
STOCHASTIC GRADIENT DESCENT WITH POLYAK’S

LEARNING RATE

ADAM M. OBERMAN AND MARIANA PRAZERES

Abstract. Stochastic gradient descent (SGD) for strongly convex functions

converges at the rate O(1/k). However, achieving good results in practice re-
quires tuning the parameters (for example the learning rate) of the algorithm.

In this paper we propose a generalization of the Polyak step size, used for sub-
gradient methods, to Stochastic gradient descent. We prove a non-asymptotic

convergence at the rate O(1/k) with a rate constant which can be better than

the corresponding rate constant for optimally scheduled SGD. We demonstrate
that the method is effective in practice, and on convex optimization problems

and on training deep neural networks, and compare to the theoretical rate.

1. Introduction

Stochastic Gradient Descent (SGD) [RM51, Kal60] is a widely used optimiza-
tion algorithm due to its ubiquitous use in machine learning [BCN16]. Convergence
rates are available in a wide setting [LJSB12, BCN16, QRG+19]. To achieve the
optimal convergence rate requires using an algorithm with parameters, for exam-
ple, a scheduled learning rate, which depends on knowledge of parameters of the
function which are often not available. In this article, we propose an adaptive time
step method for SGD, based on a generalization of the Polyak time step for the sub-
gradient method, for SGD. We prove a that this method achivies non-asymptotic
convergence rate which can have a better rate constant than the one for scheduled
SGD.

Consider a differentiable function f : X → R depending on parameters x ∈ X .
Then, the problem at hand,

min
x∈X

f(x),

may be solved approximately using the SGD step

xk+1 = xk − hk∇mbf(xk),(SGD)

where hk > 0 is the learning rate and ∇mbf is a stochastic gradient.
SGD is the method of choice for large scale machine learning problems [Bot91].

When SGD is combined with momentum [Pol64, Nes13] empirical performance is
improved, but there is still no theoretical justification for the improvement [KNJK18].
Other popular stochastic optimization algorithms that use different forms of averag-
ing or variance reduction are still being studied and developed [BCN16]. However,
in this work, we focus on SGD without momentum, (SGD).

Date: July 15, 2019.
Key words and phrases. Stochastic Gradient Descent, learning rate, Polyak’s learning rate,

optimization, strong convexity.
research supported by: AFOSR FA9550-18-1-0167 (A.O.).

1

ar
X

iv
:1

90
3.

08
68

8v
2

 [
m

at
h.

O
C

]
 1

1
Ju

l 2
01

9

2 ADAM M. OBERMAN AND MARIANA PRAZERES

The optimal convergence rate for SGD in the strongly convex case is O(1/k)
[RSS11, AWBR09, RR11]. A learning rate schedule that achieves such rate is of
the form hk = O(1/k), see (SLR) in Section 3. However, achieving the optimal
rate is difficult in practice, since it depends on properties of the function, such as
the strong convexity constant, which may not be known. Or, in the case of non-
convex problems, non-existent. Hence, the rate can be slower than optimal. In
practice, the learning rate is tuned to the problem at hand, or adaptive methods
are used [DHS11, HSS12, Zei12, KB14, WWB18]. These methods often perform
well in practice, but they lack optimal rates of convergence or, in some cases, they
lack convergence guarantees [RKK18]. In the deep learning setting, SGD with a
hand tuned learning rate schedule tends to outperform these methods in terms of
generalization [HRS15, WRS+17].

However, while the rate of convergence O(1/k) cannot be improved, the rate
constant can be. Improving the rate constant can be worthwhile if it leads to faster
convergence in practise, as we demonstrate below. In this work, we study a learning
rate formulation based on a generalization of Polyak’s learning rate [Pol87, Chapter
5.3.] to the stochastic setting. Polyak’s learning rate (see also [Bec17, Page 204])
is commonly used for the subgradient method. It is defined as

xk+1 = xk − h(xk)∂f(xk), h(xk) =
f(xk)− f∗

||∂f(xk)||2
.

In this case, the learning rate depends on an estimate of the value of f∗ = minx f(x).
In some applications, the f∗ value is known (or zero), and the method can be
applied without estimation. A principled method for estimation, which is provably
convergent with the same rate, is provided in [BM13, Chapter 4.2]. The estimation
involves an auxiliary sequence γk, leading to the learning rate

hest(xk) =
f(xk)− f bestk + γk
||∂f(xk)||2

,

where f bestk = minj≤k f(xj). Convergence follows provided

γk > 0, γk → 0,

∞∑
k=1

γk =∞.

In particular, f bestk → f∗ as k → ∞ in this case. Additional methods for es-
timating f∗ can be found in [Sho12, BM13] and [KAC90]. In high-dimensional
machine learning problems, f∗ can be considered a hyper-parameter that requires
tuning - not difficult in general. For example, one can observe the minimum value
achieved, fmin on a previously trained model and retrain using Polyak’s learning
rate, assuming f∗ = 0.9 ∗ fmin.

The above method obtains a better constant for the rate provided the initial point
is not too far from the true solution, see (11) in section 3.5. We demonstrate that
the method is effective in practice, using small scale and deep learning examples in
section 4.1. While we do not prove any results in the non-convex case, the Polyak
schedule for SGD can still be applied.

Polyak’s SGD main advantage is requiring estimation of only the parameter f∗

which is simpler to approximate than the strong convexity constant necessary for
the O(1/k) learning rate. Note that because the variance of the stochastic gradient
is estimated as the algorithm runs, the only hyper-parameter is f∗. For scheduled
SGD, in a non-convex problem, it is not clear what the strong convexity constant

STOCHASTIC GRADIENT DESCENT WITH POLYAK’S LEARNING RATE 3

should be (even if it somehow exists locally). However, for Polyak, in a non-convex
setting the minimum of the function and the second moment of the gradients remain
clear and well defined. In fact, a recent paper achieved good empirical results but
without any associated theory [RM18].

Finally, note that throughout this paper all the rates derived are non-asymptotic,
of the form

(1) E [||xk − x∗||] ≤
C

k + γ
,

for C, γ > 0. Hence, at each iteration, the derived bound holds for k > 0 and
not only when k → ∞. In order to obtain a non-asymptotic rate for optimally
scheduled SGD it is necessary to know the distance between the initial point and
the true point, as this value is used in the learning rate schedule. If this value is
unknown, we risk selecting an hk too large or too small, which, in turn, will prevents
us from achieving the rate. On the other hand, for Polyak the non-asymptotic rate
is achieved regardless as f∗ and x∗ are intrinsically connected. In [BCN16], for
example, the rate is asymptotic, of the form

E [f(xk)− f∗] ≤ max{C, (γ + 1)(f(x0)− f∗)}
k + γ

for C, γ > 0. Here, the rate constant is C and does not depend on the starting point,
x0. However, the rate constant C is not necessarily achieved in this formulation, as
opposed to the non-asymptotic bound, (1). In section 3.5, Figure 2 displays how
our bounds compare to some test runs.

Contents. We start this paper by introducing some mathematical background.
Then, in Section 2, which is provided for background and is not needed for the
sequel, we prove a convergent rate for gradient descent using Polyak’s learning
rate. In Section 3, we recall SGD with optimally scheduled learning rate and its
properties. Then we establish a convergence rate of O(1/k), although with differ-
ent constants, for optimally scheduled SGD and SGD with Polyak’s learning rate,
and compare. Finally, in Section 4, we present numerical results. We show both
results for generated mini-batch noise and for an image recognition problem in deep
learning.

1.1. Notation and Convex Function Inequalities. In this section, we recall
some definitions and establish notation. Write,

f∗ = min
x
f(x), x∗ ∈ argminx f(x),

when such quantities are defined. Write g(x) = ∇f(x) and gk = ∇f(xk). Write as
well q(x) = 1

2 |x− x
∗|2 and qk = 1

2 |xk − x
∗|2.

The following definitions can be found in [Pol87] and [Bec17, Chapter 5].

Definition 1.1. The function f : Rd → R is µ-strongly convex if

(µ-convex) f(x)− (f(y) +∇f(y) · (x− y)) ≥ µ

2
|x− y|2, x, y ∈ Rd.

The function f : Rd → R is L-smooth if

(L-smooth) f(x)−(f(y)−∇f(y) ·(x−y)) ≥ 1

2L
|∇f(x)−∇f(y)|2, x, y ∈ Rd.

4 ADAM M. OBERMAN AND MARIANA PRAZERES

We will use the following inequalities in the sequel:

f(x)− f∗ ≥ µq(x), x ∈ Rd(2)

f(x∗)− (f(xk) + gk · (x∗ − xk)) ≥ µ

2
qk, xk ∈ Rd(3)

2L(f(x)− f∗) ≥ |∇f(x)|2, x ∈ Rd(4)

q(x)− q(y) = (x− y) · (y − x∗) +
1

2
|x− y|2, x, y ∈ Rd.(5)

Proof. The first three inequalities follow from (µ-convex), with choice y = x∗ and
with choices x = x∗ and y = xk, and from (L-smooth), with choice y = x∗,
respectively. To establish (5) directly, use the algebraic identity a2 − b2 = (a +
b)(a− b) applied to q(x)− q(y) to obtain

q(x)− q(y) =
1

2
(x+ y − 2x∗) · (x− y)

= (x− y) ·
(
x+ y

2
− x∗

)
= (x− y) · (y − x∗) +

1

2
|x− y|2. �

2. Gradient Descent with Polyak’s learning rate

In this section, we prove a convergence rate for Polyak’s learning rate in the full
gradient case. Polyak’s learning rate [Pol87] is most often used in the subgradient
case, as discussed above. This result is not needed in the sequel, but it is included for
context, and because the proof is a simplified version of the proof in the stochastic
case.

Define the Polyak x-dependent learning rate by

(PLR) h(x) = 2
f(x)− f∗

‖∇f(x)‖2
.

The adaptive gradient descent sequence is given by

xk+1 = xk − hk∇f(xk),(AGD)

where 0 < hk = h(xk). Next, we prove convergence of the iterates xk to x∗ in terms
of the difference squared, q(x) = 1

2 |x− x
∗|2.

Lemma 2.1. Suppose that f(x) is µ-strongly convex and L-smooth. Let xk, hk be
the sequence given by (AGD) and (PLR). Then,

(6)
1

L
≤ hk ≤

1

µ

and

qk ≤ (1− µ/L)kq0.

STOCHASTIC GRADIENT DESCENT WITH POLYAK’S LEARNING RATE 5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
time step (learning rate) as a function of position

0
.5

0
.5

0
.5

0
.5

0
.5

0
.5

0
.7

5

0
.7

5

0
.7

5

0
.7

5

0
.7

5

0
.7

5

1

1 1

1

1

1

1.2
5

1.2
5

1.25

1.25

1.2
5

1.2
5

1.25

1.25

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.75

1.75

1.75

1.75

1.75

1.75

Figure 1. Level sets of f superimposed on level sets of h(x) =
2(f(x)− f∗)/∇f(x)2.

Proof of Lemma 2.1. The inequality (6) follows from (4) and (2). Using the identity
(5) with xk+1 and xk we obtain,

qk+1 − qk = (xk+1 − xk)(xk − x∗) +
1

2
(xk+1 − xk)2 by (5)

= −hkgk(xk − x∗) +
1

2
h2kg

2
k by (AGD)

≤ −hkµqk − hk(f(xk)− f∗) +
1

2
h2kg

2
k by (3)

≤ −hkµqk by (PLR)

≤ −µqk/L by (6) �

One outcome of the Polyak’s learning rate (PLR) is that the usual restriction
hk ≤ 1/L on the learning rate is relaxed to hk ≤ 1/µ. For example, on a quadratic
f(x) = (µx21 + Lx22)/2, whenever x2 = 0, we have h(x) = 1/µ. More generally,
Figure 2 illustrates h(x). Clearly from (PLR), smaller gradients allow for larger
learning rates and vice-versa.

3. Stochastic Gradient Descent with Polyak’s Learning Rate

Now we consider stochastic gradient descent. For the purpose of our analysis,
we use an abstract representation, where we write ∇f(x) for the full gradient and
are given an approximation ∇mbf(xk) such that

∇mbf(x) = ∇f(x) + e,

with e a random error term.
The notation ∇mb is meant to suggest mini-batch SGD, the important special

case where the loss is of the form, f(x) =
∑
fi(x), and a mini-batch approximation

is give by fmb(x) =
∑
i∈mb fi(x). However, in our analysis we consider a general

6 ADAM M. OBERMAN AND MARIANA PRAZERES

loss function and abstract the mini-batch error into the error term. For clarity, we
assume the error is random with zero mean and finite variance,

(7) E [e] = 0, E
[
e2
]

= σ2.

More general assumptions on the error are discussed in [BCN16]. If variance re-
duction [JZ13] [ZMJ13] is incorporated, it is reflected in the σ2 term in (7).

3.1. Scheduled and Polyak SGD. Recall the SGD step is given by

xk+1 = xk − hk∇mbf(xk),(SGD)

where hk > 0 is the learning rate.
In order to achieve the optimal convergence rate for scheduled SGD, the schedule

makes use of µ and q0 = ‖x0 − x∗‖2/2. The optimal scheduled convergence rate is
achieved using the following schedule

(SLR) hk =
1

µ(k + q−10 α−1S)
,

where αS is defined below in (8). The proof (in a more general setting) can be
found in [BCN16]; we provide a shorter proof below.

For Polyak SGD we define the stochastic Polyak learning rate as a function of
xk, σ2, and f∗.

hk = h(xk) = 2
f(xk)− f∗

E [‖∇mbf(xk)‖2]
,(SPLR)

Remark 3.1. From (SPLR) we can conclude that increasing the mini-batch size
will also increase the learning rate, since increased mini-batch size decreases the
variance of the ∇mbf(x).

A similar learning rate schedule, replacing the expectation in (SPLR) with
‖∇mbf(xk)‖2 was implemented effectively in [RM18], however no convergence proof
is presented.

Remark 3.2. To achieve the optimal constant in the convergence rate for sched-
uled SGD using (SLR) requires knowing q0 and µ. The stochastic Polyak learning
rate (SPLR) requires knowing or estimating f∗, as well as the variance of the
stochastic gradient, which can be easily approximated. To reduce the computa-
tional cost, we can evaluate (SPLR) every fixed number of number of iterations (or
epochs).

Convergence rates for SGD using both the optimally scheduled and Polyak learn-
ing rates are proven in Theorem 3.4 and 3.5 below, respectively.

3.2. Basic inequality. We begin by proving an inequality which we be used for
the proof of the convergence rate for both methods.

Lemma 3.3. Suppose f is µ-strongly convex. Assume that (7) holds. Let xk+1 be
given by (SGD) for any hk > 0. Then,

E [qk+1 | xk] ≤ (1− µhk)qk − hk(f(xk)− f∗) +
1

2
h2k(g2k + E

[
e2
]
).

STOCHASTIC GRADIENT DESCENT WITH POLYAK’S LEARNING RATE 7

Proof. We start by estimating the difference between consecutive iterates,

qk+1 − qk = (xk+1 − xk)(xk − x∗) +
1

2
(xk+1 − xk)2 by (5)

= −hk(gk + e)(xk − x∗) +
1

2
h2k(gk + e)2 by (SGD)

≤ −hkµq(xk)− hk(f(xk)− f∗)− hke(xk − x∗) +
1

2
h2k(gk + e)2 by (3).

Then, by taking the expectations of the last inequality and conditioning on xk we
obtain,

E [qk+1 | xk] ≤ (1− µhk)qk − hk(f(xk)− f∗)− hkE [e(xk − x∗)]

+
1

2
h2kE

[
(gk + e)2

]
.

Note that, by assumption (7), it follows that

E [e(xk − x∗)] = 0.

Moreover, we may expand the last term as

E
[
(gk + e)2

]
= E

[
g2k
]

+ 2gkE [e] + E
[
e2
]

= g2k + E
[
e2
]
.

Thus,

E [qk+1 | xk] ≤ (1− µhk)qk − hk(f(xk)− f∗) +
1

2
h2k(g2k + E

[
e2
]
),

which establishes the inequality. �

3.3. Scheduled SGD Rate. Now, we prove the rate for SGD with schedule (SLR).
We use this proof structure to easily draw a parallel between the different learning
rate choices, (SLR) and (SPLR).

Theorem 3.4. Suppose f is µ-strongly convex and L-smooth. Assume (7). Let
xk, hk be the sequence given by (SGD) with the optimal learning rate schedule (SLR).
Set M = maxk ‖gk‖. Then,

E [qk | xk−1] ≤ 1

αSk + q−10

, for all k ≥ 0,

where

(8) αS =
2µ2

σ2 +M2
.

Proof. We prove the rate by induction. Clearly, it holds for k = 0. For the induction

step, assume it the rate holds and define k̂ = k + q−10 α−1S . Then, from Lemma 3.3,

E [qk+1] ≤ (1− 2µhk)qk +
1

2
h2k(g2k + E

[
e2
]
) by (2)

≤
(

1− 2

k̂

)
qk +

1

2µ2k̂2
(M2 + σ2) by (SLR) and assumption

≤
(

1− 2

k̂

)
1

αS k̂
+

1

αS k̂2
by the induction hypothesis

=

(
k̂ − 1

k̂2

)
1

αS
≤ 1

αS

1

k̂ + 1
=

1

αS(k + 1) + q−10

,

which proves the rate. �

8 ADAM M. OBERMAN AND MARIANA PRAZERES

3.4. Polyak SGD Rate. Now we prove the rate for Polyak SGD, (SGD) using
(SPLR).

Theorem 3.5. Suppose f is µ-strongly convex and L-smooth. Assume the mean
and variance of e are given by (7). Let xk, hk be the sequence given by (SGD) and
(SPLR). Then,

E [qk | xk−1] ≤ 1

αP k + q−10

, for all k ≥ 0 ,

where

αP =
2µ2

σ2 + 2µ2(L− µ)q0
.

The proof of the theorem requires two auxiliary Lemmas. Lemma 3.6 provides
an inequality for qk+1 in terms on the previous iterate, qk. Lemma 3.7 provides a
further bound. We combine both in an induction proof at the end of the section.

Lemma 3.6. Suppose f is µ-strongly convex and L-smooth. Let xk, hk be the
sequence given by (SGD) and (SPLR). Assume that (7) holds. Then,

E [qk+1 | xk] ≤ (1− µhk)qk ≤
β + rqk
β + qk

qk,(9)

where r = 1− µ
L and β = σ2

2µL .

Proof. Apply Lemma 3.3 with hk given by (SPLR) to obtain

E [qk+1 | xk] ≤ (1− µhk)qk.

We have the following estimate on the learning rate,

hk = 2
fk − f?

|gk|2 + σ2
by (SPLR)

≥ 2
fk − f?

2L(fk − f∗) + σ2
by (4)

=
2

2L+ σ2

fk−f∗

divide by fk − f∗

≥ 2

2L+ σ2

µqk

by (2).

This establishes the second inequality in (9) as follows,

(1− µhk)qk ≤

(
1− 2µ

2L+ σ2

µqk

)
qk ≤

2Lqk + σ2

µ − 2µqk

2L+ σ2

µqk

=
(1− µ

L)qk + σ2

2µL

qk + σ2

2µL

qk

=
rqk + β

qk + β
qk,

where r = 1− µ
L and β = σ2

2µL . �

STOCHASTIC GRADIENT DESCENT WITH POLYAK’S LEARNING RATE 9

Next, we establish the following technical, but elementary Lemma, which is used
to prove the rate.

Lemma 3.7. Define the transformation T ,

T (x) =
β + rx

β + x
x,

for β > 0 and for r ∈ [0, 1). Given b > 0 define

c =
1− r
β + r/b

.

Then, for all k ≥ 0,

T

(
1

ck + b

)
≤ 1

c(k + 1) + b
.

Proof. Consider x = 1
y . Then, define S as the multiplicative inverse of T :

T (x) = T

(
1

y

)
=

1

y

βy + r

βy + 1
:=

1

S(y)
.(10)

Next, we consider the sequence ak := ck + b. We start by expanding the differ-
ence:

S(ak)− ak+1 = ak
βak + 1

βak + r
− (ak + c)

=
ak(1− r − cβ)− cr

βak + r

=
kc(1− r − cβ) + (b(1− r − cβ)− cr)

βck + (βb+ r)
.

This difference is positive if both the denominator and numerator are positive
for k ≥ 0. The denominator’s positivity follows from b, c, r, β ≥ 0. The numerator
is positive for all k ≥ 0 provided

1− r − cβ ≥ 0,

since the choice of c guarantees b(1 − r − cβ) − cr = 0. In fact, positivity of this
expression also holds for our choice of c.

Hence, S(ak)− ak+1 ≥ 0. Then, using (10),

T

(
1

ak

)
=

1

S(ak)
≤ 1

ak+1
=

1

c(k + 1) + b
,

and the lemma follows. �

Proof of Theorem 3.5. We proceed by induction.
The base case corresponds to q0 ≤ 1

αP k+q
−1
0

for k = 0, which clearly holds.

For the induction step, assume that qk ≤ 1
αP k+q

−1
0

. We will apply Lemma 3.7

with b = q−10 and the corresponding c.

10 ADAM M. OBERMAN AND MARIANA PRAZERES

0 250 500 750 1000

10 6

10 5

10 4

10 3

10 2

10 1
S
rateS

0 250 500 750 1000

10 6

10 5

10 4

10 3

10 2

10 1
P
rateP

Figure 2. Average of 5 test runs of scheduled SGD with bound
(blue) and Polyak SGD with bound (red) on a quadratic example.
The batch size selected was 100 over 1000 sample points.

E [qk+1|xk] ≤ T (qk) by Lemma 3.6

≤ T
(

1

αP k + q−10

)
by monotonicity of T and hypothesis

≤ 1

αP (k + 1) + q−10

by Lemma 3.7,

which concludes the induction. �

3.5. Comparison of the Polyak and Scheduled Rate Constants. The con-
stant in the rate established in Theorem 3.5 for Polyak SGD can be smaller than
the rate for scheduled SGD in Theorem 3.4. Recall the rates are given by,

αS =
2µ2

σ2 +M2
, αP =

2µ2

σ2 + 2µ2(L− µ)q0
.

Now, we note that αP ≥ αS if

(11) q0 ≤
M2

2µ2(L− µ)
.

Since we can reset the algorithm, this condition will eventually hold, using the
reset value for q0. In Figure 2 we can see the gap between a run of SGD with both
schedules and the non-asymptotic bounds derived. Note that the bound could be
recomputed at each iteration, yielding tighter ones.

STOCHASTIC GRADIENT DESCENT WITH POLYAK’S LEARNING RATE 11

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
learning rate, minibatch = 20

0.
01 0.01

0.02

0.02

0.02

0.03

0.
03

0.
03

0.
03

0.05

0.05

0.0
5

0.05

0.05

0.05

0.05

0.1
0.1

0.1

0.1

0.1

0.1
0.1

0.
1

0.
1

0.
1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2
0.2

0.2

0.2

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
learning rate, minibatch = 200

0.01
0.020.03

0.
05

0.050.1

0.1

0.1
0.2

0.2

0.2

0.2
0.2

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.30.3

0.3

0.3

Figure 3. Level sets of f(x, y) = x2 + y2 superimposed on level
sets of formula (SPLR). Left: mini-batch size 20. Right: mini
batch size 200.

4. Numerical Results

In this section, we implement the Polyak adaptive SGD algorithm and compare it
to scheduled SGD. The Polyak SGD code is implemented in PyTorch1. For practical
implementations, we capped the learning rates with a minimum and maximum value
to protect against errors in the estimation of f∗.

The first problem we considered was

f(x) =
1

2N

N∑
i=1

‖x− xi‖2,

for a given data set x1, . . . , xN ∈ R2. The stochastic gradients were obtained by
taking a different random mini-batch of fixed size M at each iteration. A mini-batch
of size M is a random subset I ⊂ [1, . . . , N] with |I| = M . Then,

fI =
1

2|I|
∑
i∈I
‖x− xi‖2

and the stochastic gradient is the gradient of fI .
In Figure 3, we illustrate the learning rate as a function of the mini-batch size

and the location of the current iterate. As expected, see (SPLR), the learning rate
increases when the mini-batch noise is smaller, which happens when we have a
larger mini-batch.

We see, in Figure 4, how Polyak SGD compares to two schedules of SGD. The
first schedule is a typical deep learning schedule that reduces the learning rate every
hundred steps by a fixed amount (in this case, a sixth). The second is the optimal
schedule (SLR).

In Figure 5, we share a special case where we start close to an optimal value,
which Polyak immediately recognizes by lowering the learning rate.

4.1. Deep Learning Example. We trained an AllCNN architecture, [SDBR14],
for image classification on CIFAR-10. Our baseline was trained using SGD and the
schedule we used reduces the learning rate by a factor of five every 60 epochs. We
used no momentum and no regularization. In Figure 6, we see that we obtain similar

1https://github.com/marianapraz/polyakSGD

12 ADAM M. OBERMAN AND MARIANA PRAZERES

0 100 200 300 400 500 600
10-8

10-6

10-4

10-2

100 f(x) - f* (for a typical run)

Scheduled
Scheduled 1/t
Adaptive

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Paths of Scheduled and Adaptive SGD

0 100 200 300 400 500 600
10-6

10-5

10-4

10-3

10-2

10-1

100 f(x) - f*(Averaged over 40 runs)

Scheduled
Scheduled 1/t
Adaptive

0 100 200 300 400 500 600
10-4

10-3

10-2

10-1

100
dts

Figure 4. Comparison of SGD with Polyak (adaptive) SGD. Top
left: paths of optimally scheduled SGD, epoch scheduled SGD,
and Polyak (adaptive) SGD. From one path it is not clear which
algorithm is faster. Bottom left: average excess loss over 40 runs of
each algorithm. Now it is clear that the Polyak algorithm is faster
on average. Top Right: plots of a path. Bottom right: illustration
of the learning rates computed.

0 100 200 300 400 500 600
10-5

10-4

10-3

10-2

10-1 f(x) - f* (Averaged over 40 runs)

Scheduled
Scheduled 1/t
Adaptive

0 100 200 300 400 500 600
10-4

10-3

10-2

10-1

100
dts

Figure 5. Comparison of SGD with Polyak (adaptive) SGD. In
the case where the initial value is close to optimal, (non-optimally)
scheduled SGD forgets the good initialization. On the other hand,
the Polyak method detects the good initialization and improves
the values.

STOCHASTIC GRADIENT DESCENT WITH POLYAK’S LEARNING RATE 13

0 50 100 150 200
epoch

100

4 × 10 1

6 × 10 1tra
in

_f
va

l

CIFAR10 - AllCNN
SGD
Polyak SGD f * = 0.350
Polyak SGD f * = 0.300

170 200

0 50 100 150 200
epoch

0

10

20

30

40

50

pc
t_

er
r

CIFAR10 - AllCNN
SGD
Polyak SGD f * = 0.350
Polyak SGD f * = 0.300

Figure 6. Comparison of scheduled SGD with Polyak SGD. The
first plot is the training loss and the second one is the test error.

results in minimizing the training loss without impacting the testing error (the most
relevant metric for the success of a neural net training). The schedule of SGD for
the CIFAR-10 dataset has already been tuned very well, so it performs similarly to
Polyak SGD, which required no tuning. The estimate of f∗ was obtained with one
run of scheduled SGD. In practice, networks are trained many times using similar
parameters, so Polyak SGD could provided some advantages in training time when
averaged over many runs.

References

[AWBR09] Alekh Agarwal, Martin J Wainwright, Peter L Bartlett, and Pradeep K Ravikumar.
Information-theoretic lower bounds on the oracle complexity of convex optimization.

In Advances in Neural Information Processing Systems, pages 1–9, 2009.

[BCN16] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. arXiv preprint arXiv:1606.04838, 2016.

[Bec17] Amir Beck. First-Order Methods in Optimization, volume 25. SIAM, 2017.

[BM13] Stephen Boyd and Almir Mutapcic. Subgradient methods. Lecture notes of EE364b,
Stanford University, Winter Quarter, 2013, 2013.

[Bot91] Léon Bottou. Stochastic gradient learning in neural networks. Proceedings of Neuro-
Nımes, 91(8):12, 1991.

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for on-

line learning and stochastic optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

[HRS15] Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better:

Stability of stochastic gradient descent. arXiv preprint arXiv:1509.01240, 2015.
[HSS12] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Rmsprop: Divide the gradient

by a running average of its recent magnitude. Neural networks for machine learning,

Coursera lecture 6e, 2012.
[JZ13] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive

variance reduction. In Advances in neural information processing systems, pages 315–

323, 2013.
[KAC90] Sehun Kim, Hyunsil Ahn, and Seong-Cheol Cho. Variable target value subgradient

method. Mathematical Programming, 49(1-3):359–369, 1990.
[Kal60] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.

Journal of basic Engineering, 82(1):35–45, 1960.

14 ADAM M. OBERMAN AND MARIANA PRAZERES

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[KNJK18] Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham Kakade. On the insuffi-
ciency of existing momentum schemes for stochastic optimization. In 2018 Information

Theory and Applications Workshop (ITA), pages 1–9. IEEE, 2018.

[LJSB12] Simon Lacoste-Julien, Mark Schmidt, and Francis Bach. A simpler approach to ob-
taining an o (1/t) convergence rate for the projected stochastic subgradient method.

arXiv preprint arXiv:1212.2002, 2012.

[Nes13] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, vol-
ume 87. Springer Science & Business Media, 2013.

[Pol64] Boris T Polyak. Some methods of speeding up the convergence of iteration methods.

USSR Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.
[Pol87] Boris T Polyak. Introduction to optimization. translations series in mathematics and

engineering. Optimization Software, 1987.
[QRG+19] Xun Qian, Peter Richtarik, Robert Gower, Alibek Sailanbayev, Nicolas Loizou, and

Egor Shulgin. Sgd with arbitrary sampling: General analysis and improved rates. In

International Conference on Machine Learning, pages 5200–5209, 2019.
[RKK18] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and

beyond. 2018.

[RM51] Herbert Robbins and Sutton Monro. A stochastic approximation method. Ann. Math.
Statist., 22(3):400–407, 09 1951.

[RM18] Michal Rolinek and Georg Martius. L4: Practical loss-based stepsize adaptation for

deep learning. In Advances in Neural Information Processing Systems, pages 6434–
6444, 2018.

[RR11] Maxim Raginsky and Alexander Rakhlin. Information-based complexity, feedback

and dynamics in convex programming. IEEE Transactions on Information Theory,
57(10):7036–7056, 2011.

[RSS11] Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent
optimal for strongly convex stochastic optimization. arXiv preprint arXiv:1109.5647,

2011.

[SDBR14] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller.
Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806,

2014.

[Sho12] Naum Zuselevich Shor. Minimization methods for non-differentiable functions, vol-
ume 3. Springer Science & Business Media, 2012.

[WRS+17] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht.

The marginal value of adaptive gradient methods in machine learning. In Advances in
Neural Information Processing Systems, pages 4148–4158, 2017.

[WWB18] Xiaoxia Wu, Rachel Ward, and Léon Bottou. Wngrad: learn the learning rate in

gradient descent. arXiv preprint arXiv:1803.02865, 2018.
[Zei12] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.
[ZMJ13] Lijun Zhang, Mehrdad Mahdavi, and Rong Jin. Linear convergence with condition

number independent access of full gradients. In Advances in Neural Information Pro-

cessing Systems, pages 980–988, 2013.

	1. Introduction
	1.1. Notation and Convex Function Inequalities

	2. Gradient Descent with Polyak's learning rate
	3. Stochastic Gradient Descent with Polyak's Learning Rate
	3.1. Scheduled and Polyak SGD
	3.2. Basic inequality
	3.3. Scheduled SGD Rate
	3.4. Polyak SGD Rate
	3.5. Comparison of the Polyak and Scheduled Rate Constants

	4. Numerical Results
	4.1. Deep Learning Example

	References

