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Abstract

In this work we present an extension of the Virtual Element Method with curved
edges for the numerical approximation of the second order wave equation in a bidimen-
sional setting. Curved elements are used to describe the domain boundary, as well as
internal interfaces corresponding to the change of some mechanical parameters. As oppo-
site to the classic and isoparametric Finite Element approaches, where the geometry of the
domain is approximated respectively by piecewise straight lines and by higher order poly-
nomial maps, in the proposed method the geometry is exactly represented, thus ensuring
a highly accurate numerical solution. Indeed, if in the former approach the geometrical
error might deteriorate the quality of the numerical solution, in the latter approach the
curved interfaces/boundaries are approximated exactly guaranteeing the expected order of
convergence for the numerical scheme. Theoretical results and numerical findings confirm
the validity of the proposed approach.

Mathematics Subject Classification : 65M12,65M60.
Keywords : Virtual element method, wave equation, curved elements, polygonal grids.

1 Introduction

In this paper we present an application of the Virtual Element Method (VEM) with curved
faces for the numerical solution of wave propagation problems. Acoustics waves arise in many
different scientific disciplines such as medical ultrasound, musical acoustics, vibro- and aero-
acoustics, electromagnetics, geophysical exploration and seismology. From a computational
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point of view these problems present several challenges that reflect in the characteristics
required by the underlying numerical schemes such as geometrical flexibility, high-accuracy
and scalability. Geometrical flexibility is important in order to have an optimal representation
of the real geometry of the physical problem and high-accuracy results without numerical
artefacts, e.g., dispersion and dissipation errors, due to an improper model discretization.
Scalable and efficient algorithms are required to solve realistic problems (involving typically
milions of unknowns) and provide rapid feedback on the system status.

The scientific and technological progress involving the development of high-performance
computing machines has made it possible to simulate, with increasing accuracy, wave prop-
agation phenomena for problems of a very complex nature. Nowadays, in computational
acoustics, the most widely employed numerical techniques include the Spectral Element (SE)
[53, 41, 56, 49], the discontinuous Galerkin (dG) [52, 47, 14, 54, 51] and the Finite Vol-
umes (FV) [48, 55] schemes, typically built over unstructired grids composed by tetrahe-
dral/hexahedral elements in three dimensions. Although commercial software allows for the
generation of computational grids with complex domain geometry, this step can still represent
a serious bottleneck for the entire simulation process. For this reason, the use of general polyg-
onal and polyhedral meshes is desirable. Indeed, it is evident that with polytopal elements
one can easily account for small features in the model (such as cracks, holes and inclusions),
and handle in an automatic way hanging nodes, movable meshes and adaptivity.

In the last decade, the development and analysis of numerical methods that support
computational meshes composed of polytopic elements have received a lot of attention from
the scientific community as testified by the progress of the Mimetic Finite Difference (MFD)
method [33, 32, 22, 3, 8] and the Virtual Element Method (VEM) [17, 25, 6, 11, 26, 7,
21, 18, 24, 23]. in the conforming setting or by the Discontinuous Galerkin (DG) methods
[9, 13, 10, 4, 5, 35],the Hybrid High-Order (HHO) method [42, 1, 29, 28, 38, 43], the Gradient
Schemes [44] and the non-confroming VEM [12, 16, 37], in the non-conforming setting.

With few exceptions, e.g., [32, 28, 24, 27, 20, 15, 34], those methods make use of polygonal
and polyhedral meshes with straight edges and faces that, especially for high-order methods,
can deteriorate the accuracy of the solution in the case of curved boundaries or interfaces.
Indeed, as it is known from the FEM literature, the approximation of the domain geometry
with planar facets introduces an error that can dominate the analysis. A better description of
the domain of interest can be obtained through high-order polynomial maps and isoparametric
FEM, while the exact representation of computational (CAD) domains is possible thanks to
the Iso-Geometric Analysis (IGA). Indeed, in the latter, the same spline maps are employed
for the parametrization of the geometry and the problem solution [39]. As it is shown by
the seminal paper [24] and in [40] for the Darcy problem, through the VEM technology it
is possible to define discrete space also on curved elements in such a way that the domain
geometry is defined exactly. Indeed, by exploiting the peculiar construction of the VEM, one
can avoid not only the approximation (even with polynomial functions) of the domain but
also the positioning of the isoparametric nodes [50]. Moreover, only the local parametrization
of the cells boundary is needed as opposite to the IGA where also the internal elemental
volume has to be considered. On the other side, since the construction of the VEM space in
directly made on the physical mesh elements, the application of the VEM on curved geometry
is computationally more expensive with respect to isoparametric FEM of IGA.

In this work, we apply the VEM with curved elements for the simulation of the acoustic
wave propagation problem. The formulation is obtained starting from the seminal paper [24].
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To the best of the authors’ knowledge this is the first time that such an approach is applied
to the second order wave equation.

The rest of the paper is organized as follows. Section 2 defines the model setup, the main
assumptions on the curved domains and the VEM discretization. In Section 3 we derive the
theoretical analysis of the method. In Section 4 we present some verification tests assessing the
accuracy of the method and some applications of the proposed method to realistic scenarios.
Finally, we draw our conclusions in Section 5.

Notation. Given a domain A ⊂ R2, we consider the space L2(A) to be the classical space
of functions which are squared measurable L2(A) = {v :

∫
A |v|

2 < +∞}. Its associated scalar
product and induced norm are given by: (·, ·)A : L2(A)× L2(A)→ R and ‖ · ‖A : L2(A)→ R
and defined as (p, v)A =

∫
A pv and ‖p‖A =

√
(p, p)A. In the case of L2-vector valued functions

the extension is trivial and we indicate with [L2(A)]2 such space.
We consider also the Sobolev space H1(A) = {v ∈ L2(A) : ∇v ∈ [L2(A)]2} with semi-

norm | · |H1(A) : H1(A) × H1(A) → R and norm ‖ · ‖H1(A) : H1(A) × H1(A) → R given by

|p|H1(A) = ‖∇p‖A and ‖p‖H1(A) =
√
‖p‖2A + |p|2

H1(A)
. We indicate with H1

Υ(A) the subspace

of H1(A) such that the functions are null on Υ ⊂ ∂A.
Since we are dealing with a time dependent problem, we will also consider the following

Bochner spaces. By considering a scalar T > 0, an integer 1 ≤ p <∞, and a generic functional
space X, we denote by Lp((0, T ];X) as the space of function v : (0, T ) → X such that v is

measurable and
∫ T

0 ‖v(t)‖pXdt < +∞. The spaces Cn((0, T ];X) with 0 ≤ n ≤ ∞ are defined
in a similar way. The time derivative will be indicated with a dot, i.e., we exploit the following
notation ṗ = ∂p

∂t .

2 Model problem and its Virtual Element Discretization

Let Ω ⊂ R2 be an open bounded domain with regular boundary Γ having outward pointing
unit normal n, and set T > 0. The mathematical model of acoustic wave propagation can be
formulated in the following problem.

Problem 2.1 (Wave problem - strong formulation). Find p : Ω× (0, T ]→ R such that:

ρp̈−∇ · (µ∇p) = f in Ω× (0, T ],

p = 0 on ΓD × (0, T ],

µ∇p · n = 0 on ΓN × (0, T ],

µ∇p · n+ ρṗ = 0 on ΓA × (0, T ],

(p, ṗ) = (p0, p1) in Ω× {0},

where ρ and µ are two positive uniformly bounded functions, representing the mass density
and the viscosity of the medium, respectively.

We assume the boundary Γ to be Lipschitz and to be decomposed into non-overlapping
sufficiently smooth curves ΓD, ΓN and ΓA such that Γ = ΓD ∪ ΓN ∪ ΓA. On ΓD (soft sound
boundary) the pressure field is set equal to zero, on ΓN (sound hard boundary) a rigid wall
condition is imposed and on ΓA (absorbing boundary) a non-reflecting condition is considered.
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To derive the weak formulation, we set V = H1
ΓD

(Ω) and we introduce the following
bilinear forms

m : V × V → R m(p, v) = (ρp, v)Ω ∀u, v ∈ V
a : V × V → R a(p, v) = (µ∇p,∇v)Ω ∀p, v ∈ V
c : V × V → R c(p, v) = (ρp, v)ΓA

∀p, v ∈ V
, (1)

and the linear functional F : V → R as F (v) = (f, v)Ω for any v ∈ V .

Problem 2.2 (Wave problem - weak formulation). The weak formulation of Problem 2.1 is:
for any time t ∈ (0, T ] find p = p(t) ∈ V such that

m(p̈, v) + c(ṗ, v) + a(p, v) = F (v) ∀v ∈ H1
ΓD

(Ω),

(p(0), ṗ(0)) = (p0, p1),

By using standard arguments, cf. [45, 46], it can be proved that if (p0, p1) ∈ V × L2(Ω)
and f ∈ L2((0, T ];L2(Ω)), then Problem 2.2 admits a unique solution p ∈ C0((0, T ];V ) ∩
C1((0, T ];L2(Ω)).

2.1 Virtual Element Discretization on curved edges

In this part we present how to approximate, with the Virtual Element Method, Problem (2.2).
The main difference from a classical VEM formulation is the presence of curved interfaces.
For this reason we consider the approach first introduced in [24] and then extended in [40] for
scalar problems in mixed form.

Following [24], we consider a sequence of computational tessellation Ωh of the domain of
interest Ω into general polygons (having possibly curved interfaces) indicated with E ∈ Ωh.
Clearly for E,E′ ∈ Ωh such that E 6= E′ we have E ∩ E′ = ∅ and Ωh = ∪E∈Ωh

E. We let

hE = diameter(E), h = sup
E∈Ωh

hE ,

and suppose that for all h, each element E ∈ Ωh fulfils the following assumptions:

(A1) E is star shaped with respect ta a ball BE of radius ≥ %hE ,

(A2) the length of any (possibly curved) edge of E is ≥ %hE ,

where % is a positive constant. An element E has boundary ∂E represented by a finite number
of edges e ∈ ∂E. The set of edges of a tesselation Ωh is indicated with Eh.

We assume that:

(A3) each curve Γi, for i = A,D,N , composing the boundary Γ is of class Cm+1, with m ≥ 0,
such that it exists, for each of them, an invertible and regular map γi : [ai, bi]→ Γi with
ai, bi ∈ R.

Additional internal curved interfaces Γi, for i = 1, ..., n (cf. Figure 1) representing a sharp
variation in the mechanical parameters, i.e., µ and ρ, verify assumption A3. For simplicity,
in the following, we assume that ρ and µ in Problem 2.1 are piecewise constants with respect
to the decomposition Ωh.
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Figure 1: On the left an example of a domain Ω with an internal interface Γ0 and with a
portion of the boundary curved Γ1. On the right, the direct and inverse mapping between a
curved edge e and the reference interval e.

In the case of a single curved boundary/interface, to ease the presentation we will drop
the subscript i. At the grid level, elements facing Γi have curved edges. See Figure 1 as an
example. In this case, and with an abuse in notation, we still make use of the mapping γi and
extend it also for the straight case. For a curved edge e, we have γi : e→ e where e = [0, he]
is a rectified reference segment, while for a non curved edge e, γi : e→ e is an affine map.

The proper characterization of the virtual element space goes along the following steps:
(i) the introduction of the local virtual element space; (ii) the selection of a number of degrees
of freedom that uniquely characterizes the virtual element functions of the local space; (iii)
the definition of projectors onto subspaces of polynomials that are computable by the degrees
of freedom.

Polynomial approximation spaces. For any integer n ≥ −1 and any element E ∈ Ωh,
we define Pn(E) to be the set of polynomials on E of degree less or equal to n. In the case
n = −1 we set P−1(E) = {0}. Moreover, we introduce the global polynomial space as

Pn(Ωh) = {v ∈ L2(Ωh) : v|E ∈ Pn(E)∀E ∈ Ωh}.

Identifying with xE and hE the centre and the diameter of the element E, respectively, we
introduce the space of normalized monomials as

Mn(E) =

{
m ∈ L2(E) : m(x) =

(
x− xE
hE

)β

for |β| ≤ n

}
.

The space Mn(E) forms a basis for Pn(E). For the edges of the grid, we introduce approx-
imation spaces that consider the curved geometry. For a reference (rectified) segment e, we
introduce the monomial set

Mn(e) =

{
m ∈ L2(e) : m(x) =

(
x− xe
he

)β
for β ≤ n

}
,

with xe the midpoint of e and he = |e| its size. Next, we define the mapped polynomial spaces
on the edges in Eh, given by

P̃n(e) = {ṽ = v ◦ γ−1 : v ∈ Pn(e)} and M̃n(e) = {m̃ = m ◦ γ−1 : m ∈Mn(e)},

where γ represents the local map of the edge e to e as discussed before.
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Projection operators. As a second step we introduce in this part the projection operators
that are useful for the actual computation of the virtual element formulation given in the
sequel. We firstly consider the projector Π∇n : H1(E)→ Pn(E) defined as

(∇Π∇n v,∇qn)E = (∇v,∇qn)E ∀ qn ∈ Pn(E) and ∀ v ∈ H1(E),

(Π∇n v, 1)∂E = (v, 1)∂E ∀ v ∈ H1(E),
(2)

and secondly the L2 projection operator Π0
n : L2(E)→ Pn(E) which is given by

(Π0
nv, qn)E = (v, qn)E ∀ qn ∈ Pn(E) and ∀ v ∈ L2(E). (3)

Finally, we introduce the L2 projection operator of vector valued functions defined as Π0
n :

[L2(E)]2 → [Pn(E)]2 and given by

(Π0
nv, qn)E = (v, qn)E ∀v ∈ [L2(E)]2 and ∀ qn ∈ [Pn(E)]2, (4)

which will be employed to approximate the gradient of v.

Approximation spaces and degrees of freedom. Let k ≥ 1 be the polynomial order
of the method. By following the approach derived in [24] for elliptic problems, we select the
following enhanced local virtual element space defined as

Vk(E) = {v ∈ H1(E) : v ∈ C(∂E), ∆v ∈ Pk(E), v ∈ P̃k(e) ∀e ∈ ∂E,
(Π∇k v − v, q) = 0∀q ∈ Pk(E) \ Pk−2(E)}.

(5)

We remark that, if E is an element with only straight edges, then (5) is equivalent to the
enhanced VEM space as in [2, 19]. In general, the space Vk(E) does not give a closed form
for computing its shape functions.

We here summarize the main properties of the space Vk(E) (we refer to [24, 2] for a deeper
analysis).

(P1) Polynomial inclusion: P0(E) ⊆ Vk(E) but in general Pk(E) * Vk(E).

(P2) Degrees of freedom: the following linear operators constitute a set of DoFs for Vk(E):
for any v ∈ Vk(E) we consider

– the value of v at the vertices of E;

– the values of v mapped through γ at the k−1 internal points of the Gauss-Lobatto
quadrature rule with k + 1 points;

– the internal scaled moments of v, up to order k−2, given by |E|−1(v,mi)E for any
mi ∈Mk−2(E).

(P3) Polynomial projections: the DoFs allow us to compute the following linear operators:

Π∇k : Vk(E)→ Pk(E), Π0
k : Vk(E)→ Pk, Π0

k−1 : ∇Vk(E)→ [Pk−1(E)]2 .

The global virtual element space is obtained by gluing such local spaces, i.e.

Vk(Ωh) = {v ∈ V s.t. v ∈ Vk(E) for any E ∈ Ωh} (6)

with the associated set of degrees of freedom.
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The Virtual Element formulation. We introduce in this part the discrete weak for-
mulation of (2.2), by using the projection operators and the functional spaces previously
given. Given an element E, by considering the trial and test functions in the space Vk(E)
both forms m(·, ·) and a(·, ·) in (1) are not computable. We denote with a superscript E
the previously introduced forms restricted to the element E and, recalling property (P1),
by Vk(E) = Vk(E) + Pk(E). By following the standard procedure for the Virtual Element
Method [17], we write

mE(p, v) = (ρΠ0
kp,Π

0
kv)E + (ρT 0

k p, T
0
k v)E ≈ mE

k (p, v) = (ρΠ0
kp,Π

0
kv)E + ρh2

Es
E(T 0

k p, T
0
k v)E ,

with T 0
k = I−Π0

k. The bilinear form mE
k : Vk(E)×Vk(E)→ R is then an approximation of the

local form mE composed by two computable parts: the consistency and the stabilization term,
respectively. The stabilization term can be any bilinear form that satifies specific properties,
see, e.g., [17], in this paper we use sE : Vk(E)× Vk(E)→ R defined as

sE(p, v) =

]dof∑
i=1

dofi(p)dofi(v) ∀p, v ∈ Vk(E),

where dofi is the value of the i-th degree of freedom of the argument and ]dof is the total
number of degrees of freedom associated to Vk(E). Starting from the computability of Π0

k

and sE (cf. property (P3)) the bilinear form mE(·, ·) is computable.
We follow the same approach for the form aE(·, ·), by considering the decomposition

aE(p, v) = (µ∇p,∇v)E = (µΠ0
k−1∇p,Π0

k−1∇v)E + (µT 0
k−1∇p,T 0

k−1∇v)E ,

with T 0
k−1 = I−Π0

k−1. The form aE(·, ·) is not computable since it contains virtual functions.

To have a computable form we introduce the stabilization form sE before but scaled by a
representative value of µ in E. Finally, we obtain

aE(p, v) ≈ aEk (p, v) = (µΠ0
k−1∇p,Π0

k−1∇v)E + µ sE(T∇k p, T
∇
k v) (7)

where T∇k = (I −Π∇k ) and aEk : Vk(E)× Vk(E)→ R.
Before stating the discrete weak form of Problem 2.2, we note that:

- Dirichlet boundary data are projected into the space P̃k and imposed in a strong way
(point-wisely);

- the initial conditions are approximated by considering the interpolation ((p0)I , (p1)I) of
(p0, p1);

- the global bilinear forms mk : Vk(Ωh) × Vk(Ωh) → R and ak : Vk(Ωh) × Vk(Ωh) → R
are given by

mk(p, v) =
∑
E∈Ωh

mE
k (p, v) and ak(p, v) =

∑
E∈Ωh

aEk (p, v) ∀p, v ∈ Vk(Ωh),

where Vk(Ωh) = Vk(Ωh) +
∏
E∈Ωh

Pk(E);

7



- the discrete functional Fk(v) : Vk(Ωh)→ R is given from the local projection

Fk(v) =
∑
E∈Ωh

(f,Π0
kv)E ∀v ∈ Vk(Ωh);

- the bilinear form c is computable because a function v ∈ Vk(Ωh) resctricted to ΓA is a
mapped polynomial in P̃k(e).

The discretized problem can be written as in the following.

Problem 2.3 (Wave problem - Virtual Element formulation). The Virtual Element formu-
lation of Problem 2.2 is: for any time t ∈ (0, T ] find ph = p(t) ∈ Vk(Ωh) such that

mk(p̈h, vh) + c(ṗh, vh) + ak(ph, vh) = Fk(vh) ∀vh ∈ Vk(Ωh),

(ph(0), ṗh(0)) = ((p0)I , (p1)I).

Algebraic formulation. We start by introducing the matrices associated to Problem 2.3.
We indicate with ϕ an element of the basis of Vk(Ωh) and set

M ∈ Rn×n [M ]ij = mk(ϕj , ϕi), C ∈ Rn×n [C]ij = c(ϕj , ϕi),

A ∈ Rn×n [A]ij = ak(ϕj , ϕi), f ∈ Rn [f ]i = Fk(ϕi),

where n = dimVk(Ωh) and [·]ij denotes the entry at row i and column j of the matrix in the
square brackets, likewise for a vector. Now, we can formulate the following problem.

Problem 2.4 (Wave problem - Semi-discrete formulation). The semi-discrete fomulation of
Problem 2.3 is the following: for any time t ∈ (0, T ] find p = p(t) ∈ Rn such that

M p̈(t) + Cṗ(t) +Ap(t) = f(t) t ∈ (0, T ],

(p(0), ṗ(0)) = (p0,p1),
.

having set p0 = (p0)I and p1 = (p1)I .

Remark 2.1. In the following section we present the stability and convergence analysis for
Problem 2.3 since we are more interested in the properties of spatial discretization. The
analysis of the problem discretized both in space and time is beyond the scope of the paper.
The latter can be obtained by combining the following results with classical convergence results
for finite difference discretizations for Cauchy problems.

3 Theoretical analysis

In this section we prove the stability and the convergence of the semi-discrete virtual element
approximation in the energy norm (17). The stability of the discrete solution is showed in
Theorems 3.5, whereas the a priori error estimates of the approximation error are derived in
Theorem 3.9. We start by recalling two important Lemmas.
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Lemma 3.1. [24, Lemma 3.10] Let E ∈ Ωh. Under the asssumptions A1–A3 and for any
ε ∈ (0, 1/2) the following inequality holds

sE(p, p) ≤ Ch−2
E ‖p‖

2
0,E + Ch2ε

E |p|21+ε,E for all p ∈ Vk(E), (8)

where the constant C depends on k, ε, the shape regularity constant % and the map γ.

Lemma 3.2. [24, Lemma 3.12] Let E ∈ Ωh. Under the asssumptions A1–A3 the following
inequality holds

sE(p, p) ≥ C|p|21,E for all p ∈ Vk(E), (9)

where the constant C depends on k and the shape regularity constant %. Moreover it holds

h2
Es

E(p, p) ≥ C‖p‖20,E for all p ∈ Vk(E). (10)

Next, we introduce the following results for the discrete bilinear forms mE
k (·, ·) and aEk (·, ·).

Proposition 3.3. (k-consistency).For all p ∈ Vk(E) and for all qk ∈ Pk(E) it holds

mE
k (p, qk) = mE(p, qk) . (11)

(Stability). For any ε ∈ (0, 1/2) there exist two uniform positive constants µ∗, µ
∗, such that

for any element E ∈ Ωh it holds that

mE
k (p, p) ≥ µ∗mE(p, p), (12)

mE
k (p+ qk, p+ qk) ≤ µ∗

(
‖p+ qk‖20,E + ‖(I −Π0

k)p‖20,E + h2ε+2|(I −Π0
k)p|21+ε,E

)
, (13)

for all p ∈ Vk(E) and qk ∈ Pk(E).

Proof. Property (11) follows from the definition of the bilienar form mE
k (·, ·). To prove in-

equality (12), recalling that sE(Π0
kp, ·) = 0, we use Lemma 3.2 and simple algebra to get

mE(p, p) . h2
EsE(p, p) . h2

EsE(Π0
kp,Π

0
kp) + h2

EsE(T 0
k p, T

0
k p).

Then, by employing Lemma 3.1 to the first term of the right-hand side we have

mE(p, p) . ‖Π0
kp‖20,E + h2ε+2

E |Π0
kp|21+ε,E + h2

EsE(T 0
k p, T

0
k p).

Finally, a standard polynomial inverse estimate on star-shaped domains yields

h2ε+2
E |Π0

kp|21+ε,E . h2
E |Π0

kp|21,E . ‖Π0
kp‖20,E .

The thesis follows by noting that mE
k (Π0

kp,Π
0
kp) = ‖Π0

kp‖20,E + h2
EsE(T 0

k p, T
0
k p).

Concerning inequality (13), we first observe that (I − Π0
k)qk = 0 for any qk ∈ Pk(E),

yielding

mE
k (p+ qk, p+ qk) = ‖Π0

k(p+ qk)‖20,E + h2
EsE(T 0

k p, T
0
k p).

Next, by applying Lemma 3.1 to the above inequality and using the continuity of Π0
k with

respect to the L2-norm we infer

mE
k (p+ qk, p+ qk) . ‖p+ qk‖20,E + ‖T 0

k p‖20,E + h2ε+2
E |T 0

k p|21+ε,E .

and that concludes the proof.
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Proposition 3.4. (k-consistency). For all p ∈ Vk(E) and for all qk ∈ Pk(E) it holds

aEk (p, qk) = aE(p, qk) . (14)

(Stability). For any ε ∈ (0, 1/2) there exists two uniform positive constants α∗, α
∗, such that

for any element E ∈ Ωh it holds that

aEk (p, p) ≥ α∗ aE(p, p) (15)

aEk (p+ qk, p+ qk) ≤ α∗
(
|p+ qk|21,E + |(I −Π∇0 )p|21,E + h2ε|(I −Π∇0 )p|21+ε,E

)
, (16)

for all p ∈ Vk(E) and q ∈ Pk(E).

Proof. Property (14) follows from the definition of the bilinear form aEk (·, ·). The proofs of
inequalities (15)–(16) can be obtained by following closely the proof of [24, Proposition 3.13]
and by noting that

‖Πk−1
0 ∇p‖20,E = ‖∇p‖20,E − ‖(I −Πk−1

0 )∇p‖20,E ≥ ‖∇p‖20,E − ‖∇(I −Π∇k )p‖20,E = ‖∇Π∇k p‖20,E .

3.1 Stability

We now address the stability analysis for the solution of Problem 2.3. First of all we define
the energy norm

|||p(t)|||2
h

= mk(ṗ, ṗ)(t) + ak(p, p)(t) t ∈ [0, T ], (17)

which is defined for all p ∈ Vk(Ωh). The local stability property of the bilinear forms mk(·, ·)
and ak(·, ·) readily imply the relation

|||p(t)|||2 = ‖ρ1/2ṗ(t)‖20 + |µ1/2p(t)|21 . |||p(t)|||2
h

(18)

for all time-dependent virtual element functions p(t) with square integrable derivative ṗ(t).

Theorem 3.5. Let f ∈ L2((0, T ];L2(Ω)) and let ph ∈ C2((0, T ];Vk(Ωh)) be the solution of
Problem 2.3. Then, it holds

|||ph(t)|||
h
. |||(p0)I |||h +

∫ t

0
||f(τ)||0,Ω dτ. (19)

Proof. We substitute v = ṗh(t) in Problem 2.3 and, for all t ∈ (0, T ], we obtain

mk(p̈h, ṗh) + ak(ph, ṗh) + c(ṗh, ṗh) = Fk(ṗh). (20)

Since both mk(·, ·) and ak(·, ·) are symmetric bilinear forms, a straightforward calculation
yields

1

2

d

dt

(
mk(ṗh, ṗh) + ak(ph, ph)

)
= mk(p̈h, ṗh) + ak(ph, ṗh).
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We substitute this expression in the left-hand side of (20), we observe that c(ṗh, ṗh) ≥ 0,
we integrate in time the resulting equation from 0 to the intermediate time t, and using the
definition of norm ||| · |||

h
in (17), we find that

|||ph(t)|||2
h
. mk(ṗh(t), ṗh(t)) + ak(ph(t), ph(t))

= mk(ṗh(0), ṗh(0)) + ak(ph(0), ph(0)) + 2

∫ t

0
Fk(ṗh(τ))dτ

. |||ph(0)|||2
h

+

∫ t

0
Fk(ṗh(τ))dτ.

Using that (ph(0), ṗh(0)) = ((p0)I , (p1)I), and the Cauchy-Schwarz inequality, we find that

|||ph(t)|||2
h
. |||(p0)I |||2h +

∫ t

0
||f(τ)||0 ‖ṗh(τ)‖0 dτ.

The thesis follows on applying (18) and the Gronwall’s Lemma [31, Lemma A5, p. 157].

3.2 Convergence analysis

The aim of the present subsection is to show the convergence property of the proposed scheme.
We start our analysis recalling a classical approximation result for polynomials on star-shaped
domains, see for instance [30].

Lemma 3.6. Let E ∈ Ωh, and let two real non-negative numbers r, s with r ≤ s ≤ k + 1.
Then for all p ∈ Hs(E), there exists a polynomial function pπ ∈ Pk(E) such that

|p− pπ|r,E ≤ Chs−rE |p|s,E , (21)

‖p− pπ‖0,E ≤ ChsE‖p‖s,E , (22)

with C depending only on the polynomial degree k and the shape regularity constant %.

We now mention the following result concerning the optimal order of accuracy in H1 or
higher order norms for the virtual space Vk (the proof follows combining Theorem 3.7 in [24]
and Theorem 11 in [36]).

Lemma 3.7. Let any real number ε ∈ [0, 1/2) and p ∈ Hs(Ω)∩V , with 1+ε < 3
2 ≤ s ≤ k+1.

Then there exists a virtual element function pI ∈ Vk such that∑
E∈Ωh

|p− pI |1+ε,E ≤ Chs−1−ε
E ‖p‖s, (23)

with C depending on the polynomial degree k, the shape regularity constant % and the parametriza-
tion γ.

We extend the result in the previous lemma by proving that the virtual space on curved
elements Vk has the optimal approximation order also in L2-norm.
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Lemma 3.8. Let p ∈ Hs(Ω) ∩ V , with 3
2 ≤ s ≤ k + 1. Then there exists a virtual element

function pI ∈ Vk such that ∑
E∈Ωh

‖p− pI‖0,E ≤ ChsE‖p‖s, (24)

with C depending on the polynomial degree k, the shape regularity constant % and the parametriza-
tion γ.

Proof. We only sketch the proof since it follows the guidelines of Theorem 3.7 in [24]. We
preliminary observe that the function pI ∈ Vk that realizes (23) can be chosen in such a way
p(z) − pI(z) = 0 for each vertex/edge node z (cf. the fist two items in (P2)). Therefore
employing Lemma 3.2 in [24] it holds that

‖p− pI‖0,e . hs−1/2
e ‖p‖s−1/2,e for any mesh edge e. (25)

For any E ∈ Ωh, from the Poincaré inequality we infer

‖p− pI‖0,E . |
∫
∂E

(p− pI) ds|+ hE |p− pI |1,E . h
1
2
E‖p− pI‖0,∂E + hE |p− pI |1,E .

Then the above equation and (25) imply

‖p− pI‖0,E .
∑
e∈∂E

h
1
2
e ‖p− pI‖0,e + hE |p− pI |1,E

.
∑
e∈∂E

hse‖p‖s− 1
2
,e + hE |p− pI |1,E

. hse‖p‖s,E + hE |p− pI |1,E ,

where in the last step we have use the trace inequality. The proof is completed by summing
over all the mesh element E and using (23).

In the following for the sake of presentation we consider the case ΓA = ∅, i.e., c(·, ·) = 0.
The general case can be obtained in a similar way.

Theorem 3.9. Let s ∈ N and p ∈ C2
(
(0, T ];Hs+1(Ω)

)
, be the exact solution of problem (2.2).

Let ph ∈ Vk be the solution of the semi-discrete problem (2.3). Then, under the mesh regularity
assumptions of A1–A3, for all t ∈ [0, T ], all piecewise polynomials pπ(t) ∈ Pk(Ωh) and all
interpolant functions pI(t) ∈ Vk approximating p(t), it holds

|||p(t)− ph(t)|||2 . sup
τ∈[0,T ]

H2
0(τ) +

∫ t

0
H2

1(τ)dτ, (26)

where

H2
0(τ) = |||p(τ)− pπ(τ)|||2 +mk(ṗI(τ)− ṗπ(τ), ṗI(τ)− ṗπ(τ))

+ ak(pI(τ)− pπ(τ), pI(τ)− pπ(τ)) (27)

H2
1(τ) = |||ṗ(τ)− ṗπ(τ)|||2 +mk(p̈I(τ)− p̈π(τ), p̈I(τ)− p̈π(τ))

+ ak(ṗI(τ)− ṗπ(τ), ṗI(τ)− ṗπ(τ)) +

(
sup

ph∈Vk(Ωh)\{0}

|F (ph)− Fk(ph)|
|ph|1

)2

. (28)
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Proof. We start by observing that from triangle inequality and (18) it holds

|||p(t)− ph(t)|||2 ≤ |||p(t)− pI(t)|||2 + |||pI(t)− ph(t)|||2
h
.

We bound the first term by adding and subtracting pπ, using the definition of the energy
norm (17) and Propostions 3.3 and 3.4 as follows

|||p(t)− pI(t)|||2 ≤ |||p(t)− pπ(t)|||2 + |||pπ(t)− pI(t)|||2h
≤ |||p(t)− pπ(t)|||2 +mk(ṗI(t)− ṗπ(t), ṗI(t)− ṗπ(t))

+ ak(pI(t)− pπ(t), pI(t)− pπ(t)) . (29)

Next, we focus on the term |||pπ(t)− pI(t)|||h and consider the following error equation

m(p̈(t), vh)−mk(p̈h(t), vh) + a(p(t), vh)− a(ph(t), vh) = F (vh)− Fk(vh), (30)

which holds for all vh ∈ Vk. Next, we rewrite this equation as T1 + T2 = T3, with the
definitions:

T1 := m(p̈(t), vh)−mk(p̈h(t), vh),

T2 := a(p(t), vh)− ak(ph(t), vh),

T3 := F (vh)− Fk(vh),

and we dropped out the explicit dependence on t to simplify the notation. We analyze each
term separately. First, we rewrite T1 as

T1 = mk(p̈I − p̈h, vh) +m(p̈− p̈π, vh)−mk(p̈I − p̈π, vh)

by adding and subtracting p̈I and p̈π to the arguments of m(·, ·) and mk(·, ·) and noting that,
from Proposition 3.3 we get m(p̈π, vh) = mk(p̈π, vh) for all vh ∈ Vk(Ωh). We also rewrite T2

as

T2 = ak(pI − ph, vh) + a(p− pπ, vh)− ak(pI − pπ, vh)

by adding and subtracting pI and pπ to the arguments of a(·, ·) and ak(·, ·) and noting that,
from Proposition 3.4 we have a(pπ, vh) = ak(pπ, vh) for all vh ∈ Vk(Ω). Let eh = pI − ph. It
holds that eh(0) = ėh(0) = 0 since p(0) = pI(0) and ṗh(0) = ṗI(0). Then, using the definition
of eh, we reconsider the error equation

T1 + T2 = mk(ëh, vh) + ak(eh, vh) +m(p̈− p̈π, vh)−mk(p̈I − p̈π, vh)

+ a(p− pπ, vh)− ak(pI − pπ, vh) = F (vh)− Fk(vh) = T3. (31)

Assume that vh 6= 0 and consider the inequality:

T3 ≤ |F (vh)− Fk(vh)| ≤ ‖F − Fk‖V∗
k(Ωh) |vh|1, (32)

being V∗k(Ωh) the dual space of V∗k(Ωh) and with

‖F − Fk‖V∗
k(Ωh) = sup

vh∈Vk(Ωh)\{0}

|F (vh)− Fk(vh)|
|vh|1

.
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Note that there hold:

mk(ëh, ėh) + ak(eh, ėh) =
1

2

d

dt

(
mk(ėh, ėh) + ak(eh, eh)

)
, (33)

|F (ėh)− Fk(ėh)| ≤ ‖F − Fk‖V∗
k(Ωh) |||eh||| . (34)

Setting vh = ėh(t) on the left-hand side of (31) and employing (33)-(34) together with (30),
we obtain, after rearranging the terms, that:

1

2

d

dt

(
mk(ėh, ėh) + ak(eh, eh)

)
≤ −m(p̈− p̈π, ėh) +mk(p̈I − p̈π, ėh)

− a(p− pπ, ėh) + ak(pI − pπ, ėh) + ‖F − Fk‖V∗
k(Ωh) |||eh||| . (35)

To ease the notation, we collect together the last two terms above and denote them by
R1(t) (note that they still depend on t). We integrate in time from 0 to t both sides of (35)
and note that the initial term is zero since eh(0) = ėh(0) = 0 getting

|||eh(t)|||2
h
≤ mk

(
ėh(t), ėh(t)) + ak(eh(t), eh(t)

))
≤
∫ t

0

(
R1(τ)−m

(
p̈(τ)− p̈π(τ), ėh(τ)

)
+mk

(
p̈I(τ)− p̈π(τ), ėh(τ)

)
− a
(
p(τ)− pπ(τ), ėh(τ)

)
+ ak

(
pI(τ)− pπ(τ), ėh(τ)

))
dτ. (36)

Then, we integrate by parts the integral that contains a(·, ·) and ak(·, ·), and again use the
fact that e(0) = ėh(0) = 0, to obtain

|||e(t)|||2
h
≤
∫ t

0

(
R1(τ) +

[
−m

(
p̈(τ)− p̈π(τ), ėh(τ)

)
+mk

(
p̈I(τ)− p̈π(τ), ėh(τ)

)]
+
[
a
(
ṗ(τ)− ṗπ(τ), eh(τ)

)
− ak

(
ṗI(τ)− ṗπ(τ), eh(τ)

)])
dτ

+
[
− a
(
p(t)− pπ(t), eh(t)

)
+ ak

(
pI(t)− pπ(t), eh(t)

)]
=

∫ t

0

(
R1(τ) + R2(τ) + R3(τ)

)
dτ + R4(t), (37)

where terms R`, ` = 2, 3, 4, match with the squared parenthesis. We bound term R1 by using
the Young’s inequality and (18)

|R1| ≤ C‖F − Fk‖2V∗
k(Ωh) +

1

2
|||eh|||2h . (38)

To bound R2 we use the continuity of m(·, ·), the tringle inequality for mk(·, ·) and Young’s
inequality:

|R2| ≤ |m(p̈− p̈π, ėh)|+ |mk(p̈I − p̈π, ėh)|

≤ 1

2
||p̈− p̈π||20 +

1

2
||ėh||20 +

1

2
mk(p̈I − p̈π, p̈I − p̈π) +

1

2
mk(ėh, ėh)
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Finally, using (12) to bound ||ėh||20 one can easily get

|R2| . ||p̈− p̈π||20 +mk(p̈I − p̈π, p̈I − p̈π) +mk(ėh, ėh) (39)

Similarly, to bound R3 we use the continuity of a(·, ·), the tringle inequality for ak(·, ·),
Young’s inequality and (15) to bound term |ėh|21 to get

|R3| ≤ |a(ṗ− ṗπ, eh)|+ |ak(ṗI − ṗπ, eh)|

≤ 1

2
|ṗ− ṗπ|21 +

1

2
|eh|21 +

1

2
ak(ṗI − ṗπ, ṗI − ṗπ) +

1

2
ak(eh, eh)

. |ṗ− ṗπ|21 + ak(ṗI − ṗπ, ṗI − ṗπ) + ak(eh, eh). (40)

By prooceeding in the same way for R4 yields to

|R4| ≤ |a(p− pπ, eh)|+ |ak(pI − pπ, eh)|

.
1

2δ
|p− pπ|21 +

δ

2
ak(eh, eh) + ak(pI − pπ, pI − pπ), (41)

for δ > 0. Using bounds (38), (39), (40), and (41) in (37), we find the inequality

|||eh(t)|||2
h
. H̃2

0(t) +

∫ t

0
H2

1(τ) dτ,+

∫ t

0
|||eh(τ)|||2

h
dτ,

where H̃2
0(t) = |p − pπ|21 + ak(pI − pπ, pI − pπ) while H1(t) is reported in (28). Again, an

application of the Gronwall’s Lemma [31, Lemma A5, p. 157] yields

|||eh(t)|||2
h
. H̃2

0(τ) +

∫ t

0
H2

1(τ)dτ,

that combined with (29) concludes the proof.

Corollary 3.10. Under the assumptions of Theorem 3.9, for f ∈ L2((0, T ];Hs−1(Ω)) we
have that

sup
t∈(0,T ]

|||p− ph|||2 . h2s−2

(
h2‖ṗ‖2s + ‖p‖2s +

∫ T

0
h2‖p̈(τ)‖2s + ‖ṗ(τ)‖2s + h2|f(τ)|2s−1 dτ

)
,

(42)

where 3
2 ≤ s ≤ k + 1 and the hidden constant may depend on the model parameters and

approxiamtion constants, the polynomial degree and the final observation time T .

Proof. The proof follows by estimating the terms H2
0 and H2

1 in (27) and (28), respectively.
We start by considering the term |||p− pπ|||2. By applying (21)–(22), it holds

|||p− pπ|||2 . h2s−2
(
h2‖ṗ‖2s + ‖p‖2s

)
. (43)

We now estimate the term mk(ṗI − ṗπ, ṗI − ṗπ) by using the result of Proposition 3.3. In
particular, for all E ∈ Ωh we obtain

mE
k (ṗI − ṗπ, ṗI − ṗπ) . ‖ṗI − ṗπ‖20,E + ‖(I −Π0

k)ṗI‖20,E + h2ε+2|(I −Π0
k)ṗI |21+ε,E

=: T1 + T2 + T3.
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The first term, using triangle inequality together with (24), is estimated as follows

T1 ≤ ‖ṗ− ṗI‖20,E + ‖ṗ− ṗπ‖20,E . h2s‖ṗ‖2s,

Concerning the second term, by the continuity of the Π0
k projection and by using (24) we have

T2 ≤ ‖(I −Π0
k)(ṗ− ṗI)‖20,E + ‖(I −Π0

k)ṗ‖20,E ≤ ‖ṗ− ṗI‖20,E + ‖ṗ‖20,E . h2s‖ṗ‖2s,

Finally the last term is handled using equation (23) and standard polynomial inverse estimates
on star-shaped domains getting

T3 . h2ε+2|ṗI − ṗ|21+ε,E + h2ε+2|(I −Π0
k)ṗ|21+ε,E + h2ε+2|Π0

k(ṗ− ṗI)|21+ε,E

. h2ε+2+2s−2ε−2‖ṗ‖2s + h2s‖ṗ‖2s + ‖ṗ− ṗI‖20,E . h2s‖ṗ‖2s

Collecting all the estimates and summing over all the elements we obtain

mk(ṗI − ṗπ, ṗI − ṗπ) . h2s‖ṗ‖2s. (44)

By proceeding similarly we can obtain a bound for aEk (pI − pπ, pI − pπ) as follows

aEk (pI − pπ, pI − pπ) . |pI − pπ|21,E + ‖(I −Π∇0 )pI‖20,E + h2ε+2|(I −Π∇0 )pI |21+ε,E

. h2s−2‖p‖2s. (45)

Now, summing up (43), (44) and (45) we have

H2
0 . h2s−2

(
h2‖ṗ‖2s + ‖p‖2s

)
. (46)

Concerning the term H2
1 we note that

Fk(vh) =
∑
E∈Ωh

(f,Π0
kvh)E =

∑
E∈Ωh

(Π0
kf, vh)E

for any vh ∈ Vk. Then, it holds

|F (vh)− Fk(vh)| ≤
∑
E∈Ωh

|((I −Π0
k)f, vh)E | =

∑
E∈Ωh

|(I −Π0
k)f, (I −Π0

0)vh)E |

. hs−1|f |s h|vh|1.

Consequently,

‖F − Fk‖2V∗
k(Ωh) . h2s|f |2s−1,

Collecting the above inequality together with estimates (44) and (45) for the terms mk(p̈I −
p̈π, p̈I − p̈π) and aEk (pI − pπ, pI − pπ), respectively, we conclude the proof by observing that

H2
1 . h2s−2

(
h2‖p̈‖2s + ‖ṗ‖2s + h2|f |2s−1

)
.
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4 Numerical results

In this section we consider three different test cases to verify the theoretical results and show
the capabilities of the numerical scheme presented in this work. In particular, we consider
geometries with curved interfaces at the boundary, or internal of the domain. We compare
our approach with a classical Virtual Element discretization, for which the geometry is not
respected, i.e., is approximated by straight edges. We will show that, for the latter, the
geometrical error will dominate the numerical error, leading to a loss of convergence order.

The aim of the first case presented in Section 4.1 is to show the error decay when the
analytical solution is known. In the second case, discussed in Section 4.2, we present the
propagation of a plane wave in a heterogeneous domain with a circular inclusion. Finally, in
Section 4.3, an idealization of a realistic curved geometry is taken into account showing the
applicability of the method in a domain with complex interfaces.

In the following we name withGeo the current method and noGeo the approach where
curved edges are approximated by straight lines.

The problem so far considered is in a semi-discrete version, to derive the fully-discrete
problem we sub-divide the time interval (0, T ] into NT intervals with equal size ∆t, we write
p(i) = p(ti) with ti = i∆t, for i = 0, .., NT . To avoid limitation on the time step, we consider
the following second order implicit scheme[

M +
∆t

2
C + ∆t2A

]
p(i+2) = 2Mp(i+1) +

[
∆t

2
C −M

]
p(i) + ∆t2f (i+2), i ≥ 0,

Mp(1) =

[
M − ∆t

2
A

]
p0 −∆t(M + C)p1 +

∆t2

2
f (0).

4.1 Verification test

In this test case, we verify the error decay of the virtual element solution with respect to the
mesh size h. We compare the results of the proposed method, withGeo, with respect to the
ones obtained approximating the curved boundary with straight edges, noGeo, and we see the
impact of handling exactly the geometry on the numerical solution.

We consider Problem (2.1) posed in a circular ring having internal and external radii equal
to ri = 0.5 and ro = 1, respectively. Figure 2 shows the computational domain. We consider
the following analytical solution

pex(x, t) = sin(0.5πt) sin(0.5πx1x2)(‖x‖2 − r2
i )(‖x‖2 − r2

o), (47)

together with Dirichlet conditions on the boundary and µ = 1, ρ = 1. Source term and initial
condition are computed accordingly to (47). We remark that solution is regular in space and
time so that the hypothesis of Theorem 3.9 are verfied.

To consider only the space discretization error, we set ∆t = 10−8 and compute the H1

and L2 errors in space at the end of the simulation time fiexd as T = 10∆t.

Remark 4.1. We notice that the asympotic behavoiur of the H1-error can directly be inferred
from the results of Theorem 3.9, while the L2 error decay con be obtained by using similar
arguments of those presented in [11]. The latter is beyond the scope of this work.
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Figure 2: Computational domain for the example in section 4.1. On the left a representative
of the first family quad of grids, made of radial rectangles. On the right a grid from the second
family, composed by polygons and named poly.

We consider two families of meshes: the first named quad is composed by radial rectangles
while the second poly is constructed from a Voronoi tessellation, cf. Figure 2. In both cases
the elements have curved edges at the boundary and straight internally. The errors in L2 and
semi-norm H1 are computed as

L2 error =

√∑
E∈Ωh

‖pex −Π0
kp‖2E

‖pex‖Ωh

and H1 error =

√∑
E∈Ωh

‖∇pex −Π0
k−1∇p‖2E

‖∇pex‖Ωh

.

Figure 3 shows the error decay for the family quad and Figure 4 for the family poly. In both
cases we notice that for k = 1 the H1 error for withGeo and noGeo decays as expected, i.e., as
O(hk). However, for k ≥ 2 the geometrical error dominates in the noGeo and limits the error
decay to O(h3/2). For the withGeo method the error decay behaves as expected reaching the
convergence rate equal to O(hk).

For the L2-error the situation is similar, as we expect an error of convergence equal to
O(hk+1). As before, the geometrical error limits convergence rate for k ≥ 2 for noGeo. Again,
for the method withGeo the errors decay as expected. For degree k = 5 in the poly we notice a
stagnation of the error for small h in both L2 and H1 norm, probably related to the numerical
linear algebra. A numerical proof of this inference is that such phenomena is not present in
the quad family. Indeed, quadrilateral meshes have more regular shapes with respect to the
polygonal ones and, consequenly, the linear system arising from such discretization will have
a lower condition number.

We can conclude that, at least for this example, the proposed method is an attractive
approach to solve the wave equation with high order approximation in presence of curved
boundaries.

4.2 Plane wave test case

In this second case, a plane wave enters the computational domain Ω = (−1, 1)2 from the left
boundary of and encounters a circular inclusion with different mechanical properties, i.e., a
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Figure 3: L2 and H1 error decay for the family quad in the example in Subsection 4.1.
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Figure 4: L2 and H1 error decay for the family poly in the example in Subsection 4.1.
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Figure 5: Computational domain for the example in section 4.1. On the left the domain with
zone 1 and zone 2 highlighted. On the centre the computational grid, while on the right a
zoom around the curved inclusion γ.

different µ. The inclusion is a circle of radius 0.2, i.e.,

γ = {x : ‖x‖2 − 0.22 = 0} .

The computational domain is depicted in Figure 5. The computational grid is constructed
starting from a Cartesian grid and then cutting all the elements that are crossed by γ. The
obtained grid is not extremely refined around γ since the exact geometry is captured by curved
edges, indeed the number of elements is 6625 compared to 6561 of the original Cartesian grid.
This fact represents an advantage from the computational point of view since we do not have
to increase the number of degrees of freedom to capture the internal curved interface.

We solve Problem 2.3 where we set on the top and bottom edges a homogeneous Neu-
mann condition, on the right edge an absorbing boundary condition, and on the left edge the
following Dirichlet condition:

p(x, t) =

{
sin(ωπt) if t ≤ 2

ω ,

0 otherwise,

being ω the angular frequency. The initial solution and velocity are set to zero, ρ = 1, and
the final time is set to T = 3. In the blue region of Figure 5, outside the inclusion γ, we fix
µ = 1 while in the red region, inside the inclusion, we chose µ = 10−2. The source term f is
null, the approximation degree set to k = 4 and the time step equal to ∆t = 10−4.

We consider three different cases, depending on the wavelength λ = ω−1 and the dimension
of the inclusion γ. In case (i) λ = 1

2 , so the resulting plane wave has a wavelength that is bigger
than the dimension of γ. In case (ii), we set λ = 1

5 which implies that the wavelength and the
dimension of γ are now comparable. Finally, in case (iii) the value of λ is set to be λ = 1

20 .
We obtain a plane wave with a wavelength that is much smaller than the dimension of γ. We
want to understand, qualitatively, the impact of the curved geometry in our formulation for
these cases.

The results are represented in Figure 6. The outcomes are, as expected, very different
from each other. In case (i), when the wave encounters γ we see the two phenomena of
backward reflection of the wave and refraction inside γ. The latter is of small entity and the
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ph(x, t)

case (i) case (ii) case (iii)

t = 6∆t t = 8∆t t = 10∆t

t = 6∆t t = 8∆t t = 10∆t

t = 6∆t t = 8∆t t = 10∆t

Figure 6: Computed solution ph(x, t) at three different time instants. Left: λ = 1
2 ; center:

λ = 1
5 and right: λ = 1

20 .
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Figure 7: Computational domain for the example in section 4.3.

interior of γ remains mostly unperturbed when λ = 1
2 . This latter phenomena is exacerbated

by decreasing the value of λ, indeed for case (ii) we notice a more pronounced refraction effect
inside γ that becomes even more evident for case (iii). This phenomena are expected and
confirm the quality of the obtained solution. No spurious oscillations due to the geometry (at
least macroscopic ones) can be noticed in the reported plots.

We can conclude that, for this example, the proposed method is an attractive approach
to solve the wave equation with high order approximation in presence of curved interfaces
without the need of refining the computational grid nearby them.

4.3 Wave propagation with a realistic curved geometry

In this last test case, we consider a curved geometry that might represent a realistic case of
a listric fault cutting a sequence of sedimentary layers. However, for the sake of simplicity,
its dimensions are set as Ω = (−1, 1)× (−0.5, 0.5), see Figure 7. In the middle red areas are
defined as Ωmid. This central layer has different physical parameters than the surrounding
portions of materials, see blue areas in Figure 7. Even if realistic applications with multiple
layers are more challenging than this example, we show a qualitative analysis to understand
the potentiality of the newly introduced method. Then, we consider Problem (2.1), with ρ = 1
everywhere, µ = 0.1 in Ωmid and µ = 1 everywhere else. On all the boundaries we impose
absorbing conditions, the initial data are null, the final time is T = 10 and the source term is
given as a Mexican-hat wavelet

f(x, t) = 5[1− 2π2(t− 1.2)2]e−π
2(t−1.2)e−

(x0+0.375)2+(x1−0.25)2

0.00625 .

The geometry is obtained from a 32 Cartesian grid where the curved elements are thus
created by cutting the mesh with the curved interfaces. The resulting computational grid
has 2271 elements. We consider a polynomial approximation order equal to 4 and a time
step ∆t = 0.001. The obtained numerical solution is depicted in Figure 8 for different time
instants.

From the obtained solution, we see that no spurious oscillations are generated at the
curved interfaces inside the domain. Moreover, since the characteristic velocity in Ωmid is
smaller than the surrounding parts, the wave remains trapped inside Ωmid.

Also in this final test case, even on a more complex curved geometry, the proposed scheme
performs well, without any need to over-refine around the curved interfaces to avoid side
effects.
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t = ∆t t = 5∆t

t = 7∆t t = 10∆t

t = 14∆t t = 18∆t

t = 34∆t t = 42∆t

Figure 8: From left to right and from top to bottom, screenshots of the computed solution
ph(x, t) at different time instants.
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5 Conclusions

In this paper, we have extended the Virtual Element Method in primal form for the wave equa-
tion when the computational domain has internal curved interfaces and/or curved boundaries.
The latter are represented exactly in order to avoid possible geometrical errors that might
affect the quality of the numerical solution and limit the convergence order. This preliminary
study carried out in a two-dimensional setting and the promising results shown, open the
possibility to extend the proposed approach to more complex three dimensional configura-
tions. The numerical examples presented testify that this approach is very effective, since
no spurious oscillations due to curved geometries arise. Moreover, it gives the possibility to
handle the geometrical challenges arising in realistic applications.
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