
Journal of Scientific Computing manuscript No.
(will be inserted by the editor)

A reduced order model approach to inverse scattering in lossy
layered media

Liliana Borcea · Vladimir Druskin · Jörn
Zimmerling

Received: date / Accepted: date

Abstract We introduce a reduced order model (ROM) methodology for inverse electromag-
netic wave scattering in layered lossy media, using data gathered by an antenna which gen-
erates a probing wave and measures the time resolved reflected wave. We recast the wave
propagation problem as a passive infinite-dimensional dynamical system, whose transfer
function is expressed in terms of the measurements at the antenna. The ROM is a low-
dimensional dynamical system that approximates this transfer function. While there are
many possible ROM realizations, we are interested in one that preserves passivity and in ad-
dition is: (1) data driven (i.e., is constructed only from the measurements) and (2) it consists
of a matrix with special sparse algebraic structure, whose entries contain spatially localized
information about the unknown dielectric permittivity and electrical conductivity of the lay-
ered medium. Localized means in the intervals of a special finite difference grid. The main
result of the paper is to show with analysis and numerical simulations that these unknowns
can be extracted efficiently from the ROM.
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1 Introduction

We study a reduced order model (ROM) approach to inverse scattering for Maxwell’s equa-
tions in a lossy layered medium. We begin in section 1.1 with the formulation of the problem
and show that it reduces to an inverse problem for a stable and passive dynamical system
[28,30], parametrized in port-Hamiltonian (pH) form [1,17]. pH systems arise from energy
based modeling of physical problems [29] and are an active research area in reduced order
modeling, where the focus is mainly on constructing a low-dimensional dynamical system,
a ROM, that approximates the transfer function of the original problem, while preserving
the pH structure [14,2]. Because we are considering an inverse problem, we develop a data
driven ROM which can be computed using simple numerical linear algebra tools that were
developed originally for circuit synthesis [24]. The ROM looks like a ladder RCL network
model [14]. It is described by a matrix of special sparsity pattern, corresponding to a finite
difference scheme, with entries that depend locally (on some grid) on the unknown dielectric
permittivity and electrical conductivity. A similar ROM has been used for solving inverse
scattering problems in lossless media in [12,6]. However, for lossy media the algebraic spar-
sity constraint on the ROM does not permit obtaining a pH realization, meaning that some
of the network resistors may be negative, in spite of the ROM being passive. The main result
of the paper, as we outline in section 1.2 of the introduction, is that such ROMs can still be
used for an efficient solution of the inverse scattering problem or equivalently, the parameter
identification of the pH dynamical system.

Inverse scattering in layered lossy media, although with different types of measure-
ments, has been considered in many other studies e.g. [31,8,18]. It can also be formulated
as a quadratic inverse spectral problem analyzed for example in [9,13]. These results are
specialized to one dimensional media. The ROM based inversion methodology introduced
in this paper has the advantage that it can be extended, in principle, to inverse scattering in
multi-dimensional media.

1.1 The inverse scattering problem

The electromagnetic waves are modeled by the electric field ~E(~x, t) and magnetic field
~H(~x, t), satisfying Maxwell’s equations(

ε(z) 0
0 µ

)
∂t

(
~E(~x, t)
~H(~x, t)

)
=

(
−σ(z) ∇×
−∇× 0

)(
~E(~x, t)
~H(~x, t)

)
−
(
~J(~x, t)

0

)
, (1)

at time t ∈ R and location ~x = (x1, x2, z) in the half space domain Ω = R2 × (−∞, L],
with perfect electrical conductor boundary condition

~ez × ~E(~x, t) = 0, ~x = (x1, x2, L), t ∈ R. (2)

Here we introduced the coordinate system with axes along the orthonormal vectors ~ex1 ,~ex2

and ~ez , with ~ez pointing in the direction of variation of the layered medium. The coordinate
z ∈ (−∞, L] along ~ez is called the range and the other two (cross-range) coordinates are
(x1, x2) ∈ R2.

Motivated by applications in radar imaging, we use the setup illustrated in Figure 1,
where the medium is lossless and homogeneous at z ∈ (−∞, 0], with known dielectric
permittivity ε(z) = ε0, electrical conductivity σ(z) = 0 and magnetic permeablity µ, and
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Fig. 1 Illustration of the inverse scattering setup: A remote antenna probes an unknown layered medium
lying in the interval z ∈ (0, L), with a downgoing wave that is approximately planar by the time it reaches
the surface z = 0. The medium at z < 0 is known, lossless and homogeneous. The data for inverse scattering
are the time resolved measurements of the upgoing wave.

it is variable and lossy at z ∈ (0, L), with unknown positive ε(z) and σ(z). The magnetic
permeability is assumed constant throughout the domain.

The data for the inverse problem are gathered by an antenna with directivity along the
range direction, which emits waves and measures the scattered returns. The wave source is
modeled in (1) by the function ~J(~x, t) with short temporal support at time t ≥ 0 and with
spatial support that is far away from the surface z = 0. We assume throughout that the wave
is polarized so that the electric field points in the direction −~ex2 and the magnetic field
points in the direction ~ex1 . Prior to the excitation there is no wave

~E(~x, t) = ~H(~x, t) = 0, ~x ∈ Ω, t < 0. (3)

Using causality and the finite wave speed, we can calculate the incident wave impinging
on the unknown layered medium by solving Maxwell’s equations with the source ~J(~x, t) in
the whole space R3 filled with the homogeneous, lossless medium. Because the source is
far away from the surface z = 0, for practical purposes we can approximate this wave by a
planar, down going wave with amplitude determined by the source. This wave penetrates the
layered medium where it scatters, and the data for the inverse problem are the time resolved
measurements of the reflected, upgoing wave captured at the antenna.

The plane wave approximation allows us to reduce Maxwell’s equations to a one dimen-
sional inverse scattering problem in the range interval z ∈ (z0, L), for some z0 < 0 close to
the interface z = 0. Before writing this problem, let us transform to travel time coordinates

T (z) =

∫ z

0

√
µε(z′)dz′, (4)

where we note that 1/
√
µε(z) is the wave speed. We also take the Laplace transform with

respect to t and denote by s ∈ C the Laplace frequency. After these transformations, the
component of the electric field along −~ex2 denoted by u(T, s), aka the primary wave, and
the component of the magnetic field along~ex1 denoted by û(T, s), aka the dual wave, satisfy
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the following system of coupled ordinary differential equations

∂T û(T, s) +

[
s+ r(T )

]
ζ(T )

u(T, s) = 0, (5)

∂Tu(T, s) + sζ(T )û(T, s) = 0, (6)

with homogeneous boundary condition at TL = T (L)

u(TL, s) = 0. (7)

The coefficients in these equations are the wave impedance

ζ(T ) =

√
µ

ε(z(T ))
, (8)

and the loss function

r(T ) =
σ(z(T ))

ε(z(T ))
, (9)

the unknowns in the inverse problem. They satisfy ζ(T ) = ζ0 and r(T ) = 0 for the negative
travel time T ∈ [T0, 0), where T0 = T (z0) < 0.

We will restrict the problem to the interval T ∈ [0, TL]. To establish the boundary
condition at T = 0, we use the forward (downgoing) and backward (upgoing) wave de-
composition in the interval (T0, 0) where the medium is homogeneous. This decomposition
is (

u(T, s)
û(T, s)

)
= ζ

1
2
0

[
af (T, s)e

−sT
(

1

ζ−1
0

)
+ ab(T, s)e

sT

(
1

−ζ−1
0

)]
, T ∈ (T0, 0),

(10)
where af (T, s) is the amplitude of the forward going wave and ab(T, s) is the amplitude
of the backward going wave. If we substitute (10) in equations (5)–(6), we obtain that these
amplitudes satisfy

∂T af (T, s) = ∂T ab(T, s) = 0, T ∈ (T0, 0). (11)

Therefore, af (0, s) is the amplitude of the computable incoming wave and ab(0, s) is the
amplitude of the measured scattered wave, and (10) gives

u(0, s)

û(0, s)
= ζ0

[
af (0, s) + ab(0, s)

af (0, s)− ab(0, s)

]
. (12)

Our equations are linear, so we normalize henceforth the wave fields by setting

û(0, s) = 1. (13)

The infinite dimensional dynamical system is described by the system of ordinary differ-
ential equations (5)–(6) for T ∈ (0, TL), with boundary conditions (7) and (13). Its transfer
function D(s) = u(0, s) is obtained from (12) in terms of the measurements at the antenna.
We assume we know D(s) for s lying on some properly chosen curve in the complex plane,
which depends on the signal emitted by the antenna.
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1.2 ROM approach to system parameter identification

Let us rewrite the dynamical system in the following compact form[
L+R(T ) + sZ(T )

](u(T, s)
û(T, s)

)
=

(
δ(T )
0

)
, T ∈ (0−, TL), (14)

with homogeneous boundary conditions(
1 0
0 0

)(
u(TL, s)
û(TL, s)

)
+

(
0 0
0 1

)(
u(0−, s)
û(0−, s)

)
= 0. (15)

Here L is the skew-symmetric differential operator

L =

(
0 ∂T
∂T 0

)
(16)

acting on vector valued functions satisfying the homogeneous boundary conditions (15), and
R(T ) and Z(T ) are the diagonal multiplication operators

R(T ) =

(
r(T )
ζ(T ) 0

0 0

)
, Z(T ) =

( 1
ζ(T ) 0

0 ζ(T )

)
. (17)

Note thatR(T ) is positive semi-definite and Z(T ) is positive definite.

Remark 1 In (14) we have the slightly larger domain z ∈ (0−, TL), where 0− stands for
a negative number, arbitrarily close to 0. The boundary conditions (15) are homogeneous
and we have a Dirac delta forcing which gives the jump condition1

û(0, s)− û(0−, s) = û(0, s) = 1,

that is consistent with the boundary condition (13). We use henceforth this formulation with
the Dirac delta forcing, instead of (5)–(7) and (13), because it is easier to compare with the
ROM dynamical system.

The inverse problem is: Determine the loss function r(T ) and the impedance function
ζ(T ) in the interval T ∈ (0, TL), from the transfer function

D(s) = u(0, s) =

∫ TL

0−
(δ(T ), 0)

[
L+R(T ) + sZ(T )

]−1
(
δ(T )
0

)
dT. (18)

We explain in appendix C that (14), with transfer function (18) is a pH realization of a
passive2 dynamical system. Therefore, we are solving a pH system identification problem
[2].

If we eliminate the dual wave û(T, s) in (14)-(15) we obtain an equivalent, second order
formulation that is quadratic in the spectral parameter s. Therefore, the inverse problem can
be recast as a quadratic inverse spectral problem that is uniquely solvable, as proved in [9].
An inversion method is also given in [9] (with no numerical results), but it does not extend
to multi-dimensional media. We introduce a novel ROM based approach to inversion, which
can be generalized in principle to such media. The ROM is a low dimensional dynamical

1 By û(0, s) we mean lim
T↘0

û(T, s).

2 Passive means that the dynamical system does not generate energy internally.
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system that looks like a finite difference scheme for the infinite dimensional dynamical
system, with some caveats explained below.

If we hadR(T ) = 0, we could use the data driven ROM considered in [3,12][
L+ sZ

]
ν(s) =

e1

ĥ1
, (19)

with L,Z ∈ R2n×2n, ν(s) ∈ C2n and e1 the unit vector in R2n with the first entry equal
to 1 and all the other entries equal to 0. The ROM is constructed so that its transfer function

DROM

n (s) = eT1

[
L+ sZ

]−1 e1

ĥ1
, (20)

matches 2n measurements of D(s). In [3] these measurements are the first n poles and
n residues of D(s) and the ROM is obtained via a layer-stripping algorithm based on the
Lanczos recursion [21,10]. The ROM has special algebraic structure, with positive diag-
onal matrix Z and skew-symmetric bidiagonal matrix L. Due to this structure, (19) can
be interpreted as a finite difference discretization of (14) on a staggered grid with primary
steps hj and dual steps ĥj , for j = 1, . . . , n. This grid is obtained from the reference
ROM constructed just as the data driven ROM, but for the reference medium with constant
impedance. Its properties are described in [3, Lemma 3.2]. The entries in the data driven
ROM are interpreted in [3] as local averages of the impedance on this grid, which leads to
an easily computable reconstruction ζ(n)(T ) indexed by n, that converges pointwise and in
L1(0, TL) to the true impedance ζ(T ) in the limit n→∞ [3, Theorem 6.1].

The results in [3,12] were extended to multi-dimensional media in [7,5,6], where the
ROM matrices L and Z have block bidiagonal and block diagonal structure. It is not clear
how to make a finite difference discretization analogy for such a ROM, because the blocks
are full (non-sparse) matrices. Nevertheless, the block structure captures the physics of wave
propagation in the range direction, and this has been exploited in [6] to devise a rapidly
converging optimization method for estimating the impedance function.

Our goal is to extend the ROM based inversion methodology developed in [3,12] to the
identification of the coefficients of the pH system (14), where R(T ) is no longer zero, but
positive semi-definite. As in [3], we use the first n poles and residues of the transfer function
D(s) to construct a 2n× 2n matrix ROM3[

L+R+ sZ
]
ν(s) =

e1

ĥ1
, (21)

with transfer function that has these poles and residues

DROM

n (s) = eT1

[
L+R+ sZ

]−1 e1

ĥ1
. (22)

Again, the ROM is obtained via direct layer stripping, implemented with the J-symmetric
Lanczos algorithm [23,27]. However, there are two notable differences from the lossless
case: (1) The Lanczos algorithm may break down, although it is unlikely to do so as ex-
plained in [19]. (2) The tridiagonal ROM realization may not be in pH form. That is to
say, the diagonalR will have in general entries that model a non-existent “magnetic loss”
function r̂(T ) that may take negative values. The latter difference makes the ROM based

3 These “truncated spectral measure” measurements are used for convenience, but ROM’s obtained from
other matching conditions, such as DROM

n (sj) = D(sj) for 2n properly chosen (sj)
2n
j=1 can be used as well.
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inversion more difficult than in the lossless case, as there is no direct analogy of (21) as
a finite difference scheme for the continuum problem (14). If we tried to interpret it as a
discretization for a problem with magnetic losses, we would arrive at an inverse problem
for Telegrapher’s (transmission line) equation [18,31] that cannot be solved uniquely with
our measurements. The main difficulty addressed in this paper is how to embed the ROM
(21) in the continuous pH dynamical system (14). We show with analysis and numerical
simulations how to achieve this task for the case of losses with small enough amplitude
variations.

The paper is organized as follows: We begin in section 2 with a discussion of the solv-
ability of the inverse problem, the characterization of the transfer function and the truncated
spectral measure data used for inversion. Then we give in section 3 the construction of the
data driven ROM. In section 4 we introduce a simple, non-iterative inversion algorithm,
and analyze it using first order perturbation analysis in the case of small variations of the
loss function. We also show how to use optimization for dealing with losses with somewhat
larger variation. The analysis is complemented with numerical simulations. We end with a
summary and a discussion of possible extensions to multi-dimensional media in section 5.

2 Solvability of the inverse problem and the transfer function

To describe the transfer function and to conclude that it determines the impedance ζ(T )
and the loss function r(T ) uniquely, we use the results in [9] on quadratic inverse spec-
tral problems for Schrödinger’s equation with frequency dependent potential. To connect to
these problems, we assume henceforth4 that r(T ) is absolutely continuous, and that ζ(T ) is
smooth enough so that

q(T ) = ζ
1
2 (T )

d2

dT 2
ζ−

1
2 (T ) ∈ L1([0, TL]). (23)

We also assume that the choice of the domain (0−, TL) is such that ζ(T ) is constant in the
small vicinity of T = 0 and thus satisfies

ζ(0) = ζ0,
dζ

dT
(0) = 0. (24)

The equation considered in [9] is obtained from (5)–(6) and boundary conditions (7) and
(13), using the Liouville transformations

w(T, s) =

√
ζ0
ζ(T )

u(T, s), ŵ(T, s) =
√
ζ0ζ(T )û(T, s). (25)

Substituting these in (14)–(15) we obtain the first order system

[L+Q(T ) +R(T ) + sI]

(
w(T, s)
ŵ(T, s)

)
=

(
ζ0δ(T )

0

)
, T ∈ (0−, TL), (26)

with boundary conditions(
1 0
0 0

)(
w(TL, s)
ŵ(TL, s)

)
+

(
0 0
0 1

)(
w(0−, s)
ŵ(0−, s)

)
= 0, (27)

4 The regularity assumptions on r(T ) and ζ(T ) can possibly be relaxed, but since we draw conclusions
from [9], we use the assumptions made in that study.
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where I is the identity operator andQ(T ) and R(T ) are the multiplication operators

Q(T ) =

(
0 d

dT ln ζ−
1
2 (T )

− d
dT ln ζ−

1
2 (T ) 0

)
, R(T ) =

(
r(T ) 0
0 0

)
. (28)

Eliminating the dual wave ŵ(T, s) from these equations, we obtain an equivalent second
order problem for the Schrödinger equation considered in [9],[

∂2T − s2 − sr(T )− q(T )
]
w(T, s) = −sζ0δ(T ), T ∈ (0−, TL), (29)

∂Tw(0−, s) = 0, w(TL, s) = 0. (30)

The frequency dependent Schrödinger potential sr(T ) + q(T ) is defined by the unknown
loss function r(T ) and q(T ) given in (23). In an abuse of terminology, we shall refer to
q(T ) as the potential.

2.1 The poles and zeroes of the transfer function

The result in [9] is that the zeroes and poles of the so-called Weyl functionW(s) determine
uniquely the potential q(T ) and the loss function r(T ). The impedance is then the solution
of the ordinary differential equation

d2

dT 2
ζ−

1
2 (T ) = q(T )ζ−

1
2 (T ), T ∈ (0, TL), (31)

with initial conditions (24).
We define the Weyl function in appendix A and show that it is related to the transfer

function by

D(s) = u(0, s) = w(0, s) = − sζ0
W(s)

. (32)

We also explain there that if we introduce the quadratic (in s) Schrödinger operator pencil

Lq,r(s) = ∂2T − s2 − sr(T )− q(T ), (33)

then the poles of the transfer function, which are the zeroes of the Weyl function, are the
eigenvalues of Lq,r(s) acting on the space SN of continuous functions satisfying

φ(T ) ∈ SN if ∂Tφ(0) = φ(TL) = 0. (34)

By an eigenvalue λ ∈ C we mean that the null space of the operator is nontrivial [22]. The
zeroes of the transfer function are determined by the poles of the Weyl function, which are
the eigenvalues of Lq,r(s) acting on the space SD of continuous functions satisfying

φ(T ) ∈ SD if φ(0) = φ(TL) = 0. (35)

The analysis in [25,26] shows that the spectrum5 of the quadratic operator pencil (33)
acting on either SN or SD coincides with the point spectrum (i.e., all the spectral values are
eigenvalues) and it is countable. Moreover, definition (33) and the fact that r(T ) and q(T )
are real valued functions imply that these eigenvalues come in conjugate pairs.

5 The spectrum is defined as the set of s ∈ C such that the operator is not boundedly invertible.
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Consequently, D(s) is a meromorphic function, with poles {λj , λj , j ≥ 1} and zeroes
{µj , µj , j ≥ 1}, where the bar denotes the complex conjugate. The sets of poles and
zeroes are disjoint, and they determine explicitly the transfer function, as follows from the
factorization of the Weyl function obtained in [9]. If we denote the mean loss by

r0 =
1

TL

∫ TL

0

r(T )dT, (36)

then

D(s) =
sζ0∆D(s)

∆N (s)
, (37)

where the denominator in (37) is given by [9, Eq. (2.6)]

∆N (s) =
2

r0
sinh

(TLr0
2

)
exp

{
sTL

[
coth

(TLr0
2

)
− 2

TLr0

]}
×
∞∏
j=1

(s− λj)(s− λj)[(π(j−1/2)
TL

)2
+

r20
4

] exp
− sr0(π(j−1/2)

TL

)2
+

r20
4

 , (38)

and the numerator is [9, Eq. (2.14)]

∆D(s) = cosh
(TLr0

2

)
exp

[
sTL tanh

(TLr0
2

)]
×
∞∏
j=1

(s− µj)(s− µj)[(
πj
TL

)2
+

r20
4

] exp

− sr0(
πj
TL

)2
+

r20
4

 . (39)

Moreover, we have the asymptotic expansion [9, Eq. (2.5)]

λj =
i(j − 1/2)π

TL
− r0

2
+

i

π(2j − 1)

∫ TL

0

[
q(T )− r2(T )

4

]
dT + o

(1
j

)
(40)

which shows that r0 can be determined from the real part of the poles in the limit j →∞.

2.2 The truncated spectral measure transfer function of the ROM

We shall use the poles and residues representation of the transfer functionD(s), and assum-
ing that the poles are simple, we can define the residues {yj , yj , j ≥ 1} by

yj = −ζ0λj∆D(λj) lim
s→λj

(s− λj)
∆N (s)

. (41)

The data driven ROM constructed in the next section has the “truncated spectral measure”
transfer function

DROM

n (s) =
n∑
j=1

[
yj

s− λj
+

yj

s− λj

]
, (42)

which shares the first n poles (λj)nj=1 and residues (yj)nj=1 withD(s). We now give a justi-
fication for this expression, in the case of a loss function r(T ) with small enough amplitude
variations.
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2.2.1 Constant loss function

In the special case r(T ) = r0, the pencil (33) becomes

Lq,r0(s) = Lq − (s2 + sr0), Lq = ∂2T − q(T ), (43)

where Lq is a regular Sturm-Liouville operator. Since Lq acting on SN has simple eigen-
values (−θ2j )∞j=1, we conclude that the poles of the transfer function are simple in this case.
In fact, we can write explicitly the series expansion of the transfer function, by expanding
the solution of (29)–(30) in the orthonormal eigenbasis

(
ϕj(T )

)∞
j=1

of Lq . We obtain that

D(s) =

∫ TL

0−
δ(T )

[
Lq,r0(s)

]−1[− sζ0δ(T )]dT
=
∞∑
j=1

sζ0ϕ
2
j (0)

s2 + sr0 + θ2j
=
∞∑
j=0

[
yj

s− λj
+

yj

s− λj

]
, (44)

where

λj = −
r0
2

+ i

√
θ2j −

r20
4
, yj =

ζ0ϕ
2
j (0)λj

λj − λj
, j ≥ 1, (45)

2.2.2 Variable loss function

Equations (37)–(39) define explicitly the transfer function in terms of the zeroes and poles
but it is difficult to obtain from it a series expansion like (44) for an arbitrary non-negative
loss function r(T ). In particular, the poles may no longer be simple. To avoid this compli-
cation, we assume henceforth that the variations of r(T ) about its mean r0 are not too large,
so we can use the analytic perturbation theory of the eigenvalues of linear operators (see
appendix B) to justify the series expression

D(s) =

∫ TL

0−
δ(T )

[
Lq,r(s)

]−1[− sζ0δ(T )]dT =
∞∑
j=0

[
yj

s− λj
+

yj

s− λj

]
. (46)

We refer to appendix B for a proof thatD(s) satisfies the passivity conditions [28,1,30].
The transfer function (42) of the ROM approximates D(s) by truncating this series after the
nth term. The error of the approximation at s /∈ {λj , λj , j ≥ 1} is O(1/n), as follows
from equation (41) and the asymptotic expansion (40).

Remark 2 We will see in the next section that there exists a unique ROM of the form (21),
with transfer function (42). However, due to the imposed tridiagonal algebraic structure, the
matrixR is not guaranteed to be positive semi-definite, which means that the ROM does not
preserve the pH structure of the dynamical system (14). Nevertheless, the ROM preserves
stability and all the numerical evidence is that it preserves passivity too (see section 4.3).
The only reason we choose to work with the truncated spectral measure transfer function
is because we wish to make use of the analysis in [3]. However, there are other and likely
better choices of data interpolation for constructing the ROM. A particularly interesting
one is to interpolate the first n poles and n zeroes of the transfer function, in which case the
ROM is guaranteed to be passive [28, Theorem 2.1].
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3 Construction and properties of the ROM

The discussion in section 2 shows that we can formulate the inverse problem as: Given the
poles (λj)nj=1 and residues (yj)nj=1 of D(s), obtain a ROM of the form (21), with transfer
function (42), and use it to compute estimates of the impedance ζ(T ) and the loss r(T ). In
this section we explain how to construct the ROM.

3.1 The ROM as a finite difference scheme

We will obtain a ROM that corresponds to the algebraic system

ûj(s)− ûj−1(s)

ĥj
+

(s+ rj)

ζj
uj(s) = 0, j = 1, . . . , n, (47)

uj+1(s)− uj(s)
hj

+ (s+ r̂j)ζ̂j ûj(s) = 0, j = 1, . . . , n, (48)

û0(s) = 1, un+1(s) = 0, (49)

and has the given transfer function u1(s) = DROM
n (s). This ROM can be viewed as a finite

difference scheme on a staggered grid with primary steps (hj)nj=1 and dual steps (ĥj)nj=1.
We leave the grid unspecified for now, but it turns out that among all possible staggered
grids, there is a special one that can be computed and is useful for devising a ROM based
inversion method. See sections 3.3.2 and 4.

In (47)–(49) the primary wave is approximated by uj , at the grid points Tj =
∑j−1
p=1 hp,

and ûj approximates the dual wave at the points T̂j =
∑j
p=1 ĥp, where T1 = T̂0 = 0. The

coefficients ζj and ζ̂j model the impedance on the staggered grid, and rj and r̂j model
losses.

If we organize the wave approximations in U(s) = (u1, û1, u2, . . . , un, ûn)
T ∈ C2n,

we can rewrite (47)–(49) in the 2n × 2n matrix form (21) given in the introduction. The
bidiagonal matrix

L = diag
[
(ĥ−1

1 , h−1
1 , . . . , ĥ−1

n ), 1
]
− diag

[
(h−1

1 , ĥ−1
2 , . . . , h−1

n ),−1], (50)

where diag[(. . .), 1] denotes the superdiagonal and diag[(. . .),−1] the subdiagonal, is the
discrete analogue of the operator L defined in (16), and the diagonal matrices

R = diag(r1/ζ1, r̂1ζ̂1, . . . , rn/ζn, r̂nζ̂n), Z = diag(1/ζ1, ζ̂1, . . . , 1/ζn, ζ̂n),
(51)

look like discretizations of the multiplication operators R(T ) and Z(T ) defined in (17).
However, the analogy is not right because inR there are artificial dual losses (̂rj)nj=1 that
may have negative values. This is the main difficulty in using the ROM for the inverse
problem and will be addressed in section 4. We explain next how to compute the ROM.

3.2 Data driven ROM

There are more unknowns in the system (47)–(49) than we can determine from the given
DROM
n (s), so let us define the coefficients that we can determine:

γj = hj ζ̂j , γ̂j =
ĥj
ζj
, rj and r̂j , for j = 1, . . . , n. (52)
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We show in Appendix D that

DROM

n (s) = e1
T (A+ sI2n)

−1 e1
γ̂1

=
n∑
j=1

[
yj

s− λj
+

yj

s− λj

]
, (53)

where I2n is the 2n×2n identity matrix and A is the complex symmetric, tridiagonal matrix

A = diag(α1, α2, . . . , α2n) + diag
[
(β2, . . . , β2n), 1] + diag

[
(β2, . . . , β2n),−1],

(54)

with off-diagonal entries

β2j =
1√
−γj γ̂j

, j = 1, . . . , n, β2j+1 = − 1√
−γj γ̂j+1

, j = 1, . . . , n− 1, (55)

and diagonal entries

α2j−1 = rj , α2j = r̂j , j = 1, . . . , n. (56)

We explain next how to calculate A from the given (λj , yj)
n
j=1.

3.2.1 The Lanczos algorithm

Let us organize the eigenvalues of A, which are the negative of the poles in (53), in the
matrix

Λ = −
(
diag(λ1, . . . , λn) 0

0 diag(λ1, . . . , λn)

)
. (57)

The J-symmetric Lanczos algorithm [23,27] uses the diagonalization A = Y TΛY , where
Y = (Y1, . . . ,Y2n) ∈ C2n×2n is complex orthogonal i.e., Y −1 = Y T . Substituting this
in (53) we get

Y T
1 (Λ+ sI2n)

−1Y1 = γ̂1

n∑
j=1

[
yj

s− λj
+

yj

s− λj

]
, (58)

and therefore, the first column of Y is

Y1 = γ̂
1
2
1

(√
y1, . . . ,

√
yn,
√
y1, . . . ,

√
yn
)T
. (59)

Moreover, since Y T
1 Y1 = 1, we can determine γ̂1 in terms of the residues,

γ̂−1
1 =

n∑
j=1

(yj + yj) = 2
n∑
j=1

Re(yj). (60)

The calculation of A is carried out by the Lanczos recursion, which equates both sides
of YA = ΛY column by column, starting from the first:

Algorithm 3 (From the poles and residues to A)
– Input: (yj , λj)nj=1

– Initialization:
Compute Y1 as in (59), with γ̂1 from (60).
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v1 = ΛY1

α1 = vT1 Y1

v1 = v1 − α1Y1

– Processing steps:
For j = 2, . . . , 2n do

βj =
√
vTj−1vj−1

Breakdown if βj = 0. Else compute
Yj = vj−1/βj
vj = ΛYj
αj = vTj Yj
vj = vj − αjYj − βjYj−1

End for

– Output: coefficients (αj)2nj=1, (βj)2nj=2

Once we computed A, we can determine the parameters (52) by solving equations (55)–
(56) as follows:

Algorithm 4 (From A to the ROM)
– Input: (αj)2nj=1, (βj)2nj=2 and γ̂1 calculated from (60).

– Processing steps:
For j = 1 : n do
γj = − 1

γ̂jβ
2
2j

rj = α2j−1

r̂j = α2j

If j < n compute γ̂j+1 = − 1
γjβ

2
2j+1

End for

– Output: ROM coefficients (γj , γ̂j , rj , r̂j)nj=1

3.3 Properties of the ROM

As long as the Lanczos algorithm does not break down, which is almost always the case
according to [19], we obtain a unique set of ROM coefficients (γj , γ̂j , rj , r̂j)nj=1. Thus, the
data driven ROM exists, but in order for it to have an interpretation as the finite difference
scheme (47)–(49), we would like (γj , γ̂j)nj=1 to be positive and (rj , r̂j)

n
j=1 to be real valued.

A simple induction argument gives that the vectors vj and Yj generated by Algorithm
3 are of the form

vj = (v1,j , . . . , vn,j , v1,j , . . . , vn,j)
T , Yj = (Y1,j , . . . , Yn,j , Y1,j , . . . , Yn,j)

T .

This implies that (αj)nj=1 and (β2
j )
n
j=1 are real valued

αj = Y T
j ΛYj = −

n∑
l=1

(
λlY

2
l,j + λlY 2

l,j

)
= −2Re

(∑
l=1

λlY
2
l,j

)
, j = 1, . . . , n,

β2
j = vTj−1vj−1 =

n∑
l=1

(
v2l,j−1 + v2l,j−1

)
= 2Re

( n∑
l=1

v2l,j−1

)
, j = 2, . . . , n.
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However, to get positive (γj , γ̂j)
n
j=1 from Algorithm 4 we need (β2

j )
n
j=2 to be not only

real, but negative. We show next that this holds for the case of a constant loss. Since the
Lanczos recursion defines a continuous mapping from (yj , λj)

n
j=1 to (β2

j )
n
j=1, and since

the mapping r(T ) 7→ (yj , λj)
n
j=1 is continuous as well, the conclusion extends to a loss

function with small enough variations about a constant value.

3.3.1 The case of a constant loss

Recall the explicit expression (44) of the transfer function in the case r(T ) = r0, with poles
and residues defined in (45). The next proposition describes the data driven ROM obtained
by Algorithms 3–4:

Proposition 5 The coefficients in the data driven ROM computed from the set of first n
poles and residues (45) satisfy γj , γ̂j > 0, rj = r0 and r̂j = 0, for j = 1, . . . , n.

Proof: The Lanczos procedure for computing the ROM gives a unique answer, so it
suffices to show that the ROM with the coefficients stated in the proposition has the given
transfer function.

Consider the discrete scheme obtained from (47) multiplied by ζj and (48) multiplied
by ζ̂−1

j , where rj = r0 and r̂j = 0,

ûj(s)− ûj−1(s)

γ̂j
+ (s+ r0)uj(s) = 0, j = 1, . . . , n, (61)

uj+1(s)− uj(s)
γj

+ sûj(s) = 0, j = 1, . . . , n, (62)

with boundary conditions (49). Eliminating the dual wave, we obtain the n× n system

1

γ̂j

[uj+1(s)− uj(s)
γj

− uj(s)− uj−1(s)

γj−1

]
− s(s+ r0)uj = 0, j = 2, . . . , n,

(63)

1

γ̂1

[u2(s)− u1(s)
γ1

]
− s(s+ r0)u1 = − s

γ̂1
, (64)

un+1(s) = 0, (65)

written in matrix form

[
G− s(s+ r0)In

]u1(s)...
un(s)

 = −se1
γ̂1

. (66)

Straightforward calculation shows that if Γ̂ = diag(γ̂1, . . . , γ̂n), then G̃ = Γ̂
1
2GΓ̂

− 1
2 is

the tridiagonal, symmetric matrix with entries

G̃jl =(1− δj,1)
[
− 1

γ̂j

( 1

γj
+

1

γj−1

)
δj,l +

δj+1,l

γj
√
γ̂j γ̂j+1

+
δj−1,l

γj−1

√
γ̂j γ̂j−1

]
+ δj,1

[
− δl,1
γ̂1γ1

+
δl,2

γ1
√
γ̂1γ̂2

]
, j, l = 1, . . . , n, (67)
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so we multiply (66) on the left by −Γ̂
1
2 to get

[
s(s+ r0)In − G̃

]
Γ̂

1
2

u1(s)...
un(s)

 =
se1√
γ̂1
. (68)

We seek the entries of G̃ that give

u1(s) =
s

γ̂1
eT1

[
s(s+ r0)In − G̃

]−1
e1 =

n∑
j=1

[ yj
s− λj

+
yj

s− λj

]
(69)

with (λj)
n
j=1 and (yj)

n
j=1 defined in (45). Recall from (44) that

yj
s− λj

+
yj

s− λj
=

sξj
s(s+ r0) + θ2j

, (70)

where −θ2j < 0 are the eigenvalues of the operator Lq defined in (43) and ξj > 0 are
defined in terms of the eigenfunctions of this operator evaluated at T = 0. Therefore, the
symmetric tridiagonal matrix G̃ satisfies

eT1

[
s(s+ r0)In − G̃

]−1
e1 = γ̂1

n∑
j=0

ξj
s(s+ r0) + θ2j

. (71)

It is negative definite, with eigenvalues (−θ2j )nj=1 and orthonormal eigenvectors gathered
as columns in the orthogonal matrix Φ. The first row of Φ equals

√
γ̂1(
√
ξ1, . . . ,

√
ξn) and

since ΦΦT = In, we get that γ̂−1
1 =

∑n
j=1 ξj . We can now use the Lanczos recursion [21,

10] for Jacobi type matrices to compute G̃ and then obtain the positive coefficients γj and
γ̂j from equations (67) as shown in [3, Section 2.2]. �

Remark 6 Proposition 5 and the results in sections 3.3.2 and 4 imply that when r(T ) = r0,
the coefficients (β2

j )
2n
j=2 defined in (55) lie on the negative real axis, at distance of order

(πn)/(2TL) from the origin. In the case of variable r(T ) we know that (β2
j )

2n
j=2 are real

valued and due to the continuity of the mappings r(T ) 7→ (λj , yj)
n
j=1 7→ (β2

j )
2n
j=2, they

will remain negative for small enough variations |r(T )− r0|.

Remark 7 Proposition 5 shows that the discrete quadratic inverse spectral problem with
the truncated measure spectral data has an exact solution given by the tridiagonal matrix
G̃ and the exact loss r0. We also show in section 4.1 that the entries in G̃ determine an
approximation of the impedance that converges pointwise to the true one in the limit n →
∞. If the loss function is not constant, then the data driven ROM exists and is unique, but
it has nonzero dual losses (̂rj)nj=1. Consequently, the algebraic first order system (47)–(49)
does not have an equivalent discrete quadratic inverse spectral problem formulation. That
is to say, there is no tridiagonal matrix G̃ and diagonal matrix of primary losses such that

s

γ̂1
eT1

[
s2In + s diag(r1, . . . , rn)− G̃

]−1
e1 =

n∑
j=1

[ yj
s− λj

+
yj

s− λj

]
.

One could try to find such matrices via nonlinear optimization, but then the data fit will not
be accurate, and the optimization will likely be difficult to carry out because the objective
function is not convex. In section 4.3 we propose a better optimization approach which uses
the data driven ROM calculated with Algorithms 3–4 to estimate efficiently the impedance
and loss functions.
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Fig. 2 We display two spectrally matched grids calculated in the interval T ∈ (0, TL) with normalized
TL = 1. The top plot is for n = 8 and we indicate a few of the grid steps. The bottom plot is for n = 16.

3.3.2 The spectrally matched grid

For the case of a homogeneous lossless medium with constant impedance ζ(T ) = 1, the
data driven ROM was calculated explicitly in [3, Appendix A]. It is described by the positive
coefficients γj = hj , γ̂j = ĥj and the zero loss coefficients rj = r̂j = 0, for j = 1, . . . , n.
Moreover, according to [3, Lemma 3.2],

ĥ1 < h1 < ĥ2 < h2 < . . . < ĥn < hn, (72)

and for sufficiently large n,

hj
TL

=
2 +O

[
(n− j)−1 + j−2

]
π
√
n2 − j2

, j = 1, . . . , n− 1,
hn
TL

=

√
2 +O(n−1)√

πn
, (73)

ĥj
TL

=
2 +O

[
(n+ 1− j)−1 + j−2

]
π
√
n2 − (j − 1/2)2

, j = 1, . . . , n. (74)

Recalling equations (47)–(49), we see that (hj , ĥj)nj=1 can be interpreted as grid steps
for a finite difference scheme on the staggered grid with primary points

Tj =

j−1∑
p=1

hp, j = 2, . . . , n+ 1, T1 = 0, (75)

that are interlaced with the dual points

T̂j =

j∑
p=1

ĥj , j = 1, . . . , n, T̂0 = 0. (76)

See Figure 2 for an illustration. Since the finite difference scheme matches exactly the trun-
cated spectral measure transfer function, we call the grid spectrally matched6. We will use
this grid in the scheme (47)–(49) and explain next why it is the right choice.

6 In [3] the grid was called “optimal”, but spectrally matched is a more appropriate name.
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4 ROM based inversion

We now show how to use the data driven ROM for solving the inverse problem. We begin
with the easy case of a constant loss r(T ) = r0 in section 4.1. Then we consider in section
4.2 a slightly varying r(T ) and propose a simple inversion algorithm that can be analyzed
using first order spectral perturbation analysis. The main purpose of studying these two cases
is to show explicitly that the ROM coefficients contain information about the unknown r(T )
and ζ(T ) that is localized in the spectrally matched grid intervals. The conclusion extends
to larger variations of r(T ), as shown with numerical simulations in section 4.3.

4.1 Inversion for a constant loss function

We described in Proposition 5 the data driven ROM for the medium with constant loss
r(T ) = r0. We saw that its coefficients satisfy γj , γ̂j > 0, rj = r0 and r̂j = 0, for
j = 1, . . . , n. Thus, we can determine the constant loss exactly in this case. The next
proposition shows that the impedance function is also easily estimated from the ROM:

Proposition 8 Consider the data driven ROM computed with Algorithms 3–4 from the first
n poles and residues given in (45). Define the coefficients (ζj , ζ̂j)

n
j=1 as in equation (52)

using the spectrally matched grid steps (hj , ĥj)
n
j=1. Let ζ(n)(T ) be some interpolation

(e.g., piecewise constant or linear) of these coefficients on the spectrally matched grid (75)–
(76) i.e.,

ζ(n)(Tj) = ζj , ζ(n)(T̂j) = ζ̂j , j = 1, . . . , n. (77)

Then, ζ(n)(T )→ ζ(T ) pointwise and in L1([0, TL]) as n→∞.

Proof: This result follows from the proof of Proposition 5, where we explained that the
coefficients (γj , γ̂j)nj=1 are exactly the same as those calculated in [3, Section 2.2]. Then,
we can cite directly [3, Theorem 6.2] which is in terms of the function ζ−1(T ). That theorem
says that the piecewise constant interpolation of the values ζ−1

j = γ̂j/ĥj and ζ̂−1
j = hj/γj

for j = 1, . . . , n, converges pointwise and in L1([0, TL]) to ζ−1(T ), as n→∞. �

4.2 Inversion for small variations of the loss function

The ROM is constructed from DROM
n (s) that has the first n poles and residues of D(s).

Recalling the expression (46) of D(s) and (42) of DROM
n (s), we have pointwise, for s ∈

C \ {λj , λj , j ≥ 1}, that

lim
n→∞

DROM

n (s) = lim
n→∞

n∑
j=1

[
yj

s− λj
+

yj

s− λj

]
= D(s). (78)

Thus, if s is a zero of D(s), we must have DROM
n (s) ≈ 0 for n� 1. In this section we use a

first order perturbation analysis of the poles and zeroes of D(s) to explain how to devise a
ROM based inversion algorithm on the spectrally matched grid defined in section 3.3.2.

To state the result, we need the spectral decomposition of the linear operator

Lζ =

(
0 ζ(T )∂T

ζ−1(T )∂T

)
, (79)
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acting on vector valued functions ν(T ) satisfying either the boundary conditions(
0 0
0 1

)
ν(0) =

(
1 0
0 0

)
ν(TL) = 0, (80)

or (
1 0
0 0

)
ν(0) =

(
1 0
0 0

)
ν(TL) = 0. (81)

Lemma 9 The spectrum of the linear operator Lζ with boundary conditions (80) consists
of purely imaginary eigenvalues {±iθj , j ≥ 1}, where θj are the same as in section 2.2.1.
The eigenfunctions are

Φ±j (T ) =
1√
2

(
φj(T )

±iφ̂j(T )

)
, j ≥ 1, (82)

where φj(T ) and φ̂j(T ) are real valued functions satisfying the orthogonality relations∫ TL

0

ζ−1(T )φj(T )φl(T )dT =

∫ TL

0

ζ(T )φ̂j(T )φ̂l(T )dT = δjl, j, l ≥ 1. (83)

Similarly, the spectrum of the linear operator Lζ with boundary conditions (81) consists of
the purely imaginary eigenvalues {±iϑj , j ≥ 1} and its eigenvectors are

Ψ±j (T ) =
1√
2

(
ψj(T )

±iψ̂j(T )

)
, j ≥ 1, (84)

with components defined by the real valued functions ψj(T ) and ψ̂j(T ) satisfying∫ TL

0

ζ−1(T )ψj(T )ψl(T )dT =

∫ TL

0

ζ(T )ψ̂j(T )ψ̂l(T )dT = δjl, j, l ≥ 1. (85)

The proof of this lemma is a simple calculation given in Appendix E. Now let us denote
by ζ(n)(T ) the ROM based estimate of the impedance function, defined by an interpola-
tion of the values (ζj , ζ̂j)nj=1 assigned to the grid points (Tj , T̂j)nj=1 defined in (75)–(76).
Let also r(n)(T ) be an interpolation of the ROM parameters (rj)

n
j=1 assigned to the pri-

mary grid points (Tj)nj=1 and r̂(n)(T ) an interpolation of (̂rj)nj=1 assigned to the dual grid
points (T̂j)

n
j=1. We choose the simplest interpolation: piecewise linear for the impedance

and piecewise constant for the losses. However, one can use other interpolations that result
in smoother estimates, as assumed in section 2. The next proposition describes the rela-
tion between the estimates ζ(n)(T ), r(n)(T ) and r̂(n)(T ) and the true impedance and loss
functions.

Proposition 10 Suppose that the loss function satisfies

r(T ) = r0 + αρ(T ), sup
T∈(0,TL)

|ρ(T )|/r0 = O(1), 0 < α� 1. (86)

Then, we have the following pointwise ROM based estimate of the impedance

ζ(n)(T ) = ζ(T )[1 + o(1) +O(α2)]. (87)
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Moreover, the functions r(n)(T ) and r̂(n)(T ) are of the form

r(n)(T ) = r0 + αρ(n)(T )[1 + o(1) +O(α)], r̂(n)(T ) = αρ̂(n)(T )[1 + o(1) +O(α)],
(88)

where the O(α) terms satisfy∫ TL

0

ρ(T )
φ2
j (T )

ζj(T )
dT =

∫ TL

0

[
ρ(n)(T )

φ2
j (T )

ζj(T )
+ ρ̂(n)(T )ζ(T )φ̂2

j (T )
]
dT, (89)∫ TL

0

ρ(T )
ψ2
j (T )

ζj(T )
dT =

∫ TL

0

[
ρ(n)(T )

ψ2
j (T )

ζj(T )
+ ρ̂(n)(T )ζ(T )ψ̂2

j (T )
]
dT, (90)

for j ≥ 1. Here o(1) is in the limit n→∞ and we used the eigenfunctions in Lemma 9.

The proof of this proposition is given in Appendix F. The next inversion algorithm uses
it to estimate the impedance and loss function.

Algorithm 11 (Inversion on the spectrally matched grid)
– Input: The ROM coefficients (γj , γ̂j , rj , r̂j)

n
j=1 and the spectrally matched grid steps

(hj , ĥj)
n
j=1.

– Estimate of the impedance function:
– Calculate ζj = ĥj/γ̂j and ζ̂j = γj/hj , for j = 1, . . . , n.
– Define estimate ζ(n)(T ) as the piecewise linear interpolation of the values

ζ(n)(Tj) = ζj , ζ(n)(T̂j) = ζ̂j , j = 1, . . . , n.

– Estimate of the loss function:
– Calculate the eigenfunctions Φ±j (T ) and Ψ±j (T ) described in Lemma 9, for the

estimated impedance ζ(n)(T ).
– Calculate

r(n)(T ) =
n∑
j=1

rj1[Tj ,Tj+1)(T ) + rn1[Tn+1,TL](T ),

r̂(n)(T ) =
n∑
j=1

r̂j1[T̂j−1,T̂j)
(T ) + r̂n1[T̂n,TL](T ),

where 1[a,b)(T ) is the indicator function of the interval [a, b), equal to 1 for T ∈
[a, b) and 0 otherwise.

– The estimate of the loss function is

r(n)(T ) =
n∑
j=1

[
rj1[Tj ,T̂j)(T ) + r̂j1[T̂j ,Tj+1)

(T )
]
+ r̂n1[Tn+1,TL](T ),

where (rj , r̂j)
n
j=1 are obtained by solving the 2n× 2n linear system

n∑
l=1

[
rl

∫ T̂l

Tl

φ2
j (T )

ζj(T )
dT + r̂l

∫ Tl+1

T̂l

φ2
j (T )

ζj(T )
dT
]
= bφj ,

n∑
l=1

[
rl

∫ T̂l

Tl

ψ2
j (T )

ζj(T )
dT + r̂l

∫ Tl+1

T̂l

ψ2
j (T )

ζj(T )
dT
]
= bψj , j = 1, . . . , n,



20 Liliana Borcea et al.

with right hand side

bφj =

∫ TL

0

[
r(n)(T )

φ2
j (T )

ζj(T )
+ r̂(n)(T )ζ(T )φ̂2

j (T )
]
dT,

bψj =

∫ TL

0

[
r(n)(T )

ψ2
j (T )

ζj(T )
+ r̂(n)(T )ζ(T )ψ̂2

j (T )
]
dT, j = 1, . . . , n.

– Output: The estimates ζ(n)(T ) and r(n)(T ).

4.2.1 A simple estimate of the loss

We explain in Appendix E that the operator Lζ defined in (79) is related via a similarity
transformation to the first order Schrödinger operator L + Q(T ) defined in (16) and (28).
In particular,

(
ζ−

1
2 (T ) 0

0 ζ
1
2 (T )

)
Φ±j (T ) =

1√
2


φj(T )√
ζ(T )

±i
√
ζ(T )φ̂j(T )

 , (91)

and similar for Ψ±j (T ) are the eigenfunctions L + Q(T ). In the case of a constant Q(T )
i.e., d

dT ln ζ(T ) = constant, these eigenfunctions have the explicit expression

1√
2


φj(T )√
ζ(T )

±i
√
ζ(T )φ̂j(T )

 =
1√
TL

cos
[ (j−1/2)πT

TL

]
sin
[ (j−1/2)πT

TL

]
 (92)

and

1√
2


ψj(T )√
ζ(T )

±i
√
ζ(T )ψ̂j(T )

 =
1√
TL

sin
[
jπT
TL

]
cos
[
jπT
TL

]
 . (93)

Substituting these expressions in Proposition 10 and using trigonometric identities we get
that in this case∫ TL

0

[
r(T )− r(n)(T )− r̂(n)(T )

]
dT +

∫ TL

0

[
r(T )− r(n)(T ) + r̂(n)(T )

]
× cos

[ (2j − 1)πT

TL

]
dT ≈ 0,∫ TL

0

[
r(T )− r(n)(T )− r̂(n)(T )

]
dT −

∫ TL

0

[
r(T )− r(n)(T ) + r̂(n)(T )

]
× cos

[2jπT
TL

]
dT ≈ 0, j ≥ 1.

We conclude that

r0 =
1

TL

∫ TL

0

r(T )dT ≈ 1

TL

∫ TL

0

[
r(n)(T ) + r̂(n)(T )

]
dT, (94)
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and using that
(
cos
(
jπT/TL)

)
j≥1

is an orthogonal basis in the subspace of mean zero

functions in L2([0, τL]), we have

r(T ) ≈ r(n)(T ) = r(n)(T )− r̂(n)(T ). (95)

This is a simple and explicit inversion formula that does not involve solving a linear system
as in Algorithm 11.

For a more general impedance function Algorithm 11 gives a better result, as illustrated
with numerical simulations in the next section. However, the estimate (95) is not too far
off, because the expressions (92)–(93) of the eigenfunctions of the Schrödinger operator
L+Q(T ) hold asymptotically, for j � 1.

4.3 Optimization approach to inversion and numerical results

In this section we present numerical results and an inversion algorithm based on optimiza-
tion. The setup for the numerical simulations is described in Appendix G. We begin with
illustrations of the inversion on the spectrally matched grid, and then give the optimization
method for the more difficult cases that are not addressed in sections 4.1 and 4.2. We end in
section 4.4 with inversion results for noisy data.

4.3.1 Inversion on the spectrally matched grid

Propositions 5 and 8 state that in the case of a constant loss r(T ) = r0, the ROM coefficients
give exactly this loss i.e., rj = r0 and r̂j = 0 for j = 1, . . . , n, and the impedance
estimate ζ(n)(T ) defined as in Algorithm 11 converges pointwise to ζ(T ) as n→∞. This
is illustrated in Fig. 3.

In Fig. 4 we show the inversion results for variable loss functions. In the top plots ζ(T )
and r(T ) are smooth, as assumed in the analysis. In the bottom plots they are discontinuous.
The impedance function is recovered as well as in the previous example (top left plot),
but as stated in Remark 7, the ROM coefficients (̂rj)

n
j=1 are no longer zero. We display

(with green circles) the simple estimate (95) of the loss function and note that it is not
too far from r(T ). However, the estimate calculated by Algorithm 11 is much better. The
inversion for the rougher impedance and loss functions (bottom plots) are not as good as
in the smooth medium, due to Gibbs-like oscillations near the jumps. This is typical of
any inversion algorithm and can be mitigated by introducing some regularization in the
inversion.

4.3.2 Optimization approach and numerical results

If the loss function has larger variations, the estimates given by Algorithm 11 are not so
accurate. However, the ROM coefficients still contain information about ζ(T ) and r(T ) that
is localized in space, as can be seen in Fig. 5. The left two plots in this figure display the
derivative of the parameters (ζj , ζ̂j)nj=1 with respect to the impedance function ζ(T ). Note
how for each index j = 1, . . . , n = 90 they are peaked in magnitude around a specific
travel time T , which corresponds approximately to the grid points Tj and T̂j . The right two
plots in Fig. 5 show a similar behavior of the sensitivity of the parameters (rj , r̂j)nj=1 with
respect to variations of the loss function r(T ).
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Fig. 3 ROM based inversion on the spectrally matched grid for an impedance function ζ(T ) shown in the
left plots with the black line. These plots show the values (ζj)

n
j=1 with the blue circles and (ζ̂j)

n
j=1 with

the red crosses. The right plots show that the constant loss r0 = 1 estimate is exact. The values (rj)nj=1 are
shown with the blue circles and (̂rj)

n
j=1 with the red crosses. The top plots are for n = 10 and the bottom

plots for n = 40.

This localized information contained in the ROM parameters motivates a new optimiza-
tion based approach to inversion. Instead of seeking an approximate inverse of the nonlinear
mapping {ζ(T ), r(T )} 7→ D(s) via least squares data fitting, as is usually done, we propose
to invert as follows: First, we map the data to the ROM coefficients:

D(s) 7→ {ζj , ζ̂j , rj , r̂j , j = 1, . . . , n},

using the non-iterative Algorithms 3–4 and formulas (52). Then, we estimate ζ(T ) and r(T )
by solving the optimization

min
ζS,rS

n∑
j=1

[
|rj − rSj |2 + |̂rj − r̂Sj |2 + |ζj − ζSj |2 + |ζ̂j − ζ̂Sj |2

]
. (96)

Here ζS(T ), rS(T ) are the search impedance and loss functions in a finite dimensional
search space, and {ζSj , ζ̂Sj , rSj , r̂Sj , j = 1, . . . , n} are the ROM coefficients calculated
from the transfer function computed in the medium with impedance ζS(T ) and loss rS(T ).
In the simulations with results displayed in Fig. 6 we used the Fourier search space

ζS(T ), rS(T ) ∈ span
{
cos
[
πj
(2T
TL
− 1
)]
, sin

[
πj
(2T
TL
− 1
)]
, j = 0, . . . ,

⌊n
2

⌋}
,

but other finite dimensional spaces can be used. The minimization (96) is carried out with
the Gauss-Newton algorithm, using the Jacobian calculated as explained in appendix G.

As we increase the order of the Fourier series, the linear system solved at each Gauss-
Newton step becomes ill-conditioned. In Fig. 6 we did not use regularization using a Fourier
series with n = 90 terms, and obtained convergence in 4 iterations. This is generic for all
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Fig. 4 ROM based inversion on the spectrally matched grid for n = 90. The impedance function ζ(T ) is
shown with the black line in the left plot and the loss function r(T ) is shown in the middle and right plots
with the black line. The left plots show the values (ζj)

n
j=1 with the blue circles and (ζ̂j)

n
j=1 with the red

crosses. The middle plots show the values (rj)
n
j=1 with the blue circles and (̂rj)

n
j=1 with the red crosses.

The simple estimate (95) is shown with the green circles. The right plots show with the red line the loss
estimated with Algorithm 11.

Fig. 5 Sensitivity functions calculated about the true impedance and loss as in Fig. 6.

the simulations that we ran. However, if we over-parametrized, i.e., increased n further, then
regularization would be needed to stabilize the inversion.

Remark 12 As showed in appendix C the dynamical system (14) with transfer function (18)
is passive and in pH form. The ROM dynamical system with transfer function DROM(s) is not
in pH form, but it is stable and in all our simulations it is passive. The stability is because
the poles of DROM(s) are the same as the first n poles of D(s), and thus lie in the left half
complex plane. If DROM(s) also interpolated the zeroes of D(s), then passivity would be
guaranteed by [28, Theorem 2.1]. We only have an approximate interpolation of the zeroes,
so we can only offer numerical evidence in Figure 7 that passivity holds.
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Fig. 6 Top plots show the results obtained with Algorithm 11. The impedance is recovered well (left plot) but
the loss is not. The simple estimate (95) is shown with the green circles in the middle plot and the estimate
calculated by Algorithm 11 is shown with the red line in the right plot. The optimization results are shown in
the bottom plots. We have an excellent estimate of both impedance and loss in 4 iterations.

Fig. 7 Real part of the transfer functionD(s) (full yellow line) and the reduced order model transfer function
DROM(s) (dashed black line) for the configuration shown Figure 6. The results for the other configurations
look very similar. That the ROM is passive follows from the fact that Re

(
DROM(s)

)
> 0 for s on the

imaginary axis [1, Corollary 1].

4.4 Inversion for noisy data

We repeat here the inversion experiment for the medium with smooth impedance and loss
function, shown in the top plots of Fig. 4, using the transfer function contaminated with
additive noise denoted byN (s),

Dnoisy(s) = D(s) +N (s). (97)
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Fig. 8 Illustration of the poles and residues obtained with vectorfit, for the noiseless and noisy data.

We refer to appendix Appendix G for the details on the sampling of D(s) at s lying in a
closed interval on the imaginary axis, centered at the origin. The noise N (s) is modeled as
discrete white Gaussian noise at the sample points in this interval, with root mean square
equal to 5% of the root mean square ofD(s) in the spectral interval of interest. The truncated
spectral measure transfer function DROM

n (s) of the ROM is estimated from (97) using the
rational fitting algorithm “vectorfit” in [16,15]. The procedure is described in Appendix G,
where D(s) should be replaced by Dnoisy(s).

We illustrate in Fig. 8 the poles and residues estimated with the vectorfit algorithm in the
spectral interval used for inversion. The inversion results are in Fig. 9. Note that to produce
the right plot, we added regularization penalizing the square of the variation of the loss r(T )
to Algorithm 11.

Fig. 9 The analogues of the top plots in Fig. 4 for noisy data. The results with no noise are shown for
comparison.

5 Summary

We introduced a novel approach to inverse scattering in layered lossy media, which is rooted
in the reduced order model (ROM) methodology for port-Hamiltonian (pH) dynamical sys-
tems. We showed how to transform the system of Maxwell’s equations for plane waves to
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a pH dynamical system with transfer function determined by typical remote radar antenna
measurements. The dynamical system has two important attributes: it is stable, meaning that
the transfer function is analytic in the right half complex plane, and it is passive, meaning
that it does not generate energy internally.

The ROM is obtained via nonlinear data processing that can be carried out with the
computationally efficient J-symmetric Lanczos algebraic algorithm. It is described by a
tridiagonal matrix that looks similar to a three point stencil matrix in a finite difference
approximation of the dynamical system. It turns out that the entries in this matrix encode
local information about the coefficients that define the ROM (the dielectric permittivity ε
and electrical conductivity σ of the layered medium), where local means in the cells of a
special staggered grid. The trouble is that this matrix has non-physical “magnetic losses”
that are not even guaranteed to be positive. Therefore, the ROM dynamical system does not
preserve the pH structure, even though it is passive. The main difficulty addressed in the
paper is how to embed the ROM in the continuous pH dynamical system, for the purpose
of solving the inverse scattering problem: Find ε and σ from measurements at the antenna,
which can be mapped to the transfer function of the pH dynamical system.

The inversion methodology in this paper can be extended to multi-dimensional media. If
the measurement setup is as in synthetic aperture radar, where a single antenna emits waves
and measures the returns as it moves along some path, one can build a ROM as in this paper
for each measurement, and then solve an optimization problem that sums objective functions
like (96) over all the ROMs. Such an approach has been used successfully for a parabolic
equation in [4]. If the measurements are done by an array of antennas, the transfer function
D(s) will be matrix valued. Then, the ROM should be obtained via rational approximation
of such a transfer function and it should be brought to block-tridiagonal form via a block
Lanczos algorithm. This idea was used in [6] for inverse scattering in lossless media, where
the block-tridiagonal ROM is used to devise a rapidly converging optimization method.
The main difficulty of this approach is the absence of scalable algorithms for constructing
passive, block structured ROMs. Promising recent advances in [2,28] have yet to be tried in
large scale radar applications.
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A From the Weyl function to the transfer function

The Weyl functionW(s) is defined7 in [9] as

W(s) = ∂Tφ(0, s), (98)

where φ(T, s) is the solution of

Lq,r(s)φ(T, s) = 0, for T ∈ (0, TL), φ(0, s) = 1, φ(TL, s) = 0. (99)

Let us introduce the following, pairwise linearly independent solutions associated with the operator
pencil (33): ψ(T, s), ξ(T, s) and η(T, s). The first one satisfies

Lq,r(s)ψ(T, s) = 0, for T ∈ (0, TL), ψ(TL, s) = 0, ∂Tψ(TL, s) = −1, (100)

7 The Weyl function is denoted by M in [9] and the Laplace frequency by ρ.
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the second one satisfies

Lq,r(s)ξ(T, s) = 0, for T ∈ (0, TL), ξ(0, s) = 0, ∂T ξ(0, s) = 1, (101)

and the third one satisfies

Lq,r(s)η(T, s) = 0, for T ∈ (0, TL), η(0, s) = 1, ∂T η(0, s) = 0. (102)

It is easy to check that the Wronskian

Wψ,ξ(T, s) = ψ(T, s)∂T ξ(T, s)− ξ(T, s)∂Tψ(T, s) (103)

is constant in T , so we can define

∆D(s) = Wψ,ξ(T, s) = Wψ,ξ(0, s) = ψ(0, s), (104)

where we used the boundary condition in (101). Similarly, the Wronskian

Wη,ψ(T, s) = ψ(T, s)∂T η(T, s)− η(T, s)∂Tψ(T, s) (105)

is constant in T , so we can define

∆N (s) = Wη,ψ(T, s) = Wη,ψ(0, s) = −∂Tψ(0, s), (106)

where we used the boundary condition in (102).
Now it follows that the solution of (99) can be written as

φ(T, s) =
ψ(T, s)

∆D(s)
, (107)

and the solution w(T, s) of the Schrödinger problem (29)–(30) is

w(T, s) = sζ0
ψ(T, s)

∆N (s)
, T ∈ (0, TL). (108)

The latter is because Lq,r(s)w(T, s) = 0 for T ∈ (0, TL) by construction, and at the boundary we have

∂Tw(0, s) = −sζ0, w(TL, s) = 0. (109)

Now using (30) we obtain the jump condition

∂Tw(0, s)− ∂Tw(0−, s) = −sζ0, (110)

which corresponds to the Dirac delta forcing −sζ0δ(T ) in (29).
Solving for ψ(T, s) in (107) we get

w(T, s) = sζ0
∆D(s)

∆N (s)
φ(T, s), (111)

and since φ(0, s) = 1, the transfer function has the expression

D(s) = w(0, s) = sζ0
∆D(s)

∆N (s)
. (112)

Moreover, taking the T derivative in (111) at T = 0 and using the definition (98) of the Weyl function and
the boundary condition (109), we obtain that

W(s) = −
∆N (s)

∆D(s)
. (113)

This proves equation (32).
The poles of the transfer function are the zeroes of the Weyl function and therefore of the Wronskian

(106). They correspond to the eigenvalues of the quadratic operator pencil Lq,r(s) with domain SN defined
in (34). The zeroes of the transfer function are s = 0 and the set of poles of the Weyl function, which are the
eigenvalues of the quadratic operator pencil Lq,r(s) with domain SD defined in (35).
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B The transfer function for small variations of the loss function

To use the perturbation theory in [20], consider the first order system formulation (26)–(27). We made the
assumption (24) to simplify the boundary conditions satisfied by w(T, s). Similarly, we shall assume in this
appendix that

d

dT
ζ(TL) = 0, (114)

which implies that ŵ(T, s) satisfies a homogeneous Neumann boundary condition at T = TL. The loss
function has small variations, so we model it as

r(T ) = r0 + αρ(T ), sup
T∈(0,TL)

|ρ(T )|/r0 = O(1), 0 < α� 1. (115)

Using (115) in (26) we obtain

[L+Q(T ) +Rα(T ) + sI]

(
w(T, s)
ŵ(T, s)

)
=

(
ζ0δ(T )

0

)
, T ∈ (0−, TL), (116)

where L is the differential operator (16) and Q(T ) is the skew-symmetric multiplication operator defined in
terms of ζ(T ) in (28). The loss function (115) is in the multiplication operator

Rα(T ) = R0 + α

(
ρ(T ) 0
0 0

)
, R0 =

(
r0 0
0 0

)
. (117)

Note that i
[
L + Q(T )

]
acting on the space of functions satisfying the boundary conditions (27) is a

self-adjoint (with respect to the Euclidian inner product) indefinite differential operator on a bounded interval
and thus has a countable set of real valued eigenvalues with no finite accumulation point [11, Chapter 7]. The
squares of these eigenvalues (−θ2j )j≥1 are the same as the eigenvalues in the Sturm-Liouville problems[

d2

dT 2
− q(T )

]
ϕj(T ) = −θ2jϕj(T ),

d

dT
ϕj(0−) = ϕj(TL) = 0, (118)

and [
d2

dT 2
− q̂(T )

]
ϕ̂j(T ) = −θ2j ϕ̂j(T ), ϕ̂j(0−) =

d

dT
ϕ̂j(TL) = 0, (119)

where

q(T ) =

[
d

dT
ln ζ−

1
2 (T )

]2
+

d2

dT 2
ln ζ−

1
2 (T ) = ζ

1
2 (T )

d2

dT 2
ζ−

1
2 (T ), (120)

q̂(T ) =

[
d

dT
ln ζ−

1
2 (T )

]2
−

d2

dT 2
ln ζ−

1
2 (T ). (121)

The Sturm-Liouville theory gives that the eigenvalues are simple. Assuming that the eigenfunctions ϕj(T )
and ϕ̂j in (118)–(119) are normalized as∫ TL

0
ϕj(T )ϕl(T )dT =

∫ TL

0
ϕ̂j(T )ϕ̂l(T )dT = δjl, (122)

then the eigenfunctions of the operator i
[
L+Q(T )

]
are

ϕ±j (T ) =
1
√
2

(
ϕj(T )
±iϕ̂j(T )

)
, (123)

and the eigenvalues are ±θj . Equivalently, the eigenvalues of L+Q(T ) are ±iθj .
Now, if we consider the operator L+Q(T ) + R0, for the constant loss r0, the eigenfunctions ϕ±j (T )

are still orthonormal and are determined by the components of (123) as follows

ϕ+
j (T ) =

1√
2 + r0/λj

 ϕj(T )

i
√

1 + r0/λj ϕ̂j(T )

 , ϕ−j (T ) = ϕ+
j (T ), j ≥ 1, (124)
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where s = λj is the root of
s(s+ r0) = −θ2j . (125)

Indeed, it is easy to check that with ϕ+
j (T ) given in (124),[

L+Q(T ) +R0

]
ϕ+
j (T ) + λjϕ

+
j (T ) = 0, (126)

is equivalent to [
L+Q(T )

](ϕj(T )
iϕ̂j(T )

)
+
√
λj(λj + r0)

(
ϕj(T )
iϕ̂j(T )

)
= 0, (127)

which leads to (125).
Finally, if we add the perturbation Rα(T )−R0, which is clearly a bounded operator with O(α) norm,

we can use the analytic perturbation theory in [20] to obtain that the eigenvalues and eigenprojections are
analytic for α in some vicinity of 0. Thus, we can use these eigenprojections to express the wave w(T, s) as
a series and obtain the expression (46) of the transfer function.

C Passivity and pH structure

A dynamical system is called passive if it does not generate energy internally [28,30]. As stated in [28,
Section 2], this property is realized if the transfer function satisfies

1. D(s) = D(s), for all s ∈ C.
2. D(s) is analytic for Re(s) > 0.
3. D(s) +D(s) ≥ 0 for Re(s) > 0.

It is obvious from the expression (18) of the transfer function that it satisfies the first condition. The second
condition says that the dynamical system is stable i.e., the poles of D(s) are in the left half complex plane.
We know from section 2 that these poles are {λj , λj , j ≥ 1}, where−λj are the eigenvalues of the operator
L+Q(T )+R(T ) acting on the space of functions satisfying the boundary conditions (27). If we let Vj(T )
be the eigenfunctions, then we have

[L+Q(T ) +R(T ) + λjI]Vj(T ) = 0. (128)

Taking the real part of the inner product with Vj(T ) and using that L+Q(T ) are skew-symmetric, we get

0 = Re
{∫ TL

0
Vj(T )T [L+Q(T ) +R(T ) + λjI]Vj(T )dT

}
= Re(λj)‖Vj‖2L2(0,TL)

+

∫ TL

0
Vj(T )TR(T )Vj(T )dT. (129)

That Re(λj) ≤ 0 follows from this equation and the fact that the diagonal multiplication operator R(T ) is
positive semidefinite.

It remains to verify the third condition, which has the following physical interpretation: Since−u(T, s)~ex2
is the electric field and û(T, s)~ex1 is the magnetic field, the Poynting vector at T = 0, which determines the
power flow, is

1

2
Re
{[
− u(0, s)~ex2

]
×
[
û(0, s)~ex1

]}
=

1

2
Re{u(0, s)û(0, s)}~ez =

1

4

[
D(s) +D(s)

]
~ez .

Thus, the third condition is equivalent to saying that the power flow is into the medium i.e., in the positive
range direction.

To check this condition, we use the first order system formulation (26) to write

D(s) = w(0, s) = ζ0

∫ T

0−

(
δ(T ), 0

)
[L+Q(T ) +R(T ) + sI]−1

(
δ(T )
0

)
dT

= ζ0

∫ T

0−

(
δ(T ), 0

)
[−L−Q(T ) +R(T ) + sI]−1

(
δ(T )
0

)
dT,
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where in the second line we took the adjoint of the inverse and recalled thatL andQ(T ) are skew-symmetric.
Now we can write

D(s) +D(s) = ζ0

∫ T

0−

(
δ(T ), 0

)
P(s)

(
δ(T )
0

)
dT, (130)

where the operator

P(s) = [−L−Q(T ) +R(T ) + sI]−1 + [L+Q(T ) +R(T ) + sI]−1

can be factorized as

P(s) = [−L−Q(T ) +R(T ) + sI]−1
{
[L+Q(T ) +R(T ) + sI]

+ [−L−Q(T ) +R(T ) + sI]
}
[L+Q(T ) +R(T ) + sI]−1

= 2 [−L−Q(T ) +R(T ) + sI]−1 [R(T ) + Re(s)I] [L+Q(T ) +R(T ) + sI]−1 .

Substituting in (130) and using that

[L+Q(T ) +R(T ) + sI]−1

(
δ(T )
0

)
= ζ−1

0

(
w(T, s)
ŵ(T, s)

)
,

we get that for Re(s) > 0,

D(s) +D(s) =
2

ζ0

∫ T

0−

(
w(T, s), ŵ(T, s)

)
[R(T ) + Re(s)I]

(
w(T, s)
ŵ(T, s)

)
dT ≥ 0, (131)

where the inequality is because R(T ) is positive semidefinite.
This proves that our dynamical system is passive. Checking that it has a pH structure is a straightforward

verification of [1, Definition 3].

D Derivation of the ROM transfer function

Multiplying equations (47) by ζj and (48) by −ζ̂j , we get the following linear system

[T+ sdiag(1,−1, 1,−1, . . . ,−1)]U(s) =
e1

γ̂1
, (132)

where T is the tridiagonal matrix

T =



r1
1
γ̂1

0 0 . . . 0 0
1
γ1
−r̂1 − 1

γ1
0 . . . 0 0

0 − 1
γ̂2

r2
1
γ̂2

. . . 0 0

...
0 0 0 0 . . . 1

γn
−r̂n


. (133)

We can symmetrize this matrix using the diagonal matrix Γ = diag(γ̂1, γ1, γ̂2, . . . , γn), so we rewrite
(132) as [

T̃+ sdiag(1,−1, 1,−1, . . . ,−1)
]
Γ

1
2U(s) = Γ

1
2
e1

γ̂1
=

e1√
γ̂1
, (134)

where

T̃ = Γ
1
2 TΓ−

1
2 =



r1
1√
γ1γ̂1

0 0 . . . 0 0

1√
γ1γ̂1

−r̂1 − 1√
γ1γ̂2

0 . . . 0 0

0 − 1√
γ1γ̂2

r2
1√
γ2γ̂2

. . . 0 0

...
0 0 0 0 . . . 1√

γnγ̂n
−r̂n


. (135)



A reduced order model approach to inverse scattering in lossy layered media 31

Finally, we can factor out the square root of the diagonal matrix in (132) to get[
A+ sI

]
diag(1, i, 1, i, . . . , i)Γ

1
2U(s) =

e1√
γ̂1
, (136)

where
A = diag(1,−i, 1,−i, . . . ,−i)T̃diag(1,−i, 1,−i, . . . ,−i) (137)

is the matrix given in (54)–(52).
The ROM transfer function is

DROM

n (s) = eT1 U(s) = eT1 Γ
− 1

2 diag(1,−i, 1,−i, . . . ,−i)
[
A+ sI

]−1 e1√
γ̂1

= eT1
[
A+ sI

]−1 e1

γ̂1
(138)

as stated in equation (53).

E Proof of Lemma 9

Let us introduce the weighted inner product

〈Φ,Ψ〉ζ−1,ζ =

∫ TL

0
Φ?(T )

(
ζ−1(T ) 0

0 ζ(T )

)
Ψ(T )dT, ∀ Φ,Ψ ∈

(
L2([0, TL])

)2
.

The linear operator iLζ defined in (79) with boundary conditions (80) is self-adjoint with respect to this inner
product and thus has a countable set of real eigenvalues with no finite accumulation point [11, Chapter 7].
This implies that Lζ has purely imaginary eigenvalues. In fact, Lζ is related via a similarity transformation
to the operator L+Q(T ) studied in Appendix B

L+Q(T ) =

(
ζ−

1
2 (T ) 0

0 ζ
1
2 (T )

)
Lζ

(
ζ

1
2 (T ) 0

0 ζ−
1
2 (T )

)
(139)

so the eigenvalues are the same {±iθj , j ≥ 1}. The eigenfunctions of L + Q(T ) are the vector valued
functions (123), which are orthonormal in the Euclidian inner product. These define the eigenfunctions of Lζ

Φj =
1
√
2

(
φj(T )

φ̂j(T )

)
=

(
ζ

1
2 0

0 ζ−
1
2 (T )

)
1
√
2

(
ϕj(T )
ϕ̂j(T )

)
, j ≥ 1, (140)

and the orthonormality relations (83) follow from (122).
The same discussion applies to the linear operator Lζ with boundary conditions (81). �

F Proof of Proposition 10

Recall from section 2.1 that the poles of the transfer function D(s) are the eigenvalues {λj , λj , j ≥ 1}
of the operator pencil Lq,r(s) defined in (33) acting on the space SN defined in (34), whereas the zeroes
of D(s) are the eigenvalues {µj , µj , j ≥ 1} of the operator (33) acting on the space SD defined in (35).
Moreover, as explained in section 2 (recall equations (26) and (29)), Lq,r(s) is connected to the first order
pencil

Pζ,r(s) = Lζ +Rα(T ) + sI, (141)

with Rα(T ) defined in (117) and Lζ defined in (79) as follows: First, we have the similarity transformation

L+Q(T ) +Rα(T ) + sI =

(√
ζ0
ζ(T )

0

0
√
ζ0ζ(T )

)
Pζ,r(s)

√ ζ(T )
ζ0

0

0 1√
ζ0ζ(T )

 . (142)
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Second, the first order system[
L+Q(T ) +Rα(T ) + sI

](
w(T, s)
ŵ(T, s)

)
= 0, (143)

can be written as the second order equation

Lq,r(s)w(T, s) = 0, (144)

with potential q(T ) defined in (23) and the other way around. This implies that Lq,r(s) with domain SN
has the same eigenvalues {λj , λj , j ≥ 1} as Pζ,r(s) with boundary conditions (80). Similarly, Lq,r(s)
with domain SD has the same eigenvalues {µj , µj , j ≥ 1} as Pζ,r(s) with boundary conditions (81).

We know that the ROM based estimated functions ζ(n)(T ), r(n)(T ) and r̂(n)(T ) define an operator
pencil

Pζ(n),r(n) ,̂r(n) (s) = Lζ(n) +

(
r(n)(T ) 0

0 r̂(n)(T )

)
+ sI (145)

with the following properties:

1. The pencils (145) and (141) with boundary conditions (80) have the same first n eigenvalues λj , for
j = 1, . . . , n. Moreover, the residues yj , which equal the jumps of the spectral measures, are also the
same, for j = 1, . . . , n.

2. In the case of boundary conditions (81), the eigenvalues of (145) are approximately equal to the zeroes
µj of the transfer function. We denote the error in their approximation by o(1) in the limit n→∞.

Now, using the assumption (86) on the loss function we can write

Pζ,r(s) = Pζ,r0 (s) + α

(
ρ(T ) 0
0 0

)
, (146)

which is an O(α) perturbation of Pζ,r0 (s). Since the poles and residues of (145) and (146) match to all
orders of α, we can use Proposition 8 to obtain from the O(1) matching that the O(1) primary loss must be
r0 and the dual loss is zero. Moreover, the impedance ζ(n)(T ) approximates ζ(T ) as n → ∞. Therefore,
we can write pointwise in (0, TL) that

ζ(n)(T ) = ζ(T )
[
1 + o(1) +O(α)

]
, (147)

r(n)(T ) = r0 + αρ(n)(T )
[
1 + o(1) +O(α)

]
, (148)

r̂(n)(T ) = αρ̂(n)(T )
[
1 + o(1) +O(α)

]
, (149)

with functions ρ(n)(T ) and ρ̂(n)(T ) independent of α.
Because the same constant r0 appears in both the pencils (145) and (146), we can subtract it from both

problems. This results in a transformation of the eigenvalues, but since these eigenvalues match, they will be
transformed the same way by the subtraction of r0 i.e., they will still match. The new pencils are

Lζ + α

(
ρ(T ) 0
0 0

)
and Lζ(n) + α

(
ρ(n)(T ) 0

0 ρ̂(n)(T )

)
, (150)

and their eigenvalues are

λj = iθj + αδλj +O(α2), µj = iϑj + αδµj +O(α2), j ≥ 1, (151)

where iθj and iϑj are the purely imaginary eigenvalues of the lossless problem (see Lemma 9). The O(α)
perturbations of these eigenvalues are

δλj =

〈
Φ+
j ,

(
ρ(T ) 0
0 0

)
Φ+
j

〉
ζ−1,ζ

=

〈
Φ+
j ,

(
ρ(n)(T ) 0

0 ρ̂(n)(T )

)
Φ+
j

〉
ζ−1,ζ

, (152)

and similarly

δµj =

〈
Ψ+
j ,

(
ρ(T ) 0
0 0

)
Ψ+
j

〉
ζ−1,ζ

=

〈
Ψ+
j ,

(
ρ(n)(T ) 0

0 ρ̂(n)(T )

)
Ψ+
j

〉
ζ−1,ζ

, (153)



A reduced order model approach to inverse scattering in lossy layered media 33

whereΦ+
j and Ψ+

j , for j ≥ 1 are the orthonormal eigenfunctions in Lemma 9. Substituting their expressions
in these equations gives (89)–(90).

Finally, note that if ζ(n)(T ) had anO(α) error term, then that would reflect in an imaginary perturbation
of the eigenvalues, because Lζ and Lζ(n) are skew-symmetric operators with respect to the weighted inner
product 〈·, ·〉ζ−1,ζ . However, the perturbations (152)–(152) are real valued, so the error in the impedance
must be of higher order in α. �

G Setup for the numerical simulations

In this appendix we describe how we generate the data used in the inversion results in Fig. 3–6. We also give
details on the calculation of the Jacobian used in the Gauss-Newton iteration for solving the optimization
problem (96).

To generate the data, we solve the system (5)-(6), with boundary conditions (7), (13), using finite dif-
ferences on a staggered grid with constant step size τ , except for the first dual step size, as illustrated in the
following sketch:

τ τ τ

τ
2

T = 0

T = TL

u2 u3 uN+1

û2 û3 ûN+1
τ τ

The primary wave u(T, s) is discretized on the primary grid, at the nodes illustrated in blue and the dual
wave û(T, s) is discretized on the dual grid, at the nodes illustrated in red. We suppress the s dependence of
the discretized waves in the illustration. The boundary conditions are imposed at the pale colored nodes. The
travel time domain is normalized at TL = 1 and we useN = 3000 grid steps, so that the discretization never
falls below 30 points per wavelength. The derivatives are calculated with the standard, two point forward
differentiation rule. The truncated measure data can be calculated using the spectral decomposition of the
finite differences matrix. However, to better emulate the measurement process, we evaluate D(s) = u1(s)
in the interval s ∈ [−iωmax, iωmax], discretized at 10000 equidistant points, and then use the vectorfit
algorithm [16,15] to extract the poles and residues of D(s). The value of ωmax depends on n and it is given
in the following table:

n 10 40 90
ωmax 93 124 281

Used in Figure 3 (top) Figure 3 (bottom) Figure 4 and Figure 6

The vectorfit algorithm alone does not give a good estimate of the truncated spectral measure transfer
function DROM

n (s) from D(s), because the poles and residues outside the spectral interval of interest have a
large contribution, especially when the mean loss r0 is large. Thus, we proceed as follows: First, we estimate
the mean loss r0 by fitting D(s) at points with |s| � 1 with the transfer function

Das(s; r0) =

∞∑
j=

⌊
TLωmax

π
+ 1

2

⌋
[

yasj

s− λasj
+

yasj

s− λasj

]
, (154)

with poles and residues given by the asymptotes of the spectrum:

λasj =
i(j − 1/2)π

TL
−
r0

2
, yasj =

ζ0

TL

[
1 +

ir0TL

2(j − 1/2)π

]
, j � 1. (155)

Once we estimate r0, we use the vectorfit algorithm to estimate the poles and residues ofD(s)−Das(s; r0),
for s ∈ [−iωmax, iωmax]. These then define the truncated spectral measure transfer functionDROM

n (s) of the
ROM, according to equation (42).
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The Jacobian used in the Gauss-Newton iteration for solving problem (96) is approximated numerically
using finite differences. We perturb the Fourier coefficients of ζS(T ) and rS(T ) by∆num = 0.01 and com-
pute the resulting ROM parameters rpertj , r̂pertj , ζpertj and ζ̂pertj . The entries of the Jacobian corresponding

to ζSj are (ζSj − ζ
pert
j )∆−1

num, and similarly for the coefficients corresponding to the loss function.

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
The results of this article are fully reproducible by following the implementation presented in the appendix.
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