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Abstract
We develop a new expansion for representing singular sums in terms of integrals and vice
versa. This method provides a powerful tool for the efficient computation of large singular
sums that appear in long-range interacting systems in condensedmatter and quantum physics.
It also offers a generalised trapezoidal rule for the precise computation of singular integrals.
In both cases, the difference between sum and integral is approximated by derivatives of
the non-singular factor of the summand function, where the coefficients in turn depend on
the singularity. We show that for a physically meaningful set of functions, the error decays
exponentially with the expansion order. For a fixed expansion order, the error decays alge-
braically both with the grid size, if the method is used for quadrature, or the characteristic
length scale of the summand function in case the sum over a fixed grid is approximated by an
integral. In absence of a singularity, the method reduces to the Euler–Maclaurin summation
formula. We demonstrate the numerical performance of our new expansion by applying it
to the computation of the full nonlinear long-range forces inside a domain wall in a macro-
scopic one-dimensional crystal with 2 × 1010 particles. The code of our implementation in
Mathematica is provided online. For particles that interact via the Coulomb repulsion, we
demonstrate that finite size effects remain relevant even in the thermodynamic limit of macro-
scopic particle numbers. Our results show that widely-used continuum limits in condensed
matter physics are not applicable for quantitative predictions in this case.
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1 Introduction

Large sums appear everywhere in nature; our macroscopic world is composed of microscopic
particles whose interaction forces determine the properties of the world we live in. Sums
with singularities describe discrete long-range interacting systems in condensed matter and
quantum physics [1], with examples ranging from the computation of forces and energies in
atomic crystals [2] to the study of charge transfer in DNA strings [3]. Making predictions
about these sums is however in general a difficult task. In many cases, the evaluation of an
integral is easier than the evaluation of a sum, either because there are more tools available on
the analytical side or because on the numerical side, efficient quadrature schemes are known.
The question arises how sums and integrals are related and how we can approximate one by
the other.

A part of the answer to this question was given independently by Leonard Euler in 1736
and by Colin Maclaurin in 1742 [4]. Consider Fig. 1, which provides an illustration for the
approximation of a sum (rectangles) by an integral (blue region). In the red parts, the sum
dominates the integral, whereas in the green parts, the integral is larger than the sum. The
Euler–Maclaurin (EM) expansion describes this difference between sum and integral of a
sufficiently differentiable function in terms of derivatives evaluated at the limits of integration
plus a remainder integral.

Beforewe state theEMexpansion,we introduce the following standard notation: The set of
integers is denoted byZ,N = {0, 1, 2, . . . } are the nonnegative integers, andN+ = N\{0}
are the positive integers. Similarly,R are the real numbers andR+ denotes the set of positive
real numbers. Finally,C are the complex numbers. In this work, we consider function spaces
that are based on differentiable functions. For an open interval I ⊆ R and � ∈ N, the
vector space C�(I ) consists of functions f : I → C being � times differentiable and
whose �th derivative f (�) is continuous. The derivatives of functions in C�( Ī ), a subspace of
C�(I ), additionally have continuous extensions from I to the closure Ī . Finally, we define
C∞(I ) = ⋂∞

�=0 C�(I ), the space of infinitely differentiable functions on I and analogously
C∞( Ī ). The vector space C−1(I ) is the space of regulated functions f : I → C for which
the left and right sided limits lim

y↗y0
and lim

y↘y0
exist for all y0 ∈ I . The vector space C−1( Ī ) is

Fig. 1 Illustration of the approximation of a sum by an integral. Red parts indicate where the integral under-
estimates the sum, green parts display the opposite case where the integral dominates the sum (Color figure
online)
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defined analogously, where only the existence of the corresponding one-sided limit is needed
at the end points. Regulated functions are continuous up to a countable number of points.

For a, b ∈ Z, a < b, δ ∈ (0, 1], � ∈ N, and for a function f ∈ C�+1[a + δ, b + δ], the
EM expansion reads [4,5]

b∑

n=a+1

f (n) =
b+δ∫

a+δ

f (y) dy −
�∑

k=0

(−1)k Bk+1(1 + y − �y	)
(k + 1)! f (k)(y)

∣
∣
∣
∣

y=b+δ

y=a+δ

+
b+δ∫

a+δ

(−1)�
B�+1(1 + y − �y	)

(� + 1)! f (�+1)(y) dy, (1.1)

where �y	 is the smallest integer larger than or equal to y. The functions B� are the Bernoulli
polynomials, which are uniquely defined by the recurrence relation

B0(y) = 1, B ′
�(y) = �B�−1(y),

1∫

0

B�(y) dy = 0, � ≥ 1. (1.2)

For a derivation of the EM expansion as well as a brief introduction to its history we refer
to [4].

The applicability of the EM expansion for the approximation of a particular sum is deter-
mined by the scaling of the remainder integral on the right hand side of (1.1) with the
expansion order �. The remainder integral cannot be evaluated in a numerically feasible way,
as the integrand is a piecewise defined function. In the numerical application, an order � is
chosen, the remainder integral is discarded and the error made by discarding the remainder
integral is estimated. If the addend is based on an entire function whose derivatives in addi-
tion satisfy certain bounds (more details in the next section), the remainder integral decreases
exponentially with �. This is the ideal case for the EM expansion. For most functions how-
ever, even for smooth functions, the error begins to diverge after a certain threshold value of
� is reached, thus limiting the precision that the EM expansion can offer.

There have been a number of valuable extensions of the classicworks of Euler andMaclau-
rin, which make the expansion applicable to a larger set of functions. Important progress has
been made by Navot [6], where the EM expansion is generalised to functions with an alge-
braic singularity at the boundaries of the integration interval. Further generalisations have
been developed by Monegato and Lyness [5] and Sidi [7,8], where divergent integrals are
regularised by the use of Hadamard finite part integrals. Furthermore, a higher dimensional
generalisation of the EM for simple lattice polytopes has been found [9]. We also mention
here a recent alternative approach to the EM expansion where the difference between sum
and integral is written in terms of integrals only [10].

One particular set of functions, for which the EM expansion fails to converge and which
are extremely important in practice are functions that involve an asymptotically smooth
singularity, see Definition 2.1. Unfortunately, these functions are of strong practical interest
as all physical interactions belong to this kind. In this work, we present the singular Euler–
Maclaurin expansion (SEM), which makes the classic expansion applicable to functions that
involve an asymptotically smooth singularity.

This paper targets a wide range of different audiences. Therefore it is organised as follows.
Section 2 concludes the main results regarding the SEM, offering all the tools needed for
application. Section 3 covers details to apply the SEM as a numerical tool. We discuss its
numerical performance and apply it to a macroscopic long-range interacting crystal as a
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physically relevant example. Note that a basic implementation of the SEM in Mathematica
is provided along with the article.1 Section 4 provides the main derivation of the SEM. It
includes the proofs of the most important theorems and propositions. Finally, in Sect. 5, we
make our concluding remarks.

2 Main Result and Notation

In this chapter, we formulate the SEM expansion for intervals [a + δ, b + δ], with a, b ∈ Z,
δ ∈ (0, 1], which is in particular applicable, if the function

f : [a + δ, b + δ] → C,

splits into two factors

f (y) = s(y − x)g(y), y ∈ [a + δ, b + δ], (2.1)

where x ∈ Z, s ∈ C∞(R\{0}) has a singularity at 0 and g : [a + δ, b + δ] → C is a
sufficiently differentiable function. We apply the following general strategy: singularities at
x or other smooth functions whose derivatives increase quickly with the derivative order
are included in s. The function s limits the applicability of the standard EM expansion to
f and therefore requires a special treatment. In practice, the function s often represents a
pairwise long-ranged interaction potential or the one-dimensional forces generated by such
a potential. We refer to s in the following as the interaction. The remaining factor g includes
well-behaved functions, whose derivatives increase sufficiently slowly with the derivative
order. The slower the derivatives increase, the better are the convergence rates.

We briefly outline our presentation of the SEM expansion. We first discuss the properties
of the function s that are required for the expansion. The interaction is subsequently made
integrable by introducing an exponential regularisation. We then make use of the integra-
bility of the regularised interaction and define the Bernoulli–A functions, a generalisation
of the periodised Bernoulli polynomials in which we encode s. These functions then form
the coefficients of the differential operator of the SEM, replacing the Bernoulli polynomials
in the standard EM expansion (1.1). The differential operator acts on g only, avoiding the
fast increase in the derivatives of s that causes the breakdown of the standard EM expan-
sion. A finite-order approximation of this differential operator leads to the finite-order SEM
expansion. For smooth g, whose derivatives fulfil certain bounds, we take the order of the
expansion to infinity, leading to the infinite order SEM.

Before moving on to the formulation of the SEM expansion, we need to specify the admis-
sible set of functions for the interaction: the function s has to be asymptotically smooth [11,
Sec. 3.2].

Definition 2.1 (Asymptotically smooth functions) A function s ∈ C∞(R\{0}) of at most
polynomial growth is called asymptotically smooth if there exist c > 0 and γ ≥ 1 such that
for the �th derivative s(�),

|s(�)(y)| ≤ c �! γ � |y|−� |s(y)|, (2.2)

for all y ∈ R\{0} and � ∈ N. We denote the vector space of all asymptotically smooth
functions by S. It is the union of the linear subspaces Sα , α ∈ R, where s ∈ Sα if and only if

1 The code is available online on the github repository https://github.com/andreasbuchheit/
singular_euler_maclaurin.
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for all ξ > 0 there is cξ > 0 such that

|s(y)| ≤ cξ |y|α, |y| ≥ ξ.

This set includes entire functions like polynomials, but also a broad set of functions with
singularities. Typical examples for asymptotically smooth functions are

s(y) = |y|−ν, y ∈ R\{0}, (2.3)

for ν ∈ R which are singular for ν > 0.
From 2.1, we find that the �th derivative of the interaction may scale with the factorial of

�. It is this fast increase in the derivatives that causes the breakdown of the EM expansion,
and therefore, taking derivatives of s has to be avoided. It turns out that we can integrate
s instead. However, s is in general not integrable on [1,∞); take for instance ν = 1 in
(2.3). This challenge is overcome by using an exponentially decaying regularisation of the
interaction.

Notation 1 Let s ∈ S. The exponentially weighted interaction reads

sβ(y) = s(y)e−β|y|, y ∈ R\{0}, (2.4)

with β ≥ 0.

For β ↘ 0, the weighting is gradually removed and the interaction regains its original
range. It is crucial here that the reduction of the interaction range is introduced not as a sharp
cut-off, but in a smooth way, such that sβ remains asymptotically smooth.

Wenowuse regularised differences between sums and integrals in order to define a replace-
ment for the Bernoulli polynomials (1.1).We call this replacement the Bernoulli-A functions,
in which we encode all information about the interaction s. In the following, calligraphic
symbols indicate an explicit dependence on the interaction.

Definition 2.2 (Bernoulli–A functions) Suppose s ∈ S. The Bernoulli–A functions are
defined as

A�(y) = lim
β↘0

1

�!
( ∞∑

n=�y	
(y − n)�sβ(n) −

∞∫

y

(y − z)�sβ(z) dz

)

, y ∈ R+,

for � ∈ N.

The shifted monomials in sum and integral guarantee that the Bernoulli-A functions are
subsequent antiderivatives, A′

�+1 = A�. A special role is assigned to the function A0 that
exhibits jump discontinuities at the positive integers. Both the size of the jump discontinuities
and the left sided derivative of A0 are equal to value of the interaction,

lim
ε↘0

(A0(n) − A0(n + ε)
) = s(n), n ∈ N+,

lim
ε↘0

A0(y) − A0(y − ε)

ε
= s(y), y ∈ R+.

The properties of the Bernoulli-A functions are discussed in detail in Proposition 4.2.
A different recursive definition of generalised Bernoulli functions on bounded intervals

[a, b] starting from a bounded function by iterated integration on [a, b] is presented in [12].
Due to the chosen normalisation, requesting that the integrals of these functions over [a, b]
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Fig. 2 Generalised Bernoulli
functionsA� for s(y) = |y|−1

to vanish, the generalisation to nonintegrable singularities and unbounded domains is not
possible. Our definition is more general and, in particular, allows for arbitrary algebraic
singularities at the origin.

The Bernoulli–A functions replace the periodic extension of the Bernoulli polynomials
in the differential operator part and the remainder of the EM expansion. We display them for
s(y) = |y|−1 in Fig. 2. For a constant interaction s = 1, we recover a rescaled version of the
periodised Bernoulli polynomials,

A�(y) = B�+1(1 + y − �y	)
(� + 1)! ,

a proof of which is given in “Appendix 1”.
We now define the SEM differential operator as follows:

Definition 2.3 (SEM operator) For s ∈ S and y ∈ R+, we define the differential operator of
infinite order

Dy =
∞∑

�=0

A�(y) (−D)�, (2.5)

where D is the derivative operator. We call Dy the SEM operator. For � ∈ N the finite order

approximations D(�)
y are given by

D(�)
y =

�∑

k=0

Ak(y) (−D)k .

Finally, we move on to the formulation of the new expansion.

Theorem 2.1 (Singular Euler–Maclaurin (SEM) expansion) For x, a, b ∈ Z, with x ≤ a <

b, and δ ∈ (0, 1], let f factor into

f (y) = s(y − x)g(y),

where s ∈ S and g ∈ C�+1[a + δ, b + δ], � ∈ N. Then,

b∑

n=a+1

f (n) =
b+δ∫

a+δ

f (y) dy −
(
D(�)

y−x g
)
(y)

∣
∣
∣
∣

y=b+δ

y=a+δ

+ (−1)�
b+δ∫

a+δ

A�(y − x)g(�+1)(y) dy.

The SEM operator only acts on g, not on f , and therefore differentiation of s is avoided.
In order to perform the limit � → ∞ in Theorem 2.1, the function g has to belong to the

set of functions of exponential type. This restricts the growth of its derivatives.
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Definition 2.4 (Band-limited functions) Let g ∈ C∞(R). We say that g is band-limited with
bandwidth σ and write g ∈ Eσ , if for every bounded interval I ⊂ R, there exists M > 0
such that ∣

∣g(�)(y)
∣
∣ ≤ M σ�, � ∈ N, y ∈ I .

The admissible range for σ depends on s, in particular on γ from Definition 2.1.

Theorem 2.2 (SEM error scaling) Assume the conditions of Theorem 2.1 and let g ∈ Eσ ,
σ > 0. Then the remainder in the SEM expansion,

R�+1 = (−1)�
b+δ∫

a+δ

A�(y − x)g(�+1)(y),

fulfils
∣
∣R�+1

∣
∣ ≤ P(�)

(
σ/τ

)�+1

for τ = 2π/(γ + 1) and a polynomial P whose degree only depends on s.

For σ < τ , the approximation error of a sum by means of the SEM expansion falls off
exponentially in the expansion order � and polynomially in the parameter σ . In particular,
the limit � → ∞ is well-defined. Hence our new expansion succeeds in providing a reliable
approximation where the standard EM expansion, which does not converge for singular
functions, fails.

Remark 2.1 For simplicity, we have formulated Theorem 2.1 such that x is positioned to the
left of the interval [a + 1, b]. Of course, the theorem can also be applied in case that x is
positioned to the right of this interval by simply reflecting the interval about x . Consider
a < b < x . Then the reflected interval is [ã + 1, b̃], where

ã = 2x − (b + 1), b̃ = 2x − (a + 1),

and thus x ≤ ã < b̃. Using the reflected interval, we can transform the sum as follows

b∑

n=a+1

s(n − x)g(n) =
b̃∑

n=ã+1

s̃(n − x)g̃(n), (2.6)

with the functions s̃ ∈ S and g̃ such that

s̃(y) = s(−y), g̃(y) = g(2x − y).

Thus the SEM becomes applicable to the right hand side of (2.6).

3 Application: Long-Range Forces in Crystal Lattices

3.1 Model Description

We demonstrate the numerical performance of the SEM expansion by applying it to the cal-
culation of long-range forces in a macroscopic one-dimensional crystal lattice of charged
particles. The SEM expansion naturally provides the answer to the question how to correctly
include the discreteness of the lattice within a continuum formulation that avoids discrete
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sums and is therefore efficiently computable for all asymptotically smooth interaction forces.
We consider a particularly difficult scenario, the case where the interaction potential is the
Coulomb repulsion, which decays algebraically with an exponent equal to the system dimen-
sion. Then the discreteness of the crystal has an observable effect on the forces at all scales,
which makes a continuum approximation challenging [2].

We consider a one-dimensional crystal of 2N +1 particles, N ∈ N, and denote the particle
positions as x j ∈ R, j = −N , . . . , N . The particles are displaced from an equidistant grid
with lattice constant h > 0,

x j = jh + u( jh), j ∈ {−N , . . . , N }, (3.1)

through a smooth displacement function u.
If the interaction energy V ∈ S between two particles decays algebraically with their

distance x ,
V (x) = cν |x |−ν, ν > 0, (3.2)

the force acting on the particle with reference position x reads

F(x) = −
N∑

n=−N
n �=x/h

V ′((x − hn) + u(x) − u(hn)
)
, x ∈ h{−N , . . . , N }. (3.3)

All physical dimensions are from now on removed, where we write positions in units of
h and forces in units of V ′′(h)h. Then the forces follow as

F(x) =
x−1∑

n=−N

f (n) +
N∑

n=x+1

f (n), x ∈ {−N , . . . , N }, (3.4)

where the function f factors into f (y) = s(y − x)g(y) with s ∈ S and g smooth such that

s(y) = sgn(y) |y|−(ν+1), g(y) = − 1

ν + 1

(

1 + u(y) − u(x)

y − x

)−(ν+1)

. (3.5)

We now have determined a suitable factorisation for the summand function. In order
to subsequently apply the SEM expansion to above sum, we only need to determine the
corresponding SEM operator, which amounts to computing its coefficient functions A�.

3.2 Bernoulli-A Functions for Physical Interactions

We move on to the computation of the Bernoulli–A functions for the algebraic interaction
| · |−ν , which is of high relevance in physical systems. In case of ν = 1, it either describes
the Coulomb interaction between charged or the gravitational interaction between massive
particles. For ν = 3, it describes the dipole interaction between spins. The Bernoulli–A
functions determine the SEM differential operator and hence provide the tool needed for the
efficient computation of large singular sums. It turns out that the coefficient functions can be
compactly written in terms of the Hurwitz zeta function. A proof is given in Appendix A.

Theorem 3.1 For s = | · |−ν and ν ∈ R\N+, the Bernoulli-A functions read

A�(y) = 1

�!
�∑

k=0

(−1)k
(

�

k

)

y�−k
(

ζ(ν − k, �y	) − y−(ν−k−1)

ν − k − 1

)

, � ∈ N, (3.6)
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Fig. 3 Kink of width λ in a 1D chain that displaces the particles (black circles) from an equidistant grid (dotted
circles). The long-range forces acting on a particular particle, e.g. in red, are computed (Color figure online)

with ζ the Hurwitz zeta function,

ζ(μ, q) =
∞∑

n=0

1

(n + q)μ
, μ > 1, q > 0.

For ν ∈ N+, the coefficients are well-defined,

lim
ν→k+1

(

ζ(ν − k, �y	) − y−(ν−k−1)

ν − k − 1

)

= γe − H�y	−1 + log y, k ∈ N,

where γe is the Euler–Mascheroni constant and Hk denotes the kth harmonic number,

Hk =
k∑

j=1

1

j
.

After having determined analytic formulas for the Bernoulli–A functions for a large set
of physically relevant interaction functions, we proceed by demonstrating that the SEM
expansion is able to describe long-range interactings systems in a very precise way, where,
in contrast, standard integral approximations fail.

3.3 Numerical Results

For our numerical study, we investigate a chain of particles interacting via the Coulomb
repulsion. The displacement function is chosen as the integral of a normalised Lorentzian

u(y) =
y/λ∫

−∞

1

π

1

1 + z2
dz, (3.7)

which describes the simplified profile of a kink, a domain wall in the crystal, with the asymp-
totic behaviour limy→∞ u(y) = 1 and limy→−∞ u(y) = 0. Kinks typically arise when an
additional nonlinear potential is applied to the crystal. The parameter λ > 0 controls the
width of the kink. When adjusting the Definition 2.4 of band-limited functions such that only
up to �+ 1 derivatives need to fulfil the estimate then the error estimates for the SEM expan-
sion in Theorem 2.2 continue to hold. The function u is thus effectively band-limited with
a band-width σ proportional to 1/λ. For further details regarding kinks in condensed matter
physics, see [13]. A schematic depiction of a kink is displayed in Fig. 3. In the following, we
compute the Coulomb force that is exerted on an arbitrary particle (red circle) by all other
particles (black circles).
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(a) (b)

Fig. 4 Forces F as a function of distance x in centre of a kink for different choices of the kink width λ

and the particle number N . The red line shows the first order approximation of the singular Euler–Maclaurin
expansion, the blue dots display the exact forces. a The approximation error in the maximum norm over the
whole chain is smaller than 3 × 10−7 and the relative error is smaller than 8 × 10−5. The black line shows
the approximation of the discrete sum by an integral only (Color figure online)

We compute the Coulomb forces in (3.4) by exact summation and subsequently compare
the result to the integral approximation, which is standard in condensed matter physics,

Fapprox(x) =
x−1∫

−N

f (y) dy +
N∫

x+1

f (y) dy,

choosing the integral offset δ = 1. For a mesoscopic chain with N = 103 and a kink
width λ = 10, the resulting forces are displayed in the left panel of Fig. 4, where the
blue dots show the exact results and the black curve shows the integral approximation. The
integral approximation in themesoscopic system reproduces the correct qualitative behaviour,
showing that the particles are drawn towards the kink, as it constitutes a delocalised particle
hole. However, it strongly underestimates the absolute value of the forces and thus cannot
be used for reliable quantitative predictions. We can now improve significantly upon the
precision of the integral approximation by using the SEM expansion of order � = 1. The
result for the SEM expansion is shown in red, which is visually indistinguishable from the
result obtained by exact summation.The SEM reproduces the exact forces very precisely both
at the chain edges as well as inside the kink in the centre with an absolute error smaller than
3 × 10−7 for all particles with 4 digits of precision. Moreover, the runtime for the adaptive
numerical integration and for the computation of the derivatives is essentially independent
of N and λ for a single force evaluation. The SEM expansion thus combines the precision of
exact summation with the O(1) scaling of the integral approximation.2

In the next step, we can now apply the SEM expansion to the computation of the full
nonlinear long-rangeCoulomb forces in a crystal ofmacroscopic size, where the computation
of the exact forces has become infeasible. We choose λ = 105 and N = 1010, which for
a typical lattice constant h ≈ 10−10 m, corresponds to a crystal with a total length of two
metres. The first order SEM (red line) is compared to the integral approximation (black line).

2 The SEM is implemented in Mathematica and a working example is provided along with this article.
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Fig. 5 Maximum absolute error for N = 200 as a function of λ for different orders � of the singular Euler–
Maclaurin expansion

Even at the macro scale, the SEM shows a visible difference to the integral approximation.
This difference can be highly relevant if we want to compute material properties ab-inito.
The finite-size effects in the crystal remain relevant even in for the macroscopic system. We
have therefore demonstated that the often made claim, that a lattice sum may be replaced by
an integral if the underlying charge distribution is sufficiently broad, see e.g. the discussion
around Eq. (5.3) in [14], is not correct in case of ν = 1 in one dimension.

We now analyse the scaling of the absolute error in the maximum norm for different SEM
orders � and kink widths λ for N = 200. The results are displayed in Fig. 5. The smaller
particle number is chosen, such that the exact forces can still be computed efficiently for
all particles. We find that in case of the integral approximation (black dots), the maximum
absolute error does not scale with λ. The maximum error occurs at the chain edges, the error
in the centre scales as λ−2. Note that the inclusion of the zero order SEM contribution already
compensates the error at the edges, with the maximum error now appearing close to the kink
centre, in the region where the derivatives of u are large. For � = 1 (red dots), the first
order SEM, the error scales approximately as λ−4. For odd orders � we find that the error
scaling coefficient is approximately � + 3. The exact scaling coefficients calculated from a
linear fit of the last 5 data point is given in Fig. 5. For � = 7 (purple dots) and λ = 25, the
SEM offers an absolute error smaller than 10−17 which corresponds to at least 13 digits of
precision for all forces. In conclusion, we find that the SEM expansion yields an error that
falls off exponentially in the expansion order and polynomially in the width λ, reproducing
the theoretically predicted error scaling.

4 Derivation of the Singular Euler–Maclaurin Expansion

We begin the derivation of the new expansion by showing the well-definedness of the
Bernoulli-A functions, on which it is based.

Proposition 4.1 For � ∈ N, the function A� is well-defined and obeys the estimate

|A�(y)| ≤ P(�)τ−(�+1)|y|α, y ≥ ξ,

with τ = 2π/(1 + γ ) and P a polynomial that depends only on s and ξ .
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For the proof of above proposition, we need two lemmata that provide estimates on the
derivatives of functions that involve the interaction function s.

Lemma 4.1 Let s ∈ S with constants c > 0, γ ≥ 1. Then
∣
∣
∣s

(�)
β (z)

∣
∣
∣ ≤ c �! γ � |z|−� |s(z)|

for all z > 0, � ∈ N and β > 0.

Proof For � ∈ N and y > 0, we compute

|s(�)
β (z)| ≤

�∑

k=0

�!
(� − k)! k! |s

(k)(z)|β�−ke−βz

≤ c �! γ � z−�|s(z)|
(

�∑

k=0

1

(� − k)! z�−kβ�−k

)

e−βz

≤ c �! γ � z−�|s(y)|eβze−βz = c �! γ � z−�|s(z)|.
��

The behaviour of the derivatives of the integrand

sy,�,β(z) = 1

�! (y − z)�sβ(z)

in Definition 2.2 of the Bernoulli-A functions is investigated in the following.

Lemma 4.2 Let s ∈ Sα with γ ≥ 1. For y > 0 and all z > y, there exists C > 0 such that
∣
∣
∣s

(k)
y,�,β(z)

∣
∣
∣ ≤ C (γ k)k−�

(
γ + 1

)� |z|�+α−k, k ≥ �,

and for z = y,
∣
∣
∣s

(k)
y,�,β(y)

∣
∣
∣ ≤

{
C (γ k)k−� |y|�+α−k, k ≥ �,

0, k < �.

Proof For y > 0 we compute

s(k)
y,�,β(z) = 1

�!
k∑

j=0

(
k

j

)

(−1) j �!
(� − j)! (y − z)�− j s(k− j)

β (z)

= k!
�!

k∑

j=0

(
�

j

)

(−1) j (y − z)�− j
s(k− j)
β (z)

(k − j)! .

In case of z = y, only the term with j = � contributes and we can insert the estimate from
4.1. For z > y and k ≥ �, we can set the upper limit of the sum to � and find

∣
∣
∣s(k)

y,�,β(z)
∣
∣
∣ ≤ C

k!
�! γ k−� |z|�+α−k

�∑

j=0

(
�

j

)
(|y/z − 1|γ )�− j

= C
k!
�! γ k−�|z|�+α−k

(
|y/z − 1|γ + 1

)�

,

with C = c cξ with ξ = y and the lemma follows after noticing that |y/z − 1|γ < γ and
that k!/�! ≤ kk−� for k ≥ �. ��
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With above lemma, we now prove the well-definedness of the Bernoulli-A functions and
provide a bound.

Proof (Proposition 4.1) For β > 0, we first introduce the auxiliary function

A�,β(y) =
∞∑

n=�y	
sy,�,β(n) −

∞∫

y

sy,�,β(z) dz, y > 0,

and subsequently prove the existence of the limit β ↘ 0 using the standard EM expansion,
which takes the simplest form for the integral offset δ = 1 + y − �y	, namely

A�,β(y) =
m∑

k=0

(−1)k Bk+1(1 + y − �y	)
(k + 1)! s(k)

y,�,β(y) + Rm,β , (4.1)

with the remainder

Rm,β = (−1)m

∞∫

y

Bm+1(1 + z − �z	)
(m + 1)! s(m+1)

y,�,β (z) dz.

Clearly, the limitβ ↘ 0 iswell defined for the sumover k.Moreover, setting the expansion
order

m = � + max{0, �α + 1	},
garantees, by Lemma 4.2, that a β-independent and integrable majorant for the integrand
in the remainder can be established. Hence, the limit and thus A� is well-defined by the
dominated convergence theorem.

We now use above representation in order to provide a bound to A� that falls off expo-
nentially in �. To this end, we first recall the following bound of the Bernoulli polynomials,
see e.g. Eq. (19) and following discussion in [15],

max
y∈[0,1]

∣
∣
∣
∣

Bk(y)

k!
∣
∣
∣
∣ ≤ 4

(2π)k
, k ∈ N.

Inserting this bound as well as the estimate from Lemma 4.2 into (4.1), we find

|A�,β(y)| ≤ 4C
�+mα∑

k=�

(2π)−(k+1)(γ k)k−�|y|�+α−k

+ 4C

(
2π

γ + 1

)−(�+1) ∞∫

y

(
γ (� + mα + 1)

)mα+1|z|α−(mα+1) dz,

with mα = max{0, �α	 + 1} and C = c cξ . Thus,

|A�(y)| ≤ P(�)τ−(�+1)|y|α, y ≥ ξ,

with τ = 2π/(1+ γ ), and a constant C > 0 and a polynomial P that depend only on ξ > 0
and s. ��

Using above estimates, we are now in the position to prove the properties of the Bernoulli-
A functions.
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Proposition 4.2 (Properties of A�) Let � ∈ N. Then A� is smooth on R+\N+ and A� ∈
C�−1(R+\N+). A�+1 is an antiderivative of A� . Finally, the function A0 obeys the jump
relation

lim
ε↘0

(A0(n) − A0(n + ε)
) = s(n), n ∈ N+,

and the derivative relation

lim
ε↘0

A0(y) − A0(y − ε)

ε
= s(y), y ∈ R+.

Proof The binomial theorem yields the following representation of the Bernoulli-A func-
tions,

A�(y) = 1

�!
�∑

k=0

(−1)k
(

�

k

)

y�−k lim
β↘0

( ∞∑

n=�y	
nksβ(n) −

∞∫

y

zksβ(z) dz

)

,

where we have used that the limit in β on the right hand side exists due to asymptotic
smoothness of yksβ(y). Using that the β-limit is well-defined, we already find that the β-
limit is uniform in y on any compact subset ofR+ by choosing m ∈ N+ with m > �y	 and
writing

lim
β↘0

( ∞∑

n=�y	
nksβ(n) −

∞∫

y

zksβ(z) dz

)

=
m∑

n=�y	
nks(n) −

m∫

y

zks(z) dz + lim
β↘0

Iβ,

with Iβ the y-independent remaining regularised difference between sum and integral.
We now show thatA� ∈ C0(R+) for all � ≥ 1. Above representation implies smoothness

ofA� onR+\N+, hence we only need to investigate y ∈ N+. As �·	 is left continuous, it is
sufficient to study the finite difference from the right, finding

lim
ε↘0

(A�(n) − A�(n + ε)) = 1

�!
�∑

k=0

(−1)k
(

�

k

)

n�−k(−n)ks(n) = 1

�! (n − n)�s(n),

which vanishes for � ≥ 1. For � = 0, we obtain the jump condition

lim
ε↘0

(A�(n) − A�(n + ε)) = s(n).

We now consider differentiability of A�. For y ∈ R+\N+, the function A� is smooth
as the composition of smooth functions. With the same argument, it is left differentiable on
R+. We now compute the left-handed difference quotient of A�. We find

lim
ε↘0

A�(y) − A�(y − ε)

ε

= 1

�!
�−1∑

k=0

(−1)k
(

�

k

)

(� − k)y�−1−k lim
β↘0

( ∞∑

n=�y	
nksβ(n) −

∞∫

y

zksβ(z) dz

)

+ δ0,�

�! s(y),

where δ0,� denotes the Kronecker delta. For � ≥ 1, the first term on the right hand side equals
A�−1 and the second term vanishes, showing that A� is an antiderivative of A�−1. Thus,
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A� ∈ C�−1(R+). For � = 0 on the other hand, the first term vanishes and the second term
yields the derivative relation.

lim
ε↘0

A0(y) − A0(y − ε)

ε
= s(y), y ∈ R+,

which extends to the undirected limit ε → 0 on y ∈ R+\N+ as A0 is smooth outside of
integers. ��

Using Proposition 4.2, we can now formulate the zero order SEM expansion.

Proposition 4.3 (Zero order SEMexpansion) Let x, a, b ∈ Zwith x ≤ a < b and δ ∈ (0, 1].
Let f factor into f (y) = s(y − x)g(y) with s ∈ S and g ∈ C1[a + δ, b + δ]. Then,

b∑

n=a+1

f (n) −
b+δ∫

a+δ

f (y) dy = −A0(y − x)g(y)

∣
∣
∣
y=b+δ

y=a+δ
+

b+δ∫

a+δ

A0(y − x)g′(y) dy. (4.2)

Proof By the jump relation in Proposition 4.2, we can write the sum on the left hand side of
(4.2) as

b∑

n=a+1

f (n) =
b∑

n=a+1

lim
ε→0

(
A0(n − x − ε) − A0(n − x + ε)

)
g(n). (4.3)

Subsequently (4.3) is divided into two separate sums. On the right hand side, an index
shift is performed in the sum that includes the termsA0(n −x −ε) resulting in the expression

lim
ε→0

b−1∑

n=a

A0(n + 1 − x − ε)g(n + 1) − lim
ε→0

b∑

n=a+1

A0(n − x + ε)g(n).

A recombination of the two sums yields

b∑

n=a+1

f (n) = lim
ε→0

( b∑

n=a+1

A0(y − x)g(y)

∣
∣
∣
y=n+1−ε

y=n+ε
− A0(y − x)g(y)

∣
∣
∣
∣

y=b+1−ε

y=a+1−ε

)

, (4.4)

where the second term results from an adjustment of the differing summation intervals.
Going back to the integral on the left hand side of (4.2), we use the derivative property in
Proposition 4.2 and find

b+δ∫

a+δ

f (y) dy = lim
ε→0

( b∑

n=a+1

n+1−ε∫

n+ε

A′
0(y − x) g(y) dy

+
a+1−ε∫

a+δ−ε

A′
0(y − x)g(y) dy −

b+1−ε∫

b+δ−ε

A′
0(y − x)g(y) dy

)

.

Integration by parts on all integrals in (4.5) in order to remove the derivatives ofA0 from
the expression yields

b+δ∫

a+δ

f (y) dy = limε→0

(
∑b

n=a+1 A0(y − x)g(y)

∣
∣
∣
y=n+1−ε

y=n+ε
+ A0(y − x)g(y)

∣
∣
∣
y=a+1−ε

y=a+δ−ε

−A0(y − x)g(y)

∣
∣
∣
y=b+1−ε

y=b+δ−ε

)

−
b+δ∫

a+δ

A0(y − x)g′(y) dy, (4.5)
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where the integrals have been combined to a single one by taking the limit ε → 0. Subtracting
(4.5) from (4.4), we obtain

b∑

n=a+1

f (n)−
b+δ∫

a+δ

f (y) dy = − lim
ε→0

A0(y−x)g(y)

∣
∣
∣
y=b+δ−ε

y=a+δ−ε
+

b+δ∫

a+δ

A0(y−x)g′(y) dy. (4.6)

As A0 is left continuous (�·	 is left continuous), the proposition follows after performing
the limit ε → 0. ��

We proceed with the proof of the main theorem.

Proof (Proof of 2.1 (SEM expansion)) For � ∈ N, we show that

b∑

n=a+1

f (n) −
b+δ∫

a+δ

f (y) dy = −
�∑

k=0

(−1)kAk(y − x)g(k)(y)

∣
∣
∣
y=b+δ

y=a+δ

+
b+δ∫

a+δ

(−1)�A�(y − x)g(�+1)(y) dy.

The case � = 0 is proved in Proposition 4.3. The case of higher expansion orders � ≥ 1
readily follows via iterated integration by parts, where successive antiderivatives of A0 are
given by (Ak)k∈N, see Proposition 4.2. ��

Finally, the bound on the remainder formulated in Theorem 2.2 is a direct consequence of
the bound onA� from Proposition 4.1 and the defining property of the band-limited function
g, see Definition 2.4.

5 Outlook

In this work, we have developed the singular Euler–Maclaurin (SEM) expansion that, first,
allows for the precise and efficient evaluation of large sums with singularities and, second,
provides precise quadrature rules for singular integrals. With the new method, we can quan-
tify finite-size effects in condensed matter systems with nonlinear long-range interactions,
improving upon standard approximations in the field. Using the forces in a domain wall in a
crystal of charged particles as a physically relevant example, we have shown that the method
provides an approximation to the force sum in a runtime that does not depend on the particle
number and with an approximation error that falls of exponentially with the expansion order
and algebraically in the characteristic lengthscale of the function. Hence we are able to pro-
vide reliable predictions about the properties of solids even formacroscopic particle numbers.
As a first important result, we have shown that the often-used integral approximation tends
to underestimate the absolute value of forces inside a domain wall if the particles interact
via the Coulomb repulsion. We expect that the SEM expansion will serve as an important
tool in condensed matter and quantum physics, helping us to replace qualitative estimates by
reliable predictions. It would for instance be interesting to determine precise time evolutions
and stationary states through the solution of the integro-differential equations that arise from
the application of the SEM.
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A Proof of Theorem 3.1

Proof Forβ > 0, y > 0 andμ ∈ R\N+, we consider limβ↘0
(
S(β)− I (β)

)
for the difference

between the sum

S(β) =
∞∑

n=�y	
e−βnn−μ

and the integral

I (β) =
∞∫

y

e−βz z−μ dz.

Owing to Eq. (8) in [16, Sec. 1.11],

lim
β↘0

(
S(β) − �(1 − μ)βμ−1eβ�y	) = ζ(μ, �y	),

where � denotes the gamma function. For the integral I (β), there holds, see Eq. (5) in [17,
Sec. 9.2],

lim
β↘0

(
�(1 − μ)βμ−1 − I (β)

) = − y1−μ

μ − 1
.
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Combining both results yields

lim
β↘0

(
S(β) − I (β)

) = ζ(μ, �y	) − y1−μ

μ − 1
.

Inserting this in Definition 2.2 shows

A�(y) = 1

�!
�∑

k=0

(−1)k
(

�

k

)

y�−k

(

ζ(ν − k, �y	) − y−(ν−k−1)

ν − k − 1

)

,

for � ∈ N and ν ∈ R\N. For ν ∈ N+, above expression has a removable singularity.
Given k ∈ N, we write

ζ(ν − k, �y	) − y−(ν−k−1)

ν − k − 1
= ζ(ν − k, �y	) − 1

ν − k − 1
− y−(ν−k−1) − 1

ν − k − 1
.

By Eq. (9) from [16, Sec. 1.10], the first difference tends to

lim
ν→k+1

(

ζ(ν − k, �y	) − 1

ν − k − 1

)

= −ψ(y),

where ψ is the digamma function [16, Sec. 1.7]. The last term is the difference quotient of
the function

ν �→ y−ν−k−1,

evaluated at k + 1. Therefore, the limit equals − log y. In total, we have

lim
ν→k+1

(

ζ(ν − k, �y	) − y−(ν−k−1)

ν − k − 1

)

= −ψ(�y	) + log y.

The last term can be expressed as [16, Sec. 1.7.1, Eq. (9)],

−ψ(�y	) + log y = γe − H�y	−1 + log y,

proving Theorem 3.1. ��

B Bernoulli-A Functions for Constant Interaction

For a constant interaction, s = 1, we show that

A�(y) = B�+1(1 + y − �y	)
(� + 1)! , y > 0, � ∈ N,

by proving that both sides are 1-periodic functions that coincide on (0, 1] and hence for all y.
Periodicity of the Bernoulli-A functions for s = 1 follows from Definition 2.2 after noting
that

A�(y + 1) = lim
β↘0

1

�!
( ∞∑

n=�y	+1

(y + 1 − n)�e−βn −
∞∫

y+1

(y + 1 − z)�e−βz dz

)

= lim
β↘0

1

�!e−β

( ∞∑

n=�y	
(y − n)�e−βn −

∞∫

y

(y − z)�e−βz dz

)

= A�(y)
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for all y > 0. As 1 + y − �y	 = y for y ∈ (0, 1], it remains to be shown that

A�(y) = B�+1(y)

(� + 1)! , y ∈ (0, 1].

From the recurrence relation of the Bernoulli polynomials in (1.2) follows that above
equality holds if

A0(y) = y − 1

2
, A′

�+1 = A�,

1∫

0

A�(y) dy = 0 (B.1)

for all � ∈ N. By Proposition 4.2, we have A′
�+1 = A� and since A�+1 is continuous on

[0,∞),

1∫

0

A�(y) dy = A�+1(1) − A�+1(0) = 0,

for all � ∈ N. For the computation of A0 on (0, 1] we use Theorem 3.1,

A0(y) = ζ(0, 1) + y = −1

2
+ y,

and hence (B.1) holds.
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