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Abstract

We propose a C0 Interior Penalty Method (C0-IPM) for the computational modelling of
flexoelectricity, with application also to strain gradient elasticity, as a simplified case. Standard
high-order C0 finite element approximations, with nodal basis, are considered. The proposed
C0-IPM formulation involves second derivatives in the interior of the elements, plus integrals
on the mesh faces (sides in 2D), that impose C1 continuity of the displacement in weak form.
The formulation is stable for large enough interior penalty parameter, which can be estimated
solving an eigenvalue problem. The applicability and convergence of the method is demon-
strated with 2D and 3D numerical examples.
Keywords: 4th order PDE , C0 finite elements , interior penalty method , strain gradient elas-
ticity , flexoelectricity

1 Introduction
The rising interest on microtechnology evidences the need for mathematical and computational
models suitable for small scales, often giving rise to 4th order Partial Differential Equations (PDEs).
In particular flexoelectric effects become relevant, and may be crucial, in the design of small
electromechanical devices or for the understanding of physical phenomena [1]. The modelling
of flexoelectricity involves a two-way coupling between strain gradient and electric field; strain
gradient elasticity is frequently also included in the model to regularise the problem, leading to a
system of 4th order PDEs.
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Several numerical strategies have been recently proposed for the solution of flexoelectricity
problems, based on the use of C1 approximation spaces or on mixed formulations. Mixed formula-
tions split the PDE in two 2nd order PDEs, allowing the use of C0 Finite Element (FE) approxima-
tions [2, 3]. The approximation spaces, for the primal unknown and for the additional unknowns,
must fulfill some conditions for stability that lead to approximation spaces with cumbersome defi-
nitions, and difficult extension to 3D or high-order approximations. However, the main drawback
of mixed formulations in the high computational cost due to the additional unknowns.

On other hand, C1 approximations can be directly used for the discretization of the weak form
in H2, involving 2nd order derivatives, without additional unknowns. The first successful attempt
in this direction considered a meshless method: the maximum entropy method [4]. Unfortunately,
the computational cost of accurate meshless methods is high, mainly due to the excessive number
of integration points for accurate solutions, and the large stencils in the discrete matrices. Aiming
to improve the efficiency, a solution based on Isogeometric Analysis (IGA) is proposed in [5]. The
solution is approximated by means of Non-Uniform Rational B-Splines (NURBS). An interesting
critical comparison of IGA, meshless and mixed methods for flexoelectricity can be found at [6],
although numerical examples are restricted to simple geometries. The conclusion is that IGA is
very efficient on regular grids, corresponding to a transformation of a rectangle grid, where plain
B-Spline approximations can be easily defined. However, in a more general context, defining
a NURBS approximation with C1 continuity in a whole domain with complex shape may not
be straightforward, and the numerical integration of the resulting NURBS may be, again, very
expensive [7]. An efficient alternative for complex domains is the immersed B-Spline method
proposed in [8]. It considers B-Spline approximations based on a background regular grid, with
an embedded domain. The applicability of the proposal is demonstrated with 2D and 3D complex
geometries. The weak points of immersed B-Splines are the usual ones in the context of embedded
domains: the robust definition of numerical integration in cropped cells (intersected by the domain
boundary), which is specially challenging in 3D, and the ill-conditioning problems in the presence
of cells with a small portion in the domain, that can be alleviated with specific techniques [9].

Here we propose a C0 Interior Penalty Method (C0-IPM) for the solution of flexoelectricity.
A standard C0 FE approximation is considered, and C1 continuity between elements is imposed in
weak form by means of the Interior Penalty Method (IPM). The procedure for the derivation of
the C0-IPM weak form is analogous to the derivation of the IPM in the context of DG methods for
2nd order PDEs [10], or Nitsche’s method for weak imposition of Dirichlet boundary conditions
[11], but now applied to the continuity of normal derivatives on element boundaries. The resulting
weak form involves second derivatives in the interior of the elements, plus integrals on the faces
(sides in 2D) of the mesh, that impose C1 continuity of the displacement in weak form. C0-IPM
formulations overcome the disadvantages of other methods, because they allow the use of standard
C0 FE approximations. Namely, (i) the computational mesh can be adapted to any geometry, with
localised refinement were needed, (ii) there is no need to use embedded discretizations, avoiding
the consequent ill-conditioning problems and the definition of special numerical integration for
cropped elements, (iii) there are no additional unknowns and (iv) they handle material interfaces
in a natural way. In summary, C0-IPM retains the computational efficiency and the versatility that

2



make standard FEs the preferred method for many practitioners in the computational mechanics
community.

In [12], C0-IPM formulations, there referred to as continuous/discontinuous finite elements,
are applied to several problems modelled by 4th order PDEs, including Kirchhoff plates and 1D
strain gradient elasticity. Numerical experiments show the applicability of the formulation in both
applications, but convergence studies are limited to 1D examples. The C0-IPM formulation is
then analysed in [13] for the 2D biharmonic equation, with first and second Dirichlet conditions,
including a convergence analysis that shows that the method is convergent for p ≥ 2, but may have
suboptimal convergence depending on the degree and the penalty parameter. An experimental
convergence study for Kirchhoff plates can be found at [14]. The numerical results demonstrate
the applicability of the method for degree greater or equal to 3, and also show slightly suboptimal
convergence, that slowly deteriorates for larger penalty parameter, in agreement with the analysis
in [13]. Variations of C0-IPM have also been applied to strain gradient dependent damage models
in [15] and to the Cahn-Hilliard equation in [12, 16].

This paper develops the C0-IPM method for flexoelectricity and, as a simplified case, for strain
gradient elasticity, for 2D and 3D computations. Section 2 presents the problem statement and
recalls the weak form in H2. The derivation of the C0-IPM method for C0 approximations, not
in H2, is presented in section 3. An eigenvalue problem to determine a large enough penalty
parameter, ensuring coercivity of the strain gradient bilinear form, is derived in section 3.1. Finally,
in section 4, 2D and 3D numerical experiments demonstrate the applicability of the method and
show, as expected, slightly suboptimal convergence under uniform mesh refinement, but still with
a robust high-order convergence for p ≥ 3.

2 Problem statement
We consider the model in [8], where flexoelectricity is ruled by the following set of PDEs and
boundary conditions:

∇ · (σ̂(u, φ)−∇ · σ̃(u, φ)) + b = 0 in Ω (1a)

∇ · D̂(u, φ)− q = 0 in Ω (1b)

u = g1 on ΓuD1
(1c)

t(u, φ) = tn on ΓuN1
(1d)

∂u

∂n
= g2 on ΓuD2

(1e)

r(u, φ) = rn on ΓuN2
(1f)

j(u, φ) = jext on C∂Ω
N (1g)

φ = g3 on ΓφD (1h)

w(u, φ) = wn on ΓφN (1i)
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where Ω ⊂ Rnsd is the domain, the displacement u and the electric potential φ are the unknowns,
σ̂ and σ̃ are the local and double stress tensors and D̂ is the electric displacement tensor, that is,

σ̂ = C : ε−E · e ≡ σ̂ij = Cijk` εk` − E` e`ij

σ̃ = h
...∇ε−E · µ ≡ σ̃ijk = hijk`mn

∂ε`m

∂xn
− E` µ`ijk

D̂ = κ ·E + e : ε+ µ
...∇ε ≡ D̂` = κ`mEm + e`ijεij + µ`ijk

∂εij

∂xk

ε is the strain tensor, that is εij = (∂ui/∂xj + ∂uj/∂xi)/2, E = −∇φ is the electric field, C
is the elasticity tensor, that depends on the Young modulus E and the Poisson ratio ν, h is the
strain-gradient tensor, defined as hijk`mn = l2Cij`mδkn with the internal length scale parameter l, e
and µ are the tensors of piezoelectric and flexoelectric coefficients and κ contains the dielectricity
constants, see appendix B in [8] for detailed definitions.

In the previous equations, and in the rest of the document, Einstein’s notation is assumed. That
is, repeated indexes sum over the spatial dimensions.

The boundary of the domain is split in Dirichlet and Neumann boundaries, for the first and
second conditions of the mechanical problem and for the electric problem, that is

∂Ω = ΓuD1
∪ ΓuN1

= ΓuD2
∪ ΓuN2

= ΓφD ∪ ΓφN .

Note that all volume and boundary domains are assumed to be open domains, not including their
boundaries.

The first mechanical boundary condition, (1c) or (1d), sets the displacement u or the traction

ti(u, φ) =

(
σ̂ij −

∂σ̃ijk

∂xk
−∇S

k σ̃ikj

)
nj + σ̃ijkÑjk,

where∇S
k σ̃ikj is the surface divergence of σ̃ikj , and Ñ is the second order geometry tensor, see [8]

for details. The second mechanical boundary condition, (1e) or (1f), sets the normal derivative of
the displacement ∂u/∂n or the double traction

ri(u, φ) = σ̃ijknjnk.

The condition (1g) sets forces on the Neumann boundary edges. That is, the domain boundary
is assumed to be composed of smooth surfaces (curves in 2D) that are joined on sharp boundary
edges (corners in 2D).C∂Ω

N denotes the union of the boundary edges that are shared by two surfaces
with first Neumann conditions, i.e. the edges in the interior of ΓuN1

. At the edges shared by at least
one Dirichlet surface the value on the edge is assumed to be the one set on the surface, i.e. u = g1

for all edges in ΓuD1
. Line forces (punctual forces in 2D) are defined on boundary edges as

ji(u, φ) = τLj σ̃
L
ij`n

L
` + τRj σ̃

R
ij`n

R
` ,
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Figure 1: Sketch of normal and tangent vectors on an edge (3D, left) and at a corner (2D, right),
for the computation of the corresponding line and punctual forces j(u, φ). The superscripts L and
R refer to the face (side in 2D) sharing the edge (corner in 2D).

being nL and nR the unitary exterior normals on the left and right surfaces sharing the boundary
edge, and τL and τR the tangent vectors on each surface pointing outward and perpendicular to
the edge, see an example in figure 1 left. In 2D, τL and τR at a corner are just the tangent vectors
on each curve sharing the corner and pointing outward, as depicted in figure 1 right.

Finally, the electric boundary condition, (1h) or (1i), sets the electric potential φ or the surface
charge density

w(u, φ) = −D`(u, φ)n`.

Remark 1 For the sake of simplicity, we initially restrict to the case with second Neumann bound-
ary conditions in the whole boundary, i.e. ΓuN2

= ∂Ω and ΓuD2
= ∅. The treatment of second

Dirichlet conditions (1e) is commented in Remark 2. It is also worth mentioning that the ra-
tionales in this work can also be applied to other models, including converse flexoelectricity or
expressed in terms of polarization, see for instance [6].

If an approximation in H2(Ω) can be considered, multiplying (1a) by a weighting vector v,
applying integration by parts twice, and using the symmetries of the stress tensors, leads to∫

Ω

v · b dΩ =

∫
Ω

ε(v) : σ̂(u, φ) dΩ +

∫
Ω

∇ε(v)
...σ̃(u, φ) dΩ

−
∫
∂Ω

vi

(
σ̂ij −

∂σ̃ijk

∂xk

)
nj dS−

∫
∂Ω

∂vi

∂xj
σ̃ijk nk dS,

where ∇ε...σ̃ = ∂εij/∂xk σ̃ijk.
Now, to properly treat boundary conditions, the derivative ∂vi/∂xj on the boundary is split in

normal and tangential derivatives, and the surface divergence theorem is applied to the term with
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the tangential derivative, leading to∫
Ω

v · b dΩ =

∫
Ω

ε(v) : σ̂(u, φ) dΩ +

∫
Ω

∇ε(v)
...σ̃(u, φ) dΩ

−
∫
∂Ω

v · t(u, φ) dS−
∫
∂Ω

∂v

∂n
· r(u, φ) dS−

∫
C∂Ω

v · j(u, φ) dl,
(2)

where C∂Ω is the union of all sharp edges of the domain, and the integral on it reduces to a sum
evaluating at the boundary corners in 2D.

Thus, applying boundary conditions (1c)-(1i), under the assumption ΓuD2
= ∅, and adding the

weighted residual of the electric potential problem (1b) with (1h) and (1i), the weak form of (1) in
H2(Ω) is: find u ∈ [H2(Ω)]nsd and φ ∈ H1(Ω) such that (1c) and (1h) hold and∫

Ω

ε(v) : σ̂(u, φ) dΩ +

∫
Ω

∇ε(v)
...σ̃(u, φ) dΩ +

∫
Ω

∇ψ · D̂(u, φ) dΩ

= s(v)−
∫

Ω

ψq dΩ−
∫

ΓφN

ψ wn dS
(3)

for all v ∈ [H2(Ω)]nsd and ψ ∈ H1(Ω) such that v = 0 on ΓuD1
and ψ = 0 on ΓφD where

s(v) =

∫
Γu
N1

v · tn dS +

∫
Γu
N2

∂v

∂n
· rn dS +

∫
C∂Ω
N

v · jext dl +

∫
Ω

v · b dΩ. (4)

This weak form is not suitable when considering C0 FE approximations, but the same derivation
can be applied in the interior of each element of the mesh, as detailed next.

3 C0 Interior Penalty Finite Element method
The domain Ω is now split in FEs {Ωe}nel

e=1, and a C0 piece-wise polynomial approximation is
considered. That is, the approximation space for the components of the displacement and for the
potential is

Vh = {v ∈ H1(Ω) such that ϕ−1
e (v|Ωe) ∈ Pp for e = 1, . . . , nel} 6⊂ H2(Ω),

where ϕe is the isoparametric transformation from the reference element to the physical element
Ωe, and Pp is the space of polynomials of degree less or equal to p for simplexes, and less or equal
to p in each direction for quadrilaterals and hexahedra.

Since the approximation space in not in H2(Ω), we can not consider the weak form (3). How-
ever, the approximation isH2(Ωe); thus, considering (2) in each element we have∫

Ωe

v · b dΩ =

∫
Ωe

ε(v) : σ̂(u, φ) dΩ +

∫
Ωe

∇ε(v)
...σ̃(u, φ) dΩ

−
∫
∂Ωe

v · te(u, φ) dS−
∫
∂Ωe

∂v

∂ne
· re(u, φ) dS−

∫
C∂Ωe

v · je(u, φ) dl,
(5)
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where C∂Ωe is the union of the edges (corners in 2D) of the element Ωe and je is the line force
(punctual force in 2D) on C∂Ωe; see a representation in figure 2a. The superscripts highlight that
the surface and line forces, and the normal vector, are from the element Ωe.

Summing for all elements, and noting that v is continuous but ∂v/∂n is not, we get∫
Ω

v · b dΩ =

∫
Ω

ε(v) : σ̂(u, φ) dΩ +

∫
Ω̂

∇ε(v)
...σ̃(u, φ) dΩ

−
∫
I
v · (tL(u, φ) + tR(u, φ)) dS

−
∫
I

(
∂vL

∂nL
· rL(u, φ) +

∂vR

∂nR
· rR(u, φ)

)
dS

−
nedg∑
k=1

∫
Ck

v ·

 ∑
e∈E(k)

je(u, φ)

 dl

−
∫
∂Ω

v · t(u, φ) dS−
∫
∂Ω

∂v

∂n
· r(u, φ) dS,

(6)

where I is the union of all the internal element faces and Ω̂ is the union of the interior of the
elements, where second derivatives are well-defined, i.e.

Ω̂ =

nel⋃
e=1

Ωe, I =

nel⋃
e=1

∂Ωe\∂Ω,

see figure 2b. The supercripts R and L now denote the evaluation from the elements to the left
and right side of the face in I (see figure 2c), and {Ck}

nedg
k=1 are all the edges (corners in 2D) in the

mesh, being E(k) the set of indexes of the elements sharing the edge Ck.
Now, let us recall that the conditions for interfaces in the domain (also in the case of discon-

tinuous material parameters) are the ones corresponding to both continuity for the Dirichlet values
and equilibrium of Neumann forces. That is,

Ju⊗ nK = 0 (7a)
Jt(u, φ)K = 0 (7b)
t
∂u

∂n

|

= 0 (7c)

Jr(u, φ)⊗ nK = 0 (7d)

on the faces in I, where the jump operator is defined as

JaK = aL + aR

7



C

(a) (b) (c)

Figure 2: Example of 2D discretization: (a) interior corner Ck (i.e. interior mesh vertex), as seen
from element Ωe, and representation of the normal and tangent vectors corresponding to the left
and right side of the element sharing the corner, for the definition of the punctual force je at the
corner, (b) interior faces I in white and broken domain Ω̂ in blue, (c) normal vectors on one face
shared by its left and right elements, for the computation of the jump on a face.

and it is used always involving a change of sign due to an odd appearance of the normal vector.
In addition, we have to impose equilibrium of forces on the mesh edges. That is, each element

Ωe contributes with a force je on its edges (corners in 2D); and for each edge Ck, the sum of the
forces for all elements sharing the edge (i.e. for Ωe with e ∈ E(k)) must be zero, or in internal
equilibrium with the external forces. That is,∑

e∈E(k)

je(u, φ) =

{
0 on Ck 6⊂ C∂Ω

jext on Ck ⊂ C∂Ω
N

(8)

where jext is the force set in (1g). Note that {Ck 6⊂ C∂Ω} includes interior edges and also element
edges on ∂Ω, just excluding the ones in the domain sharp edges. For the edges in ΓuD1

no value
is set, and the sum of the forces will be in equilibrium with the reaction forces associated to the
prescribed displacement (1c).

On other hand, using the algebraic identity (aLnL)bL + (aRnR)bR = {a} JbnK + JanK {b},
and the equilibrium condition (7d), we can rewrite

∂vL

∂nL
· rL(u, φ) +

∂vR

∂nR
· rR(u, φ)

= {∇v} : Jr(u, φ)⊗ nK +

t
∂v

∂n

|

· {r(u, φ)}

=

t
∂v

∂n

|

· {r(u, φ)} ,

(9)

with the mean operator {a} = (aL + aR)/2.
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Now, replacing in (6) the identity (9), the Neumann boundary conditions (1d) and (1f), the
homogeneous Dirichlet condition v = 0 on ΓuD1

related to (1c), the first interface equilibrium
condition (7b) and the equilibrium at interior edges (8), and under the assumption ΓuD2

= ∅, (6)
simplifies to∫

Ω

ε(v) : σ̂(u, φ) dΩ +

∫
Ω̂

∇ε(v)
...σ̃(u, φ) dΩ

−
∫
I

t
∂v

∂n

|

· {r(u, φ)} dS = s(v),

(10)

with s(v) defined in (4).
The first two integrals in (10) are symmetric and coercive bilinear forms in v andu, as expected

for the weak form of a strain gradient elasticity operator. However, it is not the case for the integral
on the interior faces I.

The idea of IPM is adding terms that are analytically zero, thanks to the continuity interface
condition (7c), to recover symmetry and coercivity of the strain gradient bilinear form. The result-
ing weak form for flexoelectricity, under the assumption ΓuD2

= ∅, is: find u ∈ [H1(Ω)∩H2(Ω̂)]nsd

and φ ∈ H1(Ω) such that (1c) and (1h) hold and∫
Ω

ε(v) : σ̂(u, φ)dΩ +

∫
Ω̂

∇ε(v)
...σ̃(u, φ) dΩ +

∫
Ω

∇ψ · D̂(u, φ) dΩ

−
∫
I

t
∂v

∂n

|

· {r(u, φ)} dS−
∫
I
{r(v, ψ)} ·

t
∂u

∂n

|

dS

+

∫
I
β

t
∂v

∂n

|

·

t
∂u

∂n

|

dS

= s(v)−
∫

Ω

ψq dΩ−
∫

ΓφN

ψ wn dS

(11)

for all v ∈ [H1(Ω) ∩H2(Ω̂)]nsd and ψ ∈ H1(Ω) such that v = 0 on ΓuD1
and ψ = 0 on ΓφD.

The parameter β is a stabilization parameter that must be taken large enough to ensure coerciv-
ity of the strain gradient bilinear form, to get a well-defined saddle point problem [8]. Although it
is usually called penalty parameter, thanks to the consistency of the formulation, high-order con-
vergence can be achieved with β or order h−1. In practice, not very large values are needed for
accurate solutions, avoiding the unaccuracy or ill-conditioning that typically suffer non-consistent
penalty methods [17].

The minimum value of the stabilization parameter β can be estimated solving an eigenvalue
problem, as commented in section 3.1.

Remark 2 (Second Dirichlet conditions) If second Dirichlet boundary conditions (1e) are im-
posed (i.e. ΓuD2

6= ∅), an additional term
∫

Γu
D2

∂v/∂n · r(u, φ) dS appears in (10) and, con-

sequently, in the weak form (11). Following the same IPM rationale, two new terms, that are
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null thanks to (7c), are also added in (11) to recover again symmetry and coercivity, namely∫
Γu
D2

r(v, ψ) · (∂u/∂n− g2) dS + βD
∫

Γu
D2

∂v/∂n · (∂u/∂n− g2) dS, where βD is a new sta-

bilization parameter that can be taken equal to β or tuned separately.

Remark 3 It is interesting to note that the C0-IPM weak form (11) reduces to the one forH2(Ω),
i.e. (3), when a C1(Ω) approximation is considered. The C0-IPM formulation keeps the consistency
and is valid for standard C0 FE approximations, just introducing the proper integrals on the faces
I. Also note that the second integral in (11) is in the interior of the elements, Ω̂, to account for the
fact that second derivatives are not defined on I.

3.1 Estimate of the interior penalty parameter β
In this section we derive an eigenvalue problem to estimate a lower bound for β. The derivation is
the usual one in IPM and Nitsche’s formulations [18, 8, 14].

The bilinear form of the strain-gradient elasticity operator is

A(u,v) = a(u,v)−
∫
I

t
∂v

∂n

|

· {rsg(u)} dS−
∫
I
{rsg(v)} ·

t
∂u

∂n

|

dS

+ β

∫
I

t
∂v

∂n

|

·

t
∂u

∂n

|

dS

with

a(u,v) =

∫
Ω̂

∇ε(v)
...σ̃sg(u) dΩ

where rsgi = σ̃sgijknjnk and σ̃sg(u) = h
...∇ε(u), that is, the mechanical part of the second traction

and the double stress tensor.
The bilinear form a is semicoercive (i.e. a(u,u) > 0 for any u such that ∇ε(u) 6= 0,

and a(u,u) = 0 otherwise), leading to well-posed strain gradient elasticity and flexoelectricity
problems for any value of the internal length scale parameter l. However, the addition of the
integrals on the faces I, leads to a bilinear formA that retains semicoercivity only for large enough
β.

Thus, to ensure well-posedness of the discrete problem for any value of l, we want β such that
A(u,u) > 0 ∀ u ∈ Ũh = {u ∈ [Vh]nsd such that ∇ε(u) 6= 0} with

A(u,u) = a(u,u)− 2

∫
I

t
∂u

∂n

|

· {rsg(u)} dS + β

∫
I

t
∂u

∂n

|

·

t
∂u

∂n

|

dS.
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Using the Cauchy-Schwarz and Young’s inequalities we can bound the interface terms as

−2

∫
I

t
∂u

∂n

|

· {rsg(u)} dS + β

∫
I

t
∂u

∂n

|

·

t
∂u

∂n

|

dS

≥ −2 ‖{rsg(u)}‖L2(I)

∥∥∥∥∥
t
∂u

∂n

|∥∥∥∥∥
L2(I)

+ β

∥∥∥∥∥
t
∂u

∂n

|∥∥∥∥∥
2

L2(I)

≥ −1

ε
‖{rsg(u)}‖2

L2(I) + (β − ε)

∥∥∥∥∥
t
∂u

∂n

|∥∥∥∥∥
2

L2(I)

,

for any positive ε.
Thus, considering a positive constant K such that

‖{rsg(u)}‖2
L2(I) ≤ Ka(u,u) ∀u ∈ Ũh, (12)

we have

A(u,u) ≥
(

1− K

ε

)
a(u,u) + (β − ε)

∥∥∥∥∥
t
∂u

∂n

|∥∥∥∥∥
2

L2(I)

and the bilinear form is then positive definite if 1−K/ε > 0 and β − ε > 0, for any positive ε.
In conclusion, the strain gradient bilinear form A is positive definite in the reduced discrete

space if β > K, where K is the constant satisfying (12). This constant can be computed as the
largest eigenvalue of the generalised problem

Bx = λAx

where B and A are the discrete matrices corresponding to the bilinear forms b(u,v) and a(u,v)

in the reduced discrete space Ũh, with

b(u,v) =

∫
I
{rsg(v)} · {rsg(u)} dS.

The computation of the maximum eigenvalue in the reduced space Ũh can be done from the
problem stated in the complete discrete space [Vh]nsd setting nodal values to reduce the space or
using the so-called eigenvalue problem deflation [19].

Remark 4 MatricesB andA scale as O(E2l4hnsd−5) and O(El2hnsd−4), respectively, with char-
acteristic element size h. Thus, the maximum eigenvalue of (12) scales as O(El2/h). Conse-
quently, we can consider

β = αEl2/h, (13)
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with a large enough constant α, that can be computed solving the eigenvalue problem, or simply
tuned, in a coarse mesh with any value of E and l.

It is important noting that, differently to non-consistent penalty methods, IPM and Nitsche’s
methods provide accurate solutions and high-order convergence with moderate values of β of order
O(h−1) for any degree of approximation, as shown in the numerical examples in section 4 and in
[17].

An alternative sufficient condition to have a well-posed discrete problem can be stated includ-
ing also the elasticity term in the bilinear form, that is, with

a(u,v) =

∫
Ω

ε(v) : σ̂sg(u)dΩ +

∫
Ω̂

∇ε(v)
...σ̃sg(u) dΩ,

where σ̂sg(u) = C : ε(u) is the mechanical part of the local stress tensor. This option leads
to a smaller (sharper) bound for β, specially for small l or large h. However, since the matrix
corresponding to the first elasticity term scales as O(Ehnsd−2), the dependency on the mesh size
and material parameters is not so obvious.

3.2 Implementation aspects
The current implementation considers high-order Lagrange nodal basis, with Fekete nodes in the
reference element to minimise the condition number of elemental matrices. For degree p ≥ 3,
special attention must be paid to the position of interior nodes in curved physical elements to keep
high-order convergence, see [20]. High-order mesh generators, see for instance [21], produce
curved meshes taking care of this important aspect.

The computation of the system involves two separated loops: in elements for volume integrals,
and in faces for the computation of integrals on I. To do so, the standard C0 reference element is
extended including second derivatives of the basis functions at the element integration points, the
value of element basis functions and their derivatives at the integration points of the reference ele-
ment faces, a list of the nodes corresponding to each face in the reference element and permutations
for the integration points of the reference face for flipping.

The so-called flipping is a permutation (usually for the nodes in DG methods, but for integration
points in our IPM implementation) that has to be applied to the face when seen from the second
element, to match the orientation of the corresponding face in the first element. In 2D the flipping
is the same for any side of the mesh, just using a reverse ordering for the second element sharing
the side. In 3D the possible rotations of the face have to be taken into account to choose the proper
permutation for the integration points.

A variable storing, for each face, the number of the elements sharing the face, the local num-
bering of the face in each one of the two elements and the rotation to be applied for the second
element, is also computed from the mesh as a preprocess.

Dirichlet conditions (1c) are imposed in strong form, just setting the corresponding nodal val-
ues, as usual in standard FE computations. Second Dirichlet conditions can be imposed in weak
form as commented in Remark 2.
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4 Numerical examples
Several numerical examples are included in this section to study the convergence of the C0-IPM
formulation in 2D and 3D, and to validate the computational tool by comparison with previous
works. Homogeneous first, second and corner Neumann boundary conditions are assumed where
no boundary condition is specified.

4.1 2D convergence test
The convergence of the method for the solution of problem (1) is studied in this section. To test the
method with non-regular meshes and curved boundaries, the problem is solved in a square with a
hole, Ω = (0, 1)2\B((0.5, 0.5), 0.2). Figure 3 shows the coarsest mesh for nested refinement, with
degree p = 4.

First Dirichlet and second Neumann conditions are imposed on all the boundary. The body
force b, the free charge q and the boundary data are set so that the solution is

u = [sin (2π(x1 + x2)), cos (2π(x1 + x2))]T ,
φ = sin(2π(x1 + x2)) + cos(2π(x1 + x2)),

(14)

the material parameters are

E = 2.5, ν = 0.25,
l = 1.1, κL = 1.21,
eL = 7.2, eT = 1.33, eS = 1.73,
µL = 1.5, µT = 1.34, µS = 5.47,

(15)

Figure 3: 2D convergence test: initial mesh for the nested refinement, with degree p = 4.
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Figure 5: 2D convergence test for the coupled flexoelectricity problem with β = 100El2/h.

and the piezoelectric principal direction is x1. The definition of the material tensors in terms of
these parameters can be found, for instance, in appendix B of [8].

First we consider the uncoupled problem (with e = 0 and µ = 0), that is, an uncoupled
solution of a strain gradient elasticity problem and an electric potential problem. The convergence
plots are shown in figure 4, for penalty parameter β = 100El2/h, and degree p = 1 . . . 4. For strain
gradient elasticity, the displacement error behaves in agreement with the results for Kirchhoff
plates in [14]. With degree p = 1, the approximation space is not rich enough to impose C1

continuity. Moreover, the second derivatives of the displacement in the strain gradient elasticity
terms and the flexoelectricity terms cancel out, or are almost zero for curved elements. Thus, the
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method does not converge for linear approximation. For degree p = 2 much finer meshes would be
necessary to reach assymptotic convergence, reducing its practical applicability. Accurate results
with high-order convergence are obtained for degree p ≥ 3, with slightly suboptimal convergence
for p = 3, in agreement with the analysis in [13] for the biharmonic equation. In this particular
example, p = 4 behaves better than expected, exhibiting slightly superoptimal convergence. The
expected optimal convergence is observed for the uncoupled electric potential problem for any
degree.

Figure 5 shows the convergence plots for the flexoelectricity problem, with piezoelectric and
flexoelectric coupling. The coupling leads to a reduction in the convergence rate, not relevant for
the displacement, but around one for the potential, for p ≥ 3. This is probably due to the, small
but still present, discontinuity of the displacement derivative across element sides, affecting the
potential through the flexoelectricity coupling.

The conclusion is then that, even though convergence is suboptimal, the method is able to reach
high accuracy with high-order convergence for degree p ≥ 3. The C0-IPM method is therefore
promising for an efficient solution of flexoelectricity.

Similar results can be observed with quadrilateral meshes, with better behaviour for the p = 2
approximation thanks to the richer approximation space and the presence of interior nodes in the
element.

4.2 Robustness with respect to the interior penalty parameter β
The effect of the interior penalty parameter in the accuracy of the numerical solution is studied
next, with the 2D example and meshes of the previous section. Following Remark 4, the parameter
is taken as (13), with different orders of magnitude for α, independent of h.

Figure 6 shows the convergence plots for the flexoelectricity coupled problem, for the displace-
ment u (left) and for the potential φ (right), for degree p = 3 (top) and p = 4 (bottom). The slopes
of the segments are shown for the plots with α = 10 for p = 3, and with α = 100 for p = 4.
We can observe the poor performance of the method for α = 1, due to the fact that it is not large
enough for a coercive mechanical bilinear form.

For degree p = 3, α = 10 is large enough and provides the best results. Larger values of α,
several orders of magnitude larger, also lead to high-order convergence, proving the robustness of
the method; but, in agreement with the analysis in [13] the convergence rate slowly decreases for
increasing α.

Looking to the results for p = 4 we can observe that, for α = 10, the bilinear form is coercive
for the first meshes, because the elasticity part dominates in the coefficients of the matrix. This is
not the case for the last mesh, where higher order terms become more relevant. With α ≥ 100 the
condition in Remark 4 is satisfied and convergence is close to p + 1 = 5 for u and around p = 4
for φ, with almost no loss in the accuracy for increasing β.

Thus, from this experiment we conclude that C0-IPM with degree p = 4 provides excellent
results, with convergence rates close to p + 1 = 5 for u and around p = 4 for φ, and with little
dependency on the particular value of β, for β ≥ 100El2/h.
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Figure 6: Effect of the β parameter in the solution of the flexoelectricity problem: convergence
plots for the example in section 4.1 with β = αEl2/h and different values of α, for degree p = 3
(top) and p = 4 (bottom).

The same analysis is performed now for strain gradient elasticity. Figure 7 shows the conver-
gence plots for the displacement u for degree p = 3 (left) and degree p = 4 (right), with the same
conclusions.

4.3 Cantilever beam
The cantilever beam depicted in figure 8 is considered. The aspect ratio is 20, and the width a varies
to show the size-dependent nature of flexoelectricity. The beam is fixed to a wall and grounded on
its left end, and it undergoes a punctual force F at the top-right corner. The boundary conditions
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vergence plots for the displacement, for the example in section 4.1, with β = αEl2/h and different
values of α, for degree p = 3 (left) and p = 4 (right).

L

x2

a

F

Figure 8: Cantilever beam under bending and open-circuit boundary conditions.

are thus

u = 0 at x1 = 0
j2(u, φ) = −F at x = (L, a/2)

φ = 0 at x1 = L,
(16)

where L = 20a is the beam length. To reproduce the results obtained in [8] with B-splines, the
material parameters are

E = 100 GPa, , κ11 = κ22 = 11 nJ V−2 m−1,
eT = −4.4 J V−1 m−2, µT = 1 µJ V−1 m−1,
l = ν = µL = µS = eL = eS = 0,

(17)

and the piezoelectric principal direction is x2. A uniform discretization with 2× 2× 40 triangular
elements (with characteristic element size h = 0.5a) of degree p = 4, and with β = 100, is
considered. Since l = 0, any positive value of β provides good results.
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Figure 9: Cantilever beam: (left) normalised effective piezoelectric constant e′ as a function of the
normalised beam thickness a′, and (right) electric field modulus |E| with a′ = 1.76 for piezoelec-
tric (a), pure flexoelectric (b) and flexo-piezoelectric (c) beams.

Figure 9 left shows the normalised effective piezoelectric constant, e′, versus the normalised
beam thickness, a′, defined as

a′ = −aeTµ−1
T , e′ :=

keff

keff|µ=0

, keff :=

√ ∫
Ω
E · κ ·E dΩ∫

Ω
ε ·C · ε dΩ

,

where keff|µ=0 is the effective piezoelectric constant in the absence of flexoelectric effects, i.e. with
µ = 0.

The results are in perfect agreement with the B-spline results in [8], and with the analytical
approximation in [22]:

e′|flexo(a
′) '

√
12

a′2
, e′|flexo-piezo(a

′) '

√
1 +

12

a′2
.

The plots in figure 9 also illustrate how flexoelectricity is a size dependent phenomenon, with
relevant and even crucial effect for very small scales.

4.4 Open and Closed circuit in the cantilever beam
For further validation of the C0-IPM computational model, we now consider the open and closed
circuit example in [4], where maximum-entropy approximations (LME) were used. The problem
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is solved on the same beam with the same FE mesh. The material parameters are now

E = 100 GPa, ν = 0.37,
κ11 = 11nJ V−2 m−1, κ22 = 12.48 nJ V−2 m−1,
eT = −4.4 J V−1 m−2, µT = µL = 1 µJ V−1 m−1,
l = µS = eS = eL = 0,

and the the piezoelectric principal direction is again x2. The mechanical boundary conditions are
the same as in the previous case.

For the electrostatic boundary conditions, two different cases are considered: open and closed
circuit. The open circuit is the one considered in the previous example, with grounded right end,

L

x2

a

F

V

Figure 10: Cantilever beam under closed-circuit boundary conditions.

(a)

(b)
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a'
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e
'

Figure 11: Normalised effective piezoelectric constant as a function of the normalised beam thick-
ness, and example of the distribution of electric potential φ in a flexo-piezoelectric beam with
closed (a) and open (b) circuit. Note that the aspect ratio of the beams has been modified to better
observe the potential distribution along the beam.
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that is φ = 0 at x1 = L, as shown in figure 8. In the closed circuit, the upper side is grounded and
an electrode is placed on the bottom side, that is

φ =

{
0 for x2 = a/2
V for x2 = −a/2,

where V is a free constant value, see figure 10. The electrode condition is enforced setting all po-
tential nodal values on the bottom boundary to be equal to the first one, with Lagrange multipliers
in our implementation.

Figure 11 shows the normalised effective piezoelectric constant e′ as a function of the nor-
malised thickness a′. Again, we observe that flexoelectricy becomes relevant for small scales. For
the open circuit, comparing to the previous results in figure 9, where ν = µL = 0, this more gen-
eral model gives lower values for the normalised effective piezoelectric constant. On other hand,
the open circuit setting leads to larger values of the effective piezoelectric constant. The numerical
results are in perfect agreement with the LME results in [4] demonstrating again the applicability
of C0-IPM for the study and design of flexoelectric devices.

4.5 Actuator example
In this section we consider an actuator beam also from [4]. The displacement is fixed on the left
boundary, and a potential difference is applied at the top and bottom sides, leading to a bending of
the beam. That is,

u(0, x2) = 0, φ
(
x1,

a

2

)
= 0, φ

(
x1,−

a

2

)
= V,

on the same beam, i.e. Ω = (0, 20a) × (−a/2, a/2). The material parameters are (17) and the
applied voltage is V = −8a MV.

Figure 12 shows the potential on the deformed beam for width a = 2.5 µm. The potential
seems to be smooth, but the section along x2 = 0 in figure 13 reveals a sharp variation close to the
right end. Consequently, the electric field also presents sharp variations close to the right end, as
shown in figure 14.

Figure 12: Actuator beam with width a = 2.5 µm and l = 0: deformed beam and potential.
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Figure 13: Actuator beam with width a = 2.5 µm and l = 0: normalised potential (φ/250) along
the x2 = 0 horizontal mid section. The potential presents a sharp variation close to the right
boundary. Magenta dots correspond to the boundary of the p = 4 quadrilaterals.
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Figure 14: Actuator beam with l = 0: detail of the normalised vertical electric field (E2/109)
close to the right end, and plot of the components of the normalised electric field at the right end
(x1 = 20a).

Figure 15: Adapted p=4 quadrilateral FE mesh for l = 0 with min(h) = a/12 (top) and for
l = 0.1a with min(h) = a/25 (bottom).
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Figure 16: Actuator beam with l = 0.1a: detail of the normalised vertical electric field E2 close to
the right end, and plot of the components of the normalised electric field at the right end (x1 = 20a).

These results have been computed on the adapted quadrilateral mesh in figure 15 (top), with
degree p = 4 and β = 1. The mesh has been refined to capture the sharp variations in the
solution; otherwise, numerical oscillations spoil the solution in the whole domain. It is also worth
mentioning that the plot in figure 14 coincides in magnitude and shape with the results in [4] with
LME, but getting rid of the smooth oscillations.

Sharp variations along the boundary in the solution of flexoelectricity problems can be even
more pronounced, as can be observed in figure 16. In this case the problem is solved with strain
gradient elasticity, with l = 0.1a, on the p = 4 adapted mesh in figure 15 with min(h) = a/25;
with smaller element size along the boundary to capture the high curvatures in the electric field.
The stabilization parameter is again taken as β = 100El2/min(h), providing stable results.

4.6 Periodicity
The implementation of periodicity boundary conditions in the C0-IPM method is straightforward,
by simply considering the periodicity faces as interior faces and imposing the periodicity con-
straints on the boundary nodal values. Considering the periodicity faces as interior faces, that is in
I, ensures that C1 continuity is enforced in weak form and that internal forces are equilibrated also
on the periodicity boundary. The periodicity conditions for the nodal values can be implemented,
for instance, by means of Lagrange multipliers, or reducing the system to the periodic space.

As a verification example, figure 17 shows the evolution of the error under nested refinement
for the solution of the flexoelectricity coupled problem (1) in a square domain Ω = (0, 1)2 with
a regular triangular mesh. First Dirichlet and second Neumann conditions, (1c) and (1d), are set
on the top and bottom boundaries, and periodicity is imposed in the x1 direction. That is, (7) is
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Figure 17: Convergence test for the solution of the flexoelectricity equations in a square domain,
with periodicity in the x1 direction.

imposed identifying the left and right boundary as the same boundary and including it in I. The
body force b, the free charge q, and the data for the boundary conditions on the top and bottom
boundaries, are set so that the analytical solution is (14). The stabilization parameter is (13) with
α = 100.

The errors exhibit the same behavior as in the convergence analysis in section 4.1.

4.7 3D convergence test
The flexoelectricity equations are now solved in a cube, Ω = (0, 0.5)3, to show the applicability of
the method also in 3D. The mesh for degree p = 2 and the second level of refinement is shown in
figure 18. First Dirichlet and second Neumann boundary conditions are considered in the whole
boundary, and the material parameters are (15). The data is set so that the solution is

u = [cos(2π(x1 + 2x2 − x3)), sin(2π(x1 + 2x2 − x3)), cos(2π(x1 + 2x2 − x3))]T ,

φ = sin(2π(x1 + 2x2 − x3)).

Figures 19 and 20 show the convergence plots with β = 100El2/h, for strain gradient elasticity
(solving the decoupled problem) and for flexoelectricity, respectively. As in 2D, the method does
not converge for degree p = 1; thus, we show the results for p = 2, 3, 4.

Robust high-order convergence is observed in all cases, providing accurate results. Again, in
agreement with the analysis in [13], the convergence is suboptimal; but still with order close to
p + 1 for the displacement in the strain gradient elasticity problem for p ≥ 3. Again, we also
observe that the flexoelectricy coupling provokes a loss in the convergence rate and the accuracy
of the solution; with order close to p for the displacement and the potential in this example.
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Figure 18: 3D mesh for degree p = 2 and second level of refinement.
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Figure 19: 3D solution in a cube: convergence plots for strain gradient elasticity and electric
potential (decoupled problem).
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Figure 20: 3D solution in a cube: convergence plots for the coupled flexoelectricity problem.
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Further numerical experiments show that, with these regular hexahedra meshes, the error has
very little dependency on the particular value of β ≥ 100El2/h.

5 Conclusions
A novel C0-IPM formulation for strain gradient elasticity and flexoelectricity is proposed. The
weak form involves second derivatives of the displacement in the interior of the elements, plus
integrals on the element faces, weakly imposing continuity of the displacement derivatives, as well
as equilibrium of internal forces across element faces and on interior edges (vertexes in 2D).

The formulation is stable, with a symmetric and positive definite matrix for the strain gradient
elasticity operator, for large enough interior parameter β. An eigenvalue problem is stated to
determine a bound for β, which leads to a general formula for the parameter: β = αEl2/h, with
constant α independent of the element size. Thus, differently to non-consistent penalty methods,
and as usual in interior penalty methods, moderate values for β provide stable and accurate results.

Standard C0 FE approximations are considered, retaining the advantages and computational
efficiency of high-order FE. The implementation is based on assembly of elemental matrices, with
standard FE numerical integration and nodal approximation, the discretization can be adapted to
the geometry and locally refined where needed, no additional unknowns are needed, and material
interfaces can be directly considered just adapting the mesh, as usual in FE computations.

The application of C0-IPM to problems with periodicity boundary conditions is straightfor-
ward, just considering the periodicity faces as interior faces (thus, imposing C1 continuity and
equilibrium of forces in weak form) and setting the periodicity conditions on the nodal values.

Convergence tests, on 2D non-uniform curved triangular meshes and on 3D hexahedra regular
meshes, show high-order convergence of the method for degree p ≥ 3. A slow continuous loss in
the convergence rate for increasing β is observed for p = 3, which is in agreement with the analysis
for the biharmonic equation in [13] and the results for Kirchhoff plates in [14]. Fortunately, for
p = 4 the convergence shows little dependency on β. In any case, in all examples, the convergence
rates are at least close to p for both variables, demonstrating the good behaviour of the method for
p ≥ 3.

The computational tool is also validated by comparison with previous works solving realistic
actuator and sensor problems on a beam, with perfect agreement.
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