
Spectral analysis of continuous FEM for hyperbolic PDEs:

influence of approximation, stabilization, and time-stepping

Sixtine Michel∗, Davide Torlo∗, Mario Ricchiuto∗, Rémi Abgrall†

March 31, 2021

Abstract

We study continuous finite element dicretizations for one dimensional hyperbolic partial differential
equations. The main contribution of the paper is to provide a fully discrete spectral analysis, which is
used to suggest optimal values of the CFL number and of the stabilization parameters involved in dif-
ferent types of stabilization operators. In particular, we analyze the streamline-upwind Petrov-Galerkin
(SUPG) stabilization technique, the continuous interior penalty (CIP) stabilization method and the lo-
cal projection stabilization (LPS). Three different choices for the continuous finite element space are
compared: Bernstein polynomials, Lagrangian polynomials on equispaced nodes, and Lagrangian poly-
nomials on Gauss-Lobatto cubature nodes. For the last choice, we only consider inexact quadrature
based on the formulas corresponding to the degrees of freedom of the element, which allows to obtain
a fully diagonal mass matrix. We also compare different time stepping strategies, namely Runge-Kutta
(RK), strong stability preserving RK (SSPRK) and deferred correction time integration methods. The
latter allows to alleviate the computational cost as the mass matrix inversion is replaced by the high
order correction iterations.

To understand the effects of these choices, both time-continuous and fully discrete Fourier analysis
are performed. These allow to compare all the different combinations in terms of accuracy and stability,
as well as to provide suggestions for optimal values discretization parameters involved. The results are
thoroughly verified numerically both on linear and non-linear problems, and error-CPU time curves are
provided. Our final conclusions suggest that cubature elements combined with SSPRK and CIP or LPS
stabilization are the most promising combinations.

Keywords: Continuous Galerkin method, Spectral element method, Streamline Upwind Petrov–
Galerkin, Local Projection Stabilization, Continuous Interior Penalty, Dispersion analysis, cubature
nodes, Fekete nodes, Deferred Correction scheme

MSC: 65M60

1 Introduction

In this work we compare different numerical methods that can approximate the solution of the one
dimensional hyperbolic conservation laws

∂tu(x, t) + ∂xf(u(x, t)) = 0 x ∈ Ω ⊂ R, t ∈ R+, (1)

where Ω ⊂ R is an interval, f : RD → RD is the flux function and u : Ω → RD is the unknown of the
system of equations. For the spectral analysis of the numerical methods we will mainly focus on the
particular case of a linear flux

f(u(x, t)) = au(x, t) , a = const . (2)

In this work, we compare different explicit high order accurate schemes based on the continuous
Galerkin (CG) approach. In general, the standard Finite Element Method (FEM) derived by this ap-
proach require the inversion of a large sparse mass matrix. This procedure can be expensive as the

∗Team CARDAMOM, Inria Bordeaux sud-ouest, - 200 av. de la vieille tour, 33405 Talence, France
†Institut für Mathematik, Winterthurstrasse 190, CH 8057 Zürich, Switzerland.

1

ar
X

iv
:2

10
3.

16
15

8v
1

 [
m

at
h.

N
A

]
 3

0
M

ar
 2

02
1

matrix multiplication must be iterated for all the time steps. Various techniques have been introduced
to overcome the mass matrix inversion while keeping the high order accuracy of the scheme.

The first strategy we study is the one proposed in [1]. There, to avoid the full mass matrix, a mass
lumping is introduced, transforming the mass matrix into a diagonal one. The deferred correction (DeC)
iterative time integration method alters the right–hand side in order to recover the original order of
accuracy. Another approach consists of a careful choice of quadrature points and basis functions in
order to automatically obtain a diagonal mass matrix. We denote such elements as cubature elements
[29]. The classical use of Runge–Kutta methods will provide the high order accuracy also for the time
discretization.

The second aspect we will focus on is the stabilization technique. We emphasize that without any
special treatment on the boundaries, such as the ones in [4, 5], the CG methods are not stable for
hyperbolic problems and there is the need of stabilization. In particular, this is always true when
using periodic boundary conditions (BC). The CG discretizations with stabilization techniques can have
dissipation levels that are comparable to the ones brought by discontinuous Galerkin (DG) with upwind
numerical flux of the same order of accuracy, still remaining decently stable [32, 33]. The stabilization
terms play an important role and we will compare three of them. The first is the streamline upwind
Petrov–Galerkin (SUPG) stabilization [18, 13], which is strongly consistent, but it is also introducing new
terms in the mass matrix which are necessary to retain the appropriate consistency order. This can only
be alleviated when using DeC time stepping. The second approach is the so–called continuous interior
penalty (CIP) method [16, 19, 14], which penalizes the jump of the derivative of the solution across cell
boundaries. This stabilization does not affect the mass matrix and, therefore, can be easily combined
with mass–matrix free methods. The last is the local projection stabilization [8], which penalizes the
L2 projection of the gradient of the error within the elements. This technique does not affect the mass
matrix, but it requires the solution of another linear system for the L2 projection. In this respect, the
choice of the finite element space and of the quadrature have enormous impact on the cost of the method.

The goal of this work is to analyze the different methods and their combinations, and give suggestions
concerning the most convenient choices in terms of accuracy, stability, and cost. To achieve this objective
an important role is played by a spectral analysis which we perform both in the time-continuous and
fully discrete cases. The analysis reveals the best parameters (stabilization and CFL coefficients) that
can be stably used in practice.

Numerical simulations for both linear and non-linear scalar problems, and for the shallow water
system confirm the theoretical results, and allow to further investigate the impact of the discretization
choices on the performance of the schemes and on their cost.

The paper is organized as follows. In Section 2 we introduce the different discretization methods,
starting from the choice of the elements, then discussing the stabilization terms and finally presenting
the different time integration methods. Sections 3 and 4 are dedicated to the Fourier stability analysis.
In Section 5 we provide some elements concerning the extension of the stabilization methods discussed to
nonlinear problems, and finally in Section 6 we show numerical results on linear and nonlinear problems.
The paper is ended by a summary and overlook on future perspectives in Section 7.

2 Numerical Discretization

We are interested in the approximation of solutions of (1) on a tessellation of non overlapping celles,
which we denote by Ωh. We denote by K the generic cell of Ωh, and more precicely Ωh =

⋃
K. We

also introduce the set of internal element boundaries (cell faces in 2D and 3D, cell nodes in 1D) of Ωh,
which we denote by Fh. h denotes the characteristic mesh size of Ωh. The discrete solution is sought in
a continuous finite element space V ph = {vh ∈ C0(Ωh) : vh K ∈ Pp(K) ∀K ∈ Ωh}. We are interested
in particular nodal finite elements, and we will denote by ϕj the basis functions associated to the degree
of freedom j, so that V ph = span {ϕj}j∈Ωh

and we can write uh(x) =
∑
j∈Ωh

ujϕj(x).

The unstabilized approximation of (1) reads: find uh ∈ V ph such that for any vh ∈Wh ⊂ L2(Ωh)∫
Ω

vh∂tuhdx−
∫

Ω

∂xvhf(uh) dx+ [vhf(uh)]∂Ω = 0. (3)

The main topic of this paper is the study of the linear stability of (3) and of several stabilized
variants using Fourier’s analysis. We will therefore assume periodic boundary conditions. We aim at

2

characterizing the schemes both in terms of their stability range and their accuracy in the fully discrete
case, for different choices of the stabilization strategy and of the time stepping. The extensions of these
discretization techniques to more dimensions is well known in literature, even if sometimes not uniquely
defined. We believe that the one dimensional study can provide useful information also in that context.

As already said, we will consider several stabilized variants of (3) which can be all written in the
generic form: find uh ∈ V ph that satisfies∫

Ω

vh(∂tuh + ∂xf(uh))dx+ S(vh, uh) = 0, ∀vh ∈ V ph (4)

having re-integrated by parts and used the continuity of the approximation, and the periodicity of the
boundary conditions to pass to the strong form of the PDE, and with S being a bilinear operator defined
on V ph × V

p
h . Several different choices for S exist, and are discussed in detail in the following sections.

2.1 Stabilization Terms

2.1.1 Streamline-Upwind/Petrov-Galerkin - SUPG

This method was introduced in [25] (see also [26, 13] and references therein) and is strongly consistent
in the sense that it vanishes when replacing the discrete solution with the exact one. It can be written
as a Petrov-Galerkin method replacing vh in (3) with a test function belonging to the space

Wh := {wh : wh = vh + τK∂uf(uh)∂xvh; vh ∈ V ph }. (5)

Here τK denotes a positive definite stabilization parameter with the dimensions of a time-step that we
will assume to be constant for every element. Although other definitions are possible, here we will
evaluate this parameter as

τK = δ
hK

‖∂uf‖K
where hK is the cell diameter and the denominator represents a reference value of the flux Jacobian norm
on the element K.

The final stabilized variational formulation reads∫
Ω

vh∂tuh dx+

∫
Ω

vh∂xf(uh) dx+
∑
K∈Ω

∫
K

(
∂uf(uh)∂xvh)τK (∂tuh + ∂xf(uh)) dx︸ ︷︷ ︸

S(vh,uh)

= 0. (6)

To characterize the accuracy of the method, we can use the consistency analysis discussed e.g. in [6,
§3.1.1 and §3.2]. In particular, of a finite element polyomial approximation of degree p we can easily
show that given a smooth exact solution ue(t, x), replacing formally uh by the projection of ue on the
finite element space, we can write

ε(ψh) :=
∣∣∣ ∫

Ω

ψh∂t(u
e
h − ue) dx−

∫
Ω

∂xψh(∂xf(ueh)− ∂xf(ue)) dx

+
∑
K∈Ω

∑
l,m∈K

ψl − ψm
k + 1

∫
K

(
∂uf(uh)∂xϕi)τK (∂t(u

e
h − ue) + ∂x(f(ueh)− f(ue))) dx

∣∣∣ ≤ Chp+1,
(7)

with C a constant independent of h, for all functions ψ of class at least C1(Ω), of which ψh denotes
the finite element projection. A key point in this estimate is the strong consistency of the method
allowing to subtract its formal application to the exact solution (thus subtracting zero), and obtaining
the above expression featuring differences between the exact solution/flux and its evaluation on the finite
element space. Preserving this error estimate precludes the possibility of lumping the mass matrix, and
in particular the entries associated to the stabilization term. This makes the scheme relatively inefficient
when using standard explicit time stepping.

As a final note, for a linear flux (2), which is the main focus of the analysis of this paper, and for
exact integration with τK = τ , a classical result is obtained in the time continuous case by testing with
vh = uh + τ ∂tuh to obtain [13]∫

Ωh

∂t

(
u2
h

2
+ τ2 (a∂xuh)2

2

)
+

∫
Ωh

a∂x

(
u2
h

2
+ τ2 (∂tuh)2

2

)
= −

∫
Ωh

τ(∂tuh + a∂xuh)2. (8)

3

With periodic boundary conditions this easily shows that the norm |||u|||2 :=
∫

Ωh

u2
h

2
+ τ2 (a∂xuh)2

2
dx is

non-increasing. The interested reader can refer to [13] for the analysis of some (implicit) fully discrete
schemes.

2.1.2 Continuous Interior Penalty - CIP

An alternative, which maintains the structure of the mass matrix, is the continuous interior penalty
(CIP) stabilization used in [16, 19, 14]. This method has been develop by E. Burman and P. Hansbo in
[15], but it can be seen as a variation of the method originally proposed by Douglas and Dupont [21].

This method stabilizes convection-diffusion-reaction problems by adding a least-squares term based
on the jump in the gradient of the discrete solution over element boundaries. With this simple concept
we obtain stability for convection-reaction-diffusion problems also in the vanishing viscosity limit.

The method reads∫
Ωh

vh∂tuh dx+

∫
Ωh

vh∂xf(uh) dx+
∑
f∈Fh

∫
f

τf [∂xvh] · [∂xuh] dΓ

︸ ︷︷ ︸
S(vh,uh)

= 0, (9)

with [·] denoting the jump of a quantity across a face f, and where we recall that Fh is the collection
of internal boundaries (points in 1D), and f are its elements. In one space dimension the last integral
reduces to a point evaluation. Although other definitions are possible, we evaluate the scaling parameter
in the stabilization as

τf = δ h2
f ‖∂uf‖f (10)

with ‖∂uf‖f a reference value of the norm of the flux Jacobian on f and hf a characteristic size of the
mesh neighboring f.

The advantage of this method is that the formulation remains symmetric, and that the mass matrix
can be lumped for efficient time marching if the finite element space allows it. The drawback is a slight
increase in the stencil associated to the use of the gradients in all neighboring elements. Note that
for higher order approximations [17, 28] suggest the use of jumps in higher derivatives to improve the
stability of the method. In this work, we only focus on the gradient jump stabilization. For orders up
to 4 this seems to be enough to get L2 stability and allows the study in more detail the impact of the
coefficient δ in the stabilization.

As before, we can easily characterize the accuracy of the method following e.g. [6, §3.1.1 and §3.2],
and show that for all functions ψ of class at least C1(Ω), of which ψh denotes the finite element projection,
we have the truncation error estimate

ε(ψh) :=
∣∣∣ ∫

Ω

ψh∂t(u
e
h − ue) dx−

∫
Ω

∂xψh(∂xf(ueh)− ∂xf(ue) dx

+
∑
f∈Fh

∫
f

τf [∂xψh] · [∂x(ueh − ue)]
∣∣∣ ≤ Chp+1,

(11)

with C a constant independent of h. The estimate is again a direct consequence of standard approximation
results applied to ueh − ue and to its derivatives.

The symmetry of the stabilization makes is rather easy to derive a linear stability estimate. In
particular, for a linear flux with periodic boundary conditions we can easily show that∫

Ωh

∂t
u2
h

2
= −

∑
f∈Fh

∫
f

τf [∂xuh]2 (12)

which can be integrated in time to obtain a bound on the L2 norm of the solution.

2.1.3 Local Projection Stabilization - LPS

Another symmetric stabilization approach is the Local Projection Stabilization (LPS) method. Its orig-
inal formulation was presented in [10] for Stokes equations. Then, the LPS was successfully extended
to transport problems in [11] and applications of local projection methods to Oseen and Navier-Stokes

4

equations were studied in [12, 8]. The local projection method also aims at providing some control on the
fluctuations of the gradient of the discrete solution. The method can be written as follows: find uh ∈ V ph
such that ∀vh ∈ V ph

∫
Ωh
vh∂tuh dx+

∫
Ωh
vh∂xf(uh) dx+

∑
K∈Ωh

∫
K

τK∂xvh(∂xuh − wh) dx

︸ ︷︷ ︸
S(vh,uh)

= 0,

∫
Ωh
vhwh dx−

∫
Ωh
vh∂xuh dx = 0.

(13)

For this method, the stabilization parameter is evaluated as

τK = δhK‖∂uf‖K . (14)

Compared to the CIP approach this method has the drawback of requiring the mass matrix inversion in
the gradient L2 projection represented by the second equation in (13). So the possibility of simplifying
this operator, and, more precisely, to lump the mass matrix, appear as essential elements for its efficient
implementation.

As before we can easily characterize the accuracy of this method. The truncation error estimate for
a polynomial approximation of degree p reads in this case

ε(ψh) :=
∣∣∣ ∫

Ω

ψh∂t(u
e
h − ue) dx−

∫
Ω

∂xψh(∂xf(ueh)− ∂xf(ue)) dx

+
∑
KΩh

∫
K

∂xψh(∂xu
e
h − ∂xueh) +

∑
KΩh

∫
K

∂xψh(∂xu
e − weh)

∣∣∣ ≤ Chp+1,
(15)

where the last term is readily estimated using∫
Ωh

ψh(weh − ∂xue) dx =

∫
Ωh

vh(∂xu
e
h − ∂xue) ≤ O(hp).

Finally, for a linear flux and taking τK = τ , as for the SUPG, we can test with vh = uh in the first
of (13), and vh = τwh in the second and sum up the result to get (using the periodicity)∫

Ωh

∂t
u2
h

2
= −

∑
K

∫
K

τ(∂xuh − wh)2, (16)

which can be integrated in time to obtain a bound on the L2 norm of the solution.

2.2 Finite Element Spaces and Quadrature Rules

We describe the one-dimensional finite element spaces we consider in the Fourier analysis. References to
the corresponding multi-dimensional extensions are suggested for completeness where appropriate.

In a one dimensional discretized space Ωh an element K is a segment, i. e., K = [xi, xi+1] for some
i. We define in this section the restriction of the basis functions of V ph on each element K, which are
polynomials of degree at most p. We denote with {ϕ1, . . . , ϕN} the basis functions of Pp(K), and their
definitions amounts to describe the degrees of freedom, i.e., the dual basis. In one dimension, N = p+ 1.
We consider two families of polynomials:

1. Lagrange polynomials. They are uniquely defined by the interpolation points ξj with ξ1 = xi <
. . . < ξj < . . . < ξN = xi+1. We study two cases

• Equidistant points: ξj = xi + j
xi+1−xi

p
for j = 0, . . . , p,

• Gauss–Lobatto points: the roots of Legendre polynomial of degree p + 1 mapped onto
[xi, xi+1].

2. Bernstein polynomials. Linearly mapping K onto [0, 1] they are defined for j = 0, . . . , p by

Bj(x) =

(
p
j

)
xp−j(1− x)j .

5

Bernstein polynomials verify the following properties
p∑
j=0

Bj(x) ≡ 1, Bj(x) ≥ 0 ∀x ∈ [0, 1].

Even if the degrees of freedom associated to this approximation have no physical meaning, we
identify them geometrically with the Greville points ξj = j

p
.

The use of different polynomial basis functions leads to different properties. Let us remark that the
evaluation of integrals is done by Gaussian quadrature formulae, because of their efficiency. If Gauss
points are used in the discretization of the polynomials, the same points will be used in the quadrature
formula. Thanks to this, we see that for Lagrange polynomials defined on Gauss quadrature points∫ xi+1

xi

ϕl(x)ϕj(x) dx = (xi+1 − xi)ωlδjl with ωl :=
1

(xi+1 − xi)

∫ xi+1

xi

ϕ2
l (x) dx > 0.

This leads to a diagonal local mass matrix

Mi
l,j =

(∫ xi+1

xi
ϕl(x)ϕj(x) dx

)
.

This does not hold for Lagrange polynomials defined on equidistant points or the Bernstein polynomials.

Another important property that we need to effectively apply the DeC method of [3] is the positivity
of the lumped mass matrix entries, i.e., Dk,k :=

∑N
j=0

∫ xi+1

xi
ϕjϕk dx =

∫ xi+1

xi
ϕk dx > 0. The positivity

of these values is trivially verified for Bernstein polynomials and for Lagrange polynomials with matching
quadrature formulae. In the case of equispaced points Lagrangian polynomials, the lowest degree (p ≤ 7
in one dimension) they also verify the positivity of the lumped matrix. This is not true in the case of two
dimensional problems and triangular meshes, where already for degree p = 2 we have nonpositive values
in the diagonal of the lumped matrix. This mainly motivated the choice of Bernstein polynomials, as
well as the Lagrange interpolation with the Gauss–Lobatto points.

In the following we will use the wording

• basic elements for Lagrangian polynomials on equispaced points with Gauss–Legendre quadrature;

• cubature elements for Lagrangian polynomials on on Gauss–Lobatto points and quadrature rule
using the same points;

• Bernstein elements for Bernstein polynomials with Gauss–Legendre quadrature.

2.3 Time Integration

The finite element semi-discrete equations constitute a coupled system of ordinary differential equations
which can be written as

MdU

dt
= r(t) (17)

where U is the collection of all the degrees of freedom, M and r are the global mass matrix and right-hand
side term defined in the previous sections through the element definition and stabilization terms. We
must remark that M is diagonal only in the case of the cubature elements without the SUPG stabilization,
while, for all other choices, it is a sparse non–diagonal matrix.

In the following, we describe two different time integration strategies: explicit Runge–Kutta (RK)
methods and their strong stability preserving (SSP) variant; Deferred Correction, which allows to avoid
the mass matrix inversion through the correction iterations.

2.3.1 Explicit Runge–Kutta and Strong Stability Preserving Runge–Kutta schemes

Runge–Kutta time integration methods can be described by the following one step procedure

U (0) := Un,

U (s) := Un + ∆t

s−1∑
j=0

αsjM−1
r(U (j)) s = 1, . . . , S,

Un+1 := Un + ∆t

S∑
s=0

βsM−1
r(U (s)).

(18)

6

Here, we use the superscript n to indicate the timestep and the superscript in brackets (s) to denote the
stage of the method. In particular, we will refer to Heun’s method with RK2, to Kutta’s method with
RK3 and the original Runge–Kutta fourth order method as RK4. The respective Butcher’s tableau can
be found in Appendix A in Table 8.

A particular case is that of SSPRK methods introduced in [37]. They are essentially convex combi-
nations of forward Euler steps, and can be rewritten as follows

U (0) := Un,

U (s) :=

s−1∑
j=0

(
γsjU

(j) + ∆tµsjM−1
r(U (j))

)
s = 1, . . . , S,

Un+1 := U (S),

(19)

with γsj , µ
s
j ≥ 0 for all j, s = 1, . . . , S. We will consider here the second order 3 stages SSPRK(3,2)

presented by Shu and Osher in [37], the third order SSPRK(4,3) presented in [35, Page 189], and the
fourth order SSPRK(5,4) defined in [35, Table 3]. For complete reproducibility of the results, we put all
their Butcher’ tableaux in Appendix A in Table 9.

2.3.2 The Deferred Correction scheme

Deferred correction methods were originally introduced in [22] as explicit solvers of ODEs, but soon
implicit [31] or positivity preserving [34] versions and extensions to PDE solvers [1] were studied. In
[1, 7, 3] the method is also used to avoid the inversion of the mass matrix, applying a mass lumping
and adding correction iterations to regain the order of convergence. This is only achievable when the
lumped matrix have only positive values on its diagonal. Hence, the use of Bernstein polynomials is
recommended in [1], but also the cubature elements can serve the purpose.

tn = tn,0

Un,0

tn,1

Un,1

tn,m

Un,m

tn,M = tn+1

Un,M

Figure 1: Subtimesteps inside the time step [tn, tn+1]

Consider a discretization of each timestep into M subtimesteps as in Figure 1. For each subtimestep
the goal is to find the solution of the integral form of the semidiscretized ODE (17) as

M
(
Un,m − Un,0

)
−
∫ tn,m

tn,0
r(U(s))ds ≈ L2(U)m := M

(
Un,m − Un,0

)
−∆t

∑
z∈J0,MK

ρmz r(Un,z) = 0, (20)

with U =
(
Un,0, . . . , Un,M

)
and having used high order quadrature with points tn,0, . . . , tn,M and weights

ρmz for every different subinterval (see [1, 7, 3] for details). The algebraic system L2(U∗) = 0 is in general
implicit and nonlinear and may not be easy to solve. The DeC procedure approximates iteratively this
solution by successive corrections relying on a a low order easy–to–invert operator L1. This operator is
typically obtained using an explicit timestepping and a lumped mass matrix, i.e.,

M
(
Un,m − Un,0

)
−
∫ tn,m

tn,0
r(U(s))ds ≈ L1(U)m := D

(
Un,m − Un,0

)
−∆tβmr(Un,0) = 0. (21)

Here, D denotes a diagonal matrix obtained from the lumping of M, i.e., Dii :=
∑
j Mij , and βm :=

tn,m−tn,0
tn+1−tn . The values of the coefficients βm and ρmz for equispaced subtimesteps can be found in Ap-

pendix A. Denoting with the superscript (k) index the iteration step, we describe the DeC algorithm as

Un,m,(0) := Un m = 0, . . . ,M, (22a)

Un,0,(k) := Un k = 0, . . . ,K, (22b)

L1(U (k)) = L1(U (k−1))− L2(U (k−1)) k = 1, . . . ,K, (22c)

Un+1 := Un,M,(K). (22d)

7

It has been proven [1] that if L1 is coercive, L1 − L2 is Lipschitz with a constant α1∆t > 0 and
the solution of L2(U∗) = 0 exists and is unique, then, the method converges with an error of O(∆tK).
Hence, choosing K = M + 1 we obtain a K-th order accurate scheme.

Relying only on the inversion of the the low order operator, the method has for each iteration a cost
equivalent essentially to the assembly of the right hand side, whatever the complexity of the mass matrix
appearing in L2. The only requirement that is necessary for the DeC approach is the invertibility of the
lumped mass matrix, which limits its application to equispaced Lagrange elements only to the degrees
for which this is the case, and to other choices as the Bernstein and cubature elements introduced earlier.

Finally, for the following analysis we note that the DeC method can be cast in a form similar to a
Runge–Kutta method by rewriting (22c) as

Un,m,(k+1) = Un,m,(k) − D−1M
(
Un,m,(k) − Un,0,(k)

)
+

M∑
j=0

∆tρmj D−1
r(Un,j,(k)). (23)

Comparing with (19), we can immediately define the SSPRK coefficients associated to DeC as γ
m,(k+1)

m,(k) =

I − D−1M with I the identity matrix, γ
m,(k+1)

0,(0) = D−1M, µ
m,(k+1)

r,(k) = ρmr for m, r = 0, . . . ,M and
k = 0, . . . ,K − 1 and instead of the mass matrix, we use the diagonal one.

3 Fourier Analysis

The dispersion and the stability properties of numerical methods can be shown by means of a spectral
analysis. We will focus on the linear case (2) with periodic boundary conditions:

∂tu+ a∂xu = 0, x ∈ [0, 1]. (24)

The main idea is to investigate the semi and fully discrete evolution of periodic waves represented by the
the ansatz

u = Aei(kx−ξt) = Aei(kx−ωt)eεt with ξ = ω + iε, i =
√
−1. (25)

Here, ε denotes the damping rate, while the wavenumber is denoted by k = 2π/L with L the wavelength.
We recall that the phase velocity defined as

C =
ω

k
(26)

represents the celerity with which waves propagate in space, and it is in general a function of the
wavenumber. Substituting (25) in the advection equation (24) leads to the well known result

C = a and ε = 0. (27)

The objective of the next sections is to provide the semi and fully discrete equivalents of the above
relations for the finite element methods introduced earlier. We will consider polynomial degrees up
to 3, for all combinations of different stabilization methods and time integration. This will also allow
to investigate the parametric stability with respect to the time step (CFLnumber) and stabilization
parameter δ. In practice, for each choice we will evaluate the accuracy of the discrete approximation of
ω and ε, and we will provide conditions for the non-positivity of the damping ε. For completeness, the
study is performed first in the semi-discrete time continuous case in Section 3.1. We the consider the
fully discrete schemes in Section 3.2.

3.1 Preliminaries and time continuous analysis

The Fourier analysis for numerical schemes on the periodic domain is based on Parseval theorem.

Theorem 3.1 (Parseval). Let û(k) :=
∫ 1

0
u(x)e−i2πkxdx for k ∈ Z be the Fourier modes of the function

u. The L2 norms of the function u and of the Fourier modes coincide, i.e.,∫ 1

0

u2(x)dx =
∑
k∈Z

|û(k)|2. (28)

8

Thanks to this theorem, we can study the amplification and the dispersion of the basis functions of
the Fourier space. The key ingredient of this study is the repetition of the stencil of the scheme from one
cell to another one. In particular, using the ansatz (25) we can write local equations coupling degrees
of freedom belonging to neighbouring cells through a multiplication by the factor of eiθ representing the
shift in space along the oscillating solution. The dimensionless coefficient

θ := k∆x (29)

is a discrete reduced wave number which naturally appears all along the analysis. Formally replacing the
ansatz in the scheme we end up with a dense algebraic problem of dimension p (the polynomial degree)
reading in the time continuous case

(24) and (25) ⇒ −iξMU + aKxU = 0 (30)

with (M)ij =

∫
Ω

φiφjdx, (Kx)ij =

∫
Ω

φi∂xφjdx+ S(φi, φj), (31)

with φj the finite element basis functions and U the array of all the degrees of freedom. Although
system (30) is in general a global eigenvalue problem, we can reduce its complexity by exploiting more

explicitly the ansatz (25). More exactly, we can introduce elemental vectors of unknowns ŨK , which, for
continuous finite elements, are a arrays of p degrees of freedom including only one of the two boundary
nodes. Using the periodicity of the solution and denoting by K ± 1 the neighboring elements, we have

ŨK±1 = e±θŨK . (32)

This allows to show that (30) is equivalent to a compact system (we drop the subscript K as they system
is equivalent for all cells)

− iξM̃Ũ + aK̃xŨ = 0, (33)

where the matrices M̃ and K̃ are readily obtained from the elemental discretization matrices by using
(32).

As shown in [36] some particular cases can be easily studied analytically. For example for the semidis-
cretized P1 CG scheme without stabilization one easily finds that

ω

k
= a

sin(θ)

θ

3

2 + cos(θ)
and ε = 0. (34)

As the degree of the approximation increases, so does the size of the eigenvalue problem. For the non
stabilized CG P2 scheme we can still find an analytical solution associated to the quadratic equation (cf
also [36]) reading

ω1,2

k
= a

4 sin(θ)± 2
√

40 sin2(θ
2
)− sin2(θ)

θ(cos(θ)− 3)
. (35)

For more general cases, the study needs to be performed numerically.

Defining with λi(θ) the eigenvalues of (33), ωi(θ) = Im(λi(θ)) and εi(θ) = −Re(λi(θ)) are the re-
spective phase and damping coefficients of each mode of the solution. In practice, we solve numerically
the eigenvalue problem (33) for θ = k∆xp = 2π

Nx
varying in [0, π], where Nx is the number of the nodes

in each wavelength and ∆xp = ∆x/p is the average distance between degrees of freedom. However, to
satisfy the Nyquist stability criterion, it is necessary to have ∆xp ≤ L

2
, with L the wavelength.

As an example, in Figure 2 we plot ω and ε and we see that CG scheme does not have diffusive terms,
or, in other words, there is no damping (ε = 0) in the CG scheme. For clarity of the pictures, we plot in
Figure 2 only the principal eigenvalue of each system (p = 1, 2, 3), i. e., the one that minimizes |ωi − ak|.
As expected, with P1 elements, the scheme is more dispersive than with P2 or P3 elements, while, for all
of them, there is no dissipation, since the scheme is not stabilized and there is no time discretization.

We apply the same analysis to stabilized methods. The results obtained with SUPG, CIP and
LPS stabilizations lead to an almost identical result shown in Figure 3 (reporting the LPS data). The
interested reader can access all the other plots online [30]. From the plot we can see that the increase

9

in polynomial degree provides the expected large reduction in dispersion error, while retaining a small
amount of numerical dissipation, which permits the damping of parasite modes.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
:

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.5

0.0

0.5

1.0

1.5

Da
m

pi
ng

 :

1e 15
1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

Spatial eigenanalysis, with basic elements and lagrange basis function and any stabilization method

Figure 2: Phase ω (left) and amplification ε (right) with basic elements without stabilization for P1,P2 and
P3.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
:

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

8

6

4

2

0

Da
m

pi
ng

 :

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

Spatial eigenanalysis, with basic elements and lagrange basis function and LPS stabilization method

Figure 3: Phase ω (left) and amplification ε (right) with basic elements with LPS stabilization for P1,P2 and
P3.

10

3.2 Fully discrete analysis

3.2.1 Methodology

We analyze now the fully discrete schemes obtained using the RK, SSPRK and DeC time marching
methods presented in Section 2.3. Let us consider as an example the SSPRK schemes (19). If we define
as A := M−1Kx we can write the schemes as follows

U(0) := Un

U(s) :=
∑s−1
j=0

(
γsjU

(j) + ∆tµsjAU
(j)
)
, s ∈ J1, SK,

Un+1 := U(S).

(36)

Expanding all the stages, we can obtain the following formulation:

Un+1 = U(0) +

S∑
j=1

νj∆t
jAjU(0) =

(
I +

S∑
j=1

νj∆t
jAj

)
Un, (37)

where coefficients νj in (37) are obtained as combination of coefficient γsj and µsj in (36) and I is
the identity matrix. For example, coefficients of the fourth order of accuracy scheme RK4 are ν1 = 1,
ν2 = 1/2, ν3 = 1/6 and ν4 = 1/24.

We can now compress the problem proceeding as in the time continuous case. In particular, using
(32) one easily shows that the problem can be written in terms of the local p× p matrices Ã := aM̃−1K̃x
and in particular that

Ũn+1 = GŨn with G := eε∆te−iω∆t ≈

(
Ĩ +

S∑
j=1

νj∆t
jÃj

)
,

where G ∈ Rp×p is the amplification matrix depending on θ,∆t and ∆x. Considering each eigenvalue λi
of G, we can write the following formulae for the corresponding phase ωi and damping coefficient εi{
eεi∆t cos(ωi∆t) = Re(λi),

−eεi∆t sin(ωi∆t) = Im(λi),
⇔

{
ωi∆t = arctan

(
−Im(λi)
Re(λi)

)
,

(eεi∆t)2 = Re(λ)2 + Im(λ)2,
⇔

{ωi
k

= arctan
(
−Im(λi)
Re(λi)

)
1
k∆t

,

εi = log (|λi|) 1
∆t
.

For the DeC method we can proceed with the same analysis transforming also the other involved matrices
into their Fourier equivalent ones. Using (23) these terms would contribute to the construction of G not

only in the Ã matrix, but also in the coefficients νj , which become matrices as well. At the end we just
study the final matrix G and its eigenstructure, whatever process was needed to build it up.

The matrix G represents the evolution in one timestep of the Fourier modes for all the p different
types of degrees of freedom. The damping coefficients εi tell if the modes are increasing or decreasing in
amplitude and the phase coefficients ωi describe the phases of such modes.

We remark that a necessary condition for stability of the scheme is that |λi| ≤ 1 or, equivalently, εi ≤ 0
for all the eigenvalues. The goal of our study is to find the largest CFL number for which the stability
condition is fulfilled and such that the dispersion error is not too large. Furthermore, we notice that the
matrix G depends not only on θ,∆x and ∆t, but also on at the stabilization coefficients τK . Hence, the
proposed analysis should contain an optimization process also along the stabilization parameter. With
the notation of section §2, we will in particular set

SUPG : τK = δ∆x/|a|,

LPS : τK = δ∆x|a|,

CIP : τf = δ∆x2|a|.

One of our objectives is to explore the space of parameters (CFL,δ), and to propose criteria allowing
to set these parameters to provide the most stable, least dispersive and least expensive methods. A
clear and natural criterion is to exclude all parameter values for which we obtain a positive damping
coefficient ε(θ) > 10−12 for any value of the reduced wavenumber θ (taking into account the machine

11

precision errors that might occur). Doing so, we obtain what we will denote as stable area in (CFL, θ)
space. For all the other points we propose 3 strategies to minimize the product between error and
computational cost. In the following we describe the 3 strategies to find the best parameters couples
(CFL,δ):

1. maximize the CFL in the stable area;

2. minimize a global solution error, denoted by ηu, while maximizing the CFL in the stable area. In
particular, we start from the relative square error of u[

u(t)− uex(t)

uex(t)

]2

=
[
eεt−it(ω−ωex) − 1

]2
(38)

=
[
eεt cos(t(ω − ωex))− 1

]2
+
[
eεt sin(t(ω − ωex))

]2
(39)

=e2εt − 2eεt cos(t(ω − ωex)) + 1. (40)

Here, we denote with ε and ω the damping and phase of the principal mode. For a small enough
dispersion error |ω − ωex| � 1, we can expand the cosine in the previous formula in a truncated
Taylor series as [

u(t)− uex(t)

uex(t)

]2

≈
[
eεt − 1

]2︸ ︷︷ ︸
Damping error

+ eεtt2 [ω − ωex]2︸ ︷︷ ︸
Dispersion error

. (41)

We then compute an error at the final time T = 1, over the whole phase domain, using at least 3
points per wave 0 ≤ k∆xp ≤ 2π

3
, with ∆xp = ∆x

p
, and p the degree of the polynomials. We obtain

the following L2 error definition,

ηu(ω, ε)2 :=
3

2π

[∫ 2π
3

0

(eε − 1)2dk +

∫ 2π
3

0

eε(ω − ωex)2dk

]
. (42)

Recalling that ε = ε(k∆x,CFL, δ) and ω = ω(k,∆x,CFL, δ) and ωex = ak, we need to further set
the parameter ∆xp. We choose it to be large ∆xp = 1, with the hope that for finer grids the error
will be smaller. Finally, we seek the couple (CFL∗, δ∗) allowing to solve

(CFL∗, δ∗) := arg max
CFL

{
η(ω(CFL, δ)), ε(CFL, δ)) < µ min

(CFL,δ)stable
η(ω(CFL, δ), ε(CFL, δ))

}
. (43)

3. minimize the dispersion error ηω while maximizing the CFL in the stable area. In particular we set
in this case

η2
ω(ω) :=

∫ 2π
3

0

(
ω − ωex
ωex

)2

dk. (44)

As before we choose the optimal parameters from (43).

For the second and third strategies, the parameter µ must be chosen in order to balance the requirements
on stability and accuracy. After having tried different values, we have set µ to 1.3 providing a sufficient
flexibility to obtain results of practical usefulness, which we verified in numerical computations as we
will see later.

In the following we will compare all the methods with these error measures, in order to suggest the
best possible schemes between the proposed ones.

4 Results of the fully discrete spectral analysis

The typical results reported in Figures 4 to 8 show in the plane (δ,CFL) the unstable (crossed) and stable
regions, and with colored symbols the optimal points corresponding to the three strategies introduced
earlier. In case of ambiguity, the point with maximum δ is marked in the figures. A summary of the
results for all combinations of schemes is provided in Tables 1 to 3.

Before commenting these results we remark that some of the schemes are equivalent. For example
without mass lumping Bernstein and basic elements are the same up to an orthogonal change of vari-
able. This is not the case when using DeC due to the difference in lumped mass matrices. Similarly,

12

10 2 10 1 100

penalty coefficient

10 2

10 1

100

CF
L

1 & SSPRK2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

10 2 10 1 100

penalty coefficient

10 2

10 1

100

CF
L

2 & SSPRK3

minimize
minimize u

maximize the CFL
unstable region

0.5

1.0

1.5

2.0

2.5

3.0

3.5

10 2 10 1 100

penalty coefficient

10 2

10 1

100

CF
L

3 & SSPRK4

1

2

3

4

Figure 4: Computation of optimal parameters according to errors ηω and ηu. (CFL, δ) plot of ηu (blue scale)
and instability area (black crosses) for cubature elements SSPRK scheme with SUPG stabilization method.
From left to right P1, P2, P3. The purple circle is the optimizer of ηu, the green cross is the optimizer of ηω,
the red star is the maximum stable CFL.

10 4 10 3 10 2 10 1 100

penalty coefficient

10 2

10 1

100

CF
L

1 & SSPRK2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

10 4 10 3 10 2 10 1 100

penalty coefficient

10 2

10 1

100

CF
L

2 & SSPRK3

minimize
minimize u

maximize the CFL
unstable region

0.5

1.0

1.5

2.0

2.5

3.0

3.5

10 4 10 3 10 2 10 1

penalty coefficient

10 2

10 1

100

CF
L

3 & SSPRK4

1

2

3

4

Figure 5: Computation of optimal parameters according to errors ηω and ηu. (CFL, δ) plot of ηu (blue scale)
and instability area (black crosses) for cubature elements SSPRK scheme with CIP stabilization method.
From left to right P1, P2, P3. The purple circle is the optimizer of ηu, the green cross is the optimizer of ηω,
the red star is the maximum stable CFL.

the mass matrix used for cubature elements is already diagonal, which makes the DeC procedure entirely
equivalent to the RK scheme with Butcher tableau corresponding to the quadrature weights of the DeC.
Only for SUPG a difference is observed due to the contributions to the mass matrix of the stabilization.

Concerning the plots, it is interesting to remark the appearance of four different structures which
have an impact on the practical usefulness of some of the combinations.

• The first kind of structures are associated to schemes presenting V-shaped stability regions. We
can observe these on Figures 4 and 5, for p = 1. This shape requires a very careful choice of the
stability parameter as small perturbations of δ may lead, for a given CFL, to an unstable behavior.
Generally, lowering the CFL increases somewhat the robustness allowing more flexibility in the
choice of δ. We highlight that this type of topology is common to all the second order schemes, as
well as to all DeC schemes with basic and Bernstein elements for degree p ≥ 2.

• Another structure typically observed is an L-shaped stability region as in Figures 4 and 5 for p = 2, 3.
This shape is characterized by a CFL bound CFL ≤ C1 and a one–sided bound on the stabilization
coefficient δ ≤ C2CFLC3 , and it much more robust concerning the choice of the stability parameter
as all values below a certain maximum are stable. Most of the schemes with p ≥ 2, besides those
listed in the first group, belong to this category.

• The third kind of structures involve “broom”- or “box”-shaped stability domains. In the first case
we observe two clear bounds δ ≥ C1CFLC2 and δ < C3 plus a small stable stripe with higher

13

10 2 10 1 100

penalty coefficient

10 2

10 1

100

101

CF
L

1 & DeC2

2

4

6

8

10

12

14

10 2 10 1 100

penalty coefficient

10 2

10 1

100

101

CF
L

2 & DeC3

minimize
minimize u

maximize the CFL
unstable region

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

10 3 10 2 10 1

penalty coefficient

10 2

10 1

100

101

CF
L

3 & DeC4

2

4

6

8

10

Figure 6: Computation of optimal parameters according to errors ηω and ηu. (CFL, δ) plot of ηu (blue scale)
and instability area (black crosses) for cubature elements DeC scheme with SUPG stabilization method.
From left to right P1, P2, P3. The purple circle is the optimizer of ηu, the green cross is the optimizer of ηω,
the red star is the maximum stable CFL.

10 3 10 2 10 1 100 101

penalty coefficient

10 2

10 1

100

101

CF
L

1 & DeC2

20

40

60

80

100

10 3 10 2 10 1 100 101

penalty coefficient

10 2

10 1

100

101

CF
L

2 & DeC3

minimize
minimize u

maximize the CFL
unstable region

2

4

6

8

10

12

14

10 3 10 2 10 1 100 101

penalty coefficient

10 2

10 1

100

101

CF
L

3 & DeC4

50

100

150

200

Figure 7: Computation of optimal parameters according to errors ηω and ηu. (CFL, δ) plot of ηu (blue scale)
and instability area (black crosses) for Bernstein elements DeC scheme with SUPG stabilization method.
From left to right P1, P2, P3. The purple circle is the optimizer of ηu, the green cross is the optimizer of ηω,
the red star is the maximum stable CFL.

10 4 10 3 10 2 10 1 100 101

penalty coefficient

10 2

10 1

100

CF
L

1 & DeC2

0.5

1.0

1.5

2.0

2.5

3.0

10 4 10 3 10 2 10 1 100 101

penalty coefficient

10 2

10 1

100

CF
L

2 & DeC3

minimize
minimize u

maximize the CFL
unstable region

0.5

1.0

1.5

2.0

10 2 10 1 100 101 102

penalty coefficient

10 3

10 2

10 1

100

CF
L

3 & DeC4

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 8: Computation of optimal parameters according to errors ηω and ηu. (CFL, δ) plot of ηu (blue scale)
and instability area (black crosses) for basic elements DeC scheme with LPS stabilization method. From left
to right P1, P2, P3. The purple circle is the optimizer of ηu, the green cross is the optimizer of ηω, the red
star is the maximum stable CFL.

14

CFL > (C3/C1)1/C2 and δ > C3. This is for example visible in Figure 7. In the second case,
see for example Figure 6, we also have two bounds of the type CFL ≥ C1 and δ < C2, with
an additional stable stripe outside these bounds. The problem with this type of methods is that
the optimal parameters, viz. those involving the highest CFL, are within a stripe which means
that instability may be introduced by lowering the CFL1 . For applications involving multiscale
problems, or variable mesh sizes this is clearly unacceptable in practice. Schemes showing this sort
of behaviors are all the SUPG schemes with DeC time stepping, and with p ≥ 2, for which we
indicate good values (CFL, δ) in Table 4.

• Finally, the DeC scheme with basic elements and p = 3 shows essentially everywhere instability for
CIP and LPS stabilization. The study finds some very thin oblique stripes of stability, but they
are not wide enough to find stable regions. See Figure 8 for an example.

Element & No stabilization SUPG

Time scheme p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

B
a
si

c RK / 0.389 0.389 0.624 (0.464) 0.492 (0.07) 0.389 (0.027)
SSPRK / 0.492 0.389 0.889 (0.464) 0.554 (0.089) 0.438 (0.027)

DeC / / / 1.701 (0.588) 0.492 (0.229)1 0.492 (0.089)1

C
u
b
. RK / 0.492 0.492 0.971 (0.767) 0.624 (0.13) 0.464 (0.064)

SSPRK / 0.624 0.492 1.512 (0.642) 0.838 (0.13) 0.538 (0.064)
DeC / 0.492 0.492 1.701 (0.398) 1.0 (0.081)1 0.588 (0.041)1

B
er

n
. RK / 0.389 0.389 0.624 (0.464) 0.492 (0.07) 0.389 (0.027)

SSPRK / 0.492 0.389 0.889 (0.464) 0.554 (0.089) 0.438 (0.027)
DeC / / / 1.701 (0.588) 1.0 (0.367)1 0.702 (0.229)1

Element & LPS CIP

Time scheme p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

B
a
si

c RK 0.681 (0.767) 0.478 (0.077) 0.378 (0.032) 0.838 (0.094) 0.538 (5.54e-03) 0.4 (8.38e-04)
SSPRK 1.093 (0.767) 0.605 (0.109) 0.425 (0.038) 1.125 (0.119) 0.624 (7.02e-03) 0.464 (6.61e-04)

DeC 0.744 (2.29) 0.554 (0.289) / 0.838 (0.289) 0.588 (0.02) /

C
u
b
. RK 1.093 (0.702) 0.681 (0.143) 0.538 (0.049) 0.971 (0.191) 0.723 (0.011) 0.538 (1.84e-03)

SSPRK 1.557 (1.0) 0.863 (0.17) 0.605 (0.049) 1.512 (0.242) 0.838 (0.014) 0.538 (3.93e-03)
DeC 1.093 (0.702) 0.681 (0.143) 0.538 (0.049) 0.971 (0.191) 0.723 (0.011) 0.538 (1.84e-03)

B
er

n
. RK 0.681 (0.767) 0.478 (0.077) 0.378 (0.032) 0.838 (0.094) 0.538 (5.54e-03) 0.4 (8.38e-04)

SSPRK 1.093 (0.767) 0.605 (0.109) 0.425 (0.038) 1.125 (0.119) 0.624 (7.02e-03) 0.464 (6.61e-04)
DeC 0.744 (2.29) 0.052 (0.215) 0.109 (0.215) 0.838 (0.289) 0.059 (0.016) 0.119 (7.02e-03)

Table 1: Optimized CFL and penalty coefficient δ in parenthesis, only maximizing CFL

4.1 Dispersion and damping

In Figures 9 and 10 are represented the phase and the damping of the principal eigenvalue depending
on θ = k∆x = 2π

Nx
for few schemes (cubature DeC LPS and Bernstein SSPRK CIP), using the best

parameters (CFL, δ) found in the previous analysis with the optimization of ηu. As before, we notice
that the mode for p = 1 is particularly dispersive. Nevertheless, the frequencies on which the scheme is
dispersive are also much damped as we see in the right plots. For higher order methods, the phase ω of
the principal mode is closer to the exact phase ωex = ak in the left figures. We observe that the principal
mode of higher order methods is much more precise in terms of dispersion than the first order one, but
also less damped in the low frequency area θ ≥ 2π

3
.

For completeness, a comparison of damping and phase coefficients for DeC and SSPRK for all the
stabilization techniques and elements can be found in Appendix B. There we used the (CFL,δ) coeffi-
cients found by minimizing ηu in Table 2, and we try also to compare the obtained results. Nevertheless,

1These values do not allow to decrease the CFL

15

Element & No stabilization SUPG

Time scheme p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

B
a
si

c RK / 0.151 0.191 0.389 (0.089) 0.17 (2.57e-03) 0.215 (8.38e-03)
SSPRK / 0.191 0.242 0.492 (0.089) 0.215 (2.57e-03) 0.273 (5.22e-03)

DeC / / / 0.702 (0.588) 0.143 (0.022) 0.024 (0.013)
C

u
b
. RK / 0.492 0.242 0.971 (0.538) 0.624 (0.045) 0.222 (0.019)

SSPRK / 0.624 0.307 1.304 (0.378) 0.723 (0.038) 0.298 (3.78e-03)
DeC / 0.492 0.242 0.346 (0.642) 0.702 (0.026) 0.203 (0.041)

B
er

n
. RK / 0.151 0.191 0.389 (0.089) 0.17 (2.57e-03) 0.215 (8.38e-03)

SSPRK / 0.191 0.242 0.492 (0.089) 0.215 (2.57e-03) 0.273 (5.22e-03)
DeC / / / 0.702 (0.588) 0.346 (0.367)1 0.588 (0.289)1

Element & LPS CIP

Time scheme p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

B
a
si

c RK 0.335 (0.077) 0.165 (3.78e-03) 0.209 (0.013) 0.4 (0.011) 0.165 (1.60e-04) 0.222 (2.03e-04)
SSPRK 0.478 (0.077) 0.209 (3.78e-03) 0.265 (9.15e-03) 0.624 (0.011) 0.191 (2.03e-04) 0.257 (3.26e-04)

DeC 0.229 (0.522) 0.197 (0.049) / 0.346 (0.077) 0.203 (2.42e-03) /

C
u
b
. RK 0.863 (0.492) 0.605 (0.041) 0.235 (0.012) 0.971 (0.119) 0.624 (3.46e-03) 0.257 (1.13e-04)

SSPRK 1.23 (0.412) 0.767 (0.041) 0.298 (4.12e-03) 1.304 (0.094) 0.723 (3.46e-03) 0.298 (1.45e-04)
DeC 0.863 (0.492) 0.605 (0.041) 0.235 (0.012) 0.971 (0.119) 0.624 (3.46e-03) 0.257 (1.13e-04)

B
er

n
. RK 0.335 (0.077) 0.165 (3.78e-03) 0.209 (0.013) 0.4 (0.011) 0.165 (1.60e-04) 0.222 (2.03e-04)

SSPRK 0.478 (0.077) 0.209 (3.78e-03) 0.265 (9.15e-03) 0.624 (0.011) 0.191 (2.03e-04) 0.257 (3.26e-04)
DeC 0.229 (0.522) 0.052 (0.215) 0.109 (0.215) 0.346 (0.077) 0.059 (0.016) 0.119 (7.02e-03)

Table 2: Optimized CFL and penalty coefficient δ in parenthesis, minimizing ηu

we must remark that the different CFLs used for different schemes do not allow a direct comparison.

The different strategies lead to different values of best CFL and δ. In general, the most reliable is the
one that optimizes ηu. Looking at Table 2, we can compare the different elements, stabilization terms
and time integration techniques and obtain some conclusions.

• In general SSPRK time integration methods allow to use higher CFL with respect to both classical
RK methods and DeC.

• With cubature elements we can use larger CFLs conditions than with basic and Bernstein elements.

• Concerning efficiency, we do not observe any impact of the choice of the stabilization approach
on the magnitude of the allowed CFL. Other factors are much more relevant in this respect. For
example, for SUPG we need to stress the advantage of using DeC w.r.t. the possibility of avoiding
the inversion of the non-diagonal mass matrix required by the full consistency of the method. For
CIP the larger stencil and non-local data structure gives a small overhead, and, for LPS, the gradient
projection favors clearly cubature elements for which this phase requires no matrix inversion.

• Some combinations produce very unstable schemes. As remarked also before, DeC with high order
basic elements may have problems in the mass lumping, and we can see an example with the LPS
and CIP stabilization.

• DeC with SUPG stabilization leads to stability regions that are not comprehending all the CFLs
smaller than the one inside the region, for a fixed δ. This is very dangerous, for instance when doing
mesh adaptation algorithms, hence, we marked with an asterisk in Tables 1 to 3 such schemes and
we put in Table 4 reliable values of (CFL,δ).

5 A note on nonlinear stability

The stability analysis performed before holds only for linear problems. For nonlinear ones the original
ansatz of supposing that the solutions can be decomposed orthogonally into waves that propagate at

16

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
: w

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

Spatial and temporal eigenanalysis, with cubature elements and lagrange basis function,
 DeC scheme and LPS stab. method

Figure 9: Comparison of dispersion in the fully discrete case, using coefficients from 2, cubature elements,
DeC scheme and LPS stabilization method. P1 elements in red, P2 elements in blue and P3 elements in
green. The phase ω of the principal eigenvalues is on the left and the damping εi on the right

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
:

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

Spatial and temporal eigenanalysis, with basic elements and bernstein basis function,
 SSPRK scheme and CIP stab. method

Figure 10: Comparison of dispersion in the fully discrete case, using coefficients from 2, Bernstein elements,
SSPRK scheme and CIP stabilization method. B1 elements in red, B2 elements in blue and B3 elements in
green. The phase ω of the principal eigenvalues is on the left and the damping εi on the right.

17

Element & No stabilization SUPG

Time scheme p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

B
a
si

c RK / 0.191 0.307 0.059 (0.289) 0.191 (0.027) 0.307 (0.044)
SSPRK / 0.242 0.307 0.084 (0.289) 0.242 (0.027) 0.346 (0.035)

DeC / / / 0.412 (0.367) 0.242 (0.089)1 0.017 (0.113)1

C
u
b
. RK / 0.492 0.389 0.538 (0.767) 0.298 (0.316) 0.165 (0.156)

SSPRK / 0.624 0.492 0.624 (0.915) 0.4 (0.316) 0.257 (0.186)
DeC / 0.492 0.389 0.346 (0.642) 0.346 (0.179)1 0.1 (0.09)1

B
er

n
. RK / 0.191 0.307 0.059 (0.289) 0.191 (0.027) 0.307 (0.044)

SSPRK / 0.242 0.307 0.084 (0.289) 0.242 (0.027) 0.346 (0.035)
DeC / / / 0.412 (0.367) 0.289 (0.289)1 0.203 (0.289)1

Element & LPS CIP

Time scheme p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

B
a
si

c RK 0.478 (0.186) 0.13 (0.265) 0.116 (0.13) 0.464 (0.037) 0.123 (0.011) 0.165 (3.46e-03)
SSPRK 0.605 (0.378) 0.165 (0.265) 0.335 (0.026) 0.624 (0.046) 0.143 (0.014) 0.346 (5.22e-04)

DeC 0.412 (0.943) 0.147 (0.389) / 0.588 (0.13) 0.143 (0.016) /

C
u
b
. RK 0.971 (0.492) 0.538 (0.119) 0.425 (0.024) 0.971 (0.119) 0.538 (0.011) 0.4 (4.00e-04)

SSPRK 1.23 (0.492) 0.681 (0.119) 0.478 (1.43e-03) 1.304 (0.119) 0.723 (7.02e-03) 0.257 (1.11e-03)
DeC 0.971 (0.492) 0.538 (0.119) 0.425 (0.024) 0.971 (0.119) 0.538 (0.011) 0.4 (4.00e-04)

B
er

n
. RK 0.478 (0.186) 0.13 (0.265) 0.116 (0.13) 0.464 (0.037) 0.123 (0.011) 0.165 (3.46e-03)

SSPRK 0.605 (0.378) 0.165 (0.265) 0.335 (0.026) 0.624 (0.046) 0.143 (0.014) 0.346 (5.22e-04)
DeC 0.412 (0.943) 0.052 (0.215) 0.109 (0.215) 0.588 (0.13) 0.059 (0.016) 0.119 (7.02e-03)

Table 3: Optimized CFL and penalty coefficient δ in parenthesis, minimizing ηω

DeC SUPG

Element p = 2 p = 3

Basic 0.08 (0.025) 0.059 (0.035)
Cubature 0.346 (0.025) 0.242 (2.22 e-03)
Bernstein 0.03 (0.025) 0.1 (0.1)

Table 4: Optimized CFL and penalty coefficient δ in parenthesis, stable for all smaller CFLs

constant speed does not hold anymore. Nevertheless, the stabilization methods presented also introduces
some nonlinear stabilization. To show it we will briefly consider their potential for dissipating entropy.
In order to test so, we neglect the time discretization, the used elements and the quadrature and the
discrete differentiation formulae.

Consider any convex smooth entropy ρ(u), i.e., ρuu(u) > 0, the respective entropy variables ν := ρu(u)
and the entropy flux g(u) such that ρufu = gu. In the following discussion, we consider the entropy
variable νh = ρu(u)h to be in the finite element space, while uh will be defined as the projection onto
the finite element space of the uniquely defined function ν → u = u(ν), as proposed in [2].

When substituting vh = νh, the Galerkin discretization of the conservation law becomes∑
K

∫
K

νh (∂tuh + ∂xf(uh)) dx =
∑
K

∫
K

∂tρh + ∂xghdx =

∫
Ω

∂tρh + [gh]∂K , (45)

which, according to the boundary conditions, gives us a measure of the variation of the entropy.
The CIP stabilization must be slightly modified for nonlinear equations with nontrivial entropies, so

that it reads

s(v, u) :=
∑
K,f∈K

∫
f

[∂xv
T]ρuu(u)−1[∂xν(u)]dΓ, (46)

where the inverse of the hessian of the entropy must be added for unit of measure reasons and it is

18

positive definite and invertible. So that when we substitute v = νh in the stabilization term, we obtain

s(ν, uh) =
∑
K,f∈K

∫
f

[∂xν
T
h]ρuu(uh)−1[∂xνh]︸ ︷︷ ︸

>0

dΓ. (47)

It would guarantee a decrease in the discrete total entropy. Moreover, this formulation coincide with (9)
when we are dealing with the energy as entropy.

For the LPS we modify, similarly the formulation (13) into{
s(v, u) :=

∑
K τK

∫
K
∂xv

T ρuu(u)−1(∂xν(u)− w)dx, with∫
K
zT (w − ∂xν(u)), ∀z ∈ Vh

(48)

As in the linear case, we can take τK = τ , and test with vh = νh in the stabilization term and we substitute
z = τρuu(u)−1,Tw in the previous equation and we sum this 0 contribution to the stabilization term, we
obtain

s(νh, uh) =
∑
K

τ

∫
K

∂xν
T
h ρuu(uh)−1(∂xνh − wh) + ρuu(uh)wTh ρuu(uh)−1(wh − ∂xνh)dx =

∑
K

τ

∫
K

(∂xνh − wh)T ρuu(uh)−1(∂xνh − wh)dx ≥ 0.

(49)

As for the CIP we can say that the LPS stabilization reduces entropy. Anyway, this analysis does not
guarantee that the fully discrete method will be entropy stable, as all the other discretizations (time,
quadrature, differentiation and interpolation) are not taken into consideration.

For the SUPG stabilization, as the linear analysis of Section 2.1.1 shows, the spatial and temporal
derivatives need to be properly combined. This can be done easily for space-time discretizations (see e.g.
in [9]), context in which SUPG and least squares stabilization coincide. In simple cases with constant
convexity entropy, namely the energy, one can bound other types of energy norm in time, but not the
entropy itself. For explicit methods, and general convex entropies, the non-symmetric nature of the
method requires ad-hoc analysis which we leave out of this paper. More elaborated analysis are possible
with other types of stabilization, as the ones proposed in [2, 27, 24], and they will be the object of future
research.

In the next sections, we perform also some nonlinear tests, where we use the coefficients we found in
the stability analysis for the linear case, in order to understand if this information is also relevant for
nonlinear problems.

6 Numerical Simulations

We perform numerical tests to check the validity of our theoretical findings. We will use elements of
degree p, with p up to 3, with time integration schemes of the corresponding order to ensure an overall
error of O(∆xp+1), under the CFL conditions presented earlier in Table 2. The integral formulae are
performed with high order quadrature rules, for cubature elements they are associated with the definition
points of the elements themselves, for basic and Bernstein we use Gauss–Legendre quadrature formulae
with p+ 1 points per cell.

6.1 Linear advection equation

We start with the one dimensional initial value problem for the linear advection equation (24) on the
domain Ω = [0, 2] using periodic boundary conditions:

∂tu(x, t) + a∂xu(x, t) = 0 (x, t) ∈ Ω× [0, 5], a ∈ R,
u(x, 0) = u0(x),

u(0, t) = u(2, t), t ∈ [0, 5],

(50)

where u0(x) = 0.1 sin(πx). Clearly the exact solution is uex(x, t) = u0(x−at) for all x ∈ Ω. We discretize
the mesh with uniform intervals of length ∆x. In particular, we will use different discretization scales to

19

1024 × 101 6 × 101 2 × 102 3 × 102

NN, Number of nodes

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3
Er

ro
r

SSPRK2 & P1 - CFL : 0.4781
second order
SSPRK3 & P2 - CFL : 0.2092
third order
SSPRK4 & P3 - CFL : 0.2649
fourth order

Figure 11: Error decay for linear advection with ba-
sic elements, LPS stabilization and SSPRK. P1, P2

and P3 elements are, respectively, in blue green and
red.

1024 × 101 6 × 101 2 × 102 3 × 102

NN, Number of nodes

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

Er
ro

r

SSPRK2 & P1 - CFL : 1.2295
second order
SSPRK3 & P2 - CFL : 0.7667
third order
SSPRK4 & P3 - CFL : 0.2981
fourth order

Figure 12: Error decay for linear advection with
cubature elements, LPS stabilization and SSPRK.
P1, P2 and P3 elements are, respectively, in blue
green and red.

test the convergence: ∆x1 = {0.05, 0.025, 0.0125, 0.00625} for P1 elements, ∆x2 = 2∆x1 for P2 elements
and ∆x3 = 3∆x1 for P3 elements. This allows to guarantee the use ot the same number of degrees of
freedom for different p. We will compare the errors obtained with SSPRK and DeC time integration
method, with all the stabilization methods (SUPG, LPS and CIP) and with basic, cubature and Bernstein
elements.

A representative result is provided as an example in Figures 11 and 12: it shows a comparison between
cubature and basic elements with LPS stabilization and SSPRK time integration. As we can see, the
two schemes have very similar error behavior, but the basic elements require stricter CFL conditions, see
Table 2, and have larger computational costs because of the full mass matrix. A summary table with
the order of accuracy reached by each simulations in Table 5. The plots and all the errors are available
at the repository [30].

Element & No stabilization SUPG LPS CIP

Time scheme P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

C
u
b
. SSPRK / 1.98 3.98 2.04 2.93 3.98 2.03 2.95 3.98 2.05 2.94 3.98

DeC / 1.98 3.98 2.0 2.88 3.97 2.03 2.95 3.98 2.12 2.96 3.98

B
a
si

c SSPRK / 3.84 3.97 2.0 2.08 3.98 2.0 2.14 3.98 2.0 2.07 3.97
DeC / / / 2.02 2.72 2.05 1.95 2.93 / 1.98 2.82 /

B
er

n
.

SSPRK / 3.84 3.97 2.0 2.08 3.98 2.0 2.14 3.98 2.0 2.07 3.97
DeC / / / / / / 1.98 3.05 2.04 1.98 3.0 2.0

Table 5: Summary table of convergence orders, using coefficients obtained by minimizing ηu in Table 2

Looking at the table we can make the following observations. First of all, we remark that despite
the weak stability obtained in the spectral analysis, in practice the absence of damping makes it difficult
to obtain converging results with a fixed CFL and for all p. For this reason, in the following we will only
focus on stabilized methods.

We observe otherwise that almost all the stabilized scheme provide the expected order of accuracy.
When the order is correct there are minor differences in the errors. There are however few cases that

20

Cubature elements

10 2 10 1 100 101 102

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r
DeC

P1 SUPG stab
P1 LPS stab
P1 CIP stab
P2 no stab
P2 SUPG stab
P2 LPS stab
P2 CIP stab
P3 no stab
P3 SUPG stab
P3 LPS stab
P3 CIP stab

10 2 10 1 100 101 102

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r

SSPRK
P1 SUPG stab
P1 LPS stab
P1 CIP stab
P2 no stab
P2 SUPG stab
P2 LPS stab
P2 CIP stab
P3 no stab
P3 SUPG stab
P3 LPS stab
P3 CIP stab

Basic elements

10 2 10 1 100 101 102

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r

DeC
P1 SUPG stab
P1 LPS stab
P1 CIP stab
P2 SUPG stab
P2 LPS stab
P2 CIP stab
P3 SUPG stab

10 2 10 1 100 101 102

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r

SSPRK
P1 SUPG stab
P1 LPS stab
P1 CIP stab
P2 no stab
P2 SUPG stab
P2 LPS stab
P2 CIP stab
P3 no stab
P3 SUPG stab
P3 LPS stab
P3 CIP stab

Bernstein elements

10 2 10 1 100 101 102

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r

DeC
P1 LPS stab
P1 CIP stab
P2 LPS stab
P2 CIP stab
P3 LPS stab
P3 CIP stab

10 2 10 1 100 101 102

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r

SSPRK
P1 SUPG stab
P1 LPS stab
P1 CIP stab
P2 no stab
P2 SUPG stab
P2 LPS stab
P2 CIP stab
P3 no stab
P3 SUPG stab
P3 LPS stab
P3 CIP stab

Figure 13: Error for linear advection problem (50) with respect to computational time for all elements and
stabilization techniques: DeC on the left, SSPRK on the right

fail in doing so and deserve some comments. In particular, we notice the failure of DeC for basic P3 and
Bernstein B3 polynomials and the SSPRK with basic and Bernstein P2 elements. While disappointing,
this negative result is not completely new. Indeed, in [3, ?] obtaining correct convergence with DeC for
some orders required both increasing the number of substebs, thus making the method more expensive
than the corresponding RK scheme, as well as including penalty terms on the jumps of higher order
derivatives. Finally, note that this is in line with these methods falling in the family of “broom”, “box”,
and thin striped shaped stability regions which we expect to be difficult to use in practice. Concerning the
stabilization of high order derivatives this is also something a few authors advocate, see for instance the
work by Burman, Hansbo and collaborators [17, 28]. While this mayor explains the behavior observed,

21

since we did not observe the need of including these terms for other cases than the DeC, we decided to
focus on the simplest and most efficient approaches.

An interesting comparison is the one in Figure 13 where we plot the error of each method against
computational time. Note that the simulations are all obtained using the CFL reported in Table 2. In
general, we can state that the cubature elements obtain the best computational time as they are mass
matrix free. On the other side, Bernstein elements are slightly more expensive than basic elements for
DeC, because of the CFL restrictions that Table 2 requires.

Comparing time discretizations, we see that despite the inversion of the mass matrix, SSPRK con-
verges more rapidly than DeC. We think this is related to several reasons. First of all, the DeC CFL
conditions are stricter, and also DeC requires more stages. Even though not explicitly inverted, the mass
matrix still needs to be assembled and multiplied to the solutions in the correction terms. Note however
that the situation might radically change in the multidimensional case in which the mass matrix inversion
in the SSPRK will provide a much larger overhead.

On the stabilization side, LPS and CIP behave very similarly (also their CFL do), but overall, the CIP
is a little faster as it does not require the inversion of the mass matrix, for example, in DeC. As expected,
the SUPG stabilization requires more computational time, even if it often has larger CFs conditions.
This is even clearer when using cubature elements, where SUPG is the only case in which we still need
to invert the mass matrix with RK time stepping.

6.2 Burgers’ equation

We consider here application to a simple nonlinear problem to verify the applicability of the conditions
obtained in the linear case. We test the numerical schemes on the solution of the Burgers’ equation

∂tu(x, t) + ∂x
u2(x,t)

2
= 0 (x, t) ∈ Ω× [0, tf],

u(x, 0) = u0(x), x ∈ Ω

u(xD, t) = g(xD, t), xD ∈ ∂Ω,

(51)

where Ω = [0, 2] and u0(x) = − tanh(4(x − 1)) and g(x, t) = uex(x, t) is the boundary condition. The
exact solution is obtained using the method of characteristics and reads uex(x, t) = u0(χ) where

χ = x− u0(χ)t (52)

for all (x, t) ∈ Ω × [0, tf], solving the nonlinear equation (52) for χ at every point (x, t). To obtain
the exact solution we employed the Broyden method implemented in SciPy library [39]. Note that the
analytical solution shows a shock at time

ts = − 1

min
x∈Ω

u′0(x)
=

1

4
. (53)

This knowledge allows tho set for this study tf = 0.5ts = 0.125, at which the solution is still smooth
and the convergence of the higher order approximations can be investigated. As before, in doing this
we perform conformal refinement of the 1D grid, while paying attention to guarantee to use the same
number of degrees of freedom for different p, and in particular taking: ∆x2 = 2∆x1 for P2 elements and
∆x3 = 3∆x1 for P3 elements.

Using the CFL and δ obtained in Table 2 we obtain the experimental order of convergence in Table 6.

Element & No stabilization LPS CIP

Time scheme P1 P2 P3 P1 P2 P3 P1 P2 P3

C
u
b
. SSPRK / 1.99 3.71 2.05 2.85 3.67 2.05 2.85 3.68

DeC / 1.99 3.71 2.06 2.85 3.57 2.06 2.85 3.69

B
a
si

c SSPRK / 1.99 3.82 2.07 2.56 3.66 2.06 2.48 3.66
DeC / / / 2.7 2.92 / 2.59 2.85 /

B
er

n
.

SSPRK / 1.99 3.82 2.07 2.56 3.66 2.06 2.48 3.66
DeC / / / 2.7 2.9 1.41 2.59 2.87 1.37

Table 6: Summary table of convergence order, using coefficients obtained in Table 2

22

The results are very similar to the ones obtained for the linear advection case. There is a small
improvement in basic and Bernstein P2 SSPRK cases, while the DeC basic and Bernstein P3 cases
are even worse than the linear advection ones. The DeC P1 basic and Bernstein cases show a super–
convergent behavior. The interested reader will find the convergence plots for all the combinations on
the repository [30]. Here we focus on the comparison between error and computational time, reported
in Figure 14. Again for cubature elements it is clear the advantage in using high order methods, in

Cubature elements

100 101 102 103 104

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r

DeC
P1 LPS stab
P1 CIP stab
P2 no stab
P2 LPS stab
P2 CIP stab
P3 no stab
P3 LPS stab
P3 CIP stab

100 101 102 103 104

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r

SSPRK
P1 LPS stab
P1 CIP stab
P2 no stab
P2 LPS stab
P2 CIP stab
P3 no stab
P3 LPS stab
P3 CIP stab

Basic elements

100 101 102 103 104

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r

DeC
P1 LPS stab
P1 CIP stab
P2 LPS stab
P2 CIP stab

100 101 102 103 104

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r

SSPRK
P1 LPS stab
P1 CIP stab
P2 no stab
P2 LPS stab
P2 CIP stab
P3 no stab
P3 LPS stab
P3 CIP stab

Bernstein elements

100 101 102 103 104

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r

DeC
P1 LPS stab
P1 CIP stab
P2 LPS stab
P2 CIP stab
P3 LPS stab
P3 CIP stab

100 101 102 103 104

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r

SSPRK
P1 LPS stab
P1 CIP stab
P2 no stab
P2 LPS stab
P2 CIP stab
P3 no stab
P3 LPS stab
P3 CIP stab

Figure 14: Error for Burgers’ equation (51) with respect to computational time for all elements and stabi-
lization techniques: DeC on the left, SSPRK on the right

particular for SSPRK methods, which has less stages than DeC. For this test, we only compare CIP and
LPS and they systematically out-perform SUPG. For these two, the difference in computational time is
very minimal for all element choices. This may change in the multidimensional case where the LPS may

23

be penalized on elements requiring the inversion of the full mass matrix.
For DeC basic and Bernstein P1 elements, the superconvergence of the second order schemes makes

them the best in their category, see Table 6. For SSPRK the expected order of convergence of fourth order
scheme shows how the high order accurate methods can provide the fastest and most precise solutions.

6.3 Shallow water equations

As a final application we consider the non linear shallow water equations:{
∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x(hu2 + g h
2

2
) + Φ = 0,

x ∈ Ω, t ∈ [0, 5]. (54)

Here, h is the water elevation, u the velocity field, g the gravitational acceleration. We will solve the
system on the domain Ω = [0, 200], and add the source term Φ = Φ(x, t) in order to impose the solution
to be equal to

hex(x, t) = h0 + εh0sech2(κ(x− ct)),
uex(x, t) = c

(
1− h0

hex(x,t)

)
,

κ =
√

3ε
4h2

0(1+ε)
, c =

√
gh0(1 + ε).

(55)

Following the classical manufactured solution method, we set

Φ(x, t) = −
[
∂t (hex(x, t)uex(x, t)) + ∂x

(
hex(x, t)u2

ex(x, t) + g
h2
ex(x, t)

2

)]
= − [hex(∂tuex + uex∂xuex + g∂xhex)] .

For our study, we set ε = 1.2, h0 = 1 and the initial and Dirichlet boundary condition given by the exact
solution at time 0 and at the borders of the domain.

We discretize the mesh with uniform intervals of length ∆x, and as before we perform a grid conver-
gence by respecting the constraint ∆x2 = 2∆x1 for P2 elements and ∆x3 = 3∆x1 for P3 elements. In
Table 7 we show the convergence orders for this shallow water problem with the CFL and δ coefficients
found in Table 2.

Element & No stabilization LPS CIP

Time scheme P1 P2 P3 P1 P2 P3 P1 P2 P3

C
u
b
. SSPRK / 1.96 5.17 2.26 2.69 5.02 2.39 2.68 5.05

DeC / 1.97 5.17 2.28 2.65 4.79 2.7 2.66 5.07

B
a
si

c SSPRK / 1.98 5.54 1.94 2.31 4.93 1.95 2.29 4.98
DeC / / / 2.23 2.74 / 2.01 2.58 /

B
er

n
.

SSPRK / 1.97 2.44 1.94 2.07 2.19 1.95 2.09 2.21
DeC / / / 2.23 2.0 2.0 2.01 2.0 1.98

Table 7: Summary tab of convergence order, using coefficients obtained by minimizing ηu

The results obtained are similar to those of the other cases. The convergence rates are at least the
expected ones with cubature elements while we still see problems with DeC and basic elements in the
fourth order case, as well as with Bernstein polynomials for both P2 and P3. On the other hand, some
superconvergence is measured in the P3 case with both cubature and basic elements. This creates an
even larger bias in the error-cpu time plots, Figure 15, in favor of these higher polynomial degrees.

7 Conclusion

In summary, we propose a comparison of high order continuous Galerkin methods with stabilization
techniques for hyperbolic problems. On the linear advection equation, we perform a Fourier analysis on
the spatial discretization, then a von Neumann analysis on the space–time discretization given by each
combination of stabilization, time discretization and finite elements. This provides reliable parameters

24

Cubature elements

100 101 102 103 104

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r
DeC

P1 LPS stab
P1 CIP stab
P2 no stab
P2 LPS stab
P2 CIP stab
P3 no stab
P3 LPS stab
P3 CIP stab

100 101 102 103 104

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r

SSPRK
P1 LPS stab
P1 CIP stab
P2 no stab
P2 LPS stab
P2 CIP stab
P3 no stab
P3 LPS stab
P3 CIP stab

Basic elements

100 101 102 103 104

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r

DeC
P1 LPS stab
P1 CIP stab
P2 LPS stab
P2 CIP stab

100 101 102 103 104

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r

SSPRK
P1 LPS stab
P1 CIP stab
P2 no stab
P2 LPS stab
P2 CIP stab
P3 no stab
P3 LPS stab
P3 CIP stab

Bernstein elements

100 101 102 103 104

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r

DeC
P1 LPS stab
P1 CIP stab
P2 LPS stab
P2 CIP stab
P3 LPS stab
P3 CIP stab

100 101 102 103 104

Computational time
10 10

10 8

10 6

10 4

10 2

Er
ro

r

SSPRK
P1 LPS stab
P1 CIP stab
P2 no stab
P2 LPS stab
P2 CIP stab
P3 no stab
P3 LPS stab
P3 CIP stab

Figure 15: Error for Shallow Water equations (54) with respect to computational time for all elements and
stabilization techniques: DeC on the left, SSPRK on the right

and CFL conditions for all the mentioned methods that can be used both in the linear advection case
and in nonlinear problems, as the Burgers’ and shallow water simulations showed.

The Fourier analysis is limited to one dimensional problems (or structured multidimensional meshes),
so the main ongoing development is the verification of the properties of the methods studied in a mul-
tidimensional setting based on the approximation choices suggested e.g. in [38, 20, 23] and references
therein.

25

Acknowledgment

This work was performed within the Ph.D. project of Sixtine Michel: “Evaluation of coastal and urban
submersion risks”, supported by INRIA and the BRGM, co-funded by in INRIA–Bordeaux Sud–Ouest
and the Conseil Régional de la Nouvelle Aquitaine. Mario Ricchiuto and Davide Torlo have been sup-
ported by team CARDAMOM in INRIA–Bordeaux Sud–Ouest. Davide Torlo and Rémi Abgrall have
been supported by the Swiss National Foundation grant No 200020 175784.

A Time schemes

In this appendix we introduce the time integration coefficients used in this work, to make the study fully
reproducible. In Table 8 there are the RK coefficients, in Table 9 the SSPRK coefficients and in Table 10
the DeC coefficients.

RK2

α 1

β 1
2

1
2

RK3

α 1
2

-1 2

β 1
6

2
3

1
6

RK4

α 1
2

0 1
2

0 0 1

β 1
6

1
3

1
3

1
6

Table 8: Butcher Tableau of RK methods

SSPRK(3,2) by [37]

γ µ

1 1
2

0 1 0 1
2

1
3 0 2

3 0 0 1
3

CFL = 2.

SSPRK(4,3) by [35, Page 189]

γ µ

1 1
2

0 1 0 1
2

2
3 0 1

3 0 0 1
6

0 0 0 1 0 0 0 1
2

CFL = 2.

SSPRK(5,4) by [35, Table 3]

γ

1

0.444370493651235 0.555629506348765

0.620101851488403 0 0.379898148511597

0.178079954393132 0 0 0.821920045606868

0 0 0.517231671970585 0.096059710526147 0.386708617503269

µ

0.391752226571890

0 0.368410593050371

0 0 0.251891774271694

0 0 0 0.544974750228521

0 0 0 0.063692468666290 0.226007483236906

CFL = 1.50818004918983

Table 9: Butcher Tableau of SSPRK methods

26

Order 2

m βm ρmz
1 1 1

2
1
2

Order 3

m βm ρmz
1 1

2
5
24

1
3 − 1

24

2 1 1
6

2
3

1
3

Order 4

m βm ρmz
1 1

3
1
8

19
72 − 5

72
1
72

2 2
3

1
9

4
9

1
9 0

3 1 1
8

3
8

3
8

1
8

Table 10: DeC coefficients for equispaced subtimesteps.

B Fourier analysis, spatial and temporal eigenanalysis

In this appendix we present a summary of the fully discrete Fourier analysis of Section 3.2, comparing
different time schemes (SSPRK and DeC), discretizations (basic, cubature, Bernstein), and stabilization
methods (LPS, CIP, SUPG). We show the phase ω and the damping ε coefficients using the best param-
eters obtained by minimizing the relative error of the solution ηu for each scheme in Table 2. When the
scheme was unstable we did not plot the mode. In Figure 16 one finds the phase and the damping for
basic elements, in Figure 17 for cubature elements and in Figure 18 for Bernstein elements. We remark
that for cubature elements in Figure 17, ∆x3 is scaled differently with respect to the other orders because
the point distribution is not equispaced.

In general, we can observe that the phase error increases passing from full matrix SSPRK methods
to diagonal one DeC. This is noticeable even more for Bernstein elements. Cubature elements, which
are not effected by the mass lumping, do not show this behavior, and have a dispersion error which is
greater than the other lumped methods, but smaller than the other full mass matrix methods. This step
is also associated to a greater damping in the higher frequencies.

References

[1] R. Abgrall, High order schemes for hyperbolic problems using globally continos approximation and
avoiding mass matrices, Journal of Scientific Computing, 73 (2017).

[2] R. Abgrall, A general framework to construct schemes satisfying additional conservation rela-
tions. application to entropy conservative and entropy dissipative schemes, Journal of Computational
Physics, 372 (2018), pp. 640 – 666.

[3] R. Abgrall, P. Bacigaluppi, and S. Tokareva, High-order residual distribution scheme for the
time-dependent euler equations of fluid dynamics, Computers & Mathematics with Applications, 78
(2018), pp. 274–297.

[4] R. Abgrall, J. Nordström, P. Öffner , and S. Tokareva, Analysis of the SBP-SAT Stabi-
lization for Finite Element Methods Part I: Linear Problems, Journal of Scientific Computing, 85
(2020), pp. 1573–7691.

[5] , Analysis of the SBP-SAT Stabilization for Finite Element Methods Part II: Entropy Stability,
Commun. Appl. Math. Comput., (2021), pp. 2661–8893.

[6] R. Abgrall and M. Ricchiuto, High order methods for CFD, in Encyclopedia of Computational
Mechanics, Second Edition, R. d. B. Erwin Stein and T. J. Hughes, eds., John Wiley and Sons,
2017.

[7] R. Abgrall and D. Torlo, High order asymptotic preserving deferred correction implicit-explicit
schemes for kinetic models, 2020.

[8] N. Ahmed, G. Matthies, L. Tobiska, and H. Xie, Discontinuous Galerkin time stepping with lo-
cal projection stabilization for transient convection–diffusion-reaction problems, Computer Methods
in Applied Mechanics and Engineering, 200 (2011), pp. 1747–1756.

[9] T. Barth, Numerical methods for gasdynamic systems on unstructured meshes, in An Introduction
to Recent Developments in Theory and Numerics for Conservation Laws, Kröner, Ohlberger, and
Rohde, eds., vol. 5 of Lecture Notes in Computational Science and Engineering, Springer-Verlag,
Heidelberg, 1998, pp. 195–285.

27

Without any stabilization method

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
:

SSPRK scheme - Dispersion
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
:

DeC scheme - Dispersion
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

SSPRK scheme - Damping

2 - principal eigenvalue
3 - principal eigenvalue

0.0 0.2 0.4 0.6 0.8 1.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

DeC scheme - Damping

Using the SUPG stabilization method

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
:

SSPRK scheme - Dispersion
1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0

1

2

3

4

Ph
as

e
:

DeC scheme - Dispersion
1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

SSPRK scheme - Damping

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

DeC scheme - Damping

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

Using the LPS stabilization method

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
:

SSPRK scheme - Dispersion
1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
:

DeC scheme - Dispersion
1 - principal eigenvalue
2 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5
Da

m
pi

ng

 =
 lo

g
(|

 |)
 /

dt
SSPRK scheme - Damping

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

DeC scheme - Damping

1 - principal eigenvalue
2 - principal eigenvalue

Using the CIP stabilization method

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
:

SSPRK scheme - Dispersion
1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
:

DeC scheme - Dispersion
1 - principal eigenvalue
2 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

SSPRK scheme - Damping

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

DeC scheme - Damping

1 - principal eigenvalue
2 - principal eigenvalue

Figure 16: Dispersion and damping coefficients for basic elements, with DeC and SSPRK methods and all
stabilization techniques

[10] R. Becker and M. Braack, A finite element pressure gradient stabilization for the stokes equations
based on local projections, Calcolo, 38 (2001), pp. 173–199.

[11] , A two-level stabilization scheme for the navier-stokes equations, in Numerical mathematics
and advanced applications, Springer, 2004, pp. 123–130.

[12] M. Braack and E. Burman, Local projection stabilization for the oseen problem and its interpre-
tation as a variational multiscale method, SIAM Journal on Numerical Analysis, 43 (2006).

[13] E. Burman, Consistent supg-method for transient transport problems: Stability and convergence,
Computer Methods in Applied Mechanics and Engineering - COMPUT METHOD APPL MECH
ENG, 199 (2010), pp. 1114–1123.

[14] E. Burman, A. Ern, and M. Fernández, Explicit Runge–Kutta Schemes and Finite Elements
with Symmetric Stabilization for First-Order Linear PDE Systems, SIAM Journal on Numerical

28

Without any stabilization method

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
: w

SSPRK scheme - Dispersion
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
: w

DeC scheme - Dispersion
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

SSPRK scheme - Damping

2 - principal eigenvalue
3 - principal eigenvalue

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

DeC scheme - Damping

2 - principal eigenvalue
3 - principal eigenvalue

Using the SUPG stabilization method

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
: w

SSPRK scheme - Dispersion
1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ph

as
e

: w
DeC scheme - Dispersion

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

SSPRK scheme - Damping

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

DeC scheme - Damping

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

Using the LPS stabilization method

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
: w

SSPRK scheme - Dispersion
1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
: w

DeC scheme - Dispersion
1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5
Da

m
pi

ng

 =
 lo

g
(|

 |)
 /

dt
SSPRK scheme - Damping

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

DeC scheme - Damping

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

Using the CIP stabilization method

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
: w

SSPRK scheme - Dispersion
1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
: w

DeC scheme - Dispersion
1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

SSPRK scheme - Damping

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

DeC scheme - Damping

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

Figure 17: Dispersion and damping coefficients for cubature elements, with DeC and SSPRK methods and
all stabilization techniques

Analysis, 48 (2010).

[15] E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection–diffusion
problems, Computer Methods in Applied Mechanics and Engineering, 193 (2004), pp. 1437–1453.

[16] , The edge stabilization method for finite elements in cfd, in Numerical mathematics and
advanced applications, Springer, 2004, pp. 196–203.

[17] E. Burman, P. Hansbo, and M. G. Larson, A cut finite element method for a model of pressure
in fractured media, Numerische Mathematik, 146 (2020), pp. 783–818.

[18] E. Burman, A. Quarteroni, and B. Stamm, Stabilization strategies for high order methods for
transport dominated problems, Bolletino dell’Unione Matematica Italiana, 1 (2008).

[19] , Interior penalty continuous and discontinuous finite element approximations of hyperbolic
equations, Journal of Scientific Computing, 43 (2010), pp. 293–312.

29

Without any stabilization method

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
:

SSPRK scheme - Dispersion
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
:

DeC scheme - Dispersion
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

SSPRK scheme - Damping

2 - principal eigenvalue
3 - principal eigenvalue

0.0 0.2 0.4 0.6 0.8 1.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

DeC scheme - Damping

Using the SUPG stabilization method

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
:

SSPRK scheme - Dispersion
1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0

1

2

3

4

Ph
as

e
:

DeC scheme - Dispersion
1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

SSPRK scheme - Damping

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

DeC scheme - Damping

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

Using the LPS stabilization method

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
:

SSPRK scheme - Dispersion
1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
:

DeC scheme - Dispersion
1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5
Da

m
pi

ng

 =
 lo

g
(|

 |)
 /

dt
SSPRK scheme - Damping

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

DeC scheme - Damping

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

Using the CIP stabilization method

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
:

SSPRK scheme - Dispersion
1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ph
as

e
:

DeC scheme - Dispersion
1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue
 ex = a*k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

SSPRK scheme - Damping

1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k*dx*deg = 2*pi / Nc

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Da
m

pi
ng

 =

 lo
g

(|
 |)

 /
dt

DeC scheme - Damping
1 - principal eigenvalue
2 - principal eigenvalue
3 - principal eigenvalue

Figure 18: Dispersion and damping coefficients for Bernstein elements, with DeC and SSPRK methods and
all stabilization techniques

[20] G. Cohen, P. Joly, J. Roberts, and N. Tordjman, Higher order triangular finite elements with
mass lumping for the wave equation, Siam Journal on Numerical Analysis, 38 (2001).

[21] J. Douglas and T. Dupont, Interior Penalty Procedures for Elliptic and Parabolic Galerkin
Method, vol. 58, Springer, 08 2008, pp. 207–216.

[22] A. Dutt, L. Greengard, and V. Rokhlin, Spectral deferred correction methods for ordinary
differential equations, BIT Numerical Mathematics, 40 (2000), pp. 241–266.

[23] F. Giraldo and M. Taylor, A diagonal-mass-matrix triangular-spectral-element method based on
cubature points, J. Eng. Math., 56 (2006), pp. 307–322.

[24] J.-L. Guermond, R. Pasquetti, and B. Popov, Entropy viscosity method for nonlinear conser-
vation laws, Journal of Computational Physics, 230 (2011), pp. 4248 – 4267. Special issue High
Order Methods for CFD Problems.

30

[25] T. Hughes and A. Brook, Streamline upwind Petrov-Galerkin formulations for convection dom-
inated flows with particular emphasis on the incompressible Navier-Stokes equations, Comp. Meth.
Appl. Mech. Engrg., 32 (1982), pp. 199–259.

[26] T. Hughes, G. Scovazzi, and T. Tezduyar, Stabilized methods for compressible flows, J. Sci.
Comp., 43 (2010), pp. 343–368.

[27] D. Kuzmin and M. Quezada de Luna, Algebraic entropy fixes and convex limiting for continuous
finite element discretizations of scalar hyperbolic conservation laws, Computer Methods in Applied
Mechanics and Engineering, 372 (2020), p. 113370.

[28] M. G. Larson and S. Zahedi, Stabilization of high order cut finite element methods on surfaces,
IMA Journal of Numerical Analysis, 40 (2019), pp. 1702–1745.

[29] Y. Liu, J. Teng, T. Xu, and J. Badal, Higher-order triangular spectral element method with
optimized cubature points for seismic wavefield modeling, Journal of Computational Physics, 336
(2017), pp. 458 – 480.

[30] S. Michel, D. Torlo, M. Ricchiuto, and R. Abgrall, Stability analysis
of several FEM methods: results and code. https://gitlab.inria.fr/dtorlo1/

stability-analysis-of-several-fem-methods-results-and-code.git, May 2021.

[31] M. Minion, Semi-implicit spectral deferred correction methods for ordinary differential equations,
Communications in Mathematical Sciences, 1 (2003).

[32] R. Moura, A. F. De Castro da Silva, E. Burman, and S. Sherwin, Eigenanalysis of gradient-
jump penalty (GJP) stabilisation for CG, 02 2020.

[33] R. C. Moura, M. Aman, J. Peiró, and S. J. Sherwin, Spatial eigenanalysis of spectral/hp
continuous galerkin schemes and their stabilisation via dg-mimicking spectral vanishing viscosity for
high reynolds number flows, Journal of Computational Physics, 406 (2020), p. 109112.

[34] P. Öffner and D. Torlo, Arbitrary high-order, conservative and positivity preserving Patankar-
type deferred correction schemes, Applied Numerical Mathematics, 153 (2020), pp. 15 – 34.

[35] S. Ruuth, Global optimization of explicit strong-stability-preserving Runge-Kutta methods, Math.
Comp., 75 (2006), pp. 183–207.

[36] S. Sherwin, Dispersion analysis of the continuous and discontinuous galerkin formulations, Discon-
tinuous Galerkin Methods, 11 (1999).

[37] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing
schemes, Journal of Computational Physics, 77 (1988), pp. 439–471.

[38] M. A. Taylor, B. A. Wingate, and R. E. Vincent, An algorithm for computing Fekete points
in the triangle, SIAM J. Numer. Anal., 38 (2000), p. 1707–1720.

[39] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python, Nature Methods, 17 (2020), pp. 261–272.

31

https://gitlab.inria.fr/dtorlo1/stability-analysis-of-several-fem-methods-results-and-code.git
https://gitlab.inria.fr/dtorlo1/stability-analysis-of-several-fem-methods-results-and-code.git

	1 Introduction
	2 Numerical Discretization
	2.1 Stabilization Terms
	2.1.1 Streamline-Upwind/Petrov-Galerkin - SUPG
	2.1.2 Continuous Interior Penalty - CIP
	2.1.3 Local Projection Stabilization - LPS

	2.2 Finite Element Spaces and Quadrature Rules
	2.3 Time Integration
	2.3.1 Explicit Runge–Kutta and Strong Stability Preserving Runge–Kutta schemes
	2.3.2 The Deferred Correction scheme

	3 Fourier Analysis
	3.1 Preliminaries and time continuous analysis
	3.2 Fully discrete analysis
	3.2.1 Methodology

	4 Results of the fully discrete spectral analysis
	4.1 Dispersion and damping

	5 A note on nonlinear stability
	6 Numerical Simulations
	6.1 Linear advection equation
	6.2 Burgers' equation
	6.3 Shallow water equations

	7 Conclusion
	A Time schemes
	B Fourier analysis, spatial and temporal eigenanalysis

