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Sparse Spectral-Galerkin Method on An Arbitrary
Tetrahedron Using Generalized Koornwinder Polynomials

Lueling Jia* Huiyuan Li’ Zhimin Zhang*

Abstract

In this paper, we propose a sparse spectral-Galerkin approximation scheme for solv-
ing the second-order partial differential equations on an arbitrary tetrahedron. Generalized
Koornwinder polynomials are introduced on the reference tetrahedron as basis functions
with their various recurrence relations and differentiation properties being explored. The
method leads to well-conditioned and sparse linear systems whose entries can either be cal-
culated directly by the orthogonality of the generalized Koornwinder polynomials for dif-
ferential equations with constant coefficients or be evaluated efficiently via our recurrence
algorithm for problems with variable coefficients. Clenshaw algorithms for the evaluation
of any polynomial in an expansion of the generalized Koornwinder basis are also designed
to boost the efficiency of the method. Finally, numerical experiments are carried out to
illustrate the effectiveness of the proposed Koornwinder spectral method.

Keywords: generalized Koornwinder polynomials, tetrahedron, spectral-Galerkin method,
sparse, well-conditioned
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1 Introduction

Spectral element methods with unstructured mesh have been widely used in the study of com-
putational fluid dynamics, elastodynamics, resistivity modeling and many other fields due to
their “spectral accuracy” [30, 17, 35, 22]. Their virtue of high accuracy also makes spectral
(element) methods powerful tools for solving eigenvalue problems as they are able to provide
more reliable eigen-solutions than the low order methods such as finite element methods and
finite difference methods [34, 3]. Meanwhile, as simplices are one kind of the basic geomet-
ric elements, their use gives flexibility in the discretization of complex domains. In view of
this, spectral methods on simplex elements, especially on tetrahedra in three dimensions, with
sparse structures in discrete matrices, play a fundamental role in designing accurate and efficient
numerical schemes in practical applications.

Based on the Galerkin framework, the accuracy and computational effectivity of the nu-
merical scheme depend on the choice of basis functions. Hierarchical basis functions defined
in the barycentric coordinate system on the tetrahedron have been proposed and developed in
[25, 32, 8, 1], which possess good symmetry but lack useful orthogonality. Thus, it requires
complicated numerical integration for obtaining linear systems in high order case. In the Carte-
sian coordinate system, although a fully tensorial spectral method using rational basis functions
put forward in [20] has spectral accuracy in approximations and can be implemented effectively,
the use of orthogonal basis polynomials is more natural. Koornwinder polynomials form a fam-
ily of fully orthogonal polynomials with respect to a particular weight function on the simplex
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[18] and its simplest family, the L?>-orthogonal Koornwinder-Dubiner polynomials have been
studied in [10]. Motivated by generalized Jacobi polynomials [13, 14, 29], some progress on
numerical schemes and theoretical analysis have been made for generalized Koornwinder poly-
nomials on triangles [19, 28, 24]. Indeed, generalized Koornwinder polynomials simplify the
design of shape functions in triangular spectral element approximations with efficient numerical
algorithms and well-conditioned sparse linear systems. However, few results are achieved for
the extension of generalized Koornwinder polynomials to tetrahedra, although polynomial basis
functions for tetrahedral elements have been proposed by Sherwin and Karniadakis based on
classical Koornwinder polynomials in 1990’s [31, 17], and by Beuchler et al. based on inte-
grated Jacobi polynomials in 2000’s [6, 4, 5].

In this paper, we first introduce the generalized Koornwinder polynomials on a reference
tetrahedron and explore their various recurrence relations and differentiation properties. We
then propose a sparse spectral-Galerkin method for second-order partial differential equations
on an arbitrary tetrahedron by employing generalized Koornwinder polynomials to design modal
basis functions in simple presentations. The sparsity that exists in various recurrence relations
of generalized Koornwinder polynomials allows us to assemble the discrete matrices efficiently.
Indeed, a generalized Koornwinder polynomial of certain order or its derivatives are equal to a
finite combination of Koornwinder-Dubiner polynomials. For differential equations with con-
stant coeflicients, the integrals of two generalized Koornwinder polynomials or their derivatives,
which are entries of the stiffness matrix and the mass matrix, can be exactly evaluated by the
expansion coefficients and the L?-orthogonality of Koornwinder-Dubiner polynomials. For the
case of variable coefficients, the three-term recurrence relation for generalized Koornwinder
polynomials yields a recursive assembling of the mass matrix that only requires O(M®) oper-
ations (for polynomials of total degree < M), instead of the complexity of O(M°) by directly
using numerical quadrature. The three-term recurrence relation also admits an efficient imple-
mentation of the Clenshaw algorithm [9] to evaluate the generalized Koornwinder expansions
in O(M?) operations. More importantly, a numerical study reveals that the sparse linear system
resulted from our spectral-Galerkin method has a condition number asymptotically in O(M*),
which is superior to O(M”) for those using classical Koornwinder polynomials and O(M'?) for
those using integrated Jacobi polynomials. Hence, our linear system is well-conditioned and
can be efficiently solved.

The paper is organized as follows. In Section 2, we formulate definitions and basic prop-
erties of generalized Jacobi polynomials and generalized Koornwinder polynomials, includ-
ing their various recurrence relations and differentiation properties. In Section 3, an efficient
implementation of the Clenshaw algorithm for Koornwinder expansions based on the three-
term recurrence relation of generalized Koornwinder polynomials has been studied. The sparse
spectral-Galerkin method for second-order partial differential equations on an arbitrary tetrahe-
dron using generalized Koornwinder polynomials together with its implementation is presented
in Section 4. We report some illustrative numerical results to confirm the sparsity as well as
exponential orders of convergence of the method in Section 5. Finally, a conclusion remark is
given in Section 6.

2 Preliminaries

Let Q c R3 be a bounded domain and w be a weight function. Denote by (-, ), and || - ||,,.q the
inner product and the norm of LfV(Q), respectively. H} (€2) and HS’W(Q) are the usual Sobolev
spaces with respect to the weight function w. Denote by Z, N, Ny and Z~ the set of integers,
positive integers, non-negative integers and negative integers, respectively. Further let /,, €
R™™ be the identity matrix and e,, be the unit column vector only with its n-th entry being 1.

For any M € Ny, let £);(Q) be the space of polynomials of total degree no greater than M
in Q and denote

2.1)

dy = dim Py, (Q) = (M+3).

M
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Qand w (if w = 1) could be dropped from the notation when no confusion would arise.
Let 7 be the reference tetrahedron defined as

A

T = {.’ﬁ = ()?1,)’52,)’53)1- -0 < )?1,)?2,)?3,)?1 +)’52 +)’53 < 1},
with vertices
Py=(0,0,00", P;=(1,0,00", P,=(0,1,00", P3=(0,0,1)".

Moreover, let (a - b) and a X b denote the dot product and the cross product of any a,b € R>,
respectively. Denote (a,b,c) = a-(bxc) =b-(cXxa) = c-(aXxb) as the triple product of
any a,b,c € R3. For any £ = (£1,62,03) € Ng and o = (g, a1, @2, @3) € R?*, we introduce the
following multi-index notation

|E|=f1+€2+€3, |a|:a/0+a/1+az+a/3,
0=ty ), W=+ + ¢ 1<i<2,i€eN,
ol = (g, ,a)), la/| = ap+ -+ +aj, 0<j<2 jeN.

2.1 Generalized Jacobi polynomials

Let I = (-1,1). For any k € Nj, the classical Jacobi polynomial JZ"B (z) of degree k with
a, 3 > —1 has the following representation in hypergeometric series,

k . j
, (@+ j+ Dijlk+a+B+1); (z-1Y
ACEDY P () 0.2)
]:

where (a), = a(a+ 1)---(a + n — 1) is the Pochhammer symbol. Classical Jacobi polynomials
are mutually orthogonal with respect to the Jacobi weight function @w®#(z) := (1 — 2)2(1 + z)5,

(Ja,ﬁ Jq,ﬁ) ] = 20+ﬁ+1ha,ﬁ6k ) ha,ﬁ _ Ilk+a+DIk+B8+1)
g ke TR TR T Qk+a+ B+ DIk+ DIGk+a+B+ 1)

k, j € Ny,

(2.3)
where 6y ; is the Kronecker delta. From the representation (2.2), the index parameters a and/or
B of Jacobi polynomials could be extended to any real numbers. In the case of a and/or 8 being
negative integer parameters, they are exactly generalized Jacobi polynomials attracting much
attention in literature for their applications in scientific computations [13, 14, 29]. However, a

degree reduction occurs if and only if -k —a - € {1,2,--- , k}. In this paper, we are interested
in the generalized Jacobi polynomials when @ = —1 and/or § = —1. At first, we directly obtain

from (2.2) that
ol =1, Jol = KEeT L er oy sy I 24

_ _ k+pz-1
LPo=1, 1Y%= TTJ,}_BI @), k>1,8>-1. (2.5)
Meanwhile, we modify the definition of J 1_1’_1 and then obtain the following complete system:
1 1 1 z—1z+1

VMo=1 Moo= o= 5 @, k=2 (2.6)

Some important properties on generalized Jacobi polynomials are derived from [29, (3.110)-
(3.111)] and [2, (6.4.20)-(6.4.22)] with piecewise coeflicients. We summarize these conclusions
in the following lemmas.



Lemma 2.1 Forany k € Ny and a,8 > —1, the three-term recurrence relation for JZ’ﬁ (z) holds,

PP (@) = d T @) + a3 I @) + a§L T ), 2.7)
where

(1,0,0), k=0,0=p8=-1,

(723> 2552.0). k=0,0+p%# -2,
(a?”f,ag”f,a;’f): 4,0,1), k=1, a=8=-1,

(3.0.0), k=2a=p=-1,

((zkfék:;;i(lﬁ?i:ﬁaﬂﬁlz) ’ (2k+a+,g)2(;1(:ia+ﬁ+2) ’ (2k+§$)72)gfﬁﬁ+1) ) , otherwise.

Lemma 2.2 Forany k € Ny and «, 8 > —1, the generalized Jacobi polynomials JZ"g (z) satisfy

1@ = by P @) + P P (), (2.8)
I @) = b1 @) - 1 @), (2.9)
@ = 0 + ST @ + L5 0. 210
where
(1,0), k=0,0.8> 1,
(b7, b5%) = @.-D), k=1l,a=p=-1,
( 2](1:2@:11 T 2k+];+JrBﬂ+1 ) . otherwise,

af  af a,ﬁ) _( af o+l jaBa+lp aB,a+1.8 jaB a+1,ﬁ)
(Cl,k’CZ,k’C3,k =(bylyg Toby by T by by by by )

Lemma 2.3 Forany k € Ny and a, 8 > —1, the generalized Jacobi polynomials JZ’ﬁ (z) satisfy

%Jﬁ IMCEEA AR /HIC) 2.11)
%J ACETAT ARG (2.12)
2
(%) IH@ = @ + 8 @ + 8500 @), 2.13)
where
(%’_%)’ k=0,0=8=-1,
(et e5) =1 0.-1), k=la=p=-1,

( kta+l k+l
2k+a+p+2°  2k+a+p+2

af  af a,ﬁ) _( a+1.8 af a+1,8 ap a+1,8 ap a+1,8 a,ﬁ)
(gl,k’gZ,k’g3,k =Gk st €k Gk Tk Cii+ €1k C1k)-

) , otherwise,

Lemma 2.4 Forany k € Ny and a, 8 > —1, the generalized Jacobi polynomials JZ’ﬁ (z) satisfy

0.0 (@) = &P I P (), (2.14)
where
| k=1la=8=-1
da,ﬁ — ) ) )
k %, otherwise.

Hereafter, we use the convention that JZ"B = bff = bgf =0fork<O.
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2.2 Generalized Koornwinder polynomials

For o = (g, @1, @2, @3) € [—1, +00)*, the generalized Koornwinder polynomials [Tg"(sﬁ), L =
(t1,02,03) € Ng on the reference tetrahedron 7~ can be defined through the generalized Jacobi
polynomials and the collapsed coordinate transform from the reference cube to 7~ [20] as

2,\
Tg@) = T (@) = (1 - £ — &)1 170 (% : 1) (1-1)2
e X2 A3
. (2.15)
XJtZ;fl+a'()+a/1+l,a/2 ( 2x2 _ 1)JZ{’I+2t’2+ag+al+a/2+2,a3(2)%3 _ 1)

1 - X3 (&

Denote by y(x) = max(|—x],0) where |s] is the integer part of the real number s. The gener-
alized Koornwinder polynomials J;*(&) are fully orthogonal with respect to the Jacobi weight

function w™(&) := (1 — & — X — 23)*&]" 232357,
(T TE) e = Ve0eks Ok 2 x(@0) + x(@1), O k2 2 x(@2), b3,k3 = x(@3),
' (2.16)
o g, 2€1+a/0+al+1,(12 2t’1+2t’2+a/0+a/1+(12+2,a/3
Ye = hfl ht’z hfg >

where hZ’ﬁ is defined as in (2.3).

Various recurrence relations and differentiation properties of generalized Koornwinder poly-
nomials are consequently achieved according to those of generalized Jacobi polynomials in
Lemma 2.2-2.4. For the sake of brevity, we conclude these identities of generalized Koorn-
winder polynomials in Appendix A-B.

Define the column vector

o R
Py k0t (L)
| < I ()
1 K, Lm—k—1
pi=| " |, PI= " , 0<k<m,
P:Z jlgm—k,o(:i:)

for all generalized Koornwinder polynomials of degree m. It is well known that

+2
P eRX, = (’" ) 2.17)
m
Thus, the following column vector
PO
Pl
Py=| . | (2.18)
pM
contains all generalized Koornwinder polynomials of degree no greater than M.
The three-term recurrence relation for J7* is concluded in the following theorem.
Theorem 2.1 For any € € Ng and o € [—1, +c0)?, it holds that
111
MIE@ = D DY Coarlbe T g @, (2.19)
p=—1¢g=—1r=-1
11
BIF@) = Y. > Gl )T g @), (2.20)
g=—1r=-1
1
BIF@) = Y ClTE 0@, (2.21)

r=—1



where €, 4 (£, o), €y, (£, o) and €, (£, o) are expansion coefficients presented in Appendix C.
Equivalently, for any m = €] € No and & € T, there exist unique matrices A,, € R3m*m+1,
Bu(&) € R¥»*'m and C,, € R3m-1 with

1 1
E) F, Y, %,
G, E| F x!y!
1 1
X2 Zm—2
| 1 1 m—1
Gm Em Fm Xl,ln
Ej Ys
2 2
El Yl
Am = ) Cm = k)
2
Ym—l
E;,
3
EO Y3
E3 0
1 y13
3
Ym—l
E;,
Vi-&81 W,
uovi-s1 w
U,
1 o 1
Vv = xll Wm—l
Ul VI — 1
V2 -l
V-l
By(®) = ,
V2 -l
V2 — il
Ve — 23l
Vi- i3l
V3o -l
V3 — i3l
such that
A P" ! 4 B (2)P" + C,,P" ! =0, (2.22)

where E,’( € RO+1-k)x(m+2-k) V]i € Rm+1=kx(m+1-k) 4,4 Y]i e R+I-0x(m=k) g0 tridiago-
nal for i = 1,2 and diagonal for i = 3; F ]1 e ROmHI-ox(m+l-k) Wk1 e ROHI=0X0n=b g
Z,i e RUHI=OXn=k=1) gre lower tridiagonal (i.e., the main diagonal plus two immediate sub-
diagonals); and Gli e R(m+l—k)><(m+3—k)’ U]i e R(m+l—k)><(m+2—k)’ and Xli c R(m+l—k)><(m+l—k) are
upper tridiagonal (i.e., the main diagonal plus two immediate supdiagonals).



We also postpone the derivation of coefficients &), ; (£, o), 6, (£, ) and €.(£, o) to Appendix
C. In this paper, we are more interested in generalized Koornwinder polynomials of the case

Je@) =T, @), (2.23)

which would be used to design modal basis functions for tetrahedral spectral elements.

3 Clenshaw algorithm for Koornwinder expansions

In general, the Clenshaw algorithm is designed to evaluate the sum of a finite series of func-
tions which satisfy a linear recurrence relation. In this section, we set focus on the Clenshaw
algorithm to evaluate the following Koornwinder expansion on the reference tetrahedron,

M
(&) = Z Je T8 @) = Py"Fy, &e€7,MeN, (3.1)
|£]=0

where Py, is defined as in (2.18), and

FO Fy Seom-r
F! F7 Fetm—i—1 0<k<
_ : m _ |1 m _ S S k=m,
Fy = | with F" = | F/ = :  0<m<M
v F, Fem—k0

Indeed, the three-term recurrence relation (2.22) yields
GuPy = ey, (3.2)
where Gy, is a block lower tridiagonal matrix
1
Bo(Z) Ao
Gy=| G Bi@ A
Cy-1 By-1(@) Apy-

It has been concluded in [11, Theorem 3.2.4] that the matrix A,, has full column rank and there
exists a generalized inverse D,, € R'»+>3"» such that

DA = 1.

We claim that the sparsity of A, admits a sparse D,, as follows,

2 3
0 D} D}
Dy = 0 D2 D} B3
Dy, D,
v,ln '031_1 'v,%l 1;31_1 '031

where D7, D} € RUm2-0xtmt1-0) g2 43 € R1? and v}, v2, v}, € R. Indeed,

m— m>

22 313
DyE; + DyE;

D’E} + DIE?
DAy, =
2 2 3 3
Dm—]Em—] + Dm—lEm—l

2 2 3 3

DmEm + DmEm
11 2 2 3 3 1l 22 33 1l
vam + vm—lEm—l + vmflEmfl vam + vam + vam vam




leads to

DIE;+DJE; =1, 0<k<m, (3.4)
v Fl =1, (3.5)
v),G), +v2 EX | +vi E} | =0, (3.6)
v El + v2EX + v E3 = 0. (3.7)

Note that F), € R, G}, € RP3, El e R for | <i <3 with Ej,(1,2) = 0, while E2 | € R is
diagonal and E2 | € R* is tridiagonal. Combining (3.5) with (3.7) yields

E} 0
(2, v2, v E2 0 [=(0,0,1).
E, F,
Thus, we solve that
3 - - 0 0
E3 0 Ej(1,1)
302 1y T |2 T ___EaD 1
(Vs Vs V) = €3 | Ey 0] =5 En(LDEL(1.2) Ziy 0
El Fl ELUDEL(D-EL(LDER(2)  _ Eha2 | (38)
FLES(1L,DEZ(1,2) EX(12)F)  F}
_ (Ex0DELAD-Ey (LDE;(12)  Ey(12) 1
- FLES(1L,DEZ(1,2) > OFLEZ(12) FL)C

Substituting (3.8) into (3.6) and letting 'Uﬁl_l(l) = 0, we further obtain
E? 1
(1)3_1,1)2_1(2))( 5 m—1 ):—_Gl.
el o E, 20 FL,"
Owing to fact

1

—_— 0
sl Ep (1D
E 1
m-1 _ 0 —_— 0
= E3 (22 >
E2 (2 ) ) -]
m—137" _ Em—] 2.1 _ Em—] (2.2 1
E3_(LDE2_(2.3) El_QDE’_(23) E2_(2.3)
we find that
2 _ (o __Gu(3)
Um-1 _(O’ FLE (23))
m—1 (39)
o} = GLUE:  (2.D-GL.DE:_(23) GL(3E2 | (2.2)-GL(1.2)E2_(23)
m—1 FLES (LDE?_(2.3) > FLES Q2E?_(2.3)

We now determine Di and Dz from (3.4). Assume Dlz(:, 1 : m—k) = 0. Then (3.4) becomes

D3, D 1 -k B =1
D D + 1= ))(Eg(mﬂ—k,:))_'

Since E} € RU170x(m+270) g diagonal and E7 € R0+ -0x(m+270) i tridiagonal, we derive

1
3
E3(11)
E3 - 3
2 . - _ ’

E; m+1-k,:) E} (m+1—km+1-k)

2 _ _ 2 _ _
—,Bk E; (m+1-k,m—k) —ﬂk E; (m+1-k,m+1-k) ,Bk

E} (m—k,m—k) E} (m+1—k.m+1-k)




by denoting By = and E]%(l, 0) = 0. Thus,

N S
EX(m+1—k,m+2—k)

1
- 0
E}(LD)

1

EXm—kom—) , D= 0 . (3.10)

1

E (m+1—k.m+1-k) 0

E%(m+1—k,m—k) E%(m+1—k,m+1-k)
—Br—% Bk 75

EZ (m—lm—10) E3 (mt 1—km+ 1K) Bk

=
Il

From (3.2) and the definition of D,,, one readily obtains that
GuPy = e, (3.11)

where

1
DoBo(@) I
Gy = ‘ Gy =| DiCi DiBi(2) 1

Dy - o
M- Dy-1Cpy-1 Dy-1By-1(2) 1

(3.12)
Combining (3.1) and (3.11), one has
f(&) = Py'Fy = ]G, Fy.

Denote

bO

bl

Gy Fy=by, withby=| . | b erR™ 0<m<M.

M

Then f(&) = b° is exactly the first entry of by, which can be solved recursively by

bM — FM
pM-1 — pM-1 _ B-lll-/l—l("%)D-lll-/I—l M’ (3.13)
b" = F" - Bl (&)D) b - CT DI ™2 m=M-2,M-3,...,0.

m+1"m+1

Thus, we summarize the Chenshaw algorithm as follows.

Algorithm 1 The Clenshaw Algorithm
Input: M, F;, A;, B(2)0<i<M-1),C;(1<i<M-1)
Output: the value of f(&)
1: Compute the matrices: Dy, Dy, - - - Dy— from (3.3), (3.8), (3.9) and (3.10).
2: Solve the linear equation:

G by = Fu, (3.14)

through (3.13), where G is defined as in (3.12).
3 f(&) = b

Since it contains at most thirteen non-zero entries in each column of B,, and C,,, and at most
. 3 : )
two non-zero entries in each column of D,,, only 53TM +O(M?) operations are required to solve
(3.14). In return, the Clenshaw algorithm shares the same order of complexity.



4 Sparse spectral-Galerkin method on an arbitrary tetrahedron

In this section, we shall design sparse spectral-Galerkin approximation scheme on an arbitrary
tetrahedron 7~ with vertices

a0 = WP 0553
which is affine equivalent to the reference tetrahedron 7~ via

V9 5T, (4.1)

4.1 Variational formulation and numerical scheme

Consider the second-order model equation on the tetrahedron 7 :

{—Au(;c) +y(@u(z) = f(x), TeT, w2

u(x) = g(x), x €07,

where y > 0. The variational formulation of (4.2) reads: to find u € H'(7") such that u = g on
07 and
ay(u,v) 1= (Vu, V)7 + (yu, vy = (f,v)7, Vv e Ho(T). (4.3)

v is dropped from the notation a,(-,-) when y = 0. It is straightforward by the Lax-Milgram
lemma [12] that (4.3) admits a unique solution.
For any M € Ny, define the approximation space as

Xy := Pu(T) N HNT),  Xugo := Pu(T) N HY(T).

Then the numerical scheme for (4.3) reads: to find uy; € X, such that

{ay(MM,VM) =(fvmdr, Yvm € Xumo, @.4)

(um, dmdor = (8- Imor» Yom € Xy \ Xuro-

It is worthy to note that the second equation in (4.4) defines a unique up € Xp \ Xar0, and the
Lax-Milgram lemma implies a unique solution uy € Xyz,0 to a,(uo, vy) = (f, V)7 — ay(up, vr).
Thus uy; = up + up is uniquely solvable.

For the Laplacian eigenvalue problem:

-Au(x) = pu(x), 7,
{u(w)(:)o, e x € aT'r, >
the variational formulation is defined by
a(u,v) = u(u,v)y, VYve H&(T), (4.6)
and the corresponding numerical scheme reads: to find uy; € X0 such that
aluy,vm) = pumup, v)7, Y € Xump. 4.7

4.2 Implementations
4.2.1 Shape functions

The space X, provides much of convenience in treating non-homogeneous boundary conditions
and in enforcing continuity across the interface for the tetrahedral spectral element method. Let

Xy = {pe() = Go(&) o P! 1 0 < £y, 5, 63, 18] < M),

10



where Y is defined as in (4.1) and @, are proper basis functions defined on the reference tetra-
hedron. We further let F ; be the face opposite to the vertex P ; and

Ep=PiP,, 0<j<k<3,

denote the edge of 7~ within the endpoints P; and Py.

Modal basis functions are split into interior and boundary modes (including face, edge and
vertex modes). The interior modes are identically zero on the tetrahedron boundary, and the
face modes only have magnitude along one face and are zero at all other faces, while the edge
modes only have magnitude along one edge and the vertex modes only have magnitude at one
vertex.

e Interior modes:

Qt1.62.6(X) = T, 00,6,(2), (01 22,00 >1,63 > 1).

e Face modes:

R . .. -1 .
Fo: @10-16) = Jo,6,6,(2) — 5—231,52—1,63(33), (lr>22,03>1),
. . . . 6 —1 .
Fi: @o.6,,6,(2) = J0,00,65(2) + 252 J16-1,6E), (222,03 21),
Fr:o @006&) =06, (G=22,02>1),

F3: @0.060&)=TJ60E), (1=22,062>1).

e Edge modes:

Eot : @0,00(&) = T 00@), (612 2),

~ . R R 0>
Eyn : ©0.60@&) = Jo.e0(2) +

-1 A
7 J1.6-10(2), (62 = 2),
b

. . R 1 R {3 —1 R {3 —1 R

Eoz : @0,0,6(2) = 5«70,0,[3("3) + 2—5330,1,63—1(33) + A J1,0.5-1(Z), ({3 > 2),

. R R 1 . ;-1 . ;-1 .

Eiz: @106-1(2) = 2900,6(Z) + Jo1,6-1(Z) — J10.6-1(2), (63 > 2),
2 203 {3

R R . . -1 .

E: P16-10&) = Joe0(@) — 751,62—1,0(33), (6 > 2),

N . R R {3
Ey i @o1,6-1(2) = Jo,0,6,(2) —

1 A
7 Jo1,6-1(2), (f3 = 2).
3

e Vertex modes:

o 1 ) 1 )
Po: $000&) = J0,00&) — 2T1,00(Z) — =T0,10(&) — 5J0,0,1(Z),

8 2 4 8
~ . R 1 R 1 . 1 . 1 R
Py @ro0(@) = gjo,o,o(w) + 531,0,0(83) - Zjo,l,o(w) - gjo,o,l(al),
N . R 1 R 1 . 1 .
Py @o0(@) = Zﬂ'o,o,o(a’f) + 5[70,1,0(50) - Zjo,o,l(w),
~ . R 1 R 1 .
P3: ¢op1(2) = 550,0,0(3'3) + 5[70,0,1(50)-

Remark 4.1 Similar shape functions have been studied in literature, including the modal basis
functions proposed by Sherwin and Karniadakis based on mixed-weight Jacobi polynomials [31,
17] and those designed by Beuchler et al. employing integrated Jacobi polynomials [6, 4, 5].
Both of them are expressed as a generalized tensor product of polynomials in one dimensions. In
comparison, our modal basis functions have a simple presentation in generalized Koornwinder
polynomials. Specifically, these three kinds of modal basis functions coincide, up to generic
constants, with each other in interior modes and main differences exist in boundary modes.
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4.2.2 Equivalent algebraic system

We shall examine the linear system associated with the numerical scheme (4.4) and (4.7) when
g = 0. It is obvious that ¢, of interior modes provide a series of basis functions for X, that

Xm0 = span{pe(x) : €1 = 2,05, 03 > 1,€] < M}.

The basis polynomials are arranged in @), such that

7y @i Pl,6,1
d) ~ ®3 th _— 906’1,2 _ B 9051,[2,2 1 < [2 < M — [1 - 1,
m=| . | witheg, = : o PO = : 2K < M=-2.
@m-2 ‘15(1,M—51—1 $l.0.M-t-0

Let
M=2 M—t,-1 M—€,—

uM(w)—Z Z Z Tppe().

H=2 b=
The linear system induced by (4.4) becomes

(S+M))a=f, (4.8)
where
S= f [VOu(@)][VOu(@)] dz, M, = | @)Dy @)Dy (x) de
T T
f= f f(@)®y(x)de,
.
iy Qe 1 Uy 01
| s i - U2 | uwae 1<t <M-6 -1,
= : ,  With ug = . o W = : ’ 2<6<M-=-2.
ﬂM—Z ’a’fl,M—[l—l af[,fz,M_[l_ﬁ

The non-zero entries of S and M, (if v is a constant) can be exactly evaluated owing to the
orthogonality. Furthermore, the numerical scheme (4.7) for eigenvalue problem is equivalent to

the following system:
St = uy M. (4.9)

Here we drop the notation y from M, wheny = 1.

We depict the non-zero patterns of the stiffness matrix S and the mass matrix M in Figure
4.1. It is observed that S is a block penta-diagonal matrix and M is a block tri-diagonal matrix,
with all blocks being hepta-digonal, which confirm the sparsity of the discrete matrices.

200 200 -

400\ 400
600 - 600 -
800 800 -
1000 - 1000 -

1200 -

1200

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
nz = 126720 nz = 128252

Figure 4.1: The sparse pattern of S (left) and M (right) on the reference tetrahedron when
M =22,
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Remark 4.2 Condition numbers of the stiffness matrix and the mass matrix associated with
different interior bases are quite different. Without preconditioning, condition numbers of ma-
trices generated by basis functions based on integrated Jacobi polynomials [4] and by the ones
proposed by Sherwin and Karniadakis [31] grow as asymptotically as O(M'®) and O(M"), re-
spectively. While the condition number of the stiffness matrix induced by our spectral-Galerkin
method only grows in O(M*), which shares the same order with that of the diagonally precon-
ditioned matrix as Figure 4.2 indicated.

10%° = 10%° 10%2
o

—o-cM”

108 __ MY

10°

Cond.

10*

10%

0
1012 14 16 18 20 22 24 26 12 14 16 18 20 22 24 26 12 14 16 18 20 22 24 26

M M M

Figure 4.2: Condition numbers of S + M (left), S (middle) and M (right) associated with

different interior basis functions against M: Jp (marked by “ A ); diagonally preconditioned

(marked by “ v ”’); basis functions associated with integrated Jacobi polynomials (marked by
+ 7); basis functions proposed by Sherwin and Karniadakis (marked by “ ¢

4.2.3 Stiffness matrix assembling

To assemble the stiffness matrix, we need to evaluate the integral (Vep, Vor,)s. Indeed, the
linear mapping ¥ defined in (4.1) has the following explicit form:

z=P@) =200 -3 - -2 +2V% +2P% + 2P 2;. (4.10)

It is straightforward by the chain rule in calculus that

3
= > (V- VE) R +2 > (V- Vi) 95,05

Jj=1 1<j<k<3

3
- T I)E S (99 e R) - Y (98098 (0505
j=1 1<j<k<3 I<j<ks3

3
= N (Ve VG 4+ 5) 3~ > (Ve Vi) (5, - os,)

=1 1<j<ks3

Combining with geometric interpretation of the cross product and the triple product, it then
follows from (4.10) that

(@ -2 )x(x® —z©) |Fy|

Vi = @20 050 £O_g0) — —37 1
Vi, = (m(3)—w(°))x(m(”—w(°)) _ _@n
2= (N -2, 22 —2O0) O —gO0) = 3|7 2
Vix = (m(l)_w(U))X(m@)_w(U)) _ —ﬂn
37 @20 2020 £0_z0) — 37 3>
R R R @ _Wyse(® (D
V(R +dp+ 83) = a2 Xz ) g,

(m(l) m(o) 22 20 CIJ(S)—GIJ(O)) 317

13



where F; denotes the face opposite to the vertex P; and m; is the outward normal vector of the
face F; on the tetrahedron 7~ for 0 < j < 3; |77 and |F'}| stand for the volume of 7~ and the area
of F;, respectively. Further let (F';, F) be the dihedral angle of the face F; and F. Then

VR, V(G + bt 1) = L R Fy, 1< <3
i 1 2 3 TP 0-1j75 =)=,
Vi Vi = I R F. 1< j<k<3
] k 9|7.|2 VA k ’ — .] — 1)
since 1 j-my = —cos(F;, Fy) when j # k. Thus, the elements in the stiffness matrix are evaluated
by
3
(Ve Voor == 57 | 1ROl cos(Fo, Fp (05,00, 95,04),

J=1

b I oS, Fi) (05, - 03)00 O, — 05)00);. |

1<j<k<3

According to Lemma B.1 and Lemma A.1, each derivative on the reference tetrahedron 7 is
exactly a finite series of Koornwinder-Dubiner polynomials, which allows us to evaluate the
accurate matrix entries by the orthogonality.

4.2.4 Mass matrix assembling

When v is a constant, the entries of the mass matrix could be evaluated by

(e i) = YT | (Pe, Pre)g- - (4.11)

Again, each ¢y is a finite expansion of Koornwinder-Dubiner polynomials based on Lemma A.1
so that the integration in (4.11) could be evaluated exactly via the orthogonality.

However, when y = y(x) is a variable coefficient, the cost in order to obtain M, is O(M %) by
using the qualified numerical quadrature. In this subsection, we shall assemble the matrix M,
associated with a variable coefficient recursively by making use of the three-term recurrence
relation (2.22) to reduce the order of complexity to O(M°®).

We first rearrange the basis polynomials {¢p} with respect to the total degree in @), where

P4 Pm2 Pk,1,m—k-1
Dy = Ps5 h B Pm3 B Pk,2,m—k-2 2<k<m-2,
M = ,  with @, = . sy Pmk = s d<m<M
@M Pmn—25 Pkm—k—1,1
Then, the matrix in a block form
Hys -+ Hypy
f V(@) () Dy (z) dz = . : , 4.12)
.

Hya -+ Hywm

with
Hy = f y(sc)cpm(ac)cpk(sc)Td;c, 4<mk<M,
T

could be regarded as a rearrangement of the rows and columns in the matrix M,.
For convenience, all coeflicient matrices in the three-term recurrence relation (2.22) and the
generalized inverse D,, are equally partitioned into three blocks,

Al xil Bl c) Lo
An=| A% |. Bu@+| xl |=| B |. Cu=| C4|. Dn=(D).D;.D;).
A} x3l B}, (054

14



For any integer 1 < i < 3, it is straightforward to obtain that

fr V@) xipn(@)pr(@) de = fr V@) (Chpm1 (@) + Bhpn(®@) + Al o (@) pr(a) d
=C Hy_14+B Hyx+A Hy\ix
= fr Y(@)on(@) (Clipri(@) + Bipu(@) + Algprn (@) da
= Hyj1 Ci7 + Hy i BT + Hyp g1 AL
As a result, it holds that
AL Hyi1 g = Hyjo1 CoF 4 Hy i BYT + Hyp g1 AL — Bl Hy g — ChHop 1 (4.13)

Equivalently, one has

A, Hyj1CLT HyyBy T Hy gt AT
A2 \Husrk = | Hugm1 CF7 |+ | HukBET |+ | Hug1 A7T
Ay, Hy o1 C3 T Hy BT Hyper1 A3
B,, Cpa
—| By |Hui—| Co [Hm-1x-
B;, Co

Further recalling that D,,A,, = I, we arrive at

3 3

3
Hyprke = ) DiyHys 1 G + Y Dy Hy BT + > Dy Hyp g1 Ay
i1 =l = (4.14)

3 3
= > D} Bl i = Y Dy ClyHin1 ¢
i=1 i=1

It indicates that the block H,,+1 x is derived by other small matrices known in previous steps. To
obtain each block matrix in (4.12), one first needs to compute small blocks

Hyy = f Y@pa(@)pr(@) de, 4 <k<2M -4,
T

where ¢4 only contains the basis function ¢; 1 1. As Hy, = HkTm is symmetric, one then follows
(4.14) to derive the blocks

Hyi1k m+1<k<2M-m-1,4<m<M-1.

With these blocks arranged as (4.12) defines, M, is consequently derived after a rearrangement.

S Numerical experiments

To illustrate the validation of our spectral-Galerkin approximation scheme, we carry out some
numerical experiments in this section.

5.1 Numerical examples for source problems

We shall present some numerical results for source problems in this subsection.
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Example 5.1 Consider the second-order model equation subject to the homogeneous Dirichlet
boundary condition:

—Au(x) + u(x) = f(x), 7T, G.1)
u(x) =0, x € 87,\', ‘
with the exact solution
1=x1 —xr —
u(x) = sin % sin % sin % sin T =01 : X2 x) (5.2)
10 10

—e—max |u — uy| —e—max |u — uy|
——||lu —unllo ——||lu —unrllo

Errors
Errors

. . . . 10 16 . . .
4 6 8 10 12 14 4 6 8 10 12
M M

10 16

Figure 5.1: Maximum pointwise errors and L2-errors against M in Example 5.1 (left) and Ex-
ample 5.2 (right).

Owing to the homogeneous Dirichlet boundary, only interior modes of polynomial basis
functions are involved in our numerical scheme. It is observed in the left of Figure 5.1 that
both maximum pointwise errors and L?-errors of u — uy; decay exponentially, which verifies the
effectiveness and spectral accuracy of our spectral-Galerkin method.

Example 5.2 Consider the Poisson equation subject to the non-homogeneous Dirichlet bound-
ary condition:

{—Au(a:) =fx), x=eT, (5.3)

u(x) = g(x), x e,

with the exact solution
M(m) = (xl + 1)(x2 + 1)(_X3 + l)el_x] —xz—)g.

It follows from the right of Figure 5.1 that the numerical scheme (4.4) achieves exponential
orders of convergence for the second-order model problem with the non-homogeneous Dirichlet
boundary condition, which confirms the spectral accuracy on the approximation of the solution
along boundaries.

Example 5.3 Consider the second-order model equation subject to the homogeneous Dirichlet
boundary condition:

{—Au(m) +y(@u(x) = fx), €T, 5

u(x) = 0, x€dl,
with the exact solution defined as in (5.2) and a variable coefficient

Xp+xp+x3+1

y(@) =e
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Exponential orders of convergence of errors u — uy, in the maximum pointwise errors and
L?-errors are also observed from the semi-log graph in Figure 5.2. This reflect the effectiveness
of our method for solving equations with non-homogeneous boundary conditions.

—e—max |[u — uy|
——|Ju — uarllo

Errors

4 6 8 10 12 14
M

Figure 5.2: Maximum pointwise errors and L2-errors against M in Example 5.3.

Example 5.4 Consider the heat equation subject to the homogeneous Dirichlet boundary con-
dition: .
C()ﬂ/l(x, t) - AM(IE, t) = f(xa t)’ (ZE, t) € T X (Oa T]’
u(zx, 1) = 0, (x,1) € 3T x (0,T], (5.5)
u(x,0) = up(x), zeT,
with T = 1 and the exact solution
u(zx, ) = sinzx; sin 7x, sin wxz sinw(l — x; — xp — x3)e”".
We use the Crank-Nicolson method [7] to design the fully discretization scheme. Let

O=f<ti<---<ty=T, NEN,

be the discrete partition in time. We further let Az be the time-step and #,, = nAt be the n-th time-
level. The values of the approximation solution u,, and the right-hand side function f at time-
step n are denoted by u}, and f", respectively. Combining with (4.4), the fully discretization
scheme of (5.5) reads: for all 0 < n < N, to find ), € Xy, such that

un+l —u" un+l +u n+1 4+
(%,W T A =(%,w), Yoy € Xoo. (5.6)
7 T
10° 10° 10

i
= —a— [|u — upgo ~ —a— [|lu — upo
102 I [ 102 I [ Hing

10* 10*
14 4]
2 10° 2 10°
w w
10°® 10°®
10%° 1010

12 12 10°
107, 6 8 10 12 14 107, 6 8 10 12 14 27 26 2° 24 23
M M At

Figure 5.3: Maximum pointwise errors and L*-errors against M when ¢ = 1/2 (left) and 7 = 1
(middle); L*-errors against At (right) in Example 5.4.

Setting At = 274, we first demonstrate errors of u—uy; against M in different time in Figure
5.3. It is reported that the errors decay exponentially both when r = 1/2 and ¢ = 1. Letting
M = 14, we also observe from the right of Figure 5.3 that the Crank-Nicolson scheme has
second-order convergence in time.



5.2 Numerical examples for eigenvalue problems

We report the numerical results for the Laplacian eigenvalue problem (4.5) in this subsection.
Two special tetrahedra would be considered in the following discussions: the fundamental tetra-
hedron 7 with vertices

111y 111y
Pg =(0.0.0", P =(0.0.)", P§=(— 5 —) , P§=(—— 5 —) ,

and the regular tetrahedron 7% with vertices

T

)
P{f:(o,o,?], P{?:(?,o,o), P§:(—

|
_|

|
>

1
N

All eigenvalues of the homogeneous Dirichlet Laplacian can be arranged as
O<pi <pp<pz<--<pp<---, keNlN.

To begin with, we test absolute errors when approximating the five smallest eigenvalues
by numerical scheme (4.7) on two tetrahedra. For 7, the exact eigenvalues are obtained in
Appendix D; while for 7, the reference eigenvalues are derived with relatively large M by our
spectral-Galerkin method. The semi-log and log-log graphs in Figure 5.4 reveal that the scheme
achieves exponential orders of convergence on 7 and algebraic orders of convergence on 7,
respectively. It means that the corresponding eigenfunctions on the regular tetrahedron would
have singularities, which is quite different from the behaviors of eigenfunctions on the regular
triangle. Indeed, the Laplacian eigenfunctions associated with the first few eigenvalues on the
regular triangle are analytic [26, 23] and the polynomial spectral method achieves exponential
orders of convergence when approximating these eigen-solutions [27].

10° 10°
3

102

104

10

Errors
Errors

108

10° 10

M""; R

10 12 14 16 18 20 12 14 16 18 20 22 24 26
M M

Figure 5.4: Absolute errors of the five smallest numerical Laplacian eigenvalues against M on
T F (left) and T (right).

We then move on to study the approximations on large eigenvalues. The Weyl’s Conjecture
in three dimensions [33, 15] reads that,

+ o(k%), k — +o0, (5.7)

Hk

|3

1

LI ()
713 2\ 4

where |77| and |07 | represent the volume and surface area of 7, respectively. Thus, the exact

eigenvalue yy, k = O(M?), grows in O(M?) as M tends to co. However, we observe in Figure 5.5
that the largest numerical eigenvalue u,, w-vw-2w-3 evaluated by our spectral-Galerkin method
’ 6

with different M grows almost as asymptotically as O(M*). It indicates that the polynomial
spectral method would bring out a portion of spurious solutions in deriving large numerical
eigenvalues.
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10 12 14 16 18 20 22 10 12 14 16 18 20 22
Figure 5.5: The largest numerical Laplacian eigenvalue against M on 7 (left) and 7 (right).

As a result, one should check how many reliable eigen-solutions that our method is able to
provide before examining asymptotic properties of large eigenvalues. We understand reliable to
mean at least O(M~") accuracy with polynomial degree M. With exact eigenvalues known in
Appendix D, we solve the generalized eigenvalue problem (4.7) on 7 with different values of
M and illustrate their relative errors in the left and the middle of Figure 5.6.

5

10 10
——Relative Errors| ——Relative Errors|
1 1
Y Y
10°
(4} R oo 4 (4} R ot
o 2 o
3 . i g
o 10 o [
2 & 2
5 5
2 g T
10—10
16 107 16
1 1
S 123 2247 3371 4495 1 110" 2¢10° 3x10' ax10t 01 123 2247 3371 4495

Figure 5.6: Relatives errors of all numerical eigenvalues on 7 when M = 32 (left) and M = 64
(middle); on 7 when M = 32 (right). The vertical dashed line denotes the portion of %(%)3.

It follows that there are about %(%)3 ~ 19.35% numerical eigenvalues for which relative er-
rors converge at rate O(M~") for our spectral-Galerkin method. Referred by eigenvalues derived
with relatively large M, we also draw convergence behaviors of numerical eigenvalues on 7
when M = 32 in the right of Figure 5.6. Although none of our numerical eigenvalues can reach
the machine precision in this case, almost same portion of reliable eigenvalues are observed.

Now, let us demonstrate in Figure 5.7 the asymptotic behaviors of the first reliable 3000
numerical eigenvalues of (4.7) computed by our spectral method with M = 64. We observe that
numerical eigenvalues suit well with the Weyl’s conjecture (5.7). It, in return, confirms once
again the accuracy of these numerical eigenvalues.

Next, we turn to explore different gaps of these reliable numerical eigenvalues. We introduce
the following definitions [16, 3]:

1 k _
o the average gaps: Oave(k) := z (,ujH —yj) = %, keN;
j=1
2 \3/2
e the normalized gaps: Onorm(k) := Yi+1 — Yk» Vi = (,uk . &) , keN.
n(367m)3

Another interesting term is the level spacing distribution P(s) representing the limiting distribu-
tion of the normalized gaps, which is defined by [16, 3]

ﬁ{]ll < Jj £ klOnorm(J) < X} k—otoo
k e

f P(s)ds, 0<x< +oo,
0
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10 - 10* .
(36m)3 e 7r(367r)?kz
o pup — TSOT)T o — X
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2\ 4 IT|? 2\ 4 IT|?
10° 10°
i
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oogk?f% oo, %f&{
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il ‘ ‘ 10%L-"
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k k

Figure 5.7: Asymptotic behaviors of eigenvalues w; against k on 7 (left) and T (right).

where #S denotes the cardinality of the set S.

For both 75 and 7%, similar observations are derived from Figure 5.8 and Figure 5.9:
Oave(k) ~ k_%, which is also a direct consequence of (5.7) and the definition of dy(k); sta-
tistically, the gaps distribution satisfies P(s) = d(s), where d(s) is the Dirac delta function.

10° 2500

2000

10°

1500

P(s

1000
10

500

10° 0
10 100 3000 0 5 10 15 20
k s

Figure 5.8: The average gaps (left) and the level spacing distribution (right) on 7.

2000

1500

21000

500

0 0
10 10 100 3000 0 5 10
k ]

Figure 5.9: The average gaps (left) and the level spacing distribution (right) on 7.

6 Conclusion

We introduced in this paper a sparse spectral-Galerkin method for second-order partial differen-
tial equations on an arbitrary tetrahedron using generalized Koornwinder polynomials. By ex-
ploring various recurrence relations of generalized Koornwinder polynomials, we derive well-
conditioned and sparse linear systems which can be efficiently solved. Numerical results for
different kinds of source problems and the Laplacian eigenvalue problem confirm the sparsity,
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effectiveness and spectral accuracy of our method.

With the modal basis functions defined in this paper being applied directly for C°-conforming
elements, this work can be instantly extended to spectral-element methods on tetrahedral meshes
for complex geometries. Theoretical approximation results will also be investigated in a future
work.

A Recurrence relations for increasing parameters

We derive some useful recurrence relations for generalized Koornwinder polynomials in Ap-
pendix A-B. Firstly, we rewrite the Koornwinder polynomials in the collapsed coordinate to
simplify the incoming proofs,

. I 12\ 2
je ((B) (1/0 (ll(é';)( ) J€21+(Zo+a/1+ ,(1/2(77) (T) J€31+ 2+taota)taz+ ,(lg(é«)’ (A])

where he he
My, =22 =231 (A.2)

A

Tk - =15
We also let

é)=(1,0,0,0), é;=(0,1,0,0), & =(0,0,1,0), &3=(0,0,0,1).
All coefficient functions in appendixes are defined as in Lemma 2.1-2.4.

Lemma A.1 For any o € [—1,+00)* and £ € Ng, the following recurrence relations hold:

1 1

1
Je@ = Z D A b T (@), (A3)
1=0 qT rTO |
Je@ =) A 0T (@), (A4)
p=0 ¢=0 r=0
1 1
J5 (@) = A (L, T (6% (@), (A.5)
q=0 r=0
1
Te@) = Y AT (@), (A.6)
r=0

where the corresponding coefficients are presented in Table A. 1.
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Table A.1: The values of A}, , ., Az, ,, A, and A
(p.gq.1) pqr(f a)z i (p.gq.1) pqr(f Of)2 i
0,00) | b1 bi}f:“ :*i o bz:;:+:a2:+z 3 1(0,0.0) | By bi?j:“ :*i o bz:;:+:a2:+z @
(), ]+OL +1,ap +Hat|+2,a3 (), ]+OL +1,ap +Hoat|+2,a3
08D b(lyf]albzfma T+, azb2|£2|+|a2|+l a3 08D b(lyf]alb;ézﬂa T+, azb2|£2|+|a2|+l a3
(0,1,0) | b}7 b5, &, L (0,1,0) | b}5 b5, &, L
(0,],]) b(llo[lal b%f;;la |+1, aZ@?'ﬁ |[+las|+1,a3 (0,],]) b(llo[lal b%f;;la |+1, aZ@?'ﬁ |[+|las|+1,a3
(1,0,0) bao alegféﬂa Iazb%|i2|+|a2|+2 a3 (1,0,0) ba/] aoegiﬁla |02b%|§2|+|a 2.3
(1,0,1) bczvof]megféjla [az ;If}2|+|a2|+2 a3 (1,0,1) bg]{)laoe%?;la Las §|§2|+|a 2.5
(1,1,0) bg(}lale?’fla L.z §I§2I+Ia2l+l a3 (1.1,0) _bglfla/oe%[{! +elar §|§2|+|a2|+1 3
(1,1,1) bgo&al e?t’gla I, aze?IZHIaZIH a3 (1.1,1) bg‘gl““ef[é;'“ Iazeilglﬂazlﬂ 3
(g,r) A (L, @) (q.7) AL, )
20, o |+1 a2 1 2102+ a [+ 2.3 @220 +a! |+1 211+ + 1,3
Eg (1); Zzt’] +al|+1 azZlIZZHIa 242,03 2’(1); Zi;zglﬂa |+1e§|£z|+|a T+ 1.
’ 1.6 2.3 ’ 2.6 1
r AL, o) r AL, o)
2 2 2
b%lilﬂa [+2,a3 1 bczr} 3|e [+la?[+2

Proof  We take the proof of (A.5) as an example. Other identities shall be proved in a similar
way. According to (2.9), (2.8) and (2.11), one has

2 _¢ (+6
TE@) = ag @ (5)( ) [b?f[,:rm I+1, a2J2€|+\a l+1, m+1( )( )

2102+ ||+ 2.a5 72107+ a?|+3.a3 2|02 +|a?|+2.a3 2|£~|+\a2\+3,w3
x (b7 7 @) +b3Y, J; @)

4, O+ — 1

20 +\a |+1 2[1+|a [+1,a0+1

b(1/‘7 1 J ( )( )
2,0, -1

2102 +el? |+ 1,a5 720€% 1+ a?|+1,a3 2002+l +1,a5 72103 +|a2]+1,a3 )
x (61,63 Iy, (@) + ey, S D) |

This completes the proof. m|

B Recurrence relations for derivatives

Lemma B.1 Forany o € [-1,+0)* and £ € Ng, the following recurrence relations hold:

05T ¢ (®) = 2d“° T, @ (B.1)
I T (@) = Z])Df,(e, Qg (@), (B.2)
p
(03, = 03,) I¢' (@) = zl;)@,%l (€ T g1 (@), (B.3)
pe
00, T3 (@) = i Zl; D, T 005 (@), (B.4)
Pl
(03 = 93) T (@) =220@”<£ QT g e @), (B.5)
(03, = 03,) T (@) = 10 Dl )T 020 (@) (B.6)
p=



With the notations

Q0,1 ] (1/0+1 _ g, (1/1 oo, |, 0,1 a'() ar+1

Py = 2d; 7 e )" 61657 Ky = 0by 2da Ayt
o 2[| +|0t |+1 (0%) (12,2[|+|OL |+2 2€] +|a'|+l,a/2
Oy =2d, €l it —Oby,, ,

the corresponding coefficients are presented as follows.

2 _ 2t’1+|a |+l ) 1.0,
Dy, o) =2d,, b5

ap.a1 ap.an+l g, 201+t |+ L 200+t [+ Lay , ap.a) 20+ e [+1an+1
0||0_[1b0|b1\|22d1\|2b011\|2
2 Y, _ 0 1,6-1 2,01 1.6 2.6, €2,05-1
D¢, ) =

201 +HeelLag +1

b,

D, @) = Di(L, ),

£,5%1%0 2d00 1 ,20; ay+1 2(’]+\a [+1ay 2d2(’]+\a \+I<y2bal N 2(’] +lal [+1,ap+1
DQI(E )= 1920, -1 e 20 62,651
1 » Q) = b2{’l+|a \,02+|
1.6y
2
3 2|€ |+|a |+2,a3 7.0, 1.2¢, +|Ot |+1, (1/2
Dy (L, o) = 2d;' by b
b”““‘eabm 2+l |+2.03 2d2\£2|+|a 203 20 nlb2{’l+la l+1,ap 2\£2|+|a2|+2 az+l
D3 ¢, o) = L6, 7201 10, P20 €2,05-1
0.1\5 = 2o 2az+1 ’
163

3 2002 |+ o2 +2,a3 1. ap,a1 20 +lo,an
o, ) = 2d;] by, e, ’

o 2001 2[1+\oz |+ln29a b2|e [+la?l+2.a3 2b2[1+|a \n2d2|€2\+\a2|+2ngbn0 o 2[1+\a2|a2 2102 |+|a2[+2.a3+1
Po thr €51 103 2 G €05-1

3 _
Dl,l(e’ a) - 201 +Hal Lay 2|€2\+\a2|+1n3+1
bw bl{’g

DIk, @) = ~D} (£, ),
Dy (b ) = =05 (£, ),
3 (E’ a) - d2|£2|+|a2|+2 (1/3ba/|,a/062[1+|a |a,2

2,01 2,60 ’
ay.ag 201 el [+1a 2162+ a2 |+2.a 201 Hallay 21021+ 02+2.a5  ap.ag 20, +Halar 20021+ a2 |+2.a5+1
1+ 0 1 29(1 o\ 3 217 l 2d 3b 1 0 1 (28 3
13 y 201 €2.0p-1 Ke 91,65 20, €10 2,05-1
1( ’ a) - b2{’l+|a \02b2|€2\+\o¢2|+1n3+1
1,6y 163

2|62 2,312 1
32(& Q) = 2d 102 |+|a? |+ agblféjla [+1, a2

@y 201+l |+1 201 +Ho [+l 201 +|lat [+1,a9+1 2162 1+j02+2. 2102 +|a? |+ 2. @y, 201+l |+1 2162 |+|a2[+2.a5+1
(t;bz]\l2d||\<2]\|2)b|\\|32d\\\|3b2|\|e|||\3

3 _ 1,0)-1 1.0 2,05 2,031
D1 (E’ a) - b2\£2\+\o¢2|+1,n3+l
163
Proof It follows from (A.2) that
8
(3;;, = 76 >
A-m1-0"°
4(1+¢) 4
0z, = R B.7
ST S ®D
4(1+¢) 2(1 +1n)
% = 0 + 0, + 20;.
S U R T

We take the proof of (B.2) as an example. Other identities shall be proved in a similar way. To
begin with, when ¢; = 0, one has

4

41 1=\ e
O Toy ™ = 20,07 " %)(—2 ) Jperlectza g

-1
o[+ 1,as yla!|+2,00+1 1-¢ 20>+ o |+2,03 _ |+ 1,00 ao+l,ar,00+]1,03
2d sz 1 ( )( 2 Jf3 (g) - deg jO b—1,3 :
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When ¢; > 1, a direct computation yields
1 [1—] .
N [(1 +&)0e ] (6)( ) Sl

oo 1-7\" 26+l [+1,00 1-¢ e 2002+ + 2,05
+2J; (f)an[(T) A | x ( . ) 7 ©
o’ (B.8)
= |(@ @+ or @ - arpen @) (1 R ’7) gt )

4

20+ o |+1,00 yap, 1- n b 201 +la |+2,a0+1 1- g e 2102+ o +2,a3
T | e I A OOl E I “).
Recalling (2.8) and (2.12), we have

dao m(l +§)Jao+1 a|+l(§) f J(l(] Ly (é‘:)

— 2dag,a| (eim[,laf;rl ZO_Jrll g (f) ;O[Jlrl g JaoJrl . (é‘:)) _ (bTO[lm JaoJrl ) (f) + bgog]m Jangl a; (é‘:))

(Zd% s e?l[ﬂo” ¢ blzloelm) Zo:rll s (f) ( 2dtlo . e;oglrl @ _p bllloflm — 0)
Substituting the above formula into (B.8) and using (2.8), (2.9) and (2.11), one has

-1
322321 — [( dao,metltlf,aof—l £ b;oélm) J(t0+1,a] (f)( ) ! J§2€|+\a'|+1,dz(r])

1-7\"
+ 2d2€]+|a [+1,a2 (bTO[lm onJrl ) (f) + bgog]m JZO_Jrll ,a (é‘:)] ( 5 77) Jif]_-;-\a‘|+2,az+l(n)]

L=\ e

(-1 1021
201 +la |+1,05 7.0, ao+1,a1,00+ 1L, 07 +l Kot -1 1- g 2102+ 02| +2,a3
ot g e (1) () et

ag.ar @ ,a+] ap.ar) 26+l [+1,a; 20+l |+ 1,as 010»011;77 201 +lo [+2,00+1
X[(Zd i1 —hbyg )Jé’z () +2d,, bri’ =3 o o)

-1 1€2-1
201 +ladt |+1,a5 1.0, vo+1, al,a7+l,aq (t0+l ) 1- g 2102+ o +2,a3
= 2d,, 1 T iy (f)( ) ( 2 L ©

o1 ar,ap+l ¥, 20 +Had |+ 1,an 726+ o |+1,00+1 @, 20+ ol |+1 726+t |+ 1,a0+1
X[(Zd €rqo1 —hbyy )(bl t Jq, (m = b5, It (’7))

20+t [+1,00 .1 [ 20+ |+ 1o+ 720+t |+1,a0+1 20+ [+1,a0+]1 20+t [+1,00+1 )
+2d,, by, (91,5271 il (m+ey," s (m
2 &

0,1 ap,ap+]1 0,01 2€1+|a [+1,a2 20 +|a [+1,07 1.0, 2[1+|a [+1, a7+1) 20, +|at [+1,a0+1
[((Zda €t —hibyp by, +2d;, by € I, )

0—1 021
2d2€1+|a [+1, avbao aljaoJrl Jap,ar+1,a3 JaoJrl ) 1- n : 1- g . JZMZIHOLZHZ,ag
e Jee-16 +J,0 () 5 9

0,1 Q0,1 _a1,a0+1N @020+t |+ 1 200 +|lad |+ 1,00 g, 20 +ad |+]1,an+1 201 +la |+ 1,00 +1
(@b 2d5 M ey by +2d; b3 eyl s )1 @|.

Note that b?iﬂ:‘a] ha2*1 2 (0 when £, > 0. It is readily checked that

((Zd(zo,a]etlt]élaof—l bgoélal)b2€|+\a |+1,a + 2d2€|+|a |+1, aobgoélal ;6’{};\? |+1, ao+1) J§f|+\a'|+l,ag+l(r])
+ ((f]bao'm Zd(to,a] (t],(t0+1)bw2,2€|+\a [+1 + 2d2€|+\a |+1, aobgoélal %f{};\la [+1, w2+1) J?fflr‘a]“lﬂfrl(r])
(Zdwo ) al,woJrl f bwo L )b2€|+|a |+1,a + 2d2€|+|a |+1, wzbgoglm ;@;l? [+ 1Lar+1
bi[gjla [as+1
(b?Zéerla \w2+1‘]§2€|+\a [+1, w2+1( )+ bgfézﬂal\,afrlngffldalﬁl,afrl( ))
(Zd% Ko7} z]z]éaoJrl b;g[la. )b2[1+|a |+1,a7 + 2d2€1+|a [+1, ()mbwo e 2€,+\a [+1,a0+1

2,6, ¢, -1 201+ |ar+1
pRh+Iallaxt] Jy, ().
1.6

24



Thus, it concludes that

R 20 +lad |+1,00 g, rao+lar,aa+]1,03
ax?jl Zd bl L0 1,6,-1,03

@), a.,aoJrl ag o] 2€|+|a [+1,a7 201 +la |+1,05 .0, 25|+|a [+1,ap+1
(2d€1 el 01— b )b + 2d b2 01 2 J0—1 j<r0+1,w1,wz+l,w3
b2€1+\0t [aa+1 (1-1,60,.03
1.6,
This ends the proof.
C Coefficients in the three-term recurrence relations
By introducing the notations,
2102+ [+2,03 2102+ [+2,03 2162+ [+2,03
Cle S e
B o= 206 o .= 306
1,6 - 2 ’ 2,0 2 ’ 3. 2 ’
2102 4|2 [+2,03 2102+ |+2,03 2102+ [+2,03
o 1.3 a (1 “hpy ) a 43 04
Ty, = ———— TS, = ——25—— T, = —————
4.0 2 ’ 5,8 2 ’ 6, 2 ’
2162 4?3 2102|423 2162|423
o . 1,03 o ._ 2% o ._ °30%3
T = — 2 e =" 2 Toe= "2

we list the coefficient €, , (¢, v), €, (¢, o) and € (£, o) in Theorem 2.1 as follows:

Table C.1: The values of ), , (£, o), 6, (£, ) and %(@, ).

(pv CI, r) (gp,q,r(ey a) (pa Q7 r) D, q,r(e a)
a0, 20 +Hal [+1ao _o 420 20 +lal-1,00_«
(-1,-1,-1) Y CLe ] Tie (1-1.-1) B30 8140 ] Tie
p,] 2€]+|OL |+1,a/2 e % 0, 2[1+|OL |—1,a/2 o
(-1-1,0) e CLe Y (1,-1,0) B0 814, Y
I I
ap,a) 20+’ |[+1,a g, 20+ o' |-1,a
(-L-1,D al,ot’l l u%l | T (I-1L.1) 3,051 1 lel | Y
R 201+t |+1 R 20+ o' -1
(-1,0,-1) afym AL e (101 | a2y gl lme
(-1,0,0) asy A e (10.0) | a3y ggf;;'“' g )2
, 2[1+|a |+1 Ne%) OL @, 2€] +|Ot | 1 N%) a
(-1,0,1) atee /2 (1,0,1) a g /2
-1,1,-1) ;(i:),alzgt’ﬁlallﬂ,az,[_a (1,1,-1) Z(i:),alzgéwlall—l,az?_a
( 1.1 0) afll(ila/] C;;;Q*'lall*'lvazq.’;e (1 1 0) a?logla/]g;ffzﬂa |- 1(1/27_’;8
ks 1,6, 3., 8.4 2T 3.6 33.60 8.2
T T_
(_1 1 1) aflloéla/] Czé;};la |+1,(1/2T(()1€ (1 1 1) a(’:()[la/] g?;la | l,azT;xe
(p.g,1) Cp.qrl, ) (q,7) Cqrl, )
_ o1y 20+l [+1,a0 a 20 +lal+1,00 o
(0,-1,-1) (1+ a”] aj,, /2 (-1,-1) ai,, T
(0’_1’0) _(1 + atzlf()éafl Cl%? +|Ot [+1,a2 a /2 (_1’0) %t’(}+|a [+1, (YZT?Z
2[1+|a |+l [0%) a 2{’1+|a |+l,a/2 o
0,-1,1) —(1 +a%%"a /2 (-1,1) a T
> 2.0 1.0> > 1.0> 3.4
(00_1) (1 +aa/0 a/])(] 2t’1+|a |+1 (1/2)7_ /4 (O-]) (] +a 2t’1+|a |+1 QQ)TQ /2
sy 4.0 ’ 4.
(0,0,0) (1 +aag al)(l 2£1+|a1|+1,a2) o 4 0,0) (1+a 2[1+|a [+1, aya o
™ G Tse ’ Tse
(0.0,1) 1+ aczto Ly )1 — ét’é;la [+1, QQ)TQ /4 0,1) (1 + 2{’1+|a [+1, Ozz)Tge/z
@, 2€] +|Ot |+1 [0%) a 2€]+|a |+1,a/2 o
(0,1,-1) —(1+ ayy )5, /2 (1,-1) as ., 72
@, 2[1+|a |+l [0%) a 2{’1+|a |+l a2 _ox
(0,1,0) —(1+ a; )asy . 012 (1,0) as, 1 [y
_ (), 2[1+|a [+1,a2 a 20+ [+1,00 _o
(0,1,1) (1 +a3%"as,. /2 (1,1) a4 Top

2102+ |+2,a3
Lt

2102+l +2,05 2102+ +2,a3
2,03 3,03

2 ’ 2 ’ 2

l1+a

(618, @), Golb, @), €1 (6, )] = [
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Proof  We shall take the proof of (2.20) as an example to explain the derivations of these
coeflicients. From (A.2), one obtains

It then follows from (2.7), (2.10) and (2.13) that

1_n€11+r] iy | 1—§w2|+1 g 219
ﬁzjf‘:JZ"’”'(f)(—z ) — “’%)(—2 ) e

2€|+|a [+1,a7

4 |2|+1
ao ) -1 1,0, 20+t |+1,a, -{
€3] ( 2 ) [ ) S (m ( )

2 2+2,a3 12 4, 2(62 2.3 72|02 4,
X( 162+ + @ 2 102l+la2l+ a4+ |e [lal+ = G \+|a s )

1€

2102 |+ 042,35 72107 |+|a?|+4,a3
TGy, Ji o (9]

20, +lat |+1,a0

€%
N l+ay, Jorledisla 1-¢
2 & P\ 2
210%|+|a?[+2.a3 _ 02\£2\+|a2\+2,a3
1,03 2102 |+ a? 42,03 2,63 2102+ o423
x (- et g ¢ 20— ©
20102+ |+2.a3
3,03 2102|+ 0 +2,03
T ©
20+ |+1,a0 é’ 12-1
3,0 20, +la |+1,a5
+ B — Jfr1 *(n )

2102+’ as 7216+ a3 ZW [+lo?l.as 72162+ a’as 2102 +|ola; 72162+’ a3
x (gl A Ja2 D+ St D +83, Iy, (5)) .

The proof is completed. O

D Exact eigenvalues of homogeneous Dirichlet Laplacian on 7 5

We first claim that the generalized sine functions are eigenfunctions of the Dirichlet Laplacian
on 7 r. Actually, motivated by the study of [21], we introduce homogeneous coordinates s € R‘;,
with

R = {s = (s0, 5152, 3) € R Js| = (D.1)

Mw

Jj=0

For convenience, we adopt the convention of using bold letters, such as s and k, to denote points
represented in homogeneous coordinates. The transformation between € R and s € R‘}{ is
then defined by [21, (3.1)],

X1 = $p + 83,
X2 = §3 + 81, (D.2)
X3 = 81 + 82,

and sg = —s1 — 52 — 3.
We further define the function on Qg = {s € R‘}{ -1 <si—-5;<1,0<4,j< 3} that

Pk (s) := ek ke Ao,

L (D.3)
Ao:={keRyNZ ko = ki = ky = ks (mod4), ko < ki < ky < ks}.

Here i is the imaginary number satisfying i> = —1. Let G be the permutation group of four
elements. For k € R‘;I and o € G, the permutation of the elements in k by o is denoted by ko
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The generalized sine functions are then defined as [21, Definition 4.2]

1
TS(s) 1= 57 ) (D), ke Ao, (D.4)
oeG

where || represents the number of inversions in 0. Thus, we arrive at the following lemma.

Lemma D.1 The generalized sine functions TSk(s), k € Ag are the eigenfunctions of the Lapla-
cian on T subject to the homogeneous Dirichlet boundary condition:

—ATSk(s) = uxTSk(s), inTF, D.5)
TSk(s) = 0, ond7r, .
where X
7T2|k|2
== k=) k. (D.6)
j=0

Proof Due to the symmetry of TSk(s), it vanishes on 87 . From the transformation (D.2), we
have

05y — 05y = 0y, + 0xy, 05, — 05y =0y + 0y, 05y — 05y = 0y, + Oy,

asl - aSQ = a)Q - axl, asz - aS3 = a)@ - axza aS3 - asl = axl - a)C3~

One easily obtains an equivalent expression of the Laplacian operator in homogenous coordi-
nates that

_ 1 2 n 1 2
A= Z (@, + 05, + (0, - 0,)°) = Z Z (0, - 85,) " (D.7)
1<i<m<3 0<j<n<3
Applying (D.7) on ¢ yields
2

M@= > (-0 o =T 3 (k-k) %o
0<j<n<3 0<j<n<3
2

=5 Y (k) oo

I
W
Nlnto
—_——
N
N
e
+
N
Mw
KaN
|
\®]
——
'Mw
Z
————
—
gl
T
———————
~—_—————
=
=~
—~
w»n
e

j=0 n=0
2

NS}

3
=T ) ows) = TP,
=0

Therefore, by the definition of generalized sine functions (D.4), it holds that

1 n* 1
_ - _1)lol+1 _ 04 _1\lol 2
ATS(S) = 57 > (D Ade(s) = 757 ) (- D koo (s)
TeG TeG
2112 21112
kP 1 Z o 72k
= = ) D"k (s) = TSk(s).
4 4L 4
This completes the proof. m|
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