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Accelerated Additive Schwarz Methods for Convex
Optimization with Adaptive Restart

Jongho Park

Abstract Based on an observation that additive Schwarz methods for general
convex optimization can be interpreted as gradient methods, we propose an accel-
eration scheme for additive Schwarz methods. Adopting acceleration techniques
developed for gradient methods such as momentum and adaptive restarting, the
convergence rate of additive Schwarz methods is greatly improved. The proposed
acceleration scheme does not require any a priori information on the levels of
smoothness and sharpness of a target energy functional, so that it can be ap-
plied to various convex optimization problems. Numerical results for linear elliptic
problems, nonlinear elliptic problems, nonsmooth problems, and nonsharp prob-
lems are provided to highlight the superiority and the broad applicability of the
proposed scheme.
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1 Introduction

This paper is concerned with additive Schwarz methods for convex optimization
problems. Additive Schwarz methods are popular numerical solvers for large-scale
linear elliptic problems, specialized for massively parallel computation; one may
refer to [291[30] for abstract theories of Schwarz methods for linear elliptic problems.
Meanwhile, there have been several successful applications of Schwarz methods to
nonlinear problems; see, e.g., [IL212T27].

An important observation on the Schwarz alternating method for linear el-
liptic problems is that the method can be viewed as a preconditioned Richardson
method [29]. Replacing Richardson iterations by conjugate gradient iterations with
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the same preconditioner, an improved algorithm that converges faster and does not
require spectral information of linear operators is obtained. This idea generalizes
to general Schwarz methods for linear problems, so that most of modern Schwarz
methods for linear problems are based on either the conjugate gradient method or
the GMRES method.

An analogy of the Richardson method corresponding to general convex opti-
mization is the gradient method. Because of its simplicity and efficiency, there
has been extensive research on the gradient method; see [6] for a survey on recent
gradient methods and their applications. In particular, starting from a celebrating
work of Nesterov [19], acceleration of gradient methods has become an impor-
tant topic in the field of mathematical optimization. Momentum acceleration for
smooth convex optimization was proposed in [19], and then improved in [I0I3] to
have better worst-case convergence rates. In [4[5[17], it was generalized to nons-
mooth convex optimization. For strongly convex problems, it was shown in [6l17]
18] that further improvement of the convergence rate can be achieved by choosing
the momentum value adaptively according to the level of strong convexity. Alter-
natively, restarting techniques were adopted to deal with the strong convexity [17]
20,23).

In the author’s previous work [21], it was proven that additive Schwarz meth-
ods for general convex optimization are interpreted as gradient methods. In this
perspective, abovementioned works on accelerated gradient methods may be con-
sidered for the sake of designing novel additive Schwarz methods that converge
faster than existing ones. Relevant existing works are [14[I5], in which accelerated
domain decomposition methods for total variation minimization were obtained
by FISTA acceleration [4]. In this paper, we propose an acceleration scheme for
additive Schwarz methods for convex optimization. Integrating the plain additive
Schwarz method with the Nesterov’s momentum [19] and the adaptive gradient
restart scheme [20], an accelerated method is obtained. Differently from other ac-
celeration schemes to deal with the sharpness (see for the definition of the
sharpness) of a target functional [6LI7,23], the adaptive gradient restart scheme
proposed in [20] does not require any information on the level of sharpness of the
functional. Therefore, the proposed scheme is applicable to a very broad range of
convex optimization problems. We present applications of the proposed scheme to
additive Schwarz methods for nonlinear elliptic problems [27], nonsmooth prob-
lems [11[31[25,[26], and nonsharp problems [7,22]. For all of those problems, we verify
by numerical results that the proposed accelerated additive Schwarz methods out-
perform their unaccelerated counterparts.

The remainder of this paper is organized as follows. In Section [2] we briefly
summarize key features of basic additive Schwarz methods for convex optimiza-
tion. We describe the proposed accelerated additive Schwarz method for convex
optimization in Section [3} Applications of the proposed method to various convex
optimization problems are presented in Section [d] We conclude the paper with
remarks in Section [Bl
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2 Additive Schwarz method

In this section, we present a basic additive Schwarz method for the general convex
optimization problem

min {E(u) := F(u) + G(u)} (2.1)

where V is a reflexive Banach space, F: V — R is a Frechét differentiable convex
functional, and G: V' — R is a proper, convex, lower semicontinuous functional
that is possible nonsmooth. We assume that E is coercive so that there exists a
solution u* € V of .

Let Vi, Vi, ..., and Vv be reflexive Banach spaces. In what follows, an index k
runs from 1 to N. We assume that there exist a bounded linear operator Rj;: Vi, —
V such that

N
V=> RiVi (2.2)
k=1

and its adjoint Ry: V — V} is surjective. Under the space decomposition (2.2]), an
additive Schwarz method for (2.1)) with exact local solvers is given as Algorithm
For more general setting that allows inexact local solvers, see [21].

Algorithm 1 Additive Schwarz method for (2.1])

Let ©(® € dom G and 7 > 0.
forn=0,1,2,... do

w,(cn_‘_l) € arg min E'(u(”) + Rjwg), 1<k<N
wy €V,

N
w( D) = () 4, Z szz(cnﬂ)
k=1

end for

As a special case of Algorithm[T] we consider the case of linear elliptic problems.
Suppose temporarily that V', V;, are Hilbert spaces and that the energy functional

E in (2.1)) is given by

_1

Fu) = 3

(Au,u) — (f,u), G(u)=0, (2.3)

where A: V — V is a continuous and symmetric positive definite linear operator
and f € V. We define the local stiffness operator Ag: Vi, — Vi by

(Apug,vg) = (ARjug, Rivg), g, vg € V.

Then it is straightforward to show that (see, e.g., [21, section 4.1]) Algorithm
for (2.3) can be rewritten as

WD — () TM_l(Au(") —f), n>0, (2.4a)
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or equivalently,

u™ Y = argmin {F(u(n>) + (F' (w™),u—u™) + %(M(u —u™) u— u(n))} , n>0,

ueV T
(2.4b)
where M: V — V is the additive Schwarz preconditioner given by

-1

N
M= (Z R,*CAgle> . (2.5)

k=1

Equation (2.4) implies that Algorithm |1f for (2.3)) is the Richardson method for
the preconditioned system

M Au=M""y. (2.6)

Therefore, by applying the conjugate gradient method to instead of the
Richardson method, we can obtain a more improved algorithm than Algorithm
For a theoretical comparison of the conjugate gradient method with the Richard-
son method, one may refer to [29, Appendix C].

In [2I, Lemma 4.5], it was observed that can be generalized to additive
Schwarz methods for the general convex optimization . A rigorous statement
is presented in the following proposition.

Proposition 2.1 (generalized additive Schwarz lemma) Let {u(™} be the se-
quence generated by Algorithm[1l Then it satisfies

w1 € argmin {F(u<">) +(F (@™, — u™) + MT(U,M"))} . n>0, (2.7)
ueV

where the functional Mr: V x V — R is given by
N N
M- (u,v) = 7inf {Z((DF(U + Rjwy,v) + G(v + R};wk)) Tu—v =T Z Riwy, wy,
k=1 k=1
+(1-7N)G(), wu,veV,
and Dp: V xV — R is the Bregman distance of F defined by

Dp(u,v) = F(u) — F(v) — <F/(11),u—v>7 u,v € V.

It is clear that reduces to in the case of . Proposition [2.1) means
that Algorithm [1] is an instance of nonlinear gradient methods for (2.1)); see [28]
for a recent survey on nonlinear gradient methods of the form (2.7). In [2I], an
abstract convergence theory of additive Schwarz methods that generalizes [29]
Chapter 2] was developed using Proposition and the convergence theory of
nonlinear gradient methods.

GVk}
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3 Acceleration schemes

First, we review existing acceleration schemes for gradient methods for . We
recall that the energy functional E is said to be sharp if there exists a constant
p > 1 such that for any bounded and convex subset K of V satisfying u* € K, we
have
#TKHU —u|P < E(u) — E(u*), u€K, (3.1)
for some pux > 0.
As a fundamental example of gradient methods, we consider the forward-

backward splitting method [41[9], also known as the composite gradient method [17].
In (2.1)), assume that F’ is Lipschitz continuous with modulus L, i.e., it satisfies

F(u) < F(v) + (F'(v),u —v) + gHu —|?, wveV.

The forward-backward splitting method for (2.1)) is presented in Algorithm

Algorithm 2 Forward-backward splitting for (2.1)

Let (9 € dom G and 7 € (0,1/L)].
forn=0,1,2,... do

u("t1) € argmin {F(u(">) + (F' (ul™), 0 — ul™) + 2i||u —u™|? + G(u)}
ueV T

end for

It is well-known that the worst-case energy error of Algorithm [2] decays with
the rate O(1/n) [4l[I7]. If the energy functional FE is sharp, then an improved error
bound can be obtained [211[23]. In particular, under the assumptions that E is
strongly convex, i.e., when it satisfies with p = 2, Algorithm [2| converges
linearly.

Algorithm [2] can be accelerated by adding momentum. At each step of the

algorithm, we set
(D) = (D) g (D) g, ()

for some suitably chosen 3, > 0, and then apply the forward-backward splitting
to v™ instead of u(™ in the next step. Such an acceleration scheme was first
proposed by Nesterov [I9] for smooth convex optimization (G = 0 in ), and
then generalized to the nonsmooth case in [4]. Among several variants of the
momentum technique [45[17] for , we present FISTA [4] in Algorithm

It was shown in [4, Theorem 4.4] that Algorithm [3| enjoys the O(1/n?) con-
vergence rate, which is faster than Algorithm [2| This rate is optimal for smooth
convex optimization in the sense that there exists a smooth convex functional such
that any first-order method for minimizing the functional must satisfy an O(1/n?)
lower bound of the energy error; see, e.g., [0, Theorem 4.3]. However, when the
energy functional F is sharp, Algorithm [3| is not enough to guarantee the op-
timal convergence rate; the momentum parameter 3, must be chosen according
to the sharpness information of E. In [6l[I7], momentum techniques suitable for
the strongly convex case were considered. Alternatively, the optimal rate can be
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Algorithm 3 FISTA for (2.1))

Let u(® = v ¢ dom G, 7 € (0, 1/L], and to = 1.
for n=0,1,2,... do

u("*t1) € argmin {F(v(">) + (F' (™), u — ™) + 2i||u —o™2 4 G(u)}
T

ueV
14+ +/1+44t2 tn — 1
f? ﬁnzi

tnt1 = ti
n

p D) = (D) | g (D) ()

end for

achieved by restarting Algorithm [3|appropriately; we reset the momentum param-
eters as tp4+1 = 1 and B8, = 0 whenever the iterates of the algorithm meet some
criterion. A restarting technique for the strongly convex objective functional was
considered in [I7], and then it was generalized to the general sharp case in [23].
All of the abovementioned approaches to deal with the sharp case share a com-
mon drawback that they require explicit values for the sharpness information p
and px in . Since a priori sharpness information of the energy functional is
not available in general, such a drawback is crucial in practice. In [20], adaptive
restarting techniques were proposed which are heuristic but very effective accel-
eration schemes. Although they do not require any information on the sharpness
of the energy functional, it was numerically verified that their performances are
as good as the abovementioned methods. Algorithm [4 presents the gradient adap-
tive restart scheme proposed in [20], applied to Algorithm [3| In the criterion for
restart in Algorithm 4} E(v(™)) denotes the composite gradient [17] of E at v(™),
a notion that generalizes the usual gradient for composite objective functionals of

the form (2.1)).

Algorithm 4 FISTA with adaptive restart for (2.1))

Let u(® = v ¢ dom G, 7 € (0,1/L], and to = 1.
forn=0,1,2,... do

w1 = argmin {F(v(")) + (F' (™), u — ™) + 2i||u —o™2 4 G(u)}
ueV T

if (E'(v(™),u(®+1) — (™) > 0 then

thy1 =1, Brn=0
else

1+ /1xa2 tn—1
= =

tn+1 ﬁn P "
n

end if

p D) = (D) | g (D) ()

end for
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Now, we are ready to propose an accelerated additive Schwarz method for .
Combining the additive Schwarz method presented in Algorithm [1| with the idea
of gradient adaptive restart, we propose an accelerated version of Algorithm [T} see
Algorithm

Algorithm 5 Accelerated additive Schwarz method for (2.1)

Let u(® = v(® € dom G, 7 > 0, and to = 1.
forn=0,1,2,... do

wgﬁl) € argminE(v(”) + Rjwg), 1<k<N
wg €Vy

N
u(n+1) — ,U(n) +r Z sz](cn+1)
k=1

if (v — D) (D) _ ()Y > 0 then

th+1 =1, Bn =0

else
14 /1+4i2 tn — 1
tn+1 = = Bn = -
2 tn+1
end if
oD — (D) g (D) (7))
end for

In Algorithm [B] we see that

N
o™ () = 1 Z sz,(cn+1).
k=1

In view of Proposition one may regard the right-hand side of the above equa-
tion as a “generalized” gradient of the energy functional E at v(™) with respect to
the non-Euclidean distance function M. In this sense, we replace the composite
gradient E'(v(™) in the restart criterion of Algorithm 4| by v — (1) in the
proposed method. Since Proposition means that the plain additive Schwarz
method presented in Algorithm [1|is the gradient method for with respect to
M, it is expected that the restarting step in Algorithm [5| can improve the conver-
gence rate of the additive Schwarz method by the same principle as Algorithm [4]
More precisely, the restart criterion

<v(”) — (D) (D) u(n)> >0 (3.2)

in Algorithm means that the update direction u(™*) —4(™ is on the same side of
the generalized gradient direction v(™ —u(™ 1) Since the energy decreases toward
the minus gradient direction in general, meeting the restart criterion implies
that the overrelaxed variable v™ = (™ + Bn_l(u(") - u("_l)) was not properly
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(a) (b) (c)

Fig. 1: Domain decomposition setting when h = 1/2% H = 1/22, and 6§ = h:
(a) nonoverlapping domain decomposition {.Qk}j,;/:l, (b) coarse triangulation Tz,
(c) overlapping domain decomposition {£2},}4,.

chosen. Hence, it is natural to consider resetting the overrelaxation parameter g,
as 0 whenever (3.2 is satisfied.

Remark 3.1 In [20], the function adaptive restart scheme that restarts FISTA
whenever E(u("*1) > E(u(™) was proposed as well as the gradient adaptive
restart scheme. As an alternative of Algorithm [5| one may adopt the function
adaptive restart scheme for additive Schwarz method in order to accelerate the
convergence. However, the function adaptive restart scheme has a disadvantage
that additional computational cost for E(u("*1) is need in each iteration. On
the contrary, Algorithm [5| does not require additional major computational cost
since v, u("*tY) and v are computed prior to checking the restart criterion.
In this perspective, we do not deal with the function adaptive restart scheme in
this paper. Similar discussions were made in [20].

The major part of each iteration of Algorithm [f]is to solve local minimization
problems on Vj; the computation cost for momentum parameters ¢, and Sy is
clearly marginal. Therefore, the main computational effort of Algorithm [f] is the
same as the one of Algorithm [I] In addition, inheriting the advantage of Algo-
rithmEl, the proposed method does not require any prior information on the levels
of smoothness and sharpness of the energy functional E. Choosing the step size
7 of Algorithm [§] usually depends on a domain decomposition setting but not on
the energy functional. For example, in the usual one- and two-level overlapping
domain decomposition settings for a two-dimensional domain (see Figure [[|c)),
one may set 7 = 1/4 and 1/5, respectively, since the subdomains can be colored
with 4 colors; see [2I], Section 5.1] for details.

4 Numerical experiments

In this section, we present applications of Algorithm [5|to various nonlinear prob-
lems appearing in science and engineering that can be represented in the form .
In particular, we conducted numerical experiments on nonlinear elliptic problem,
obstacle problem, and dual total variation minimization. For all the problems, we
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claim that the proposed method has a superior convergence property compared to
the unaccelerated one. All computations presented in this section were performed
on a computer cluster equipped with Intel Xeon SP-6148 CPUs (2.4GHz, 20C)
and the operating system CentOS 7.4 64bit.

4.1 Nonlinear elliptic problem

First, we present an application of the proposed method to the following model
s-Laplace equation:

—div (|Vul[*"?Vu) = in 2,
(Ivul*~>vu) = 1 m
u=0

on 02,

where s > 1 and f € L5 (£2). We note that Schwarz methods for the problem (Z.1)
were considered in [27]. It is well-known that (see [8] for instance) a unique solution
of (4.1)) solves the following minimization problem:

min {l/ |Vu|sdm—/ fudx}. (4.2)
wewy*(2) LS Jo n

In the following, we set 2 = [0, 1]> ¢ R?. We decompose the domain £ into N =
N x N square subdomains {Qk}jk\[zlin which each subdomain has the sidelength
H = 1/N. Each subdomain 23, 1 < k < N, is partitioned into 2 x H/h x H/h
uniform triangles to form a global triangulation 7;, of 2. Similarly, we partition
each (2, into two uniform triangles and let 7y be a coarse triangulation of 2
consisting of such triangles. Overlapping subdomains {Q,g}/,c\[zl are constructed in
a way that (2}, is a union of £2;, and its surrounding layers of fine elements in 7;, with
the width § such that 0 < § < H/2. Figure [l}illustrates the domain decomposition
of 2 explained above.

Let Sy (£2) and Sy (£2) be the Pi-Lagrangian finite element spaces on 7, and
Ty with the homogeneous essential boundary condition, respectively. A conforming
approximation of using Sp,(£2) C WOI’S(.Q) is written as

min {1/ |Vu\sdac—/fud:c}. (4.3)
uESh(.Q) S 0 0

The discretized problem (|4.3)) can be represented in the form of (2.1)) with
V= S,(Q), Flu)= 1/ |Vu\sdx—/ fudz, G(u)=0.
sJq Q

One can show that F satisfies the sharpness condition (3.1) with p = s and p = 2
when s > 2 and 1 < s < 2, respectively [g].
If we set

Vi =Sp(2), 1<k<N,

and take Rj: Vi, — V as the natural extension operator, then it clearly satisfies the
space decomposition assumption (2.2), where S;(£2},) is the P;-Lagrangian finite
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element space on the T;-elements in (2}, with the homogeneous essential boundary
condition. For the two-level setting, we set

Vo = S (02)
so that
N
V=RiVo+ Y RiVi, (4.4)
k=1

where R{: Vo — V is the natural interpolation operator. Under the space decompo-
sitions (2.2]) and (4.4)), convergence of the unaccelerated additive Schwarz method
for (4.3)) is guaranteed by the following proposition [2I, Theorem 6.1].

Proposition 4.1 In Algorithmfor @3), if Eu'®) — E(u*) is small enough, then
there exists a positive constant C independent of h, H, and § such that
14+1/69

p(g—1)

(n+1) »-a

Ew™) - E@W*)<C

for the one-level domain decomposition (2.2) with 7 <1/4 and
1+ (H/§)

prg—=1)
(n+1) »=a

E@W™) - E@W)<C

for the two-level domain decomposition (4.4) with T < 1/5, where

p=s,q=2 ifs>2,
p=2,qg=s ifl<s<?2.

Remark 4.2 Proposition[{.I]implies that the unaccelerated additive Schwarz method
(¢=1)
for (4.3)) satisfies the O(1/ n"ra ) convergence rate. We compare this estimate with
existing ones [I[2l[27] to show that our estimate is sharper than the existing results;
see also [21]. The first rigorous analysis on the convergence rate of the unacceler-
(g=1)
ated additive Schwarz method for (4.3]) was presented in [27]; the O(1/n G (rraD
1

convergence rate was proven. More recently, the O(1 /n%) convergence rate was
analyzed in [Il2]. Since

q(g—1) q—1 _plg—1)
G-a)p+te—1) “p—g " p-q

for 1 < ¢ < p, one can conclude that Proposition provides a sharper estimate
than the existing results [1,2127].

Now, we present numerical results of the proposed method applied to
with s = 4 and f = 1. For all experiments, we set the initial guess as u(®) = 0.
Local problems on Vi, 1 < k < N, and coarse problems on V, were solved by
Algorithm |4| equipped with the backtracking strategy proposed in [4] using the
stop criteria

W2l — w2, < 10720 (4.5)

and
H2wl —w(M|Z < 10720 (4.6)
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Energy error
Energy error

0 10 20 30 40 50 40 50
Number of iterations Number of iterations
(a) One-level decomposition ([2.2)) (b) Two-level decomposition (4.4)

Fig. 2: Decay of the energy error E(u(™) — E(u*) in additive Schwarz methods
for the s-Laplacian problem (h =1/2% H = 1/23 § = 4h). ORI and ADA
denote the unaccelerated (Algorithm [1)) and accelerated (Algorithm [5)) methods,
respectively.

respectively, where ||-||2 denotes the £2-norm of degrees of freedom. The step size T
in Algorithms (1| and [5| was chosen as 7 = 1/4 for the one-level decomposition
and 7 = 1/5 for the two-level decomposition . A reference solution u* € V was
computed by 10° iterations of Algorithm [4|for the full-dimension problem .

In order to highlight the efficiency of the proposed method for , we compare
the energy decay of the unaccelerated and accelerated methods. We note that the
unaccelerated method, Algorithm |1 for , is identical to [27, Algorithm 2.1].
Figure [2] plots the energy error E(u'™) — E(u*) of Algorithms [1| and |5| when
h=1/2°, H = 1/23, and § = 4h. For both of the cases one-level and two-level
domain decomposition settings, the proposed method shows faster convergence
to the energy minimum compared to the unaccelerated method. Since the main
computational costs of Algorithms [I] and [§] are the same, we can say that the
proposed method is superior to the conventional method in the sense of both
convergence rate and computational cost.

Proposition implies that Algorithm [1] is scalable in the sense that its con-
vergence rate depends only on the size of local problems H/h whenever §/h is
fixed. That is, when each subdomain is assigned to a single processor, Algorithm
can solve a problem of the larger size with the same amount of time if more paral-
lel processors can be utilized simultaneously. Since the proposed method showed
superior convergence results compared to Algorithm [Ifin the above numerical ex-
periments, one can readily expect that it is also scalable. In the following, we verify
the scalability of Algorithm [f] by numerical experiments.

Figure [3] displays the energy decay of Algorithm [5] for when H/h and
0/h are fixed. One can observe that the convergence rate of Algorithm [5| remains
almost the same when both h and H decrease keeping their ratio H/h constant.
In addition, as shown in Table [I] the numbers of iterations to satisfy the stop
condition

E@™) - E@*) <1078 (4.7)
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10° 10°

—h=20 H=2"7
\ AN —h=2T H=27%
h=2%H=2"
g g
o 10° o 10°
> >
=g =g
[ Q
[ = =
L L
AV
10710 \ 10710 \
0 10 20 30 40 50 0 10 20 30 0 50
Number of iterations Number of iterations
(a) H/h=23,6/h =2 (b) H/h =24, 6/h =2

Fig. 3: Decay of the energy error E(u(™)—E(u*) in Algorithmfor the s-Laplacian
problem (4.3) when H/h and §/h are fixed.

H/h H h #iter
1722 127 20
22 1/2%  1/25 21
1724 1/26 20
1722 1/2% 21
23 17238 1/28 22
1/2% 1727 22
17227 1728 26
24 1723 1/27 26
1724 1728 25

Table 1: Number of iterations of Algorithm 5| for the s-Laplacian problem (4.3)) to
meet the condition (4.7).

for various H and h are uniformly bounded for a fixed value of H/h. It shows the
numerical scalability of Algorithm

4.2 Obstacle problem

Next, we apply the proposed method to the following model variational inequality:
find u € K such that

/Vu~V(v—u)das20 Y € K, (4.8)
Q

where K is a nonempty convex subset of H}(£2) defined in terms of obstacle func-
tions gr,, gy € L>(92):

K:{uEHé(Q):nguggUa.e.inQ}.

Several Schwarz methods for obstacle problems of the form (4.8) were proposed
in, e.g., [1BL25L26]. One can readily show that the variational inequality (4.8]) is
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equivalent to the following minimization problem:

minl/ |Vu|? dz. (4.9)
uekK 2 0
Let 2 = [0,1]> ¢ R?. We again use the discretization and domain decom-

position settings introduced in Section That is, we consider a conforming
discretization of on the continuous and piecewise linear finite element space
Sp(£2). One more thing to do is to define an appropriate discretization Kj, of the
set K; we simply set

Kp={ue S,(2): Ingr <u<Ipgut,

where I}, is the nodal interpolation operator onto Sy (§2). Finally, the resulting
discretization of (4.9) is written as

min % |Vul? da. (4.10)

One may regard the constrained problem (4.10) as a nonsmooth unconstrained
optimization problem. More precisely, the discrete problem (4.10) is an instance

of (2-1) with

XKp, (u)v

V=@, F=j [ Va6
2
where xg,: V — R is the characteristic function of Kj:

0 iquKh,

) (4.11)
oo ifudKy.

XKp, (u) = {

Clearly, F satisfies the sharpness condition (3.1)) with p = 2. Under the domain
decomposition settings (2.2]) and (4.4)), the following convergence theorem for Al-
gorithm [I| was presented in [21, Theorem 6.3].

Proposition 4.3 In Algorithmfor (4.10), there exists a positive constant C' inde-
pendent of h, H, and § such that

n
(n)y _ ) < _ 1 . L 0)y _ *
Ew™)—-E@W") < <1 2rnln{T7 1+1/52 (BE(u') — E(u"))
for the one-level domain decomposition (2.2) with 7 <1/4 and

n " 1. c " .
B™)-B@) < (1 T {T’ (1 +log(H/R)) (1 + (H/5)2)}) (B)-B)

for the two-level domain decomposition (4.4) with 7 < 1/5.

Remark 4.4 There have been several notable existing results on the convergence
rate of the unaccelerated additive Schwarz method for [3l25126]. Proposi-
tion agrees with these existing results in the sense that the linear convergence
rate is dependent on the stable decomposition property (see, e.g., [26] Eq. (6)]
and [21, Assumption 4.1]) of the space decomposition.
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Number of iterations Number of iterations
(a) One-level decomposition ([2.2)) (b) Two-level decomposition (4.4)

Fig. 4: Decay of the energy error E(u(™) — E(u*) in additive Schwarz methods
for the obstacle problem (h = 1/25, H = 1/23, § = 4h). ORI and ADA
denote the unaccelerated (Algorithm 1)) and accelerated (Algorithm [5)) methods,
respectively.

For numerical experiments for the problem (4.10]), we set the obstacle functions
gr and gy by

2

gr(z,y) = {1 it (- 3)

0 otherwise,

and
0 if (z—1)?

1  otherwise,

+(y-1)" <

respectively. The initial guess was chosen as u(® = I,gr, in order to make the
condition u(?) € dom G in Algorithms [1] and [5| holds. Local problems on Vj, 1 <
k < N, were solved by Algorithm [4] accompanied with backtracking [4] with the
stop criterion , while coarse problems on Vj were solved by the nonlinear
Gauss—Seidel method introduced in [3] section 5] with the stop criterion . The
step size 7 in Algorithms [1] and [5] was chosen in the same way as in Section

In Figure we present the energy error E(u(™) — E(u*) of Algorithms [1] and
for with respect to the number of iterations n, where a reference solution
u* € V was obtained by 10° iterations of Algorithm applied to the full-dimension
problem. We note that Algorithm 1] for is identical to [26, Algorithm 1].
It is observed that the convergence rate Algorithm [f] is faster than the one of
Algorithm [I] for both one-level and two-level cases. Therefore, we conclude that
the proposed method is superior to the unaccelerated method when it is applied
to the obstacle problem.

Similarly to the case of the s-Laplacian problem, the scalability Algorithm [I]for
the obstacle problem is ensured by Proposition Therefore, the proposed
method is also anticipated to enjoy the scalability; we do some numerical experi-
ments for verification. As shown in Figure[5] the slopes of the energy graphs plotted
in logarithmic scale in energy are almost indistinguishable for various values of h
and H whenever the ratio H/h is fixed. Moreover, the number of iterations to meet



Accelerated Additive Schwarz 15

10° \

g 2 AN
@ L]
> >
=g =g
@ o 10° \
[ = L=
L L

—h=20H=2"

—h=27T H=2"

h=28H=2"
10-10
0 10 20 30 40 50 0 10 20 30 40 50
Number of iterations Number of iterations
(a) H/h=23,6/h =2 (b) H/h =24, 6/h =2

Fig. 5: Decay of the energy error E(u(")) — E(u") in Algorithm |5| for the obstacle
problem (4.10) when H/h and §/h are fixed.

H/h H h F#iter
1/22 1/2% 21
22 1/23  1/2° 35
1724 1/26 31
1722 1/2% 39
23 1723 1/28 50
1/2*  1/27 41
1/22 1728 64
24 1723 1727 72
1724 1/28 53

Table 2: Number of iterations of Algorithm [5| for the obstacle problem (4.10) to
meet the condition (4.7).

the stop condition (4.7)) presented in Tabledoes not increase even if both H and
h decrease such that H/h is kept constant. These results verify that Algorithm
for (4.10)) is numerically scalable.

4.3 Dual total variation minimization

Since it was numerically shown in [20, section 5.1] that adaptive restarts can
improve the performance of FISTA even for the nonsharp case, we expect that the
proposed method may outperforms Algorithm [I] for the case without sharpness.
As an example lacking the sharpness condition (3.I]), we consider a minimization
problem

min 1/ (divu+ f)*dz  subject to |u| <1 a.e. in £2, (4.12)
u€Ho(div;2) 2 J
where f € L?(£2) and |- | denotes the pointwise Euclidean norm. It is clear

that (4.12) does not satisfy (3.1)) due to the divergence operator therein. Prob-
lems of the form (4.12)) usually appear in the field of mathematical imaging as
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dual formulations of total variation minimization problems [I4L[16]. Some overlap-
ping Schwarz methods for were studied in, e.g., [7[12,22].

Let 2 = [0,1] ¢ R2. The domain § is decomposed into N” = N x N nonoverlap-
ping subdomains {Qk}.]/CV':17 so that each subdomain has the sidelength H = 1/N.
Each subdomain (2;, is partitioned into H/h x H/h uniform square elements. Let
Qy, be a subdivision of {2 consisting of those square elements. We enlarge the sub-
domain 2, by adding several layers of square elements of width § surrounding (2,
to construct a region 2}, where 0 < § < H/2. Then {2} forms an overlapping
decomposition of (2.

We define S;,(£2) as the lowest-order Raviart—Thomas finite element space on
Tn, with the homogeneous essential boundary condition. In addition, let K be a
convex subset of Sy (£2) defined by

K, = {u € Sp(2): %/W -nelds < 1, e: interior edges of Qh},
e

where n. denotes the unit outer normal to e. In [IT[I4], the following discretization
of (4.12)) constructed by replacing the solution space and the constraint set by
S, (£2) and Kj, respectively, was proposed:

JQ%&% /Q (divu + f)? da. (4.13)

Then the discrete problem (4.13) is of the form (2.1)) with
1 .
V=S,(2), F(u)= 5/ (divu+ f)*de, G(u) = xxk, (u),
02

where xf,: V — R is defined in the same manner as (4.11]).
In additive Schwarz methods for (4.13]), we set

Vi =Sn(2;), 1<k<N

an take Rj: Vj — V as the natural extension operator so that holds, where
S (£2;,) is the lowest-order Raviart—Thomas finite element space on the Q,-elements
in £2;, with the homogeneous essential boundary condition. Then, according to [21]
Theorem 6.5], we have the following convergence theorem.

Proposition 4.5 In Algorithmfor (4.13)), there exists a positive constant C inde-
pendent of h, H, and & such that

2
(n)y _ *) < M
E@w"™)—-El") <C ]

for the domain decomposition (2.2]) with 7 < 1/4.

Moreover, it was recently studied in [22] that the additive Schwarz method
for has a property called pseudo-linear convergence; it converges as fast as
a linearly convergent algorithm until its energy error reaches a particular value
which depends on ¢ only. The following proposition summarizes the pseudo-linear
convergence of the additive Schwarz method for [22, Corollary 4.4].
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Fig. 6: Decay of the energy error E(u(™) — E(u*) in additive Schwarz methods for
the dual total variation minimization (4.13) (h = 1/2°, H = 1/23, § = 4h). ORI
and ADA denote the unaccelerated (Algorithm [1)) and accelerated (Algorithm [5))
methods, respectively.

Proposition 4.6 In Algorithmfor (4.13)), there exist two positive constants v < 1
and € < C/6? such that
E@™) - E(u*) < 4" (E(u(())) - E(u") - e) +e

for the domain decomposition (2.2]) with 7 < 1/4, where v and C are independent of
h, H, and .

For numerical experiments for the dual total variation minimization (4.13)), we

set .
floy) = {1 if (m— 5)

0 otherwise.

-3 <d

The zero initial guess u(®) = 0 were used. We solved local problems on V,, 1 <k <
N, by Algorithm 4| with the step size T = 1/8 (see [14, Proposition 2.5]) and the
stop criterion

2| div(w{" T — w2 < 10720,

The step size for additive Schwarz methods was chosen as 7 = 1/4. A reference
solution u* € V was obtained by Algorithm [4| with the step size 7 = 1/8 for the
full-dimension problem .

Figure |§| plots E(u(™)) — E(u*) of Algorithms [1| and |5| for per iteration.
As in the cases of the s-Laplacian and obstacle problems, the proposed method
outperforms Algorithm [I}in view of convergence rate. Therefore, we conclude that
the proposed method leads an improvement of the convergence rate even in the
case of absence of the sharpness.

Remark 4.7 To the best of our knowledge, there have been no existing two-level
Schwarz methods for dual total variation minimization problems, so that we do not
include numerical results for the two-level case for in this paper. Neverthe-
less, we expect that if a suitable two-level domain decomposition method for
were developed in a near future, the acceleration scheme presented would be ap-
plicable to that method to yield an improved convergence result.
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Fig. 7: Decay of the energy error E(u(™)— E(u*) in Algorithm for the dual total
variation minimization (#.13)) when § is fixed as 1/25.

A remarkable property of Algorithm [1| for the dual total variation minimiza-
tion is pseudo-linear convergence; even though the unified theory of additive
Schwarz methods for convex optimization presented in [2I] gives only the sublin-
ear convergence as stated in Proposition it is verified by Proposition that
Algorithm [1] for performs as good as a linearly convergent algorithm if § is
large enough. Therefore, we can expect that Algorithm also enjoys pseudo-linear
convergence since it was shown above by experiments that Algorithm [5] converges
much faster than Algorithm [I} Indeed, Figure [7] shows how the energy error of
Algorithm [5] for decays when § is fixed as 1/2° while H and h vary. It seems
that all the cases share the approximately same linear convergence rate, similarly
to Algorithm [1} see [22] for the corresponding numerical results for Algorithm

4.4 Comparison with the conjugate gradient method

For completeness, we discuss the performance of the proposed method when it is
applied to a linear elliptic problem. It is well-known that the conjugate gradient
method is optimal for symmetric and positive definite linear systems in the sense
that it always find a solution in finite steps; see, e.g., [29, Lemma C.8]. Therefore,
we may anticipate that the convergence rate of the proposed method lies between
the ones of the Richardson method (Algorithm and the conjugate gradient
method.

In the following, we present numerical results of Algorithm [I} Algorithm[5] and
the preconditioned conjugated gradient method with the additive Schwarz precon-
ditioner for the problem with s = 2 and f = 1. Note that (4.3]) reduces
the well-known Poisson equation when s = 2. Since local and coarse problems are
linear, they can be solved directly, e.g., by the Cholesky factorization. A reference
solution u* € V also can be obtained by a direct solver.

Figure [§] depicts the convergence rates of Algorithm [I] Algorithm [5] and the
corresponding preconditioned conjugate gradient method applied to the Poisson
problem for both the one-level (2.2) and two-level cases. As expected, the
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Fig. 8: Decay of the energy error E(u(™) — E(u*) in additive Schwarz methods
for the Poisson problem (h = 1/2° H = 1/23, § = 4h). ORI and ADA denote the
unaccelerated (Algorithm and accelerated (Algorithm methods, respectively.
PCG denotes the preconditioned conjugate gradient method with the additive
Schwarz preconditioner .

proposed method converges faster than Algorithm [I} but slower than the precon-
ditioned conjugate gradient method. While there are several optimal solvers for
linear problems such as the conjugate gradient method (see [24] for instance), de-
signing optimal solvers for the general convex optimization of the form is still
an important research topic that is actively investigated nowadays [10,13L23]. In
this perspective, the proposed method can be a very effective option for parallel
computation of nonlinear and nonsmooth problems of the form .

5 Conclusion

In this paper, we proposed an accelerated additive Schwarz method that can be
applied to very broad range of convex optimization problems of the form . The
proposed method showed superior convergence properties compared to the unac-
celerated method when they are applied to various problems: s-Laplacian problem,
obstacle problem, and dual total variation minimization. Moreover, we verified that
the proposed method inherits several desirable properties such as scalability and
pseudo-linear convergence from the original method. Since the proposed method
does not require any a priori spectral information of a target problem, it has great
potential to be applied to various convex optimization problems in science and
engineering.

This paper leaves a few important topics for future research. First, math-
ematical verification of faster convergence of the proposed method is required.
Unfortunately, to the best of our knowledge, there is no existing complete anal-
ysis even for Algorithm (] which is a main ingredient of the proposed method.
Meanwhile, we note that there is some recent research on acceleration of nonlinear
gradient methods for the form [28]. Another interesting topic is optimizing
the acceleration scheme. After a pioneering work [I0], there have been attempts
to optimize acceleration schemes for gradient methods; see, e.g., [13]. We expect
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that it is possible to obtain a faster accelerated additive Schwarz method than the
proposed method if we successfully apply such optimizing schemes to our case.
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