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Second-order and nonuniform time-stepping schemes

for time fractional evolution equations with

time-space dependent coefficients

Pin Lyu∗ Seakweng Vong†

Abstract

The numerical analysis of time fractional evolution equations with the second-order el-
liptic operator including general time-space dependent variable coefficients is challenging,
especially when the classical weak initial singularities are taken into account. In this paper,
we introduce a concise technique to construct efficient time-stepping schemes with variable
time step sizes for two-dimensional time fractional sub-diffusion and diffusion-wave equations
with general time-space dependent variable coefficients. By means of the novel technique,
the nonuniform Alikhanov type schemes are constructed and analyzed for the sub-diffusion
and diffusion-wave problems. For the diffusion-wave problem, our scheme is constructed by
employing the recently established symmetric fractional-order reduction (SFOR) method.
The unconditional stability of proposed schemes is rigorously discussed under mild assump-
tions on variable coefficients and, based on reasonable regularity assumptions and weak time
mesh restrictions, the second-order convergence is obtained with respect to discreteH1-norm.
Numerical experiments are given to demonstrate the theoretical statements.

Key words: time fractional evolution equations; variable coefficients; weak singularity; nonuni-
form mesh
AMS subject classifications: 65M06; 65M12; 35B65; 35R11

1 Introduction

Fractional differential equations (FDEs) are extremely powerful mathematical tools for the mod-
eling of diverse processes and phenomena which contain memory and hereditary properties, in-
terested readers may refer to [5,21,22,24] and references therein for some practical applications
of FDEs in physics, biology and chemistry, etc. Finding efficient and accurate numerical solu-
tions of FDEs becomes an increasingly hot research topic as it is hard to obtain the reliable
analytic solution in general.
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In this work, we consider numerical analysis of the two-dimensional time fractional evolution
equations with general time-space dependent variable coefficients:

Dα
t u = Au+ f(x, t), x ∈ Ω, t ∈ (0, T ]; (1.1)

u(x, 0) = ϕ(x), x ∈ Ω, if α ∈ (0, 1); (1.2)

u(x, 0) = φ(x), ut(x, 0) = ψ(x), x ∈ Ω, if α ∈ (1, 2); (1.3)

subject to the homogeneous boundary condition u(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ], where
Ω = (xl, xr) × (yl, yr), x = (x, y) and A is a linear second-order elliptic operator which is
dependent on time and space:

Au :=
{

a1(x, t)∂
2
xx + a2(x, t)∂

2
yy + b1(x, t)∂x + b2(x, t)∂y + b3(x, t)

}

u. (1.4)

The fractional derivative Dα
t in (1.1) is defined by the Caputo sense:

Dα
t u(t) :=

∫ t

0
ωn−α(t− s)u(n)(s) ds with ωn−α(t) =

tn−1−α

Γ(n− α)
, n = ⌈α⌉, t > 0.

With error analyses basing on sufficient smoothness in time of the analytical solutions, various
numerical methods are designed for fractional sub-diffusion or diffusion-wave equations with
variable coefficients which are time-space dependent (e.g. [31]) or only space dependent (e.g.
[4, 26,28,30,32,33]). However, it is well-known that the solution of time fractional initial value
problems typically exhibits weak initial singularities. Thus most of the traditional time-stepping
methods fail to preserve the desired convergence rates in this general and practical situation.
In [10], Kopteva discussed the L1-type discretizations on graded time meshes for fractional
parabolic equation with classical weak singular solutions, where the second-order elliptic operator
Lu =

∑d
k=1{−∂xk

ak(x)∂xk
u+bk(x)∂xk

u}+c(x)u (d = 1, 2, 3) is only space dependent. A second-
order convergent method was studied lately in Wei et al. [29], where the Alikhanov formula [1]
on the graded time meshes is considered to deal with the weak initial singularity of the two-
dimensional time fractional diffusion equations with the elliptic operator Lu = div(a(x)∇u)
which is symmetric and space dependent only. Recently, the sub-diffusion problems with time-
space dependent coefficients and nonsmooth data were studied in several research works. In [23],
Mustapha studied a semidiscrete Galerkin finite element method for the time fractional diffusion
equations with time-space dependent diffusivity coefficient:

Dα
t u(x, t) = div(a(x, t)∇u(x, t)) + f(x, t) in Ω× (0, T ], α ∈ (0, 1), (1.5)

where Ω ⊂ R
d (d ≥ 1), and the optimal error bounds in L2- and H1-norms are obtained for

both smooth and nonsmooth initial data. Jin, Li and Zhou [8] then proposed an efficient numer-
ical scheme with the Galerkin finite element method in space and backward Euler convolution
quadrature in time for the problem (1.5). The optimal convergence with first-order temporal
accuracy is obtained provided a certain regularity of the solutions is proved for both nonsmooth
initial data and incompatible source term. The second-order temporal convergence was further
achieved for the convolution quadrature generated by second-order backward differentiation for-
mula with proper correction at the first time step [9], where an improved regularity was shown.
We remark that, based on some mild and natural assumptions on a(x, t), the time-space de-
pendent elliptic operator in (1.5) is symmetric and is a particular case (for d = 2) of A in (1.4)
(or L in [31]) because div(a(x, t)∇u(x, t)) = a(x, t)∆u(x, t) + ∇a(x, t) · ∇u(x, t). There have
been many works on the theoretical and numerical study of classical parabolic and hyperbolic
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equations with general time-space dependent elliptic operator, e.g. [2,11,18]. To the best of our
knowledge, taking the weak initial singularity into account, there is no study on the efficient
numerical methods for time fractional evolution equations (sub-diffusion and diffusion-wave)
where the elliptic operators include general time-space dependent coefficients, i.e., the elliptic
operators take the form (1.4).

In the past few years, numerical methods on nonuniform time meshes are found to be very
efficient and thus are of great interests in resolving the weak initial singularities of the time
fractional initial value problems [3, 6, 10, 13, 15–17, 20, 25, 29]. As the operator A in (1.4) is in
general non-symmetric and is substantially different from the one in [12], this brings challenges in
the analysis of the standard nonuniform approximations of (1.1)–(1.3). To tackle the problem, we
will introduce a novel and concise technique to study highly accurate numerical methods for the
time fractional evolution equations with general time-space dependent coefficients on nonuniform
time meshes. By the proposed technique, an important estimate, i.e. the inequality (2.2), can be
guaranteed in the analysis of corresponding nonuniform algorithms. Our numerical schemes will
utilize the Alikhanov formula on possible nonuniform time meshes to approximate the Caputo
derivatives. We recall that, for a given positive integer N , the Alikhanov formulas for the
Caputo derivative Dβ

t g(tn−θ) (0 < β < 1) on arbitrary time meshes 0 = t0 < t1 < · · · < tN = T
is expressed by the following summation of convolution structure [15]:

(Dβ
τ g)

n−θ :=

n
∑

k=1

A
(n)
n−k∇τg

k, where gk = g(tk) and ∇τg
k = gk − gk−1, (1.6)

where θ := β/2. For simplicity of presentation, the precise formulation of the coefficients A
(n)
n−k

and its corresponding properties are given in Appendix (Subsection 7.1). To study the diffusion-
wave problem, we further employ a symmetric fractional-order reduction (SFOR) method which
was investigated in our very recent work [20].

Remark 1.1. In the rest of this paper, we always take the setting:

β =

{

α, if α ∈ (0, 1), i.e., while concerning the sub-diffusion problem;

α/2, if α ∈ (1, 2), i.e., while concerning the diffusion-wave problem.

In the construction and analysis of our proposed numerical methods, the variable coefficients
involved in A are assumed to satisfy two generic conditions: For x ∈ Ω, t ∈ [0, T ],

V1. ak(x, t) > 0, and ak(·, t) ∈ C1([0, T ]) with |(a1)t/a1|+ |(a2)t/a2| ≤ Cp, for k = 1, 2;

V2. ak(x, ·) ∈ C3(Ω) for k = 1, 2, and |bl(x, t)| ≤ Cl for l = 1, 2, 3,

where Cp and Cl are positive constants. We will obtain the second-order H1-norm convergence
(in time and space) of the proposed nonuniform schemes for both the sub-diffusion and diffusion-
wave problems under the following assumptions on regularity (Cu is a positive constant): For
t ∈ (0, T ] and k = 1, 2, 3,

‖u‖H4(Ω) ≤ Cu, for α ∈ (0, 1) ∪ (1, 2); (1.7)

‖∂
(k)
t u‖H3(Ω) ≤ Cu(1 + tσ1−k), if α ∈ (0, 1); (1.8)

‖∂
(k)
t u‖H3(Ω) ≤ Cu(1 + tσ2−k), ‖∂

(k)
t v‖H3(Ω) ≤ Cu(1 + tσ3−k), if α ∈ (1, 2), (1.9)

where v := Dβ
t ũ with ũ := u− tψ, σ1 ∈ (0, 1)∪ (1, 2), σ2 ∈ (1, 2)∪ (2, 3) and σ3 ∈ (1/2, 1)∪ (1, 2);

Furthermore, we impose the weak mesh assumption:
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MA. There is a constant Cγ > 0 such that τk ≤ Cγτ min{1, t
1−1/γ
k } for 1 ≤ k ≤ N , with

tk ≤ Cγtk−1 and τk/tk ≤ Cγτk−1/tk−1 for 2 ≤ k ≤ N ,

where γ ≥ 1 is the mesh parameter, τk := tk − tk−1 denotes the k-th time step size and
τ := max1≤k≤N{τk}.

The rest of the paper is organized as follows. In Section 2, we will introduce a concise
technique which is used to construct and analyze nonuniform schemes for the governing problems.
In Section 3, the numerical scheme which based on the nonuniform Alikhanov formula is proposed
for sub-diffusion equation with general variable coefficients, and its stability and second-order
convergence are rigorously discussed with respect to discrete H1-norm. In Section 4, by applying
the SFOR method, the nonuniform Alikhanov type scheme is constructed for the diffusion-
wave equation with general variable coefficients. We also show that the scheme is stable and
second-order convergent in the discrete H1-norm. Numerical examples are given in Section 5 to
demonstrate the theoretical statements. As an appendix, in Section 7, the precise definitions of
the coefficients of Alikhanov formula, the proof of inequality (2.2) and the analysis of truncation
errors are given.

2 A technique for numerical analysis

In this section, we will present a concise technique to study numerical schemes with variable
time step sizes for time fractional evolution equations with general time-space dependent variable
coefficients.

Firstly, we show an important lemma which extends the one in [14, Lemma 4.1].

Lemma 2.1. For a continuous (w.r.t. x and t) function q(x, t) > 0, x ∈ (xl, xr) ⊂ R, t ∈ [0, T ],
we define a diagonal matrix

Q(k) := diag (q(x1, tk), q(x2, tk), · · · , q(xm, tk)) , m ≥ 1, k ≥ 0,

where tk ∈ [0, T ] with tj < tj+1, and xi ∈ (xl, xr). Let zk := (zk1 , z
k
2 , · · · , z

k
m)T be a real vector,

and zn−θ := (1− θ)zn + θzn−1. Then

(zn−θ)TQ(n)(Dβ
τ z)

n−θ ≥
1

2

n
∑

k=1

A
(n)
n−k∇τ [(z

k)TQ(n)zk]. (2.1)

Moreover, if q(x, t) is non-increasing w.r.t. t for every fixed x, it holds that

(zn−θ)TQ(n)(Dβ
τ z)

n−θ ≥
1

2

n
∑

k=1

A
(n)
n−k∇τ [(z

k)TQ(k)zk]. (2.2)

Proof. The inequality (2.1) can be verified according to [14, Lemma 4.1], we move its derivation
to the Appendix (Subsection 7.2).

If q(x, t) is non-increasing w.r.t. t for every fixed x, we have (zk)TQ(n)zk ≤ (zk)TQ(k)zk
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while k ≤ n. Then

(zn−θ)TQ(n)(Dβ
τ z)

n−θ

≥
1

2

n
∑

k=1

A
(n)
n−k∇τ [(z

k)TQ(n)zk]

=
1

2

[

A
(n)
0 (zn)TQ(n)zn −

n−1
∑

k=1

(A
(n)
n−k−1 −A

(n)
n−k)(z

k)TQ(n)zk −A
(n)
n−1(z

0)TQ(n)z0

]

≥
1

2

[

A
(n)
0 (zn)TQ(n)zn −

n−1
∑

k=1

(A
(n)
n−k−1 −A

(n)
n−k)(z

k)TQ(k)zk −A
(n)
n−1(z

0)TQ(0)z0

]

=
1

2

n
∑

k=1

A
(n)
n−k∇τ [(z

k)TQ(k)zk].

Next, we will utilize Lemma 2.1 to obtain some properties for our numerical analysis. For a
continuous (w.r.t x and t) function p(x, t) > 0, suppose p1 = pa1 and p2 = pa2, we have

Au = p−1(pAu) = p−1
{

p1∂
2
xx + p2∂

2
yy + pb1∂x + pb2∂y + pb3

}

u

= p−1 {∂x(p1∂xu) + ∂y(p2∂yu) + [pb1 − (p1)x]∂xu+ [pb2 − (p2)y]∂yu+ pb3u}

= p−1 [∂x(p1∂xu) + ∂y(p2∂yu)] + [b1 − p−1(p1)x]∂xu+ [b2 − p−1(p2)y]∂yu+ b3u.

Some spatial notations are required. For two positive integers Mx and My, denote hx := (xr −
xl)/Mx and hy := (yr − yl)/My. Define the mesh space Ωh := {xh = (xl + ihx, yl + jhy)|1 ≤
i ≤ Mx − 1, 1 ≤ j ≤ My − 1} and Ω̄h := Ωh ∪ ∂Ω. For any grid functions uh := {ui,j =
u(xi, yj)|(xi, yj) ∈ Ω̄h}, the central difference operators are given by

δxui+ 1

2
,j := (ui+1,j−ui,j)/hx, 0 ≤ i ≤Mx−1; δx̂ui,j := (ui+1,j−ui−1,j)/(2hx), 1 ≤ i ≤Mx−1;

and δyui,j+ 1

2

, δŷui,j are defined similarly.

Denote p3 := b1−p
−1(p1)x, p4 := b2−p

−1(p2)y, the discrete function p
n−θ
h := p(xh, tn−θ) (0 ≤

n ≤ N) with p−θ
h := p(xh, t0), and we use similar notations for (pk)

n−θ
h (k = 1, 2, 3, 4) and (b3)

n−θ
h .

Then we define a discrete operator corresponding to A:

An−θ
h := (pn−θ

h )−1
{

δx[(p1)
n−θ
h δx] + δy[(p2)

n−θ
h δy]

}

+ (p3)
n−θ
h δx̂ + (p4)

n−θ
h δŷ + (b3)

n−θ
h .

Since the numerical schemes and corresponding analysis in the next two sections will be done in
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matrix form, we define the following matrices (the symbol ‘⊗’ denotes the Kronecker product)

Pn−θ := diag(pn−θ
1,1 , · · · , p

n−θ
Mx−1,1, p

n−θ
1,2 , · · · , p

n−θ
Mx−1,2, · · · · · · , p

n−θ
1,My−1, · · · , p

n−θ
Mx−1,My−1),

Pn−θ
1 := diag((p1)

n−θ
1/2,1, · · · , (p1)

n−θ
Mx−1/2,1, (p1)

n−θ
1/2,2, · · · , (p1)

n−θ
Mx−1/2,2,

· · · · · · , (p1)
n−θ
1/2,My−1, · · · , (p1)

n−θ
Mx−1/2,My−1),

Pn−θ
2 := diag((p2)

n−θ
1,1/2, · · · , (p2)

n−θ
Mx−1,1/2, (p2)

n−θ
1,3/2, · · · , (p2)

n−θ
Mx−1,3/2,

· · · · · · , (p2)
n−θ
1,My−1/2, · · · , (p2)

n−θ
Mx−1,My−1/2),

An−θ := (Iy ⊗ Sx)
TPn−θ

1 (Iy ⊗ Sx) + (Sy ⊗ Ix)
TPn−θ

2 (Sy ⊗ Ix),

Bn−θ := Pn−θ
3 [Iy ⊗ (Ŝx − ŜT

x )] +Pn−θ
4 [(Ŝy − ŜT

y )⊗ Ix],

Cn−θ := diag((b3)
n−θ
1,1 , · · · , (b3)

n−θ
Mx−1,1, (b3)

n−θ
1,2 , · · · , (b3)

n−θ
Mx−1,2,

· · · · · · , (b3)
n−θ
1,My−1, · · · , (b3)

n−θ
Mx−1,My−1),

un := (un1,1, · · · , u
n
Mx−1,1, u

n
1,2, · · · , u

n
Mx−1,2, · · · · · · , u

n
1,My−1, · · · , u

n
Mx−1,My−1)

T ,

where Pn−θ
3 and Pn−θ

4 , with entries coming from (p3)
n−θ
i,j and (p4)

n−θ
i,j respectively, are all (Mx−

1)(My − 1)× (Mx − 1)(My − 1) diagonal matrices defined similarly to Pn−θ, while Ix and Iy are
(Mx − 1) and (My − 1) dimensional identity matrices respectively. Furthermore, we have used
the notations

Sx :=
1

hx















−1
1 −1

. . .
. . .

1 −1
1















Mx×(Mx−1)

, Ŝx :=
1

2hx















−1 1
−1 1

. . .
. . .

−1 1
−1















(Mx−1)×(Mx−1)

,

and Sy, Ŝy are defined in a similar way.

Therefore, if p is non-increasing w.r.t. t for every fixed x, according to Lemma 2.1, we have

2(un−θ)TPn−θ(Dβ
τ u)

n−θ ≥

n
∑

k=1

A
(n)
n−k∇τ [(u

k)TPk−θuk]. (2.3)

Moreover, taking

un−ϑ
x := (Iy ⊗ Sx)u

n−ϑ, un−ϑ
y := (Sy ⊗ Ix)u

n−ϑ, where ϑ = θ or 0, (2.4)
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if p1 and p2 are all non-increasing w.r.t. t for every fixed x, we have

2(un−θ)TAn−θ(Dβ
τ u)

n−θ

≥A
(n)
0 (un)TAn−θun −

n−1
∑

k=1

(A
(n)
n−k−1 −A

(n)
n−k)(u

k)TAn−θuk −A
(n)
n−1(u

0)TAn−θu0

=A
(n)
0

[

(un
x)

TPn−θ
1 un

x + (un
y )

TPn−θ
2 un

y

]

−

n−1
∑

k=1

(A
(n)
n−k−1 −A

(n)
n−k)

[

(uk
x)

TPn−θ
1 uk

x + (uk
y)

TPn−θ
2 uk

y

]

−A
(n)
n−1

[

(u0
x)

TPn−θ
1 u0

x + (u0
y)

TPn−θ
2 u0

y

]

≥A
(n)
0

[

(un
x)

TPn−θ
1 un

x + (un
y )

TPn−θ
2 un

y

]

−

n−1
∑

k=1

(A
(n)
n−k−1 −A

(n)
n−k)

[

(uk
x)

TPk−θ
1 uk

x + (uk
y)

TPk−θ
2 uk

y

]

−A
(n)
n−1

[

(u0
x)

TP−θ
1 u0

x + (u0
y)

TP−θ
2 u0

y

]

. (2.5)

The two inequalities (2.3) and (2.5) play critical roles in the analysis of our methods. There-
fore, we must fulfill the following:

• find a continuous and positive function p(x, t) which is non-increasing w.r.t. t for every
fixed x ∈ Ω such that p1(x, t) = pa1 and p2(x, t) = pa2 are all non-increasing w.r.t.
t ∈ [0, T ] for every fixed x ∈ Ω.

The above task can be completed by choosing the candidates presented in the following lemma.

Lemma 2.2. For the positive variable coefficients a1 and a2, consider

p(x, t) :=
d(x)e−Cpt

a1(x, t)a2(x, t)
, p1(x, t) :=

d(x)e−Cpt

a2(x, t)
, p2(x, t) :=

d(x)e−Cpt

a1(x, t)
, (2.6)

for x ∈ Ω, t ∈ [0, T ]; where Cp is the constant in V1 and d(x) is a positive and continuous
function. If a1 and a2 satisfy V1, then the functions p, p1 and p2 are positive and continuous.
Furthermore, they are all non-increasing w.r.t. t for every fixed x ∈ Ω.

Proof. It is obvious that p, p1 and p2 are all positive and continues.
By taking the partial derivative w.r.t. t, we have

pt = d(x)e−Cpt

[

−Cpa1a2 − (a1a2)t
(a1a2)2

]

,

(p1)t = d(x)e−Cpt

[

−Cpa2 − (a2)t
(a2)2

]

,

(p2)t = d(x)e−Cpt

[

−Cpa1 − (a1)t
(a1)2

]

.

Then it is easy to reach the desired result provided the assumptions in V1 hold.

Remark 2.3. Since the numerical methods proposed later depend on precise choices of p, p1
and p2, here we list some simple candidates for d(x) and Cp. In fact, the pool for choices is
large. One may take d(x) = 1, esin(x+y), ecos(x+y) and Cp = sup{|(a1)t/a1|+ |(a2)t/a2|}, etc.

In the rest of this paper, we always take functions p, p1 and p2 as those given in (2.6).
Consequently the two inequalities (2.3) and (2.5) are true basing on V1.
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3 The sub-diffusion equation with time-space dependent coeffi-

cients

3.1 The numerical scheme

Let ukh be the numerical approximations of u(xh, tk), xh ∈ Ωh, 0 ≤ k ≤ N . Denote un−θ
h :=

(1− θ)unh + θun−1
h , fn−θ

h := f(xh, tn−θ) for n ≥ 1 and ϕh := ϕ(xh).
From Section 2 (noting that β = α here), it is natural to construct an implicit scheme to

solve the sub-diffusion problem (1.1)–(1.2) in the following form:

(Dα
τ uh)

n−θ = An−θ
h un−θ

h + fn−θ
h , xh ∈ Ωh, 1 ≤ n ≤ N ; (3.1)

u0h = ϕh, xh ∈ Ωh, (3.2)

subject to the zero boundary conditions.
To perform the numerical analysis, we rewrite the scheme (3.1)–(3.2) in the following matrix

representation:

(Dα
τ u)

n−θ =
[

−(Pn−θ)−1An−θ +Bn−θ +Cn−θ
]

un−θ + fn−θ, 1 ≤ n ≤ N ; (3.3)

u0 = Φ; (3.4)

where un−θ := (1− θ)un + θun−1 and

fn−θ := (fn−θ
1,1 , · · · , fn−θ

Mx−1,1, f
n−θ
1,2 , · · · , fn−θ

Mx−1,2, · · · · · · , f
n−θ
1,My−1, · · · , f

n−θ
Mx−1,My−1)

T ,

Φ := (ϕ1,1, · · · , ϕMx−1,1 ϕ1,2, · · · , ϕMx−1,2, · · · · · · , ϕ1,My−1, · · · , ϕMx−1,My−1)
T .

3.2 Stability and convergence

The next lemma shows a discrete fractional Grönwall inequality which is a slightly modified
version of [14, Theorem 3.1] (noting that πA = 11/4 and ρ is the maximum time-step ratio (see
Appendix)).

Lemma 3.1. [20, Lemma 3.2] Let (gn)Nn=1 and (λl)
N−1
l=0 be given nonnegative sequences. Assume

that there exists a constant Λ (independent of the step sizes) such that Λ ≥
∑N−1

l=0 λl, and that
the maximum step size satisfies

max
1≤n≤N

τn ≤
1

α
√

4πAΓ(2− α)Λ
.

Then, for any nonnegative sequences (uk)Nk=0 and (vk)Nk=0 satisfying

n
∑

k=1

A
(n)
n−k∇τ

[

(uk)2 + (vk)2
]

≤

n
∑

k=1

λn−k

(

uk−θ + vk−θ
)2

+ (un−θ + vn−θ)gn, 1 ≤ n ≤ N,

it holds that

un + vn ≤ 4Eα(4max(1, ρ)πAΛt
α
n)



u0 + v0 + max
1≤k≤n

k
∑

j=1

P
(k)
k−jg

j



 for 1 ≤ n ≤ N, (3.5)

where Eα(z) =
∑∞

k=0
zk

Γ(1+kα) is the Mittag-Leffler function.
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The coefficients P
(n)
n−j in (3.5) are called the discrete complementary convolution kernels (see

more details in [14]), and they satisfy ( [14, Lemmma 2.1])

0 ≤ P
(n)
n−j ≤ πAΓ(2− α)ταj ,

n
∑

j=1

P
(n)
n−jω1−α(tj) ≤ πA, 1 ≤ j ≤ n ≤ N. (3.6)

For uh, vh belonging to the space of grid functions which vanish on ∂Ωh, we introduce the
discrete inner product 〈u, v〉 := hxhy

∑

xh∈Ωh
uhvh, the discrete L2-norm ‖u‖ :=

√

〈u, u〉, the

discrete H1 seminorms ‖δxu‖ and ‖δyu‖, and ‖∇hu‖ :=
√

‖δxu‖2 + ‖δyu‖2. Suppose C̃0, Ĉ0, C̃l

and Ĉl are positive constants such that

C̃0 ≤ |p(x, t)| ≤ Ĉ0, C̃l ≤ |pl(x, t)| ≤ Ĉl for l = 1, 2, 3, 4.

Now we are going to show the stability and convergence for the proposed scheme (3.1)–(3.2).

Theorem 3.2. If V1 is valid, the numerical scheme (3.1)–(3.2) is unconditionally stable and
the discrete solutions unh (xh ∈ Ωh, 1 ≤ n ≤ N) satisfy

‖∇hu
n‖ ≤C



‖∇hu
0‖+ max

1≤k≤n

k
∑

j=1

P
(k)
k−j‖∇hf

j−θ‖



 ≤ C

(

‖∇hu
0‖+ max

1≤k≤n
{tαk‖∇hf

k−θ}‖

)

.

Proof. Multiplying both sides of (3.3) by (An−θun−θ)T gives:

(un−θ)TAn−θ(Dα
τ u)

n−θ + (An−θun−θ)T (Pn−θ)−1(An−θun−θ)

=(un−θ)T
[

An−θBn−θ +An−θCn−θ
]

un−θ + (un−θ)TAn−θfn−θ, 1 ≤ n ≤ N. (3.7)

The first term on the left-hand side of (3.7) is evaluated by (2.5).

For the terms on the right-hand side, we first notice that for a real vector z = (z1, z2, . . . , zMx−1)
T ,

4h2x(Ŝxz)
T (Ŝxz) =

Mx−2
∑

i=1

(ui+1 − ui)
2 + u2Mx−1 ≤ u21 +

Mx−2
∑

i=1

(ui+1 − ui)
2 + u2Mx−1 = h2x(Sxz)

T (Sxz),

4h2x(Ŝ
T
x z)

T (ŜT
x z) = u21 +

Mx−2
∑

i=1

(ui+1 − ui)
2 ≤ h2x(Sxz)

T (Sxz).

Then it further holds that

max
{

[(Iy ⊗ Ŝx)u
k]T [(Iy ⊗ Ŝx)u

k], [(Iy ⊗ ŜT
x )u

k]T [(Iy ⊗ ŜT
x )u

k]
}

≤
1

4
[(Iy ⊗ Sx)u

k]T [(Iy ⊗ Sx)u
k],

max
{

[(Ŝy ⊗ Ix)u
k]T [(Ŝy ⊗ Ix)u

k], [(ŜT
y ⊗ Ix)u

k]T [(ŜT
y ⊗ Ix)u

k]
}

≤
1

4
[(Sy ⊗ Ix)u

k]T [(Sy ⊗ Ix)u
k].
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Thus the Cauchy-Schwarz inequality leads to

(un−θ)T
[

(Bn−θ)TBn−θ
]

un−θ

≤
[(

Iy ⊗ (Ŝx − ŜT
x )

)

un−θ
]T

(Pn−θ
3 )2

[(

Iy ⊗ (Ŝx − ŜT
x )

)

un−θ
]

+
[(

(Ŝy − ŜT
y )⊗ Ix

)

un−θ
]T

(Pn−θ
4 )2

[(

(Ŝy − ŜT
y )⊗ Ix

)

un−θ
]

≤2Ĉ2
3

{

[

(Iy ⊗ Ŝx)u
n−θ

]T [

(Iy ⊗ Ŝx)u
n−θ

]

+
[

(Iy ⊗ ŜT
x )u

n−θ
]T [

(Iy ⊗ ŜT
x )u

n−θ
]

}

+ 2Ĉ2
4

{

[

(Ŝy ⊗ Ix)u
n−θ

]T [

(Ŝy ⊗ Ix)u
n−θ

]

+
[

(ŜT
y ⊗ Ix)u

n−θ
]T [

(ŜT
y ⊗ Ix)u

n−θ
]

}

≤Ĉ2
3 (u

n−θ
x )Tun−θ

x + Ĉ2
4 (u

n−θ
y )Tun−θ

y

≤C5

[

(un−θ
x )TPn−θ

1 un−θ
x + (un−θ

y )TPn−θ
2 un−θ

y

]

, (3.8)

where C5 := max{Ĉ2
3 , Ĉ

2
4} · max{1/C̃1, 1/C̃2}. Then the first part of the first term on the

right-hand side of (3.7) can be estimated as

2(un−θ)TAn−θBn−θun−θ

≤
1

Ĉ0

(An−θun−θ)T (An−θun−θ) + Ĉ0(u
n−θ)T

[

(Bn−θ)TBn−θ
]

un−θ

≤(An−θun−θ)T (Pn−θ)−1(An−θun−θ) + Ĉ0C5

[

(un−θ
x )TPn−θ

1 un−θ
x + (un−θ

y )TPn−θ
2 un−θ

y

]

. (3.9)

Noticing the embedding inequality ‖uk‖ ≤ CΩ‖∇u
k‖, k ≥ 0, it leads to

(un−θ)Tun−θ ≤ C2
Ω

[

(un−θ
x )Tun−θ

x + (un−θ
y )Tun−θ

y

]

. (3.10)

Then similar to the derivation of (3.9), one gets

2(un−θ)TAn−θCn−θun−θ

≤
1

Ĉ0

(An−θun−θ)T (An−θun−θ) + Ĉ0(u
n−θ)T

[

(Cn−θ)TCn−θ
]

un−θ

≤(An−θun−θ)T (Pn−θ)−1(An−θun−θ) + Ĉ0C
2
3 (u

n−θ)Tun−θ

≤(An−θun−θ)T (Pn−θ)−1(An−θun−θ) + Ĉ0C6

[

(un−θ
x )TPn−θ

1 un−θ
x + (un−θ

y )TPn−θ
2 un−θ

y

]

,

(3.11)

where C6 := max{1/C̃1, 1/C̃2}C
2
3C

2
Ω.

For the last term on the right-hand side of (3.7), we have

(un−θ)TAn−θfn−θ =
[

(Iy ⊗ Sx)u
n−θ

]T
Pn−θ

1 (Iy ⊗ Sx)f
n−θ

+
[

(Sy ⊗ Ix)u
n−θ

]T
Pn−θ

2 (Sy ⊗ Ix)f
n−θ

=(un−θ
x )TPn−θ

1 (Iy ⊗ Sx)f
n−θ + (un−θ

y )TPn−θ
2 (Sy ⊗ Ix)f

n−θ

≤

√

Ĉ1

√

(un−θ
x )TPn−θ

1 un−θ
x

√

[(I ⊗ Sx)fn−θ]
T
(I ⊗ Sx)fn−θ

+

√

Ĉ2

√

(un−θ
y )TPn−θ

2 un−θ
y

√

[(Sy ⊗ I)fn−θ]
T
(Sy ⊗ I)fn−θ. (3.12)
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Therefore, it follows from (3.7)–(3.12) and (2.5) that

n
∑

k=1

A
(n)
n−k∇τ

[

(uk
x)

TPk−θ
1 uk

x + (uk
y)

TPk−θ
2 uk

y

]

≤Ĉ0(C5 + C6)
[

(un−θ
x )TPn−θ

1 (un−θ
x ) + (un−θ

y )TPn−θ
2 (un−θ

y )
]

+ 2

√

Ĉ1

√

(un−θ
x )TPn−θ

1 un−θ
x

√

[(Iy ⊗ S)fn−θ]
T
(Iy ⊗ S)fn−θ

+ 2

√

Ĉ2

√

(un−θ
y )TPn−θ

2 un−θ
y

√

[(S ⊗ Ix)fn−θ]
T
(S ⊗ Ix)fn−θ. (3.13)

In view of the relationships

‖δxu
k−θ‖ =

√

hxhy(u
k−θ
x )T (uk−θ

x ) and ‖δyu
k−θ‖ =

√

hxhy(u
k−θ
y )T (uk−θ

y ),

where k ≥ 0, we define the following norms

‖δxu
k−θ‖P1

:=

√

hxhy(u
k−θ
x )TPk−θ

1 (uk−θ
x ) and ‖δyu

k−θ‖P2
:=

√

hxhy(u
k−θ
y )TPk−θ

2 (uk−θ
y ).

Moreover, denote

‖v‖
(n−θ)
Pk

:= (1− θ)‖vn‖Pk
+ θ‖vn−1‖Pk

for vh ∈ Ωh and k = 1, 2.

Then the triangle inequality yields ‖vn−θ‖Pk
≤ ‖v(n−θ)‖Pk

.

Now, take C7 := 2max{
√

Ĉ1,
√

Ĉ2}. Multiplying both sides of the inequality (3.13) by hxhy,
it follows

n
∑

k=1

A
(n)
n−k∇τ

[

‖δxu
k‖2P1

+ ‖δyu
k‖1P1

]

≤Ĉ0(C5 + C6)
[

‖δxu
n−θ‖2P1

+ ‖δyu
n−θ‖2P2

]

+ 2

√

Ĉ1‖δxu
n−θ‖P1

· ‖δxf
n−θ‖

+ 2

√

Ĉ2‖δyu
n−θ‖P2

· ‖δyf
n−θ‖

≤Ĉ0(C5 + C6)
[

‖δxu
n−θ‖2P1

+ ‖δyu
n−θ‖2P2

]

+ C7

(

‖δxu
n−θ‖P1

+ ‖δyu
n−θ‖P2

)

‖∇hf
n−θ‖

≤Ĉ0(C5 + C6)

[

(

‖δxu‖
(n−θ)
P1

)2
+

(

‖δyu‖
(n−θ)
P2

)2
]

+ C7

(

‖δxu‖
(n−θ)
P1

+ ‖δyu‖
(n−θ)
P2

)

‖∇hf
n−θ‖.

Applying Lemma 3.1, we get

‖δxu
n‖P1

+ ‖δyu
n‖P2

≤4Eβ

(

4max(1, ρ)πAĈ0(C5 + C6)t
β
n

)



‖δxu
0‖P1

+ ‖δyu
0‖P2

+ C7 max
1≤k≤n

k
∑

j=1

P
(k)
k−j‖∇hf

k−θ‖



 .

Since ‖δxu
0‖P1

≤
√

Ĉ1‖δxu
0‖, ‖δyu

0‖P2
≤

√

Ĉ2‖δyu
0‖, and

‖δxu
n‖ =

√

hxhy(un
x)

Tun
x ≤

1
√

C̃1

‖δxu
n‖P1

, ‖δyu
n‖ =

√

hxhy(un
y )

Tun
y ≤

1
√

C̃2

‖δyu
n‖P2

,
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we obtain

‖∇hu
n‖ ≤ ‖δxu

n‖+ ‖δyu
n‖ ≤max{

1
√

C̃1

,
1

√

C̃2

} · (‖δxu
n‖P1

+ ‖δyu
n‖P2

)

≤C



‖∇hu
0‖+ max

1≤k≤n

k
∑

j=1

P
(k)
k−j‖∇hf

j−θ‖





≤C

(

‖∇hu
0‖+ max

1≤k≤n
{tαk‖∇hf

k−θ‖}

)

,

where (3.6) has been utilized.

Remark 3.3. We remark that one may consider numerical approximations of (1.1) based on a
more simplified equivalent equation with

Au = ∂x(a1∂xu) + ∂y(a2∂yu) + [b1 − (a1)x]∂xu+ [b2 − (a2)y]∂yu+ b3u. (3.14)

The corresponding numerical approximation of (3.14) will be

(Dα
τ u)

n−θ =
[

−Ãn−θ + B̃n−θ + C̃n−θ
]

un−θ + fn−θ, 1 ≤ n ≤ N ; (3.15)

where Ãn−θ := (Iy ⊗Sx)
TAn−θ

1 (Iy ⊗Sx) + (Sy ⊗ Ix)
TAn−θ

2 (Sy ⊗ Ix), and A1, A2, B̃ and C̃ are
diagonal matrices with entries from corresponding variable coefficients in (3.14).

To obtain the unconditional H1-norm stability and convergence, one should multiply both
sides of (3.15) by (Ãn−θun−θ)T , which leads to a serious difficulty for estimating the term
(un−θ)T Ãn−θ(Dα

τ u)
n−θ on the left-hand side. This is the main reason why we introduce the con-

cise technique in Section 2. The advantage of such technique will be more obvious for diffusion-
wave equation as its numerical approximations have a coupled structure (see also(4.5)–(4.6)).
For more details, see the first three steps (4.8)–(4.10) of the proof in the next section.

Next, we show the convergence of the proposed scheme (3.3)–(3.4).

Theorem 3.4. Denote ekh := u(xh, tk) − ukh (xh ∈ Ω̄h, 0 ≤ k ≤ N). If V1, V2, MA and
the assumptions in (1.7)–(1.8) are valid, the numerical scheme (3.1)–(3.2) is unconditionally
convergent with

‖∇he
n‖ ≤ C(τ{2,γσ1} + h2x + h2y), for 1 ≤ n ≤ N. (3.16)

Proof. Denote ek the error vector with enteries eki,j being arranged similar to those of uk. One
can easily obtain the error equations

(Dα
τ e)

n−θ =
[

−(Pn−θ)−1An−θ +Bn−θ +Cn−θ
]

en−θ +Rn−θ, 1 ≤ n ≤ N ; (3.17)

e0 = 0, (3.18)

where en−θ := (1− θ)en + θen−1, and

Rn−θ := (Rn−θ
1,1 , · · · , Rn−θ

Mx−1,1, R
n−θ
1,2 , · · · , Rn−θ

Mx−1,2, · · · · · · , R
n−θ
1,My−1, · · · , R

n−θ
Mx−1,My−1)

with

Rn−θ
h = −Tu(xh, tn−θ) + TA(xh, tn−θ) + S(xh, tn−θ), xh ∈ Ωh. (3.19)
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The estimation of the temporal and spatial truncation errors Tu(xh, tn−θ), TA(xh, tn−θ) and
S(xh, tn−θ) are given in the Appendix (Subsection 7.3).

Following the proof of Theorem 3.2, we can get

‖∇he
n‖ ≤ C max

1≤k≤n

k
∑

j=1

P
(k)
k−j‖∇hR

j−θ‖, 1 ≤ n ≤ N. (3.20)

Therefore, the claimed result can be verified by combining (3.20), (7.4) and (7.6)–(7.7).

4 The diffusion-wave equation with time-space dependent coef-

ficients

4.1 The numerical scheme

A novel order reduction method (SFOR) proposed in [20] will be employed to construct efficient
numerical scheme on nonuniform time partitions for the diffusion-wave problem (1.1) and (1.3).
The underlying idea of the SFOR method is demonstrated in the following lemma.

Lemma 4.1. [20, Lemma 2.1] For α ∈ (1, 2) and u(t) ∈ C2((0, T ]), it holds that

Dα
t u(t) = D

α
2

t

(

D
α
2

t u(t)
)

− u′(0)ω2−α(t).

Moreover, if we take ũ(t) := u(t)− tu′(0), then

Dα
t u(t) = Dα

t ũ(t) = D
α
2

t

(

D
α
2

t ũ(t)
)

.

Utilizing Lemma 4.1, the equation (1.1) can be rewritten as (β = α/2 here)

Dβ
t v = Aũ+ f(x, t) +A(tψ), (4.1)

v = Dβ
t ũ, (4.2)

with ũ = u− tψ, for x ∈ Ω and t ∈ (0, T ].
It is obvious that the problem (4.1)–(4.2) is equivalently to (1.1) and (1.3) provided u(·, t) ∈

C2((0, T ]) and p is invertible, i.e., they have the same analytical solution. Then we can design the
numerical approximation based on the model (4.1)–(4.2) in order to solve the original problem
(1.1) and (1.3).

By using the discrete Caputo formula (1.6) and the discrete operator An−θ
h given in Section 2,

with ũnh = unh− tnψh, we propose the following implicit numerical scheme for solving (4.1)–(4.2):

(Dβ
τ vh)

n−θ = An−θ
h ũn−θ

h + fn−θ
h + [A(tψ)]n−θ

h , xh ∈ Ωh, 1 ≤ n ≤ N ; (4.3)

vn−θ
h = (Dβ

τ ũh)
n−θ, xh ∈ Ωh, 1 ≤ n ≤ N ; (4.4)

subject to the zero boundary conditions and initial conditions u0h = φh and v0h = 0.
Denote ψ̃n−θ

h := [A(tψ)]n−θ
h , and

Ψn−θ := diag
(

ψ̃n−θ
1,1 , · · · , ψ̃n−θ

Mx−1,1, ψ̃
n−θ
1,2 , · · · , ψ̃n−θ

Mx−1,2, · · · · · · , ψ̃
n−θ
1,My−1, · · · , ψ̃

n−θ
Mx−1,My−1

)

.

The matrix form of the numerical scheme (4.3)–(4.4) is:

(Dβ
τ v)

n−θ =
[

−(Pn−θ)−1An−θ +Bn−θ +Cn−θ
]

ũn−θ + fn−θ +Ψn−θ; (4.5)

vn−θ = (Dβ
τ ũ)

n−θ; (4.6)

for xh ∈ Ωh, 1 ≤ n ≤ N .
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4.2 Stability and convergence

In the same way as Lemma 3.1, we can also simply go through the proof of [14, Theorem 3.1]
to have an analogy version of the discrete fractional Grönwall inequality (with πA = 11/4):

Lemma 4.2. Let (gn)Nn=1 and (λl)
N−1
l=0 be given nonnegative sequences. Assume that there exists

a constant Λ (independent of the step sizes) such that Λ ≥
∑N−1

l=0 λl, and that the maximum
step size satisfies

max
1≤n≤N

τn ≤
1

β
√

4πAΓ(2− β)Λ
.

Then, for any nonnegative sequence (uk)Nk=0, (v
k)Nk=0 and (wk)Nk=0 satisfying

n
∑

k=1

A
(n)
n−k∇τ

[

(uk)2 + (vk)2 + (wk)2
]

≤

n
∑

k=1

λn−k

(

uk−θ + vk−θ + wk−θ
)2

+ (un−θ + vn−θ + wn−θ)gn, 1 ≤ n ≤ N,

it holds that

un + vn + wn ≤ 6Eβ(6max(1, ρ)πAΛt
β
n)



u0 + v0 + w0 + max
1≤k≤n

k
∑

j=1

P
(k)
k−jg

j



 for 1 ≤ n ≤ N.

Similar to (3.6), the discrete complementary convolution kernels P
(n)
n−j in the above lemma

fulfill

0 ≤ P
(n)
n−j ≤ πAΓ(2− β)τβj ,

n
∑

j=1

P
(n)
n−jω1−β(tj) ≤ πA, 1 ≤ j ≤ n ≤ N.

Theorem 4.3. If V1 is valid, the numerical scheme (4.3)–(4.4) is unconditionally stable and
the discrete solutions unh (xh ∈ Ωh, 1 ≤ n ≤ N) satisfy

‖∇hu
n‖ ≤C



‖∇hϕ‖+ tn‖∇hψ‖+ max
1≤k≤n

k
∑

j=1

P
(k)
k−j(‖f

j−θ‖+ ‖ψ̃j−θ‖)





≤C

[

‖∇hϕ‖+ tn‖∇hψ‖ + max
1≤k≤n

{t
α
2

k (‖f
k−θ‖+ ‖ψ̃k−θ‖)}

]

. (4.7)

Proof. Multiplying both sides of (4.5) by (Pn−θvn−θ)T yields

(vn−θ)TPn−θ(Dβ
τ v)

n−θ + (vn−θ)TAn−θũn−θ

=(vn−θ)TPn−θ
(

Bn−θ +Cn−θ
)

ũn−θ + (vn−θ)TPn−θ(fn−θ +Ψn−θ). (4.8)

On the other hand, the multiplication of (ũn−θ)TAn−θ on both sides of (4.6) gives

(ũn−θ)TAn−θvn−θ = (ũn−θ)TAn−θ(Dβ
τ ũ)

n−θ. (4.9)

Thus, it follows from (4.8) and (4.9) that

(vn−θ)TPn−θ(Dβ
τ v)

n−θ + (ũn−θ)TAn−θ(Dβ
τ ũ)

n−θ

=(vn−θ)TPn−θ
(

Bn−θ +Cn−θ
)

ũn−θ + (vn−θ)TPn−θ(fn−θ +Ψn−θ). (4.10)
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The first and second terms on the left-hand side of (4.10) are evaluated by means of (2.3) and
(2.5), respectively. Then we consider the terms on the right-hand side. Applying the Cauchy-
Schwarz inequality and utilizing (3.8), we have

2(vn−θ)TPn−θBn−θũn−θ

≤(vn−θ)T (Pn−θ)2vn−θ + (ũn−θ)T
[

(Bn−θ)TBn−θ
]

ũn−θ

≤
1

C̃0

(vn−θ)TPn−θvn−θ + C5

[

(ũn−θ
x )TPn−θ

1 ũn−θ
x + (ũn−θ

y )TPn−θ
2 ũn−θ

y

]

. (4.11)

With the embedding inequality (3.10), one has

2(vn−θ)TPn−θCn−θũn−θ

≤(vn−θ)T (Pn−θ)2vn−θ + (ũn−θ)T (Cn−θ)2ũn−θ

≤
1

C̃0

(vn−θ)TPn−θvn−θ + C2
3C

2
Ω

[

(ũn−θ
x )T ũn−θ

x + (ũn−θ
y )T ũn−θ

y

]

≤
1

C̃0

(vn−θ)TPn−θvn−θ + C6

[

(ũn−θ
x )TPn−θ

1 ũn−θ
x + (ũn−θ

y )TPn−θ
2 ũn−θ

y

]

. (4.12)

Hence, from (4.10)–(4.12), (2.3) and (2.5), we obtain

n
∑

k=1

A
(n)
n−k∇τ

[

(vk)TPk−θvk + (ũk
x)

TPk−θ
1 ũk

x + (ũk
y)

TPk−θ
2 ũk

y

]

≤2max{
1

C̃0

, C5, C6}
[

(vn−θ)TPn−θvn−θ + (ũn−θ
x )TPn−θ

1 ũn−θ
x + (ũn−θ

y )TPn−θ
2 ũn−θ

y

]

+ 2
[

(Pn−θ)
1

2vn−θ
]T

(Pn−θ)
1

2 (fn−θ +Ψn−θ). (4.13)

Multiplying both sides of (4.13) by hxhy and taking C8 := 2max{ 1
C̃0

, C5, C6}, we further get

n
∑

k=1

A
(n)
n−k∇τ

[

‖vk‖2P + ‖δxũ
k‖2P1

+ ‖δyũ
k‖2P2

]

≤C8

(

‖vn−θ‖2P + ‖δxũ
n−θ‖2P1

+ ‖δyũ
n−θ‖2P2

)

+

√

Ĉ0‖v
n−θ‖P · ‖fn−θ + ψ̃n−θ‖

≤C8

[

(

‖v‖
(n−θ)
P

)2
+

(

‖δxũ‖
(n−θ)
P1

)2
+

(

‖δyũ‖
(n−θ)
P2

)2
]

+

√

Ĉ0

(

‖v‖
(n−θ)
P + ‖δxũ‖

(n−θ)
P1

+ ‖δyũ‖
(n−θ)
P2

)

(‖fn−θ‖+ ‖ψ̃n−θ‖), (4.14)

where ‖vk‖2P := hxhy(v
k)TPk−θvk.

Now, combining (4.14) with the fractional Grönwall inequality (Lemma 4.2), it follows

‖vn‖P + ‖δxũ
n‖P1

+ ‖δyũ
n‖P2

≤6Eβ(6max(1, ρ)πAC8t
β
n)
[

‖v0‖P + ‖δxũ
0‖P1

+ ‖δyũ
0‖P2

+

√

Ĉ0 max
1≤k≤n

k
∑

j=1

P
(k)
k−j(‖f

j−θ‖+ ‖ψ̃j−θ‖)
]

,
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and hence

‖∇hũ
n‖ ≤ ‖δxũ

n‖+ ‖δyũ
n‖ ≤max{

1
√

C̃1

,
1

√

C̃2

} · (‖δxũ
n‖P1

+ ‖δyũ
n‖P2

)

≤C



‖v0‖P + ‖∇hũ
0‖+ max

1≤k≤n

k
∑

j=1

P
(k)
k−j(‖f

j−θ‖+ ‖ψ̃j−θ‖)





≤C

[

‖v0‖P + ‖∇hũ
0‖+ max

1≤k≤n
{tβk (‖f

k−θ‖+ ‖ψ̃k−θ‖)}

]

.

Then the claimed result (4.7) can be reached by the properties ‖∇hu
n‖ ≤ ‖∇hũ

n‖ + tn‖∇hψ‖,
‖v0‖P = 0 and ‖∇hũ

0‖ = ‖∇hϕ‖.

The next theorem shows the convergence of proposed scheme (4.5)–(4.6).

Theorem 4.4. Denote ekh := u(xh, tk)− ukh (xh ∈ Ω̄h, 0 ≤ k ≤ N) . If V1, V2, MA and the
assumptions in (1.7) and (1.9) are valid, the numerical scheme (4.3)–(4.4) is unconditionally
convergent with

‖∇he
n‖ ≤ C(τmin{2,γσ2,γσ3} + h2x + h2y), for 1 ≤ n ≤ N. (4.15)

Proof. We have

ekh = u(xh, tk)− ukh = ũ(xh, tk)− ũkh, xh ∈ Ωh, 1 ≤ k ≤ N.

Denote ěkh := v(xh, tk)− vkh (1 ≤ k ≤ N) and

R̃n−θ
h := −Tv1(xh, tn−θ) + TA(xh, tn−θ) + S(xh, tn−θ), R̂

n−θ
h := −Tv2(xh, tn−θ) + Tũ(xh, tn−θ),

(4.16)

for xh ∈ Ωh, where the above truncation errors are discussed in the Appendix (Subsection 7.3).
Denote the vector

ěk := (ěk1,1, · · · , ě
k
Mx−1,1, · · · , ě

k
1,2, · · · , ě

k
Mx−1,2, · · · · · · , ě

k
1,My−1, · · · , ě

k
Mx−1,My−1),

while R̃n−θ, R̂n−θ are similarity defined with entries R̃n−θ
h and R̂n−θ

h , respectively.
The error equations to scheme (4.5)–(4.6) can be given as

(Dβ
τ ě)

n−θ =
[

−(Pn−θ)−1An−θ +Bn−θ +Cn−θ
]

en−θ + R̃n−θ; (4.17)

ěn−θ = (Dβ
τ e)

n−θ + R̂n−θ. (4.18)

The proof of convergence is similar to that of Theorem 4.3 with a slight difference only at the
step for (4.9). We now have:

(en−θ)TAn−θěn−θ = (en−θ)TAn−θ(Dβ
τ e)

n−θ + (en−θ)TAn−θR̂n−θ.

The term can be estimated like that in (3.12). Going though the remaining part of the proof
like that of Theorem 4.3, one should find no difficulty to obtain

‖ěn‖+ ‖∇he
n‖ ≤C max

1≤k≤n

k
∑

j=1

P
(k)
k−j(‖R̃

j−θ‖+ ‖∇hR̂
j−θ‖).

Thus, combining with (7.3), (7.5) and (7.8)–(7.10), the desired result is true.
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5 Numerical Experiments

Numerical examples will be provided in this section to show the accuracy and efficiency of
proposed schemes (3.1)–(3.2) and (4.3)–(4.4). The variable coefficients in the two examples in
this section are chose as

a1(x, t) = ex+y(1 + cos(t)), a2(x, t) = e(x+y)t(1 + t
3

2 ),

b1(x, t) = sin(xyt), b2(x, t) = cos(xyt), b3(x, t) = (x2 + y2)t.

The above variable coefficients satisfy V1 and V2 clearly. Then we take the function d(x) and
constant Cp in Lemma 2.2 as follows

d(x) = esin(x+y) and Cp = 3.

Since the problem we considered in the paper are linear fractional evolution equations, we choose
the classical graded mesh tk = T (k/N)γ for the time partition to compensate for the lack of
smoothness of the solution near the initial time. The graded mesh is definitely in accordance
with the mesh assumption MA. In all of the numerical tests, we take M = Mx = My, the
discrete H1-norm errors E1(M,N) = max1≤n≤N ‖Un − un‖H1 will be recorded in each run, and
the temporal and spatial convergence orders are given by

Orderτ = log2

[

E1(M,N/2)

E1(M,N)

]

and Orderh = log2

[

E1(M/2, N)

E1(M,N)

]

,

respectively.
Moreover, we will always employ the sum-of-exponentials (SOE) technique [7] to the proposed

schemes while discretizing the Caputo derivative to save the memory and computational costs,
since the SOE method does not bring any additional essential differences to the numerical
analysis of the nonuniform schemes. One may refer to [16, Section 5.1] for the details of the
fast Alikhanov formula and refer to [7, 19] for the advantage of the SOE approximation in
the computational aspect. The absolute tolerance error ǫ and the cut-off time ∆t of the fast
Alikhanov formula (see [16, Lemma 5.1]) are set as ǫ = 10−12 and ∆t = τ1 in all of the following
tests.

Example 5.1. We consider the sub-diffusion problem (1.1)–(1.2) with Ω = (0, 1)2, T = 1,
ϕ = sin(πx) sin(πy) and

f(u,x, t) = sin(πx) sin(πy)

[

Γ(α+ 1) +
t1−α

Γ(2− α)

]

−A(sin(πx) sin(πy))(1+ t+ tα), α ∈ (0, 1),

such that the exact solution is u = sin(πx) sin(πy)(1 + t+ tα).

One may notice that the regularity parameter in (1.7) should be σ1 = α for Example 5.1.
Therefore, according to Theorem 3.4, the optimal mesh parameter is γopt = 2/α for the scheme
(3.1)–(3.2) on the graded time meshes.

The temporal accuracy by applying the scheme (3.1)–(3.2) with fixedM = 1000 and different
parameters α, γ for solving Example 5.1 is listed in Tables 1–3, while Table 4 shows the spatial
accuracy with fixed N = 500. From the four tables, we can clearly observe the optimal second-
order accuracy of the proposed scheme, and the optimal choice of the grading parameter (γopt =
2/α) is well reflected.
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Table 1: Numerical accuracy in temporal direction of the scheme (3.1)–(3.2) for solving Example
5.1, where α = 0.5.

γ = 1 γopt = 2/α = 4 γ = 2.5/α = 5
N E1(M,N) Orderτ E1(M,N) Orderτ E1(M,N) Orderτ
4 1.6124e-01 ∗ 4.4642e-02 ∗ 6.4526e-02 ∗
8 1.1090e-01 0.54 1.2036e-02 1.89 1.8154e-02 1.83
16 7.5477e-02 0.56 3.1256e-03 1.95 4.7969e-03 1.92
32 5.0612e-02 0.58 8.0038e-04 1.97 1.2989e-03 1.88

Theoretical Order 0.50 2.00 2.00

Table 2: Numerical accuracy in temporal direction of the scheme (3.1)–(3.2) for solving Example
5.1, where α = 0.7.

γ = 1 γopt = 2/α ≈ 2.86 γ = 2.5/α ≈ 3.57
N E1(M,N) Orderτ E1(M,N) Orderτ E1(M,N) Orderτ
4 1.0592e-01 ∗ 2.5978e-02 ∗ 3.8595e-02 ∗
8 6.1506e-02 0.78 6.5510e-03 1.99 1.0043e-02 1.94
16 3.4534e-02 0.83 1.6656e-03 1.98 2.5747e-03 1.96
32 1.8403e-02 0.91 4.2368e-04 1.98 6.5520e-04 1.97

Theoretical Order 0.70 2.00 2.00

Table 3: Numerical accuracy in temporal direction of the scheme (3.1)–(3.2) for solving Example
5.1, where α = 0.9.

γ = 1 γopt = 2/α ≈ 2.22 γ = 2.5/α ≈ 2.78
N E1(M,N) Orderτ E1(M,N) Orderτ E1(M,N) Orderτ
4 3.4213e-02 ∗ 8.0750e-03 ∗ 1.2235e-02 ∗
8 1.6299e-02 1.07 1.8998e-03 2.09 2.9302e-03 2.06
16 7.0935e-03 1.20 4.7949e-04 1.99 7.4266e-04 1.98
32 2.6405e-03 1.43 1.2448e-04 1.95 1.9062e-04 1.96

Theoretical Order 0.90 2.00 2.00

Example 5.2. We then consider the diffusion-wave problem (1.1) and (1.3) with Ω = (0, 1)2,
T = 1, φ = ψ = sin(πx) sin(πy) and

f(u,x, t) = Γ(α+ 1) sin(πx) sin(πy)−A(sin(πx) sin(πy))(1 + t+ tα), α ∈ (1, 2),

such that the exact solution is u = sin(πx) sin(πy)(1 + t+ tα).

For Example 5.2, the regularity parameters in (1.8) are σ2 = α and σ3 = α/2. Then, Theorem
4.4 indicates that the optimal mesh parameter is γopt = 2/σ3 = 4/α for the scheme (4.3)–(4.4)
on the graded time meshes. One can notice that the grading parameter γopt is bounded and not
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Table 4: Numerical accuracy in spatial direction of the scheme (3.1)–(3.2) for solving Example
5.1, where α = 0.7.

γ = 1 γopt = 2/α ≈ 2.86 γ = 2.5/α ≈ 3.57
M E1(M,N) Orderh E1(M,N) Orderh E1(M,N) Orderh
4 3.6943e-01 ∗ 3.6942e-01 ∗ 3.6931e-01 ∗
8 9.1710e-02 2.01 9.1710e-02 2.01 9.1666e-02 2.01
16 2.2891e-02 2.00 2.2891e-02 2.00 2.2864e-02 2.00
32 5.7205e-03 2.00 5.7213e-03 2.00 5.6977e-03 2.00

Theoretical Order 2.00 2.00 2.00

large while α → 1+, this keeps the robustness of the graded scheme in practical applications
when the fractional order α is close to one.

Similarly, we display the temporal accuracy, which is obtained by applying the scheme (4.3)–
(4.4) with fixed M = 1000 and different parameters for solving Example 5.2, in Tables 5–8. The
spatial accuracy of the scheme with fixed N = 500 is displayed in Table 9. The numerical
results show that the proposed scheme (4.3)–(4.4) also works very well with optimal second-
order accuracy and is robust for α → 1+ in solving the diffusion-wave problem with general
variable coefficients.

Table 5: Numerical accuracy in temporal direction of scheme (4.3)–(4.4) for Example 5.2, where
α = 1.01.

γ = 1 γopt = 4/α ≈ 3.96 γ = 4.5/α ≈ 4.46
N E1(M,N) Orderτ E1(M,N) Orderτ E1(M,N) Orderτ
4 1.2885e-02 ∗ 4.7702e-03 ∗ 4.7959e-03 ∗
8 1.1231e-02 0.66 1.5632e-03 1.85 1.4205e-03 1.76
16 9.2424e-03 0.28 4.2372e-04 1.88 4.0423e-04 1.81
32 6.9173e-03 0.42 1.0616e-04 2.00 1.0064e-04 2.01

Theoretical Order 0.505 2.00 2.00

Table 6: Numerical accuracy in temporal direction of scheme (4.3)–(4.4) for Example 5.2, where
α = 1.1.

γ = 1 γopt = 4/α ≈ 3.64 γ = 4.5/α ≈ 4.09
N E1(M,N) Orderτ E1(M,N) Orderτ E1(M,N) Orderτ
4 2.4901e-02 ∗ 1.6750e-02 ∗ 2.0056e-02 ∗
8 1.5761e-02 0.66 4.6593e-03 1.85 5.7785e-03 1.80
16 1.0245e-02 0.62 1.2195e-03 1.93 1.5306e-03 1.92
32 6.3732e-03 0.68 3.0860e-04 1.98 3.9009e-04 1.97

Theoretical Order 0.55 2.00 2.00
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Table 7: Numerical accuracy in temporal direction of scheme (4.3)–(4.4) for Example 5.2, where
α = 1.5.

γ = 1 γopt = 4/α ≈ 2.67 γ = 4.5/α = 3
N E1(M,N) Orderτ E1(M,N) Orderτ E1(M,N) Orderτ
4 5.3444e-02 ∗ 7.8413e-02 ∗ 9.6727e-02 ∗
8 1.7243e-02 1.63 2.0766e-02 1.92 2.5910e-02 1.90
16 6.1521e-03 1.49 5.3057e-03 1.97 6.6772e-03 1.96
32 2.3596e-03 1.38 1.3373e-03 1.99 1.6881e-03 1.98

Theoretical Order 0.75 2.00 2.00

Table 8: Numerical accuracy in temporal direction of scheme (4.3)–(4.4) for Example 5.2, where
α = 1.9.

γ = 1 γopt = 4/α ≈ 2.11 γ = 4.5/α ≈ 2.37
N E1(M,N) Orderτ E1(M,N) Orderτ E1(M,N) Orderτ
4 6.1480e-02 ∗ 1.3149e-01 ∗ 1.6643e-01 ∗
8 1.6140e-02 1.93 3.0479e-02 2.11 3.8947e-02 2.10
16 4.1813e-03 1.95 7.8883e-03 1.95 9.9179e-03 1.97
32 1.1127e-03 1.91 2.0132e-03 1.97 2.5274e-03 1.97

Theoretical Order 0.95 2.00 2.00

Table 9: Numerical accuracy in spatial direction of scheme (4.3)–(4.4) for Example 5.2, where
α = 1.5.

γ = 1 γopt = 4/α ≈ 2.67 γ = 4.5/α = 3
M E1(M,N) Orderh E1(M,N) Orderh E1(M,N) Orderh
4 2.4719e-01 ∗ 2.4718e-01 ∗ 2.4718e-01 ∗
8 6.1357e-02 2.01 6.1352e-02 2.01 6.1349e-02 2.01
16 1.5313e-02 2.00 1.5309e-02 2.00 1.5306e-02 2.00
32 3.8262e-03 2.00 3.8214e-03 2.00 3.8190e-03 2.00

Theoretical Order 2.00 2.00 2.00

6 Conclusion

We introduced a novel and concise technique to study numerical methods on nonuniform time
partitions for solving time fractional evolution equations (including the sub-diffusion and diffusion-
wave equations) with general time-space dependent variable coefficients. The proposed numerical
schemes utilized the Alikhanov formula on nonuniform meshes. Under reasonable assumptions
on the solution regularity, the variable coefficients, and weak mesh restrictions, we showed that
the nonuniform schemes are unconditionally stable and second-order convergent with respect to
discrete H1-norm. The efficiency and accuracy of proposed schemes are well verified by some
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numerical experiments.

7 Appendix

7.1 The coefficients of Alikhanov formulas

The coefficients A
(n)
n−k of the Alikhanov formula on general meshes are defined as ( [15])

A
(n)
n−k :=











a
(n)
0 + ρn−1b

(n)
1 , k = n,

a
(n)
n−k + ρk−1b

(n)
n−k+1 − b

(n)
n−k, 2 ≤ k ≤ n− 1,

a
(n)
n−1 − b

(n)
n−1, k = 1,

for n ≥ 2,

where

a
(n)
n−k :=

1

τk

∫ min{tk ,tn−θ}

tk−1

ω1−β(tn−θ − s) ds, 1 ≤ k ≤ n,

b
(n)
n−k :=

2

τk(τk + τk+1)

∫ tk

tk−1

ω1−β(tn−θ − s)(s − tk− 1

2

) ds, 1 ≤ k ≤ n− 1,

with ρk := τk/τk+1 being the local time step-size ratios. It has been proved in [14, 15] that the
discrete coefficients of the nonuniform Alikhanov formula (with πA = 11/4 and ρ = 7/4, where
ρ := maxk{ρk} is the maximum step-size ratio) satisfy two basic properties:

A1. The discrete kernels are positive and monotone: A
(n)
0 ≥ A

(n)
1 ≥ · · · ≥ A

(n)
n−1 > 0;

A2. The discrete kernels fulfill A
(n)
n−k ≥ 1

πA

∫ tk
tk−1

ω1−β(tn−s)
τk

ds for 1 ≤ k ≤ n ≤ N .

7.2 The proof of (2.1)

We will go through the proof of [14, Lemma A.1] to show that

2(zn)TQ(n)(Dβ
τ z)

n−θ ≥
n
∑

k=1

A
(n)
n−k∇τ [(z

k)TQ(n)zk] +
((Dβ

τ z)n−θ)TQ(n)(Dβ
τ z)n−θ

A
(n)
0

, (7.1)

2(zn−1)TQ(n)(Dβ
τ z)

n−θ ≥

n
∑

k=1

A
(n)
n−k∇τ [(z

k)TQ(n)zk]−
((Dβ

τ z)n−θ)TQ(n)(Dβ
τ z)n−θ

A
(n)
0 −A

(n)
1

, (7.2)

for 1 ≤ n ≤ N and A
(1)
1 := 0.

For fix n, denote

Jn := 2(zn)TQ(n)(Dβ
τ z)

n−θ −
n
∑

k=1

A
(n)
n−k∇τ [(z

k)TQ(n)zk].
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Then

Jn =
n
∑

k=1

A
(n)
n−k

[

2(zn)TQ(n)(zk − zk−1)− (zk + zk−1)TQ(n)(zk − zk−1)
]

=
n
∑

k=1

A
(n)
n−k

[

(

2zn − (zk + zk−1)
)T

Q(n)(zk − zk−1)

]

=
n
∑

k=1

A
(n)
n−k(z

k − zk−1)TQ(n)(zk − zk−1) + 2
n
∑

k=1

A
(n)
n−k

n
∑

j=k+1

(zj − zj−1)TQ(n)(zk − zk−1)

=

n
∑

k=1

A
(n)
n−k(z

k − zk−1)TQ(n)(zk − zk−1) + 2

n
∑

j=2

j−1
∑

k=1

A
(n)
n−k(z

j − zj−1)TQ(n)(zk − zk−1).

where the identity 2zn − (zk + zk−1) = zk − zk−1 + 2
∑n

j=k+1(z
j − zj−1) has been employed in

the third equality.

Next, introduce the quantities

wj :=

j
∑

k=1

A
(n)
n−k(z

k − zk−1) and Bj :=
1

A
(n)
n−j

for 1 ≤ j ≤ n.

It holds that zj − zj−1 = Bj(w
j −wj−1) for 2 ≤ j ≤ n, and B1 ≥ B2 ≥ · · · ≥ Bn (according to

the monotone property in A1). Then

Jn =B1(w
1)TQ(n)w1 +

n
∑

j=2

Bj(w
j −wj−1)TQ(n)(wj −wj−1) + 2

n
∑

j=2

Bj(w
j −wj−1)TQ(n)wj−1

=B1(w
1)TQ(n)w1 +

n
∑

j=2

Bj

[

(wj)TQ(n)wj − (wj−1)TQ(n)wj−1
]

=Bn(w
n)TQ(n)wn +

n−1
∑

j=1

(Bj −Bj+1)(w
j)TQ(n)wj

≥Bn(w
n)TQ(n)wn,

because Q(n) is a positive definite matrix. Hence, the inequality (7.1) is valid since wn =

(Dβ
τ z)n−θ and Bn = 1/A

(n)
0 . Similarly, it is easy to trace the remaining parts of [14, Lemma A.1]

to check inequality (7.2).

According to [14, Lemma 4.1] and [15, Corollary 2.3], with the maximum time-step ratio
ρ = 7/4, we have

1− θ

A
(n)
0

−
θ

A
(n)
0 −A

(n)
1

≥ 0,

which further leads to (2.1) by a simple combination of (7.1) and (7.2).
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7.3 Truncation error analysis

The truncation errors in (3.19) and (4.16) are given by

Tu(xh, tn−θ) := Dα
t u(xh, tn−θ)− (Dα

τ u(xh, ·))
n−θ ,

TA(xh, tn−θ) := An−θ
h {u(xh, tn−θ)− [(1− θ)u(xh, tn) + θu(xh, tn−1)]} ,

Tũ(xh, tn−θ) := Dβ
t ũ(xh, tn−θ)−

(

Dβ
τ ũ(xh, ·)

)n−θ
,

Tv(xh, tn−θ) := Dβ
t v(xh, tn−θ)−

(

Dβ
τ v(xh, ·)

)n−θ
,

S(xh, tn−θ) := (Au)(xh, tn−θ)−An−θ
h u(xh, tn−θ),

for xh ∈ Ωh and 1 ≤ n ≤ N .
We first study the spatial error S(xh, tn−θ). By the Taylor expansion (see also [27, eq. (31)]),

we can take a continuous function ξn(x) such that

ξn(xh) = [∂x(p1∂xu) + ∂y(p1∂yu)] (xh, tn−θ)−
{

δx[(p1)
n−θ
h δx] + δy[(p1)

n−θ
h δy]

}

u(xh, tn−θ),

where xh ∈ Ωh and 1 ≤ n ≤ N , and |ξn(xh)| ≤ C(h2x + h2y) provided that ‖u‖H4 ≤ C and
pk(x, ·) ∈ C3(Ω) for k = 1, 2.

Similarly, there is a continuous function ηn(x) such that

ηn(xh) = (p3∂xu+ p4∂yu)] (xh, tn−θ)−
[

(p1)
n−θ
h δx̂ + (p4)

n−θ
h δy

]

u(xh, tn−θ),

where xh ∈ Ωh and 1 ≤ n ≤ N , and |ηn(xh)| ≤ C(h2x+h
2
y) provided ‖u‖H3 ≤ C and |pk(x, ·)| ≤ C

for k = 3, 4.
Hence, based on V2 and the regularity assumption (1.7), we have

|S(xh, tn−θ)| = O(h2x + h2y). (7.3)

By the Taylor expansion with integral remainder, we further get that

δxξ
n(xi+ 1

2

, yj) =
1

2

∫ 1

0

[

ξnx

(

xi+ 1

2

+
hx
2
s, yj

)

+ ξnx

(

xi+ 1

2

−
hx
2
s, yj

)]

(1− s) ds,

for 0 ≤ i ≤Mx, 1 ≤ j ≤My − 1, and

δyξ
n(xi, yj+ 1

2

) =
1

2

∫ 1

0

[

ξny

(

xi, yj+ 1

2

+
hy
2
s

)

+ ξny

(

xi, yj+ 1

2

−
hy
2
s

)]

(1− s) ds,

for 1 ≤ i ≤Mx−1, 0 ≤ j ≤My. Similar formulations work for δxη
n(xi+ 1

2

, yj) and δyη
n(xi, yj+ 1

2

).

Thus, under the assumptions in V2 and (1.7), it is easy to know that

‖∇hS(xh, tn−θ)‖ ≤ C(h2x + h2y), xh ∈ Ωh, 1 ≤ n ≤ N. (7.4)

For the temporal truncation errors, according to [20, Lemma 6.1], we have

n
∑

j=1

P
(n)
n−j‖(TA)

n−θ‖ ≤ Cτmin{2,γσ}. (7.5)
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Referring to [20, eqs. (6.5), (6.6) and (6.8)], similar to the estimation of ‖∇hS(xh, tn−θ)‖, we
have

n
∑

j=1

P
(n)
n−j‖∇h(TA)

n−θ‖ ≤ Cτmin{2,γσ}, (7.6)

n
∑

j=1

P
(n)
n−j‖∇h(Tu)

n−θ‖ ≤ Cτmin{3−β,γσ1}, (7.7)

n
∑

j=1

P
(n)
n−j‖∇h(Tũ)

n−θ‖ ≤ Cτmin{3−β,γσ2}, (7.8)

n
∑

j=1

P
(n)
n−j‖(Tv1)

n−θ‖ ≤ Cτmin{3−β,γσ3}, (7.9)

n
∑

j=1

P
(n)
n−j‖∇h(Tv2)

n−θ‖ ≤ Cτmin{2,γσ3}, (7.10)

for 1 ≤ n ≤ N , provided that assumptions in V2 and (1.8)–(1.9) are valid.
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