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Abstract. Stochastic gradient descent (SGD) for strongly convex functions

converges at the rate O(1/k). However, achieving good results in practice re-
quires tuning the parameters (for example the learning rate) of the algorithm.

In this paper we propose a generalization of the Polyak step size, used for sub-
gradient methods, to Stochastic gradient descent. We prove a non-asymptotic

convergence at the rate O(1/k) with a rate constant which can be better than

the corresponding rate constant for optimally scheduled SGD. We demonstrate
that the method is effective in practice, and on convex optimization problems

and on training deep neural networks, and compare to the theoretical rate.

1. Introduction

Stochastic Gradient Descent (SGD) [RM51, Kal60] is a widely used optimiza-
tion algorithm due to its ubiquitous use in machine learning [BCN16]. Convergence
rates are available in a wide setting [LJSB12, BCN16, QRG+19]. To achieve the
optimal convergence rate requires using an algorithm with parameters, for exam-
ple, a scheduled learning rate, which depends on knowledge of parameters of the
function which are often not available. In this article, we propose an adaptive time
step method for SGD, based on a generalization of the Polyak time step for the sub-
gradient method, for SGD. We prove a that this method achivies non-asymptotic
convergence rate which can have a better rate constant than the one for scheduled
SGD.

Consider a differentiable function f : X → R depending on parameters x ∈ X .
Then, the problem at hand,

min
x∈X

f(x),

may be solved approximately using the SGD step

xk+1 = xk − hk∇mbf(xk),(SGD)

where hk > 0 is the learning rate and ∇mbf is a stochastic gradient.
SGD is the method of choice for large scale machine learning problems [Bot91].

When SGD is combined with momentum [Pol64, Nes13] empirical performance is
improved, but there is still no theoretical justification for the improvement [KNJK18].
Other popular stochastic optimization algorithms that use different forms of averag-
ing or variance reduction are still being studied and developed [BCN16]. However,
in this work, we focus on SGD without momentum, (SGD).
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The optimal convergence rate for SGD in the strongly convex case is O(1/k)
[RSS11, AWBR09, RR11]. A learning rate schedule that achieves such rate is of
the form hk = O(1/k), see (SLR) in Section 3. However, achieving the optimal
rate is difficult in practice, since it depends on properties of the function, such as
the strong convexity constant, which may not be known. Or, in the case of non-
convex problems, non-existent. Hence, the rate can be slower than optimal. In
practice, the learning rate is tuned to the problem at hand, or adaptive methods
are used [DHS11, HSS12, Zei12, KB14, WWB18]. These methods often perform
well in practice, but they lack optimal rates of convergence or, in some cases, they
lack convergence guarantees [RKK18]. In the deep learning setting, SGD with a
hand tuned learning rate schedule tends to outperform these methods in terms of
generalization [HRS15, WRS+17].

However, while the rate of convergence O(1/k) cannot be improved, the rate
constant can be. Improving the rate constant can be worthwhile if it leads to faster
convergence in practise, as we demonstrate below. In this work, we study a learning
rate formulation based on a generalization of Polyak’s learning rate [Pol87, Chapter
5.3.] to the stochastic setting. Polyak’s learning rate (see also [Bec17, Page 204])
is commonly used for the subgradient method. It is defined as

xk+1 = xk − h(xk)∂f(xk), h(xk) =
f(xk)− f∗

||∂f(xk)||2
.

In this case, the learning rate depends on an estimate of the value of f∗ = minx f(x).
In some applications, the f∗ value is known (or zero), and the method can be
applied without estimation. A principled method for estimation, which is provably
convergent with the same rate, is provided in [BM13, Chapter 4.2]. The estimation
involves an auxiliary sequence γk, leading to the learning rate

hest(xk) =
f(xk)− f bestk + γk
||∂f(xk)||2

,

where f bestk = minj≤k f(xj). Convergence follows provided

γk > 0, γk → 0,

∞∑
k=1

γk =∞.

In particular, f bestk → f∗ as k → ∞ in this case. Additional methods for es-
timating f∗ can be found in [Sho12, BM13] and [KAC90]. In high-dimensional
machine learning problems, f∗ can be considered a hyper-parameter that requires
tuning - not difficult in general. For example, one can observe the minimum value
achieved, fmin on a previously trained model and retrain using Polyak’s learning
rate, assuming f∗ = 0.9 ∗ fmin.

The above method obtains a better constant for the rate provided the initial point
is not too far from the true solution, see (11) in section 3.5. We demonstrate that
the method is effective in practice, using small scale and deep learning examples in
section 4.1. While we do not prove any results in the non-convex case, the Polyak
schedule for SGD can still be applied.

Polyak’s SGD main advantage is requiring estimation of only the parameter f∗

which is simpler to approximate than the strong convexity constant necessary for
the O(1/k) learning rate. Note that because the variance of the stochastic gradient
is estimated as the algorithm runs, the only hyper-parameter is f∗. For scheduled
SGD, in a non-convex problem, it is not clear what the strong convexity constant
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should be (even if it somehow exists locally). However, for Polyak, in a non-convex
setting the minimum of the function and the second moment of the gradients remain
clear and well defined. In fact, a recent paper achieved good empirical results but
without any associated theory [RM18].

Finally, note that throughout this paper all the rates derived are non-asymptotic,
of the form

(1) E [||xk − x∗||] ≤
C

k + γ
,

for C, γ > 0. Hence, at each iteration, the derived bound holds for k > 0 and
not only when k → ∞. In order to obtain a non-asymptotic rate for optimally
scheduled SGD it is necessary to know the distance between the initial point and
the true point, as this value is used in the learning rate schedule. If this value is
unknown, we risk selecting an hk too large or too small, which, in turn, will prevents
us from achieving the rate. On the other hand, for Polyak the non-asymptotic rate
is achieved regardless as f∗ and x∗ are intrinsically connected. In [BCN16], for
example, the rate is asymptotic, of the form

E [f(xk)− f∗] ≤ max{C, (γ + 1)(f(x0)− f∗)}
k + γ

for C, γ > 0. Here, the rate constant is C and does not depend on the starting point,
x0. However, the rate constant C is not necessarily achieved in this formulation, as
opposed to the non-asymptotic bound, (1). In section 3.5, Figure 2 displays how
our bounds compare to some test runs.

Contents. We start this paper by introducing some mathematical background.
Then, in Section 2, which is provided for background and is not needed for the
sequel, we prove a convergent rate for gradient descent using Polyak’s learning
rate. In Section 3, we recall SGD with optimally scheduled learning rate and its
properties. Then we establish a convergence rate of O(1/k), although with differ-
ent constants, for optimally scheduled SGD and SGD with Polyak’s learning rate,
and compare. Finally, in Section 4, we present numerical results. We show both
results for generated mini-batch noise and for an image recognition problem in deep
learning.

1.1. Notation and Convex Function Inequalities. In this section, we recall
some definitions and establish notation. Write,

f∗ = min
x
f(x), x∗ ∈ argminx f(x),

when such quantities are defined. Write g(x) = ∇f(x) and gk = ∇f(xk). Write as
well q(x) = 1

2 |x− x
∗|2 and qk = 1

2 |xk − x
∗|2.

The following definitions can be found in [Pol87] and [Bec17, Chapter 5].

Definition 1.1. The function f : Rd → R is µ-strongly convex if

(µ-convex) f(x)− (f(y) +∇f(y) · (x− y)) ≥ µ

2
|x− y|2, x, y ∈ Rd.

The function f : Rd → R is L-smooth if

(L-smooth) f(x)−(f(y)−∇f(y) ·(x−y)) ≥ 1

2L
|∇f(x)−∇f(y)|2, x, y ∈ Rd.
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We will use the following inequalities in the sequel:

f(x)− f∗ ≥ µq(x), x ∈ Rd(2)

f(x∗)− (f(xk) + gk · (x∗ − xk)) ≥ µ

2
qk, xk ∈ Rd(3)

2L(f(x)− f∗) ≥ |∇f(x)|2, x ∈ Rd(4)

q(x)− q(y) = (x− y) · (y − x∗) +
1

2
|x− y|2, x, y ∈ Rd.(5)

Proof. The first three inequalities follow from (µ-convex), with choice y = x∗ and
with choices x = x∗ and y = xk, and from (L-smooth), with choice y = x∗,
respectively. To establish (5) directly, use the algebraic identity a2 − b2 = (a +
b)(a− b) applied to q(x)− q(y) to obtain

q(x)− q(y) =
1

2
(x+ y − 2x∗) · (x− y)

= (x− y) ·
(
x+ y

2
− x∗

)
= (x− y) · (y − x∗) +

1

2
|x− y|2. �

2. Gradient Descent with Polyak’s learning rate

In this section, we prove a convergence rate for Polyak’s learning rate in the full
gradient case. Polyak’s learning rate [Pol87] is most often used in the subgradient
case, as discussed above. This result is not needed in the sequel, but it is included for
context, and because the proof is a simplified version of the proof in the stochastic
case.

Define the Polyak x-dependent learning rate by

(PLR) h(x) = 2
f(x)− f∗

‖∇f(x)‖2
.

The adaptive gradient descent sequence is given by

xk+1 = xk − hk∇f(xk),(AGD)

where 0 < hk = h(xk). Next, we prove convergence of the iterates xk to x∗ in terms
of the difference squared, q(x) = 1

2 |x− x
∗|2.

Lemma 2.1. Suppose that f(x) is µ-strongly convex and L-smooth. Let xk, hk be
the sequence given by (AGD) and (PLR). Then,

(6)
1

L
≤ hk ≤

1

µ

and

qk ≤ (1− µ/L)kq0.
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Figure 1. Level sets of f superimposed on level sets of h(x) =
2(f(x)− f∗)/∇f(x)2.

Proof of Lemma 2.1. The inequality (6) follows from (4) and (2). Using the identity
(5) with xk+1 and xk we obtain,

qk+1 − qk = (xk+1 − xk)(xk − x∗) +
1

2
(xk+1 − xk)2 by (5)

= −hkgk(xk − x∗) +
1

2
h2kg

2
k by (AGD)

≤ −hkµqk − hk(f(xk)− f∗) +
1

2
h2kg

2
k by (3)

≤ −hkµqk by (PLR)

≤ −µqk/L by (6) �

One outcome of the Polyak’s learning rate (PLR) is that the usual restriction
hk ≤ 1/L on the learning rate is relaxed to hk ≤ 1/µ. For example, on a quadratic
f(x) = (µx21 + Lx22)/2, whenever x2 = 0, we have h(x) = 1/µ. More generally,
Figure 2 illustrates h(x). Clearly from (PLR), smaller gradients allow for larger
learning rates and vice-versa.

3. Stochastic Gradient Descent with Polyak’s Learning Rate

Now we consider stochastic gradient descent. For the purpose of our analysis,
we use an abstract representation, where we write ∇f(x) for the full gradient and
are given an approximation ∇mbf(xk) such that

∇mbf(x) = ∇f(x) + e,

with e a random error term.
The notation ∇mb is meant to suggest mini-batch SGD, the important special

case where the loss is of the form, f(x) =
∑
fi(x), and a mini-batch approximation

is give by fmb(x) =
∑
i∈mb fi(x). However, in our analysis we consider a general
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loss function and abstract the mini-batch error into the error term. For clarity, we
assume the error is random with zero mean and finite variance,

(7) E [e] = 0, E
[
e2
]

= σ2.

More general assumptions on the error are discussed in [BCN16]. If variance re-
duction [JZ13] [ZMJ13] is incorporated, it is reflected in the σ2 term in (7).

3.1. Scheduled and Polyak SGD. Recall the SGD step is given by

xk+1 = xk − hk∇mbf(xk),(SGD)

where hk > 0 is the learning rate.
In order to achieve the optimal convergence rate for scheduled SGD, the schedule

makes use of µ and q0 = ‖x0 − x∗‖2/2. The optimal scheduled convergence rate is
achieved using the following schedule

(SLR) hk =
1

µ(k + q−10 α−1S )
,

where αS is defined below in (8). The proof (in a more general setting) can be
found in [BCN16]; we provide a shorter proof below.

For Polyak SGD we define the stochastic Polyak learning rate as a function of
xk, σ2, and f∗.

hk = h(xk) = 2
f(xk)− f∗

E [‖∇mbf(xk)‖2]
,(SPLR)

Remark 3.1. From (SPLR) we can conclude that increasing the mini-batch size
will also increase the learning rate, since increased mini-batch size decreases the
variance of the ∇mbf(x).

A similar learning rate schedule, replacing the expectation in (SPLR) with
‖∇mbf(xk)‖2 was implemented effectively in [RM18], however no convergence proof
is presented.

Remark 3.2. To achieve the optimal constant in the convergence rate for sched-
uled SGD using (SLR) requires knowing q0 and µ. The stochastic Polyak learning
rate (SPLR) requires knowing or estimating f∗, as well as the variance of the
stochastic gradient, which can be easily approximated. To reduce the computa-
tional cost, we can evaluate (SPLR) every fixed number of number of iterations (or
epochs).

Convergence rates for SGD using both the optimally scheduled and Polyak learn-
ing rates are proven in Theorem 3.4 and 3.5 below, respectively.

3.2. Basic inequality. We begin by proving an inequality which we be used for
the proof of the convergence rate for both methods.

Lemma 3.3. Suppose f is µ-strongly convex. Assume that (7) holds. Let xk+1 be
given by (SGD) for any hk > 0. Then,

E [qk+1 | xk] ≤ (1− µhk)qk − hk(f(xk)− f∗) +
1

2
h2k(g2k + E

[
e2
]
).
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Proof. We start by estimating the difference between consecutive iterates,

qk+1 − qk = (xk+1 − xk)(xk − x∗) +
1

2
(xk+1 − xk)2 by (5)

= −hk(gk + e)(xk − x∗) +
1

2
h2k(gk + e)2 by (SGD)

≤ −hkµq(xk)− hk(f(xk)− f∗)− hke(xk − x∗) +
1

2
h2k(gk + e)2 by (3).

Then, by taking the expectations of the last inequality and conditioning on xk we
obtain,

E [qk+1 | xk] ≤ (1− µhk)qk − hk(f(xk)− f∗)− hkE [e(xk − x∗)]

+
1

2
h2kE

[
(gk + e)2

]
.

Note that, by assumption (7), it follows that

E [e(xk − x∗)] = 0.

Moreover, we may expand the last term as

E
[
(gk + e)2

]
= E

[
g2k
]

+ 2gkE [e] + E
[
e2
]

= g2k + E
[
e2
]
.

Thus,

E [qk+1 | xk] ≤ (1− µhk)qk − hk(f(xk)− f∗) +
1

2
h2k(g2k + E

[
e2
]
),

which establishes the inequality. �

3.3. Scheduled SGD Rate. Now, we prove the rate for SGD with schedule (SLR).
We use this proof structure to easily draw a parallel between the different learning
rate choices, (SLR) and (SPLR).

Theorem 3.4. Suppose f is µ-strongly convex and L-smooth. Assume (7). Let
xk, hk be the sequence given by (SGD) with the optimal learning rate schedule (SLR).
Set M = maxk ‖gk‖. Then,

E [qk | xk−1] ≤ 1

αSk + q−10

, for all k ≥ 0,

where

(8) αS =
2µ2

σ2 +M2
.

Proof. We prove the rate by induction. Clearly, it holds for k = 0. For the induction

step, assume it the rate holds and define k̂ = k + q−10 α−1S . Then, from Lemma 3.3,

E [qk+1] ≤ (1− 2µhk)qk +
1

2
h2k(g2k + E

[
e2
]
) by (2)

≤
(

1− 2

k̂

)
qk +

1

2µ2k̂2
(M2 + σ2) by (SLR) and assumption

≤
(

1− 2

k̂

)
1

αS k̂
+

1

αS k̂2
by the induction hypothesis

=

(
k̂ − 1

k̂2

)
1

αS
≤ 1

αS

1

k̂ + 1
=

1

αS(k + 1) + q−10

,

which proves the rate. �
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3.4. Polyak SGD Rate. Now we prove the rate for Polyak SGD, (SGD) using
(SPLR).

Theorem 3.5. Suppose f is µ-strongly convex and L-smooth. Assume the mean
and variance of e are given by (7). Let xk, hk be the sequence given by (SGD) and
(SPLR). Then,

E [qk | xk−1] ≤ 1

αP k + q−10

, for all k ≥ 0 ,

where

αP =
2µ2

σ2 + 2µ2(L− µ)q0
.

The proof of the theorem requires two auxiliary Lemmas. Lemma 3.6 provides
an inequality for qk+1 in terms on the previous iterate, qk. Lemma 3.7 provides a
further bound. We combine both in an induction proof at the end of the section.

Lemma 3.6. Suppose f is µ-strongly convex and L-smooth. Let xk, hk be the
sequence given by (SGD) and (SPLR). Assume that (7) holds. Then,

E [qk+1 | xk] ≤ (1− µhk)qk ≤
β + rqk
β + qk

qk,(9)

where r = 1− µ
L and β = σ2

2µL .

Proof. Apply Lemma 3.3 with hk given by (SPLR) to obtain

E [qk+1 | xk] ≤ (1− µhk)qk.

We have the following estimate on the learning rate,

hk = 2
fk − f?

|gk|2 + σ2
by (SPLR)

≥ 2
fk − f?

2L(fk − f∗) + σ2
by (4)

=
2

2L+ σ2

fk−f∗

divide by fk − f∗

≥ 2

2L+ σ2

µqk

by (2).

This establishes the second inequality in (9) as follows,

(1− µhk)qk ≤

(
1− 2µ

2L+ σ2

µqk

)
qk ≤

2Lqk + σ2

µ − 2µqk

2L+ σ2

µqk

=
(1− µ

L )qk + σ2

2µL

qk + σ2

2µL

qk

=
rqk + β

qk + β
qk,

where r = 1− µ
L and β = σ2

2µL . �
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Next, we establish the following technical, but elementary Lemma, which is used
to prove the rate.

Lemma 3.7. Define the transformation T ,

T (x) =
β + rx

β + x
x,

for β > 0 and for r ∈ [0, 1). Given b > 0 define

c =
1− r
β + r/b

.

Then, for all k ≥ 0,

T

(
1

ck + b

)
≤ 1

c(k + 1) + b
.

Proof. Consider x = 1
y . Then, define S as the multiplicative inverse of T :

T (x) = T

(
1

y

)
=

1

y

βy + r

βy + 1
:=

1

S(y)
.(10)

Next, we consider the sequence ak := ck + b. We start by expanding the differ-
ence:

S(ak)− ak+1 = ak
βak + 1

βak + r
− (ak + c)

=
ak(1− r − cβ)− cr

βak + r

=
kc(1− r − cβ) + (b(1− r − cβ)− cr)

βck + (βb+ r)
.

This difference is positive if both the denominator and numerator are positive
for k ≥ 0. The denominator’s positivity follows from b, c, r, β ≥ 0. The numerator
is positive for all k ≥ 0 provided

1− r − cβ ≥ 0,

since the choice of c guarantees b(1 − r − cβ) − cr = 0. In fact, positivity of this
expression also holds for our choice of c.

Hence, S(ak)− ak+1 ≥ 0. Then, using (10),

T

(
1

ak

)
=

1

S(ak)
≤ 1

ak+1
=

1

c(k + 1) + b
,

and the lemma follows. �

Proof of Theorem 3.5. We proceed by induction.
The base case corresponds to q0 ≤ 1

αP k+q
−1
0

for k = 0, which clearly holds.

For the induction step, assume that qk ≤ 1
αP k+q

−1
0

. We will apply Lemma 3.7

with b = q−10 and the corresponding c.
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Figure 2. Average of 5 test runs of scheduled SGD with bound
(blue) and Polyak SGD with bound (red) on a quadratic example.
The batch size selected was 100 over 1000 sample points.

E [qk+1|xk] ≤ T (qk) by Lemma 3.6

≤ T
(

1

αP k + q−10

)
by monotonicity of T and hypothesis

≤ 1

αP (k + 1) + q−10

by Lemma 3.7,

which concludes the induction. �

3.5. Comparison of the Polyak and Scheduled Rate Constants. The con-
stant in the rate established in Theorem 3.5 for Polyak SGD can be smaller than
the rate for scheduled SGD in Theorem 3.4. Recall the rates are given by,

αS =
2µ2

σ2 +M2
, αP =

2µ2

σ2 + 2µ2(L− µ)q0
.

Now, we note that αP ≥ αS if

(11) q0 ≤
M2

2µ2(L− µ)
.

Since we can reset the algorithm, this condition will eventually hold, using the
reset value for q0. In Figure 2 we can see the gap between a run of SGD with both
schedules and the non-asymptotic bounds derived. Note that the bound could be
recomputed at each iteration, yielding tighter ones.
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Figure 3. Level sets of f(x, y) = x2 + y2 superimposed on level
sets of formula (SPLR). Left: mini-batch size 20. Right: mini
batch size 200.

4. Numerical Results

In this section, we implement the Polyak adaptive SGD algorithm and compare it
to scheduled SGD. The Polyak SGD code is implemented in PyTorch1. For practical
implementations, we capped the learning rates with a minimum and maximum value
to protect against errors in the estimation of f∗.

The first problem we considered was

f(x) =
1

2N

N∑
i=1

‖x− xi‖2,

for a given data set x1, . . . , xN ∈ R2. The stochastic gradients were obtained by
taking a different random mini-batch of fixed size M at each iteration. A mini-batch
of size M is a random subset I ⊂ [1, . . . , N ] with |I| = M . Then,

fI =
1

2|I|
∑
i∈I
‖x− xi‖2

and the stochastic gradient is the gradient of fI .
In Figure 3, we illustrate the learning rate as a function of the mini-batch size

and the location of the current iterate. As expected, see (SPLR), the learning rate
increases when the mini-batch noise is smaller, which happens when we have a
larger mini-batch.

We see, in Figure 4, how Polyak SGD compares to two schedules of SGD. The
first schedule is a typical deep learning schedule that reduces the learning rate every
hundred steps by a fixed amount (in this case, a sixth). The second is the optimal
schedule (SLR).

In Figure 5, we share a special case where we start close to an optimal value,
which Polyak immediately recognizes by lowering the learning rate.

4.1. Deep Learning Example. We trained an AllCNN architecture, [SDBR14],
for image classification on CIFAR-10. Our baseline was trained using SGD and the
schedule we used reduces the learning rate by a factor of five every 60 epochs. We
used no momentum and no regularization. In Figure 6, we see that we obtain similar

1https://github.com/marianapraz/polyakSGD
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Figure 4. Comparison of SGD with Polyak (adaptive) SGD. Top
left: paths of optimally scheduled SGD, epoch scheduled SGD,
and Polyak (adaptive) SGD. From one path it is not clear which
algorithm is faster. Bottom left: average excess loss over 40 runs of
each algorithm. Now it is clear that the Polyak algorithm is faster
on average. Top Right: plots of a path. Bottom right: illustration
of the learning rates computed.
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Figure 5. Comparison of SGD with Polyak (adaptive) SGD. In
the case where the initial value is close to optimal, (non-optimally)
scheduled SGD forgets the good initialization. On the other hand,
the Polyak method detects the good initialization and improves
the values.
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Figure 6. Comparison of scheduled SGD with Polyak SGD. The
first plot is the training loss and the second one is the test error.

results in minimizing the training loss without impacting the testing error (the most
relevant metric for the success of a neural net training). The schedule of SGD for
the CIFAR-10 dataset has already been tuned very well, so it performs similarly to
Polyak SGD, which required no tuning. The estimate of f∗ was obtained with one
run of scheduled SGD. In practice, networks are trained many times using similar
parameters, so Polyak SGD could provided some advantages in training time when
averaged over many runs.
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