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Abstract. We consider the classical molecular beam epitaxy (MBE) model with logarithmic
type potential known as no-slope-selection. We employ a third order backward differentiation
(BDF3) in time with implicit treatment of the surface diffusion term. The nonlinear term is
approximated by a third order explicit extrapolation (EP3) formula. We exhibit mild time
step constraints under which the modified energy dissipation law holds. We break the second
Dahlquist barrier and develop a new theoretical framework to prove unconditional uniform energy
boundedness with no size restrictions on the time step. This is the first unconditional result for
third order BDF methods applied to the MBE models without introducing any stabilization term
or fictitious variable. The analysis can be generalized to a restrictive class of phase field models
whose nonlinearity has bounded derivatives. A novel theoretical framework is also established for
the error analysis of high order methods.

1. Introduction

In this work we consider the following molecular beam epitaxy (MBE) model with no slope
selection (cf. [11]):

∂th = −η2∆2h−∇ ·
(

∇h
1 + |∇h|2

)
, (t, x) ∈ (0,∞)× Ω. (1.1)

Here Ω = T2 = [−π, π]2 is taken to be the usual two-dimensional periodic torus and

|∇h|2 = (∂x1h)2 + (∂x2h)2. (1.2)

The function h = h(t, x) : Ω→ R represents a scaled height function of the thin film in a co-moving
frame. The term ∆2h corresponds to capillarity-driven isotropic surface diffusion (Mullins [20],
Herring [10]) and the parameter η2 > 0 is the diffusion coefficient. The equation (1.1) naturally
arises from the L2 gradient flow of the energy functional

E(h) =

∫
Ω

(
−1

2
log(1 + |∇h|2) +

1

2
η2|∆h|2

)
dx. (1.3)

Due to the negative sign in the logarithmic potential which corresponds to the Ehrlich-Schwoebel
effect, the system often favors uphill atom current and exhibits mound-like structures in the film.
If one assumes |∇h| � 1, then the energy functional (1.3) can be approximated by

E(h) =

∫
Ω

(1

4
(|∇h|2 − 1)2 +

1

2
η2|∆h|2

)
dx. (1.4)

The L2-gradient flow of (1.4) leads to the standard MBE model with slope-selection. The name
is derived from the fact that typical solutions corresponding to (1.4) usually “selects” the slope
|∇h| ≈ 1 which exhibits pyramidal structures. On the other hand typical solutions to (1.1) have
mound-like structures and the slopes may have a large upper bound. Analysis-wise these two
systems are vastly different. A well-known difficulty associated with (1.4) is the lack of good a
priori Lipschitz bounds (see [13, 16, 17, 12]). In stark contrast the system (1.1) has a very benign
nonlinearity in the sense that the nonlinear function g(z) = −z/(1+ |z|2) has bounded derivatives
of all orders. This renders the analysis and simulation quite appealing.
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For smooth solutions to (1.1), the mean-value of h is preserved in time. Moreover, the basic
energy conservation law takes the form

E(h(t2)) +

∫ t2

t1

‖∂th‖22dt = E(h(t1)), ∀ 0 ≤ t1 < t2 <∞. (1.5)

This leads to

E(h(t)) ≤ E(h(0)), ∀ t > 0. (1.6)

Since the energy is coercive (Lemma 2.2) and the mean-value of h is preserved, (1.6) gives global
H2 control of the solution. The wellposedness and regularity of solutions to (1.1) follows from
this and the fact that the nonlinear function g(z) = −z/(1 + |z|2) have bounded derivatives of all
orders.

On the numerical side there is by now a rather extensive literature on designing and analyzing
energy stable numerical schemes for phase field models including Allen-Cahn, Cahn-Hilliard,
MBE and so on, including the convex-splitting schemes [7, 27, 2], the implicit-explicit schemes
(without stabilization) [17, 18], the stabilization schemes [29, 28, 25, 15, 26], and the scalar
auxiliary variable schemes [23, 24]. A fundamental challenge is to design fast and accurate, easy to
implement and stable numerical schemes for problems possessing a myriad of temporal and spatial
scales. Concerning the epitaxy thin film model, many existing works only with the analysis of
first order and second order in time methods such as first order Backward Differentiation Formula
in time with first order extrapolation for the nonlinearity (BDF1/EP1), second order Backward
Differentiation Formula with second order extrapolation (BDF2/EP2) and implicit treatment of
the surface diffusion term (cf [28, 12] and the references therein). These implicit-explicit (IMEX)
methods are often bundled together with some judiciously chosen stabilization terms in order to
accommodate large time steps and improve energy stability ([28, 12, 14, 15, 19]). Concerning third
order accurate schemes for the MBE models, there are very few works devoted to the analysis of
BDF3 type IMEX methods. In this connection we mention the recent impressive work of Hao,
Huang and Wang ([9]) who considered a BDF3/AB3 discretization scheme with an additional
stabilization term

−A∆t2∆2(hn+1 − hn). (1.7)

In [9] it was shown that if A ≥ O(η−2) then one can have unconditional energy dissipation for
any time step. We should point out that, whilst embracing additional stabilization terms could
improve the stability of the algorithm, it might introduce unwarranted error terms, which renders
the choice of the stabilization parameter a rather delicate and nontrivial task. Fine-tuning the
form of the stabilization terms is in general a technically demanding task and we refer to the
introduction of [18] for more in-depth discussions and related bibliography.

The main contribution of this work is as follows.

(1) We consider BDF3/EP3 semi-discretization scheme for the MBE model with no slope
selection. We quantify explicit and mild time step constraints under which the modified
energy dissipation law holds.

(2) We introduce a new theoretical framework and prove unconditional uniform energy bound-
edness with no size restrictions on the time step. This is the first unconditional result for
third order BDF methods applied to the MBE models without introducing any stabiliza-
tion terms or fictitious variables.

(3) We develop a novel theoretical framework for the error analysis of BDF3 type methods.
This framework is quite robust and can be generalized to higher order methods.

Our modest goal is to introduce a new paradigm for the stability and error analysis of phase
field models. In particular for problems whose nonlinearity are sufficiently benign (e.g. having
bounded derivatives of first few orders), one can establish the following:
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0 < τ <∞ uniform energy bound

0 < τ < τc energy dissipation

In the above τc can be quantified in terms of the parameters of the model under study. In our
MBE model (1.1), the optimal τc = O(η2) which is consistent with the typical temporal-spatial
ratio by using dimension analysis.

The rest of this paper is organized as follows. In Section 2 we prove modified energy dissipation
under mild time step constraints. In Section 3 we establish unconditional energy stability which
is independent of the time step. In Section 4 we establish the error analysis for the BDF3/EP3
scheme. In Section 5 we carry out several numerical simulations. The final section is devoted to
concluding remarks.

2. Energy decay for BDF3/EP3

We consider the following BDF3/EP3 scheme:

11hn+1 − 18hn + 9hn−1 − 2hn−2

6τ
= −η2∆2hn+1 +∇ · g

(
3∇hn − 3∇hn−1 +∇hn−2

)
, n ≥ 2,

(2.1)
where

g(z) = − z

1 + |z|2
, z ∈ R2. (2.2)

To kick start the scheme we can compute h1 and h2 via a first and second-order scheme
respectively.

Lemma 2.1. Consider g(z) = −z/(1 + |z|2) for z ∈ R2. We have

|g(x)− g(y)| ≤ |x− y|, ∀x, y ∈ R2, (2.3)

xT (Dg)(z)x ≤ 1

8
|x|2, ∀x, z ∈ R2. (2.4)

Remark 2.1. Our proof also extends to general dimensions d ≥ 1.

Proof. Denote g1(z) = z/(1 + |z|2). By using the Fundamental Theorem of Calculus, we have

g1(x)− g1(y) =

∫ 1

0
(Dg1)(y + θ(x− y))dθ(x− y). (2.5)

It suffices for us to examine the spectral norm of the symmetric matrix (Dg1)(z), where

(Dg1)(z) =
δij

1 + |z|2
− 2zizj

(1 + |z|2)2
. (2.6)

Now take any b ∈ Rd with |b| = 1, and let b⊥ be a unit vector orthogonal to b. Clearly

z = (z · b)b+ (z · b⊥)b⊥, |z|2 = (z · b)2 + (z · b⊥)2. (2.7)

Then

bT (Dg1)(z)b =
1

1 + |z|2
− 2(b · z)2

(1 + |z|2)2
≤ 1. (2.8)

Also

bT (Dg1)(z)b =
1

(1 + |z|2)2
+

(z · b⊥)2 − (b · z)2

(1 + |z|2)2

≥ 1− (b · z)2

(1 + |z|2)2
≥ inf

s≥0

1− s
(1 + s)2

≥ −1

8
. (2.9)
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It follows that the spectral norm of Dg is bounded by 1 and (2.3) follows easily. The estimate
(2.4) follows from (2.9). �

Lemma 2.2 (Coercivity of the energy). Let η > 0. For any h ∈ H2(T2), we have

c1‖∆h‖22 − c2 ≤
∫
T2

(
−1

2
log(1 + |∇h|2) +

1

2
η2|∆h|2

)
dx ≤ 1

2
η2‖∆h‖22, (2.10)

where c1, c2 are positive constants depending only on η.

Proof. This follows from the simple observation that

−const · (1 + |∇h|) ≤ − log(1 + |∇h|2) ≤ 0. (2.11)

�

Theorem 2.1 (Modified energy dissipation). Consider the scheme (2.1). Assume h0, h1, h2 ∈
H2(T2) and

0 < τ ≤ α1η
2, α1 =

512

7203
≈ 0.071. (2.12)

Then
Ẽn+1 ≤ Ẽn, ∀n ≥ 2, (2.13)

where (below δhn = hn − hn−1)

Ẽn = En +
3

4τ
‖δhn‖22 +

1

6τ
‖δhn−1‖22 +

3

2
‖∇δhn‖22 +

1

2
‖∇δhn−1‖22; (2.14)

En = E(hn) =

∫
Ω

(
−1

2
log(1 + |∇hn|2) +

1

2
η2|∆hn|2

)
dx. (2.15)

Furthermore if for some α2 > 0,

‖δh2‖22 + ‖δh1‖22 ≤ α2τ, (2.16)

then we have the uniform H2 bound:

sup
n≥3

(‖hn‖2 + ‖∆hn‖2) ≤ C̃1 <∞, (2.17)

where C̃1 > 0 depends only on (h0, h1, h2, η, α2).

Remark 2.2. The assumption (2.16) is quite reasonable since typically h1 − h0 = O(τ) and
h2 − h1 = O(τ) if we compute h1 and h2 via a first order scheme such as BDF1/EP1 and a
second order scheme such as BDF2/EP2 respectively.

Proof. Denote

δhn = hn − hn−1. (2.18)

Taking the L2-inner product with δhn+1 on both sides of (2.1), we obtain

(
11hn+1 − 18hn + 9hn−1 − 2hn−2

6τ
, δhn+1) +

1

2
η2(‖∆hn+1‖22 − ‖∆hn‖22 + ‖∆(δhn+1)‖22)

= −(g(∇hn),∇(δhn+1))− (g(3∇hn − 3∇hn−1 +∇hn−2)− g(∇hn),∇(δhn+1)). (2.19)

Observe that

11hn+1 − 18hn + 9hn−1 − 2hn−2

6τ
=

11δhn+1

6τ
− 7δhn

6τ
+
δhn−1

3τ
. (2.20)

By using (2.20) and the Cauchy-Schwartz inequality, we have

(
11hn+1 − 18hn + 9hn−1 − 2hn−2

6τ
, δhn+1) ≥ 13

12τ
‖δhn+1‖22 −

7

12τ
‖δhn‖22 −

1

6τ
‖δhn−1‖22. (2.21)
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We set

Fn = −1

2

∫
T2

log(1 + |∇hn|2)dx. (2.22)

Using Taylor expansion and Lemma 2.1, we obtain

Fn+1 ≤ Fn + (g(∇hn),∇δhn+1) +
1

2
· 1

8
‖∇δhn+1‖22. (2.23)

Here Lemma 2.1 is used to control the quadratic term in the Taylor expansion. This implies

−(g(∇hn),∇δhn+1) ≤ Fn − Fn+1 +
1

16
‖∇δhn+1‖22. (2.24)

On the other hand by using Lemma 2.1, we have

−(g(3∇hn − 3∇hn−1 +∇hn−2)− g(∇hn),∇(δhn+1)) ≤ (2‖∇δhn‖2 + ‖∇δhn−1‖2) · ‖∇δhn+1‖2.
(2.25)

Collecting the estimates, we have

13

12τ
‖δhn+1‖22 −

7

12τ
‖δhn‖22 −

1

6τ
‖δhn−1‖22 + η2 1

2
‖∆(δhn+1)‖22

≤En − En+1 +
25

16
‖∇(δhn+1)‖22 + ‖∇δhn‖22 +

1

2
‖∇δhn−1‖22. (2.26)

Rearranging the terms, we obtain

En+1 +
13

12τ
‖δhn+1‖22 −

25

16
‖∇δhn+1‖22 + η2 1

2
‖∆δhn+1‖22

≤ En +
7

12τ
‖δhn‖22 +

1

6τ
‖δhn−1‖22 + ‖∇δhn‖22 +

1

2
‖∇δhn−1‖22. (2.27)

Now observe that for 0 < τ ≤ 512
7203η

2, we have

1

3τ
‖δhn+1‖22 + η2 1

2
‖∆δhn+1‖22 −

25

16
‖∇δhn+1‖22

≥
(√2η2

3τ
− 25

16

)
‖∇δhn+1‖22 ≥

3

2
‖∇δhn+1‖22. (2.28)

The decay of the modified energy then follows. The estimate (2.17) follows from (2.16) and
Lemma 2.2. �

Remark 2.3. We explain how to fix the constants in the modified energy. Suppose we want to
arrive at the inequality

En+1 + α1‖δhn+1‖22 + α2‖δhn‖22 + β1‖∇δhn+1‖22 + β2‖∇δhn‖22
≤ En + α1‖δhn‖22 + α2‖δhn−1‖22 + β1‖∇δhn‖22 + β2‖∇δhn−1‖22. (2.29)

Then (2.29) is equivalent to

En+1 + α1‖δhn+1‖22 + β1‖∇δhn+1‖22
≤ En + (α1 − α2)‖δhn‖22 + α2‖δhn−1‖22 + (β1 − β2)‖∇δhn‖22 + β2‖∇δhn−1‖22. (2.30)

Matching the RHS of (2.30) with (2.27), we obtain

α1 =
3

4τ
, α2 =

1

6τ
, β1 =

3

2
, β2 =

1

2
. (2.31)

We then deduce that the LHS of (2.27) must satisfy

1

3τ
‖δhn+1‖22 + η2 1

2
‖∆δhn+1‖22 −

25

16
‖∇δhn+1‖22 ≥

3

2
‖∇δhn+1‖22. (2.32)
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3. Uniform boundedness of energy for any τ > 0

Theorem 3.1 (Uniform boundedness of energy for arbitrary time step). Consider the scheme
(2.1). Assume h0, h1, h2 ∈ H2(T2) satisfies∫

T2

h2dx =

∫
T2

h1dx =

∫
T2

h0dx, (3.1)

and for some constant α2 > 0

‖δh2‖22 + ‖δh1‖22 ≤ α2τ. (3.2)

Then for any τ > 0, it holds that

sup
n≥3

(‖hn‖2 + ‖∆hn‖2) ≤ B1 <∞, (3.3)

where B1 > 0 depends only on (h0, h1, h2, η, α2). Note that B1 is independent of τ .

Remark 3.1. Note that the assumption (3.1) is quite reasonable since the mean of h is preserved
in time for the PDE solution. If we compute h1 and h2 using BDF1/EP1 and BDF2/EP2
respectively, then it is easy to check that (3.1) and (3.2) hold.

Remark 3.2. To put things into perspective, it is useful to recall the usual notion of A-stability
in the classical numerical ODE textbook (cf. pp. 348 of [6]). Consider the family of model ODEs

y′ = λy, λ ∈ C, Re(λ) < 0. (3.4)

A linear multistep method is absolutely stable for a given value of λτ if each root z = z(λτ) of the
associated stability polynomial satisfies |z(λτ)| < 1. The method is called A-stable if the stability
region {λτ : the method is absolutely stable for λτ} covers the negative complex half-plane. The
notion of A-stability is extremely demanding, for example the well-known second Dahlquist barrier
([4]) asserts that:

(1) No explicit linear multistep method is A-stable;
(2) Implicit methods can have order of convergence at most two;
(3) The trapezoidal rule has the smallest error constant 1/12 amongst all second order A-stable

linear multistep methods.

In particular the third order BDF3 method is not A-stable. However it was already realized (cf.
pp. 348 of [6]) that one can relax the condition of A-stability by requiring that the region of
absolute stability should include a large part of the negative half-plane and in particular the whole
negative real axis. The BDF methods are one of the most efficient methods in this regard. By
analyzing the characteristic polynomial (cf. pp. 27 of [1]), it is known that BDF-k (k denotes the
order) methods satisfy the root condition and is zero-stable if and only if k ≤ 6 (cf. [5, 3, 8]).

Remark 3.3. It is possible to reconcile the unconditional stability result proved in Theorem 3.1
with the classical notion of stability for ODEs as pointed out in the preceding remark. In the PDE
setting here, we only need the stability region to cover the negative real axis. In yet other words
one only need to demand that the method is absolute stable for the special family:

y′ = λy, λ < 0. (3.5)

Since the stability region of BDF3 method covers the negative real analysis, it is natural to expect
stability for all τ > 0. Indeed for small τ > 0 the numerical solution is close to the PDE
solution and one should expect energy decay. For τ & 1, the linear dissipation term −τη2∆2hn+1

introduces a nontrivial shift of the stability polynomial. In particular, all characteristics roots lie
strictly inside the unit disk which make the dynamics very stable. Since our nonlinearity is very
benign which can regarded as an O(1)-perturbation at each iterative step, the uniform stability
easily follows.
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Proof. By using (3.1) and an induction argument, we have∫
T2

hndx =

∫
T2

h0dx, ∀n ≥ 1. (3.6)

Denote the average of h0 as h̄ and denote

yn = hn − h̄. (3.7)

It is not difficult to check that yn evolves according to the same scheme (2.1) where hn is replaced
by yn. Thus with no loss we can assume all hn has mean zero. Note that we may assume τ > α1η

2

since the case 0 < τ ≤ α1η
2 is already covered by Theorem 2.1. With some minor change of

notation and relabelling the constants if necessary, our desired result then follows from Theorem
3.2 below. �

Assume fn = (fn1 , f
n
2 ), n ≥ 1 is a given sequence of functions on T2. Let un evolve according

to the scheme:

11un+1 − 18un + 9un−1 − 2un−2

6τ
= −∆2un+1 +∇ · fn, n ≥ 2, (3.8)

We have the following uniform boundedness result.

Theorem 3.2. Consider the scheme (3.8) with τ ≥ τ0 > 0. Assume u0, u1, u2 ∈ H2(T2) and
have mean zero. Suppose

sup
n≥2
‖fn‖2 ≤ A0 <∞. (3.9)

We have

sup
n≥3

(‖un‖2 + ‖∆un‖2) ≤ A1 <∞, (3.10)

where A1 > 0 depends only on (τ0, A0, u0, u1, u2).

Proof. We first rewrite (3.8) as

un+1 = 18T1u
n − 9T1u

n−1 + 2T1u
n−2 + 6τT1∇ · fn, (3.11)

where T1 = (11 + 6τ∆2)−1. One should note that since we are working with mean-zero functions,
we can replace (3.11) by

un+1 = 18Tun − 9Tun−1 + 2Tun−2 + 6τT∇ · fn, (3.12)

where

T̂ (k) =
1

11 + 6τ |k|4
· 1|k|≥1. (3.13)

The operator T admits a natural spectral bound, namely

0 < T̂ (k) ≤ 1

11 + 6τ
≤ 1

11 + 6τ0
, 6τ |k||T̂ (k)| ≤ 1, ∀ 0 6= k ∈ Z2. (3.14)

We now denote

Zn+1 = (ûn+1(k), ûn(k), ûn−1(k))T , (3.15)

Fn+1 = (6τ T̂ (k)(ik) · f̂n(k), 0, 0)T , (3.16)

M =

18T̂ (k) −9T̂ (k) 2T̂ (k)
1 0 0
0 1 0

 . (3.17)
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Clearly

Zn+1 = MZn + Fn+1

= Mn−1Z2 +
n+1∑
j=3

Mn+1−jF j , ∀n ≥ 2. (3.18)

Now for each fixed k, by Lemma 3.2, we have

|Mn−1Z2| ≤ |Z2|, |Mn+1−jF j | ≤ K1ρ
n+1−j
1 |F j |, (3.19)

where K1 > 0 depends only τ0, and 0 < ρ1 < 1 depends only on τ0.
We then obtain

sup
n≥2

sup
06=k∈Z2

|Zn+1(k)| ≤ C1, (3.20)

where C1 depends only on (u0, u1, u2, τ0, A0). Using (3.12), we get

sup
n≥2

sup
06=k∈Z2

||k|4ûn+1(k)| ≤ C2, (3.21)

where C2 depends only on (u0, u1, u2, τ0, A0). The desired H2-bound then easily follows. �

Lemma 3.1. Let 0 < s0 <
1
11 . For 0 < s ≤ s0 the roots to the equation in λ

λ3 − 18sλ2 + 9sλ− 2s = 0 (3.22)

are given by

λ1 = 6s− a

9b
+ b; (3.23)

λ2 = 6s+
1 + i

√
3

18
· a
b
− 1− i

√
3

2
b; (3.24)

λ3 = λ2 = 6s+
1− i

√
3

18
· a
b
− 1 + i

√
3

2
b, (3.25)

where

a = 27s− 324s2, (3.26)

b =
(
s− 27s2 + 216s3 +

√
s2 − 27s3 + 189s4

) 1
3
. (3.27)

In particular, we have

2.1s < λ1(s) ≤ λa < 1, (3.28)

|λ2(s)| = |λ3(s)| ≤
√

2

2.1
< 1, ∀ 0 < s ≤ s0, (3.29)

where λa > 0 depends only on s0.

Proof. Since the equation is cubic we have the explicit formula for the roots. It is not difficult
to check that λ1(s) is monotonically increasing in s and λ1( 1

11) = 1 with λ′1 > 0 for 0 < s ≤ 1
11 .

The function λ1(s)− 2.1s is also monotonically increasing. Thus (3.28) holds. The bound (3.29)
follows from the fact that

|λ2λ3| = |λ2|2 =
2s

λ1(s)
<

2

2.1
. (3.30)

�
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Lemma 3.2. Let 0 < s0 <
1
11 . Consider the matrix

M(s) =

18s −9s 2s
1 0 0
0 1 0

 , (3.31)

where 0 < s ≤ s0. There exists an integer n0 ≥ 1 which depends only on s0, such that

sup
0<s≤s0

sup
x∈R3, |x|=1

|M(s)n0x| ≤ ε0 < 1, (3.32)

where ε0 > 0 depends only on s0. In the above |x| =
√
x2

1 + x2
2 + x2

3 denotes the usual l2-norm
on R3.

It follows that

sup
0<s≤s0

sup
x∈R3, |x|=1

|M(s)nx| ≤ K1 · ρn1 , ∀n ≥ 0, (3.33)

where 0 < ρ1 < 1, K1 > 0 depend only on s0.

Remark 3.4. The constraint s0 <
1
11 is absolutely necessary. If s = 1

11 , then M(s)x = x for

x = (1, 1, 1)T .

Proof. First we have

M(s)2 =

−9s+ 324s2 2s− 162s2 36s2

18s −9s 2s
1 0 0

 , (3.34)

M(s)3 = s

2(1− 162s+ 2916s2) 9(13− 324s)s 18s(−1 + 36s)
9(−1 + 36s) 2(1− 81s) 36s

18 −9 2

 . (3.35)

Clearly if s1 is sufficiently small, then we have

sup
0<s≤s1

sup
x∈R3, |x|=1

|M(s)3x| ≤ 1

2
. (3.36)

We now focus on the regime s1 ≤ s ≤ s0 <
1
11 . Consider a fixed s∗ ∈ [s1, s0]. By Lemma 3.1,

there exists n∗ depending on s∗ such that

sup
x∈R3, |x|=1

|M(s∗)
n∗x| ≤ ε∗ < 1, (3.37)

where ε∗ also depends on s∗. Perturbing around s∗, we can find a small neighborhood J∗ around
s∗, such that

sup
x∈R3, |x|=1

|M(s)n∗x| ≤ ε1 < 1, ∀ s ∈ J∗, (3.38)

where ε1 depends only on s∗. The inequality (3.32) then follows from a covering argument and
the fact that the matrix spectral norm is sub-multiplicative. The inequality (3.33) is a trivial
consequence of (3.32). �

4. Error analysis

In this section we carry out the error analysis for the BDF3/EP3 scheme. We introduce a new
framework which can be generalized to many other settings especially for higher order methods.

To simplify the presentation, we assume the initial data h0 ∈ Hm0(T2), m0 ≥ 20 and has mean
zero. The high regularity is mainly needed in the consistency estimate so as to justify that the
PDE solution satisfies the BDF3/EP3 to high precision (see (4.7)). The regularity assumption
can certainly be lowered but we shall not dwell on this issue here. We denote h as the exact PDE
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solution to the system (1.1) which clearly has mean zero and uniform Hm0 upper bound for all
t ≥ 0. To simplify the analysis, we also assume that

h1(x) = h(τ, x), h2(x) = h(2τ, x), ∀x ∈ T2. (4.1)

In yet other words, we assume the first two numerical iterates (needed to start the third order
scheme) are computed flawlessly. This will help to elucidate how errors are genuinely propagated
by the third order scheme whilst all other factors are suppressed. With some additional minor
work we can certainly drop the assumption (4.1) and replaced by some consistency estimates for
h1 − h(τ) and h2 − h(2τ). However we shall not pursue this matter here in order to simplify the
presentation.

Theorem 4.1 (Error analysis). Consider the scheme (2.1). Assume h0, h1, h2 ∈ Hm0(T2),
m0 ≥ 20 and satisfy (4.1). Let T > 0 be given. For τ > 0 sufficiently small, we have

sup
3≤n≤T

τ

‖hn(·)− h(nτ, ·)‖2 ≤ C · τ3, (4.2)

where C > 0 is independent of τ .

Proof. Throughout this proof we denote by Ci various constants which may depend on (h0, η, T ,
m0) but do not depend on τ or n. To ease the notation we shall assume the diffusion coefficient

η = 1. (4.3)

Denote

ηn(x) = hn(x)− h(nτ, x), n ≥ 0, x ∈ T2. (4.4)

Step 1. Uniform Hm0 bound. By using Theorem 3.1 and a bootstrapping argument, we have

sup
n≥3
‖hn‖Hm0 + sup

t≥0
‖h(t)‖Hm0 ≤ C1 <∞. (4.5)

Step 2. Consistency. By a simple consistency analysis, we have

11h((n+ 1)τ)− 18h(nτ) + 9h((n− 1)τ)− 2h((n− 2)τ)

6τ

= −∆2h((n+ 1)τ) +∇ ·
(
g
(

3∇h(nτ)− 3∇h((n− 1)τ) +∇h((n− 2)τ)
))

+ en+1, n ≥ 2,

(4.6)

where (here we need to employ the Hm0 regularity estimate)

‖en+1‖2 ≤ C2τ
3. (4.7)

Taking the difference with the corresponding equation for hn+1, we obtain

11ηn+1 − 18ηn + 9ηn−1 − 2ηn−2

6τ

=−∆2ηn+1 +∇ ·
(
αn,1∇ηn + αn,2∇ηn−1 + αn,3∇ηn−2

)
+ en+1, n ≥ 2, (4.8)

where
3∑
j=1

‖αn,j‖Hm0−1 ≤ C3. (4.9)

Step 3. Reformulation. Since we are working with mean-zero functions, we can replace (4.8)
by

ηn+1 = 18Tηn − 9Tηn−1 + 2Tηn−2 + 6τTen+1

+ 6τT∇ ·
(
αn,1∇ηn + αn,2∇ηn−1 + αn,3∇ηn−2

)
, (4.10)
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where

T̂ (k) =
1

11 + 6τ |k|4
· 1|k|≥1. (4.11)

The operator T admits a natural spectral bound, namely

0 < T̂ (k) ≤ 1

11 + 6τ
, ∀ 0 6= k ∈ Z2. (4.12)

Since we shall be working with L2 norm of ηn which carries no derivatives, we rewrite (3.12) as

ηn+1 = 18Tηn − 9Tηn−1 + 2Tηn−2 + 6τTen+1

+ 6τT∆
(
αn,1η

n + αn,2η
n−1 + αn,3η

n−2
)

− 6τT∇ ·
(
∇αn,1ηn +∇αn,2ηn−1 +∇αn,3ηn−2

)
. (4.13)

We now denote

Φn+1(k) = (η̂n+1(k), η̂n(k), η̂n−1(k))T , (4.14)

Fn+1(k) = (6τ T̂ (k)ên+1(k), 0, 0)T , (4.15)

M1(k) =

18T̂ (k) −9T̂ (k) 2T̂ (k)
1 0 0
0 1 0

 , (4.16)

Gn+1(k) = (−6τ T̂ (k)|k|2ĝn+1(k), 0, 0)T , (4.17)

Zn+1(k) = (−6τ T̂ (k)ik · ẑn+1(k), 0, 0)T , (4.18)

where

gn+1 = αn,1η
n + αn,2η

n−1 + αn,3η
n−2, (4.19)

zn+1 = ∇αn,1ηn +∇αn,2ηn−1 +∇αn,3ηn−2. (4.20)

Clearly

Φn+1 = M1Φn + Fn+1 +Gn+1 + Zn+1. (4.21)

Step 4. Analysis. Let ε0 > 0 be a small constant. The needed smallness will be specified later.
We discuss two cases.

Case 1: τ |k|4 ≥ ε0. More precisely we first estimate Φn+1(k) for τ |k|4 ≥ ε0. Denote

Φn
H(k) = Φn(k)1

|k|≥(τ−1ε0)
1
4
. (4.22)

By using (4.5) and (4.9), it is not difficult to check that

sup

|k|≥(τ−1ε0)
1
4

|k|2(|Gn+1(k)|+ |Zn+1(k)|) ≤ β1τ
4, (4.23)

where β1 > 0 depends on ε0.
Then

Φn+1
H (k) = M1(k)Φn

H(k) + Fn+1
H (k), (4.24)

where

‖Fn+1
H (k)‖l2k(0 6=k∈Z2) ≤ (C4 + C5β1)τ4. (4.25)

Iterating in n, we obtain

Φn+1
H (k) = M1(k)n−1Φ2

H(k) +
n+1∑
j=3

M1(k)n+1−jF jH(k), ∀n ≥ 2. (4.26)
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Thanks to the cut-off τ |k|4 ≥ ε0, we can apply Lemma 3.2 to get for each k,

|Φn+1
H (k)| ≤ K1ρ

n−1
1 |Φ2

H(k)|+
n+1∑
j=3

K1ρ
n+1−j
1 |F jH(k)|, ∀n ≥ 2, (4.27)

where 0 < ρ1 < 1, K1 > 0 depend on ε0. By (4.1) we have Φ2
H ≡ 0. It follows that

sup
n≥3
‖Φn

H(k)‖lk2 (06=kZ2) ≤ β2τ
4, (4.28)

where β2 > 0 depend on ε0.
Case 2: τ |k|4 < ε0. We need to estimate Φn+1(k) for τ |k|4 < ε0. Denote

Φn
L(k) = Φn(k)1

|k|<(τ−1ε0)
1
4
. (4.29)

By Lemma 4.1, we write

M1(k) = N(sτ,k)
−1Λ(sτ,k)N(sτ,k), (4.30)

where

sτ,k =
1

11 + 6τ |k|4
. (4.31)

Note that since |k| ≥ 1, we have τ ≤ τ |k|4 < ε0. We shall take ε0 sufficiently small such that
Lemma 4.1 can be applied. Note that ε0 is an absolute constant.

Denote

Y n(k) = N(sτ,k)Φ
n
L(k). (4.32)

We have

Y n+1(k) = Λ(sτ,k)Y
n(k) + Fn+1

L (k), (4.33)

where

Fn+1
L (k) = N(sτ,k)(F

n+1(k) +Gn+1(k) + Zn+1(k)) · 1
|k|<(τ−1ε0)

1
4
. (4.34)

Taking the dot product with Y n+1(k) (the complex conjugate of Y n+1(k)) on both sides of (4.33),
summing in k and applying the Cauchy-Schwartz inequality, we obtain

|Y n+1(k)|2l2k ≤
1

2
|Y n(k)|2l2k +

1

2
|Λ(sτ,k)Y

n+1(k)|2l2k +B6τ
7

+B7τ |Y n(k)|2l2k + ε1τ
∣∣|k|2Y n+1(k)

∣∣2
l2k
, (4.35)

where ε1 will be taken sufficiently small, and B6, B7 > 0 depend on ε1. Note that to obtain
(4.35), we have used the estimate of Φn

H(k) (see (4.28)) and also Lemma 4.1 to bound N(sτ,k).
Also in bounding the term containing Fn+1(k), we used

|(N(sτ,k)F
n+1(k)) · Y n+1(k)|l1k(k 6=0) ≤ C̃1τ‖en+1‖2|Y n+1(k)|l2k(k 6=0)

≤ τ(
C̃2

1

ε
‖en+1‖22 + ε|Y n+1(k)|2l2k(k 6=0))

≤ C̃2

ε
τ7 + ετ ||k|2Y n+1(k)|2l2k , (4.36)

where C̃1, C̃2 are constants, and ε > 0 was chosen sufficiently small.
By Lemma 4.1 and taking ε1 to be a sufficiently small absolute constant, we have

1

2
|Λ(sτ,k)Y

n+1(k)|2l2k + ε1τ
∣∣|k|2Y n+1(k)

∣∣2
l2k
≤ 1

2
|Y n+1(k)|2l2k . (4.37)
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It follows that

|Y n+1(k)|2l2k ≤ (1 + C7τ)|Y n(k)|2l2k + C8τ
7, n ≥ 2. (4.38)

Iterating in n up to n ≤ T/τ and noting that Y 2(k) ≡ 0, we obtain

sup
3≤n≤T/τ

|Y n+1(k)2
l2k
≤ C · τ6. (4.39)

The desired estimate then follows. �

Lemma 4.1 (Smooth diagonalization of the operator matrix). Consider the matrix

M(s) =

18s −9s 2s
1 0 0
0 1 0

 . (4.40)

There exists an absolute constant κ0 > 0 sufficiently small such that if s = 1
11(1 − κ) with

0 < κ ≤ κ0, then M(s) admits the following diagonalization:

M(s) = N(s)−1Λ(s)N(s), (4.41)

where Λ(s) = diag(λ1(s), λ2(s), λ3(s)), and for some absolute constants B1 > 0, B2 > 0,

max{|λ1(s)|, |λ2(s)|, |λ3(s)|} ≤ 1−B1κ; (4.42)

sup
0<κ≤κ0

sup
x∈R3:|x|=1

(|N(s)−1x|+ |N(s)x|) ≤ B2. (4.43)

Proof. Observe that in the limiting case s = 1
11 , the matrix M( 1

11) has three eigenvalues given by

1 and 1
22(7± i

√
39). The result then follows from a simple perturbation argument. One can use

the explicit formula for roots as given in Lemma 3.1. �

5. Numerical experiments

In the following numerical experiments, given the initial condition h0, we employ the second
order Runge–Kutta method for computing h1 and the BDF2/EP2 method for computing h2,
which ensures the third order convergence in time. The Fourier pseudo-spectral method is used
for spatial discretization with Nx ×Ny modes.

5.1. Comparison with the stabilized scheme. In this part, we compare the accuracy of the
BDF3/EP3 scheme (2.1) with the stabilized BDF3/EP3 scheme:

11hn+1 − 18hn + 9hn−1 − 2hn−2

6τ
= −η2∆2hn+1

+∇ · g
(
3∇hn − 3∇hn−1 +∇hn−2

)
−Aτ2∆2(hn+1 − hn),

(5.1)

where A > 0 is the stabilization parameter and

g(z) = − z

1 + |z|2
, z ∈ R2. (5.2)

With similar proof for the BDF3/AB3 scheme in [9], one can impose some restriction such as

A ≥ 9

32

(
49

16

)4

η−2 ≈ 24.7398η−2 (5.3)

for the stabilized BDF3/EP3 scheme (5.1) to preserve the modified energy dissipation property.
We take the computational domain as the periodic torus Ω = [−π, π]2. We take the diffusion

parameter η = 1, the final time T = 1, and the number of Fourier modes Nx ×Ny = 256× 256.
For simplicity, we add a suitable forcing term on the right-hand side of (1.1), so that the exact
solution is

hext(t, x, y) = cos(t) sin(x) sin(y). (5.4)
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Then, we employ the BDF3/EP3 scheme (2.1) and the stabilized BDF3/EP3 scheme (5.1) (adding
an implicit forcing term on the right-hand side) respectively to solve the problem.

The `2 and `∞ errors at T are computed for different τ and A, which are illustrated in Figure
1. It is obvious that when A becomes larger, the `2 and `∞ errors become larger. In the case of
no stabilization term, i.e., A = 0, we get the best accuracy. This indicates that large stabilization
parameter could lead to bad accuracy. In particular, in the case of A = 25, the energy dissipation
law is preserved due to the restriction (5.3), but the `2 and `∞ errors are hundreds of times larger
than the case of no stabilization.

Moreover, we implement similar experiments for η = 0.5 and plot the corresponding errors in
Figure 2. It can be observed that when we choose A = 100 so that (5.3) is satisfied, the `2 and
`∞ errors are still hundreds of times larger than the case of no stabilization.

It seems that the unconditionally energy dissipation law is too strong a concept since large
stabilization parameter might deteriorate the accuracy. From our analysis the classical IMEX
scheme without stabilization might be a better choice. The reason is that even if the energy dis-
sipation is not always preserved, the accuracy seems better and the energy is uniformly bounded
for any time step τ as guaranteed by Theorem 3.1. In yet other words, instead of pursuing uncon-
ditional energy dissipation, one can try to accommodate the much weaker notion of unconditional
energy stability which seems well suited for many phase field models.

5.2. Relation between the standard and the modified energies. We now clarify the rela-

tionship between the standard energy En and the modified energy Ẽn. We use the BDF3/EP3
scheme (2.1) to solve the 2D MBE-NSS equation. The following parameters are used: Ω =
[−π, π]2, η = 0.1, Nx ×Ny = 256× 256, and h(0, x, y) = sin(x) sin(y). In Figure 3, the standard

energy En, the modified energy Ẽn, and their difference ∆E = Ẽn − En are plotted w.r.t. time.
It can be observed that the standard and the modified energies are approximately the same and
nearly coincide when the time step τ gets sufficiently small.

To corroborate our theory, we also test the unconditional energy boundedness for the large time
step τ = 10. Figure 4 clearly shows that the energy remains bounded in time with intermittent
small fluctuations violating strict monotonicity.

5.3. Long time simulation. In this part, we simulate the long time behavior of the coarsening
process as described by the thin film model with no slope selection. In the course of simulation
we keep track of the evolution of three physical quantities as in [9]:

• Energy:

E(h) =

∫
Ω

(
−1

2
log(1 + |∇h|2) +

1

2
η2|∆h|2

)
dx; (5.5)

• Characteristic height:

H(t) =
1√
|Ω|
‖h(t, ·)− h̄(t)‖2, with h̄(t) =

1

|Ω|

∫
Ω
h(t, x) dx; (5.6)

• Characteristic slope:

M(t) =
1√
|Ω|
‖∇h(t, ·)‖2. (5.7)

We take the computational domain Ω = [−π, π]2 (periodic boundary conditions) and the final
time T = 105. The initial data is drawn from a uniform distribution in [0, 1]. The following
parameters are used: η = 0.01, τ = 0.1, and Nx × Ny = 256 × 256. Note that despite that
τ = 0.1 does not satisfies the restriction for energy decay in Theorem 2.1, the energy stability
is guaranteed by the uniform boundedness result in Theorem 3.1. In Figure 5, we illustrate the
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Figure 1. The `2 and `∞ errors at final time T = 1 w.r.t. τ−1, computed by the
stabilized BDF3/EP3 scheme (5.1) with A = 0 (no stabilization), 1, 5, and 25 respectively,
where η = 1, Nx = Ny = 256.

Figure 2. The same as Figure 1, except for η = 0.5 and A = 0 (no stabilization), 4, 20,
and 100 respectively.
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Figure 3. Standard energy En, modified energy Ẽn, and their difference ∆E = Ẽn−En

w.r.t. time, computed by the BDF3/EP3 scheme (2.1) with τ = 0.01 (top) and 0.001
(bottom). Here, η = 0.1, Nx = Ny = 256, h(0, x, y) = sin(x) sin(y).

Figure 4. Standard energy E w.r.t. time computed with very large time step τ = 10
and other settings the same as in Figure 3.
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Figure 5. Snapshots of the solution h to the thin film epitaxy model (1.1) with no slope
selection, computed by the BDF3/EP3 scheme (2.1) with η = 0.01, τ = 0.1, Nx = Ny =

256.

evolution of h in long time. In Figures 6–8, we show the evolutions of E(t), H(t), and M(t),
which are fitted respectively as

E(t) ≈ −9.1691 log(t)− 53.3853,

H(t) ≈ 0.4994t0.4703,

M(t) ≈ 6.4993t0.2405.

(5.8)

As stated in [9], the lower bound for the energy decay rate is of order − log(t), and the up-

per bounds for the evolution rate of average height and average slope are of order t1/2, t1/4,
respectively. These are consistent with our numerical observations.

We also test the unconditional energy boundedness when the time step gets large. As an
example we take τ = 10 and plot the corresponding energy evolution in Figure 9. Clearly the
energy remains uniformly bounded albeit there is no strict energy dissipation.
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Figure 6. Semilog plot (blue curve) of the energy E w.r.t. t, computed with η =
0.01, τ = 0.1, Nx = Ny = 256. The straight dashed line represents the fitting curve
a log(t) + b with a = −9.1691, b = −53.3853. This fitting only uses the data when

1 ≤ t ≤ 400.

Figure 7. Log-log plot (blue curve) of the characteristic height H w.r.t. t, computed
with η = 0.01, τ = 0.1, Nx = Ny = 256. The straight dashed line represents the fitting
curve atb with a = 0.4994, b = 0.4703. This fitting only uses the data when 1 ≤ t ≤ 400.

6. Concluding remarks

In this work we considered the classic MBE model with no slope selection. We use BDF3 for
temporal discretization and implicit treatment for the surface diffusion term. The nonlinearity
is approximated by an explicit EP3 method. For this BDF3/EP3 method we identified explicit
time step constraints and rigorously proved the modified energy dissipation law. Furthermore we
introduced a new theoretical framework and showed that the H2-norm of the numerical solutions
are unconditionally uniformly bounded, i.e. the obtained upper bound is independent of the time
step. We developed a novel framework for the error analysis for high order methods. To our best
knowledge, these kind of results are the first in the literature, albeit for a restrictive class of phase
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Figure 8. Log-log plot (blue curve) of the characteristic slope M w.r.t. t, computed
with η = 0.01, τ = 0.1, Nx = Ny = 256. The straight dashed line represents the fitting
curve atb with a = 6.4993, b = 0.2405. This fitting only uses the data when 1 ≤ t ≤ 400.

Figure 9. Semilog plot of the original energy E w.r.t. time computed with large time
step τ = 10 and with other settings the same as Figure 6.

field models whose nonlinearity has bounded derivatives. We also carried out several numerical
experiments which show good accordance with theoretical predictions. It is expected that our
new theoretical framework can be generalized to many other phase-field models with benign (i.e.
Lipschitzly bounded) nonlinearities.
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