Eq. (19).

We report in Table 3 the results of the analyses for the different strategies. The asyn-
chronous non-adaptive MLMC outperforms the two synchronous algorithms, requiring less
than half of their computational cost and time to solution. Therefore, spawning many small
batches from the beginning is the best strategy.

Comparing MC and MLMC runs, the two strategies provide comparable discretization
errors, since MC analyses were run on the finest MLMC level. On the other hand, the best
MLMCstrategy provides a smaller SE than the bestMCapproach, for the same computational
cost. Then, for the same computational cost, asynchronous non-adaptive MLMC gives a
smaller total error than asynchronous non-adaptive MC.

5.1.3 Traces

Apart from looking at the results of Tables 2 and 3, a computational efficiency comparison
can be done also looking at how the algorithms feed the machine.

In Fig. 7a we report the execution trace of the AMC algorithm, run with 16 worker nodes,
i.e. 768 cores, and performing 15 iterations. The black spaces denote when the CPU has
not received any task to execute. The absence of these spaces in the middle of the execution
shows that the algorithm has no apparent synchronization points when analyzing its behavior.

Figure 7c is a timeline that shows the number ofCPUsused at each step in theAMCrun.We
observe that the machine is working at its maximum potential during the whole simulation,
thus confirming we obtain the desired behavior. On the other hand, SMC trace and CPU
efficiency are reported in Fig. 7b, d. We can observe that at each convergence check, the
machine is idle. This fact is the main explanation why synchronous approaches require more
time to converge. In Fig. 7 all plots have the same time scale. The black space present at the
end of the execution in Fig. 7a shows that the simulation finishes before. Similar traces are
obtained for synchronous adaptive MC and the three MLMC executions.

5.2 Wind Engineering Benchmark

The second numerical example studies the two-dimensional flow past a square building, and
details are given in Sect. 2.2. The output quantity of interest Q of the system is the drag
force Fd computed on the surface Γsurf. The physical analysis of such a problem is out of
the scope of this work, and will be objective of other works. In fact, our goal is to compare
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(a) Execution trace of AMC running with 16 worker

nodes.

(b) Execution trace of SMC running with 16 worker

nodes.

(c) CPU usage of AMC running with 16 worker nodes. (d) CPU usage of SMC running with 16 worker nodes.

Fig. 7 Execution traces of asynchronous and synchronous algorithms running the first benchmark problem

Table 4 Results of the MC algorithms running the second benchmark problem

B it N E
MC[QH ] SE Time to solution [s] C [CPU h]

AMC 4 15 2700 5018.9 0.0335 1034.0 220.6

SMC 1 15 2700 5019.2 0.0306 1193.3 254.5

SAMC 1 3 2700 5019.1 0.0322 1116.5 238.2

QH is the drag force Fd , time to solution is measured in seconds, and the computational cost C in CPU hours

the synchronous and asynchronous approaches for both MC and MLMC. MC is run on the
finest MLMC level, thus all algorithms will have the same discretization error.

The choice of a case like this is particularly relevant, since it is a realistic and challeng-
ing simplification of wind engineering problems, and we aim to show how adopting the
asynchronous framework increases the overall computational efficiency.

5.2.1 MC Analysis

The tolerance is set to ε = 0.5, and the confidence is (1 − φ) = 0.99. We remark that ε is a
dimensional quantity. Equation (20) is exploited for assessing convergence.

In Table 4 the results of theMC algorithms are reported.We can see that the asynchronous
algorithm is faster and cheaper than the two synchronous approaches. The reason is the same
as before: spawningmany small batches at the beginning of the simulation is more convenient
than to launch one per iteration, even in the case of reduced number of synchronization points.

5.2.2 MLMC Analysis

For the MLMC analysis, the tolerance is set to ε = 2.5 and the confidence is (1−φ) = 0.99.
Convergence is assessed with Eq. (19).
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(a) Execution trace of AMLMC running with 16 worker

nodes.

(b) Execution trace of SAMLMC running with 16

worker nodes.

(c) CPU usage of AMLMC running with 16 worker

nodes.

(d) CPU usage of SAMLMC running with 16 worker

nodes.

Fig. 8 Execution traces of asynchronous and synchronous algorithms running the second benchmark problem

In Table 5 we can observe the results obtained with the three different MLMC strategies.
Oncemore, the asynchronousmethod is the cheapest and fastest, compared to the synchronous
algorithms. Even reducing a lot the number of iterations, the asynchronous strategy is the
most efficient.

Similarly to the previous problem, we compare MC and MLMC.We can observe that, for
the same computational cost, MLMC presents a smaller statistical error, thus asynchronous
MLMC is the preferred strategy. The discretization errors of MC and MLMC are the same,
since MC realizations are run on MLMC finest level.

5.2.3 Traces

In Fig. 8a, c, the executing trace of the asynchronous MLMC algorithm and its CPU usage
are reported, while in Fig. 8b, d we observe the trace and the CPU usage of the synchronous
adaptive MLMC algorithm. The time scale is the same for all plots.

One important observation to be made is that simulations on higher levels are running
on multiple threads. On the other hand, the trace only shows the main thread that actually
receives the task execution order. The rest of working threads are shown as idle. This means
that for each line corresponding to a 2 CPU task, there is one apparently idle CPU that is
working. For the tasks running on 4 CPUs, there are 3 CPUs that seem idle but are actually
busy. In order to ease the comprehension of this fact, we have included CPU usage graphs,
that take into account the real amount of CPU that are working. Looking at both figures at
the same time, it can be deduced that the yellow tasks occupy a single CPU, the red tasks 2
and the blue tasks 4. Keeping that in mind, it is possible to state that the resource usage is
more efficient in the AMLMC algorithm.
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Table 6 Scalability results of
asynchronous MLMC algorithm
running the wind engineering
problem

N CPUs T Speedup Ideal Speedup

2 96 187,347.8 1.0 1

4 192 95,515.2 1.96 2

8 384 48,093.9 3.90 4

16 768 24,016.9 7.80 8

32 1536 12,236.2 15.31 16

64 3072 6397.7 29.28 32

128 6144 4106.1 45.63 64

T is expressed in seconds and is the total time the algorithm required to
be run, and is expressed in seconds
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Fig. 9 Speedup of asynchronous MLMC

5.2.4 Scalability of Asynchronous Algorithm

In addition to the previous results, a strong scalability test of the asynchronous MLMC algo-
rithm is presented in Fig. 9 and Table 6. The algorithm runs the wind engineering benchmark
problem described above. Different settings and batch hierarchies with respect to previous
executions are considered, thus results are not comparable.

Figure 9 reports the problem’s speedup, defined as the ratio between the execution time
with 2 worker nodes and N worker nodes, N = {2, 4, 8, 16, 32, 64, 128}. In Table 6, N
indicates the number of worker nodes and T is the execution time of the simulation (measured
in seconds).

We can observe that the proposed algorithm implementation scales pretty well up to 128
worker nodes. Indeed, we scale almost linearly until 64 worker nodes, and only at 128 worker
nodes we start to observe some parallel efficiency loss.
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6 Conclusions

In this work we explored a new way of performing UQ analyses exploiting hierarchical
MC algorithms, focusing mainly on Monte Carlo and Multilevel Monte Carlo. The proposed
asynchronous strategy is particularly interesting when running in HPC environments with
uncertain parameters.

A dependency analysis of the statistical techniques to update on the fly the centralmoments
was carried out, and the h-statistics is the chosen tool to estimate the central moments, since
it allows to perform at batch level the main computations, and at global level just one simple
operation per each central moment we are interested in. The stopping criteria to check the
statistical reliability of the analysis was discussed and then applied in the simulations.

The key feature of the asynchronous framework is the new level of parallelism, between
batches, which is added to the existing parallelism between levels, samples per level and on
the solver of each instance. The proposed algorithms possess both reliability and efficiency,
since desired tolerance and confidence of Q are achieved before stopping the computations,
and because the capability of running many batches at once, with small hierarchies, prevents
the drawing of big batches, avoiding oversampling. Additionally, the batches parallelism
allows to continuously feed the machine, avoiding expensive and useless idle times and
increasing the computational efficiency.

We analyzed the behavior of the asynchronous framework, with respect to current state
of the art algorithms. In all cases, the asynchronous approach was the one with the best
performance for achieving the desired tolerance. When the number of iterations and of con-
vergence checks is similar, the gain in computational time is huge. On the other hand, if the
synchronous algorithmminimizes the number of iterations, thus reducing the idle time of the
machine to the minimum, the computational efficiency improves, but never reaches the one
of the asynchronous approach. Moreover, we would like to remark how solving the problem
estimating a priori the number of levels and of samples per level is a challenging task, and
requires a screening phase with a reasonable number of samples in order to perform such an
estimation. Instead, our asynchronous approach does not require any tune phase in order to
run, since the batch hierarchy can be as small as desired.

At the current moment, the update on the fly of the hierarchy, i.e. of the number of batches
running, of levels and of samples per level, is non-adaptive. The capability of estimating
it on the fly will be addressed in future studies. We focused on the computation of many
statistical estimators. It is known that the expected value is not sensitive to high values,
while central moments consider oscillations. However, central moments are symmetric with
respect to the mean, and high oscillations on one side of the probability density function
may be compensated by small variations on the other side. For this reason, other statistical
estimators, as the Value at Risk or the Conditional Value at Risk, may be preferred, since
they measure the risk in the tail of the probability density function [35]. Update on the fly of
such estimators is currently being studied.
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