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Constrained high-index saddle dynamics for the solution
landscape with equality constraints

Jianyuan Yin · Zhen Huang · Lei Zhang

Abstract We propose a constrained high-index saddle dynamics (CHiSD) method
to search for index-k saddle points of an energy functional subject to equality
constraints. With Riemannian manifold tools, the CHiSD is derived in a minimax
framework, and its linear stability at an index-k saddle point is proved. To ensure
the manifold property, the CHiSD is numerically implemented using retractions
and vector transport. Then we present a numerical approach by combining CHiSD
with downward and upward search algorithms to construct the solution landscape
in the presence of equality constraints. We apply the Thomson problem and the
Bose–Einstein condensation as numerical examples to demonstrate the efficiency
of the proposed method.
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1 Introduction

The energy landscape, which maps all possible configurations of a system to their
corresponding energy [44], has been successfully applied to various scientific issues,
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such as particle clusters [33,35], protein folding [25,32], and soft matter [12,20].
The stationary point, at which the gradient vanishes on the energy landscape, plays
an important role to determine physical or chemical properties of the system. The
stability of a stationary point is determined by its Hessian matrix. For instance,
a stationary point is a minimizer if all eigenvalues of its Hessian are positive. The
stationary points with both positive and negative eigenvalues are called saddle
points, which can be further classified by the Morse index. The Morse index is equal
to the number of negative eigenvalues of the Hessian matrix at each stationary
point. In particular, the index-1 saddle point, which has one and only one negative
eigenvalue, is referred to as the transition state connecting two minima on the
energy landscape.

Searching for saddle points on a complicated energy landscape has attracted
plenty of attention during the past decades [52,16,54]. Compared to finding sta-
ble minima, computation of saddle points is much more challenging due to their
unstable nature. Extensive numerical algorithms have been developed to compute
index-1 saddle points, including path-finding methods [22,15] and surface-walking
methods [39]. In particular, the surface-walking method starts from one initial
state on the energy landscape and searches for index-1 saddle points based on lo-
cal derivative information without a priori knowledge of the final state. Examples
of the surface-walking methods include the dimer-type methods [21,51,53], the
gentlest ascent dynamics [17,40], and the activation-relaxation technique [9,31].
Moreover, the surface-walking methods can be generalized to search for high-index
(i.e. index greater than one) saddle points. Quapp and Bofill developed a gener-
alized gentlest ascent dynamics to locate high-index saddle points on the energy
landscape with the calculation of the Hessian matrix [40]. The minimax method
based on the local minimax theorem was proposed to find multiple high-index sad-
dle points with a priori knowledge of low-index saddle points [26,27,28]. We refer to
some excellent reviews for more information [16,54]. Recently, Yin et al. proposed
a high-index saddle dynamics (HiSD) and developed a high-index optimization-
based shrinking dimer method for finding index-k saddle points on the energy
landscape [49]. Later, a generalized high-index saddle dynamics (GHiSD) was de-
veloped to compute any-index saddle points of dynamical systems [48].

In many practical applications, the challenge of searching for saddle points is
further increased by nonlinear equality constraints on the state variables. For ex-
ample, in the Oseen–Frank theory for nematic liquid crystals, the director n(x) is
a vector field subject to a unit-length constraint almost everywhere that describes
the average orientation of liquid crystal molecules at the position x [19,45]. In
the Kohn–Sham density functional theory, the electron orbitals Ψ are supposed to
satisfy the orthonormality constraint [30]. A simple approach to deal with non-
linear equality constraints is reparametrization via unconstrained variables, but
this is often cumbersome and computationally inefficient. Therefore, a number
of numerical methods have been proposed to compute index-1 saddle points in
the presence of equality constraints. As examples of path-finding methods, the
constrained string method [14] and the geodesic nudged elastic band method [7]
are able to find constrained minimum energy path and index-1 saddle points.
Alternatively, the constrained shrinking dimer dynamics [50] was developed to lo-
cate index-1 saddle points on a constrained energy function using the projected
Hessian. Müller et al. identified multiple transitions of Skyrmions in magnetic sys-
tems using a surface-walking method, where each magnetic vector is restricted to
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a unit length [37]. The physical space, which is the direct product of N spheres,
is naturally embedded into the Euclidean space, and the theory of Riemannian
manifolds is considered to derive the Hessian. The unphysical degrees of freedom
in the embedding space are removed to calculate the true eigenvectors required
in this saddle-point searching method. However, how to numerically compute the
constrained high-index (index> 1) saddle points is still unclear at present.

In this article, we present a constrained high-index saddle dynamics (CHiSD)
to search for high-index saddle points subject to equality constraints. The CHiSD
is a constrained version of the HiSD [49] and derived with Riemannian gradients
and Hessians. The retraction operator and vector transport are introduced to im-
plement the numerical algorithm of CHiSD. With the CHiSD algorithm, we are
able to construct the solution landscape on a constrained manifold. The solution
landscape is a pathway map consisting of all stationary points and their connec-
tions, which not only provides an efficient approach to find multiple stationary
points, including both minima and saddle points, without tuning initial guesses,
but also shows the relationships between different stationary points [47].

The rest of this article is organized as follows. In Sect. 2, we first introduce the
constrained saddle points and Riemannian manifold tools. After briefly reviewing
the HiSD for index-k saddle points, the CHiSD is derived with Riemannian gradi-
ent and Hessian in a similar manner, and the linear stability of the index-k saddle
point is proved. In Sect. 3, retractions and vector transport are applied to main-
tain the manifold property in numerical schemes, and then the CHiSD algorithm is
presented. Furthermore, the solution landscape in equality-constrained cases can
be constructed with the downward and upward search algorithms based on the
CHiSD algorithm. In Sect. 4, we show two numerical examples to demonstrate the
efficiency of the CHiSD algorithm. First, we construct the solution landscape of
the Thomson problem to identify all possible stationary points in the cases of the
particle number N = 5, 7 and 9. Second, as a nonlinear elliptic eigenvalue problem,
the excited states of the Bose–Einstein condensates (BEC) are calculated with a
combination of the CHiSD and the upward search algorithm. Some conclusions
and discussions are presented in Sect. 5.

2 Constrained high-index saddle dynamics

2.1 Constrained saddle points

Given a twice Fréchet differentiable energy functional E(x) defined on a d-dimensional
real Hilbert space H with an inner product 〈·, ·〉 and the norm ‖ · ‖, we let ∇E(·) :
H → H denotes the Riesz map applied to the Fréchet derivative, and ∇2E(x) ∈
L(H) denotes the Hessian. We consider the functional E(x) for x ∈ H subject to
m equality constraints,

c(x) = (c1(x), · · · , cm(x)) = (0, · · · , 0). (1)

where each cp : H → R is a smooth function. Let A(x) denote (∇c1(x), · · · ,∇cm(x)),
and it is always assumed that ∇c1(x), · · · , ∇cm(x) are linearly independent for
each x subject to (1), which is often referred to as the linear independence con-
straint qualification (LICQ) in optimization theory [38]. From the regular level set



4 J. Yin, Z. Huang, L. Zhang

theorem [43], the feasible set consisting of all feasible points,

M = {x ∈ H : c(x) = (0, · · · , 0)}, (2)

is a (d −m)-dimensional smooth Riemannian manifold with induced metric. For
x ∈ H, the normal space of the isosurface of c(x) is defined as N(x) = span {A(x)},
and the tangent space is defined as its orthogonal complement T (x) = N(x)⊥ =
{v ∈ H : A(x)>v = 0}. For A = (a1, · · · ,ap) and B = (b1, · · · , bq) with columns
in H, A>B denotes a p×q matrix whose (i, j)-entry is 〈bj ,ai〉, and A> denotes the
corresponding linear operator for simplicity. The orthogonal projection operators
P on these spaces have the forms of,

PN(x) = A(x)
(
A(x)>A(x)

)−1

A(x)>, PT (x) = I−PN(x), (3)

where A>A is positive definite for each x ∈ M from LICQ, and remains positive
definite in a neighbourhood U(x) ⊂ H.

Since the functional E is constrained on the Riemannian manifold M, the
Riemannian gradient and Hessian should be considered in replacement of ∇E(x)
and∇2E(x) in unconstrained cases. For x ∈M, the Riemannian gradient is defined
as,

gradE(x) = PT (x)∇E(x), (4)

and the Riemannian Hessian HessE(x) : η ∈ T (x)→ T (x) ⊂ H is defined as,

HessE(x)[η] = PT (x) (∂η gradE(x))

= PT (x)

(
∇2E(x)η −∇2c(x)η

(
A(x)>A(x)

)−1

A(x)>∇E(x)

)
,

(5)

where ∇2c(x)η =
(
∇2c1(x)η, · · · ,∇2cm(x)η

)
[1]. The Riemannian Hessian (5) is

a symmetric operator on T (x), and can be extended as a symmetric operator on
H,

H̃essE(x)[η] := HessE(x)[PT (x)η], (6)

to avoid the problem of definition domains. The Riemannian gradient (4) and
Hessian (5) can be naturally extended to a neighbourhood U(x) ⊂ H of each
x ∈ M with the same expressions, and can be thought of as the Riemannian
gradient and Hessian on some isosurface of c(x).

A point x̂ ∈ M is called a stationary point (or critical point) of the functional
E subject to equality constraints (1) if gradE(x̂) = 0, and a stationary point x̂ is
said to be nondegenerate if HessE(x̂) has a bounded inverse on T (x̂). A stationary
point x̂ ∈ M is a (constrained) saddle point, if x̂ is not a local extremum on M.
According to the Morse theory, the (Morse) index of a stationary point x̂ is defined
as the maximal dimension of a subspace K ⊆ T (x̂) on which HessE(x̂) is negative
definite [36]. For an index-k saddle point (a k-saddle) x̂, the Riemannian Hessian
HessE(x̂) has (d − m) eigenvalues λ̂1 6 · · · λ̂k < 0 6 λ̂k+1 6 · · · 6 λ̂d−m with
corresponding orthonormal eigenvectors v̂1, · · · , v̂d−m. A nondegenerate index-k
saddle point x̂ is a local maximum on a k-dimensional submanifold M−(x̂) of M,
and a local minimum on a (d−m− k)-dimensional submanifold M+(x̂), and the
tangent spaces at x̂ of the two submanifolds M−(x̂) and M+(x̂) are respectively
span{v̂1, · · · , v̂k} and span{v̂k+1, · · · , v̂d−m}. This minimax structure inspires us
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to develop numerical methods for searching for saddle points with a certain index
on the manifold.

Another frequently-used approach to studying stationary points in a con-
strained problem is the Lagrangian function. The Lagrangian function LE(x, ξ)
of the energy E with the equality constraints (1) is,

LE(x, ξ) = E(x)− c(x)ξ, (7)

where ξ ∈ Rm is the Lagrangian multiplier. A stationary point x̂ ∈ M can be
equivalently defined as where the first-order Karush–Kuhn–Tucker (KKT) condi-
tion,

∇xLE(x̂, ξ̂) = ∇E(x̂)−A(x̂)ξ̂ = 0, (8)

holds for some multiplier ξ̂ ∈ Rm [38]. From the KKT condition (8) and LICQ,

the multiplier can be calculated as ξ̂ =
(
A(x̂)>A(x̂)

)−1

A(x̂)>∇E(x̂), and con-

sequently, the Lagrangian Hessian at a stationary point x̂ is

∇2
xxLE(x̂, ξ̂) = ∇2E(x̂)−∇2c(x̂)

(
A(x̂)>A(x̂)

)−1

A(x̂)>∇E(x̂). (9)

Since only the vectors in the tangent space T (x̂) are physical directions, a pro-
jected Hessian PT (x̂)∇2

xxLE(x̂, ξ̂)PT (x̂) is considered to determine the second-
order properties of the stationary point, which accords with (5) in the tangent
space.

We take the unit sphere constraint c(x) = (x>x− 1)/2 in the Euclidean space
Rd as a simple example, where the feasible set is customarily denoted as Sd−1 ={
x ∈ Rd : ‖x‖22 = 1

}
. For x 6= 0 and η ∈ T (x) = span{x}⊥, we have,

PN(x) = x(x>x)−1x>, gradE(x) =
(
I− x(x>x)−1x>

)
∇E(x),

HessE(x)[η] =
(
I− x(x>x)−1x>

)
∇2E(x)η − (x>x)−1x>∇E(x)η.

(10)

2.2 Review of the HiSD method

The HiSD method aims to search for a high-index saddle point in an unconstrained
case [49]. The HiSD for a k-saddle is given by

ẋ = −

(
I−

k∑
i=1

2viv
>
i

)
∇E(x),

v̇i = −

I− viv>i −
i−1∑
j=1

2vjv
>
j

∇2E(x)vi, i = 1, · · · , k,

(11)

which involves a position variable x and k directional variables vi with an initial
condition,

x = x(0) ∈ H, vi = v
(0)
i ∈ H, s.t.

〈
v
(0)
j ,v

(0)
i

〉
= δij , i, j = 1, · · · , k. (12)
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With straightforward calculations, for the HiSD (11) with the initial condition (12),
the vectors v1, · · · ,vk always satisfy the orthonormal condition

〈
vj ,vi

〉
= δij . The

dynamics for x is actually a transformed gradient flow,

ẋ = PV∇E(x)− (I−PV)∇E(x), (13)

where PV∇E(x) is the gradient ascent direction on V = span{v1, · · · ,vk} and
(I − PV)∇E(x) is the gradient descent direction on V⊥. Since a nondegenerate
k-saddle is a local maximum along k orthogonal directions and a local minimum
along other orthogonal directions, this dynamics can find a k-saddle with proper
{vi : i = 1, · · · , k}. The dynamics for vi renews the subspace V in (13) by finding
the eigenvectors corresponding to the smallest k eigenvalues of the Hessian ∇2E(x)
at the current position x. The eigenvector vi corresponding to the i-th smallest
eigenvalue of the Hessian ∇2E(x) can be obtained by solving a constrained opti-
mization problem of the Rayleigh quotient,

min
vi∈H

〈
∇2E(x)vi,vi

〉
s.t.
〈
vj ,vi

〉
= δij , j = 1, · · · , i, (14)

with the knowledge of v1, · · · ,vi−1, and the vi dynamics in (11) solves the con-
strained optimization problem (14) using gradient flow. Then the subspace V in
(13) is spanned by the vectors {vi : i = 1, · · · , k}. In practice, the Hessian in (11)
is often approximated by dimers with a length of 2l [21],

∇2E(x)vi ≈ (∇E(x+ lvi)−∇E(x− lvi)) /2l, (15)

and the HiSD with dimer approximations and dimer shrinkage l̇ = −l is referred to
as the high-index optimization-based shrinking dimer method [49]. In numerical
implementation, the HiSD can be simply discretized with an explicit Euler scheme.

2.3 Formulation of CHiSD

In order to search for a nondegenerate k-saddle x̂ on the manifold M, the HiSD
method (11) is supposed to be generalized to the equality-constrained case (1).
With the minimax structure of saddle points on manifolds, we set the dynamics
for a k-saddle x̂ as a transformed gradient flow similarly,

ẋ = − (I− 2PV) gradE(x), (16)

which is gradient ascent on the subspace V and gradient descent on its orthogonal
complement V⊥. The k-dimensional subspace V ⊆ T (x) is spanned by k orthonor-
mal directions v1, · · · , vk, and the orthogonal projection operator PV possesses
a simple form of

∑k
i=1 viv

>
i . At a k-saddle x̂, the k directions v1, · · · , vk ∈ T (x̂)

should be the eigenvectors of the smallest k eigenvalues of the Riemannian Hessian
HessE(x̂) (5). Therefore, the direction vi at the current position x is approximated
by the i-th eigenvector of HessE(x), which can be obtained by a constrained op-
timization problem with the knowledge of v1, · · · ,vi−1,

min
vi∈T (x)

〈
HessE(x)[vi],vi

〉
, s.t.

〈
vj ,vi

〉
= δij , j = 1, · · · , i. (17)
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Equivalently, we deal with another constrained optimization problem,

min
vi∈H

〈
H̃essE(x)[vi],vi

〉
,

s.t. A(x)>vi = 0,
〈
vj ,vi

〉
= δij , j = 1, · · · , i,

(18)

with the operator H̃essE(x) : H → T (x) ⊂ H in (6). The Lagrangian function of
(18) is,

Li(vi, ξi,µi) =
〈

H̃essE(x)[vi],vi

〉
−

i∑
j=1

ξij
(〈
vj ,vi

〉
− δij

)
− v>i A(x)µi, (19)

where ξi ∈ Ri and µi ∈ Rm are Lagrangian multipliers, and the dynamics of vi is,

v̇i = −1

2
∇viLi(vi, ξ,µ) = − H̃essE(x)[vi] + ξivi +

i−1∑
j=1

ξij
2
vj +

1

2
A(x)µi. (20)

The dynamics (16) and (20) should maintain the manifold property,

x ∈M, v1, · · · ,vk ∈ T (x), (21)

as well as the orthonormal condition,〈
vj ,vi

〉
= δij , i, j = 1, · · · , k. (22)

Therefore, the Lagrangian multipliers ξi,µi should satisfy,

d

dt
(A(x)>vi) = A(x)>v̇i +

(
∇2c(x)ẋ

)>
vi = 0,

d

dt

〈
vj ,vi

〉
=
〈
v̇j ,vi

〉
+
〈
vj , v̇i

〉
= 0,

(23)

and are obtained as,

ξii =
〈

H̃essE(x)[vi],vi

〉
, ξij = 4

〈
H̃essE(x)[vi],vj

〉
,

µi = −2
(
A(x)>A(x)

)−1 (
∇2c(x)ẋ

)>
vi.

(24)

As a result, we obtain the CHiSD for a k-saddle (k-CHiSD) as,

ẋ =−

(
I−

k∑
i=1

2viv
>
i

)
gradE(x),

v̇i =−

I− viv>i −
i−1∑
j=1

2vjv
>
j

 H̃essE(x)[vi]

−A(x)
(
A(x)>A(x)

)−1 (
∇2c(x)ẋ

)>
vi, i = 1, · · · , k,

(25)

with an initial condition at t = 0,

x = x(0) ∈M, vi = v
(0)
i ∈ T (x(0)),

〈
v
(0)
j ,v

(0)
i

〉
= δij , i, j = 1, · · · , k. (26)
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Remark 1 With straightforward calculations, it can be verified that the CHiSD
(25) with the initial condition (26) satisfies (21) and (22) for t > 0.

Remark 2 The second term in the dynamics of vi in (25), which is derived from
the constraints vi ∈ T (x), corresponds to the parallel translation induced by the
Riemannian connection. For a smooth curve x(t) on the manifold M, the tangent
space T (x) changes accordingly, and the dynamics

v̇ = −A(x)
(
A(x)>A(x)

)−1 (
∇2c(x)ẋ

)>
v, (27)

transports the tangent vector v(0) ∈ T (x(0)) to v(t) ∈ T (x(t)) along the curve
x(t) on the manifold M in a parallel way, i.e. D

dtv(t) := PT (x(t))
d
dtv(t) ≡ 0.

For the unit sphere Sd−1, the CHiSD can be simplified as,
ẋ =−

(
I− xx> −

k∑
i=1

2viv
>
i

)
∇E(x),

v̇i =−

I− xx> − viv>i −
i−1∑
j=1

2vjv
>
j

∇2E(x)vi − xv>i ∇E(x), i = 1, · · · , k.

(28)
The sphere constraint is a particularly special case because the Hessian of the
constraint ∇2c(x) is a scalar multiple of the identity. Therefore, (I−xx>)∇2E(x)
and the Riemannian Hessian Hess(x) share the same eigenvectors in T (x) with a
translation in eigenvalues, and the Riemannian Hessian in (17) can be replaced by
∇2E(x), which is not valid for general constraints.

2.4 Linear stability

Although CHiSD (25) with the initial condition (26) satisfies the property (21)
and (22), a small perturbation may easily deviate x away from the manifold M.
To achieve better stability, a modified term with µ > 0 is attached to the dynamics
of x to reinforce the equality constraints (1), leading to a modified CHiSD for a
k-saddle, 

ẋ =−

(
I−

k∑
i=1

2viv
>
i

)
gradE(x)− µ

m∑
l=1

cl(x)∇cl(x),

v̇i =−

I− viv>i −
i−1∑
j=1

2vjv
>
j

 H̃essE(x)[vi]

−A(x)
(
A(x)>A(x)

)−1 (
∇2c(x)ẋ

)>
vi, i = 1, · · · , k.

(29)

The following theorem shows the linear stability of k-saddles in (29).

Theorem 1 Assume that E(x) is a C3 functional, x∗ ∈M, {v∗i }
k
i=1 ⊂ T (x∗) satisfies

‖v∗i ‖ = 1, µ > 0, and HessE(x∗) is nondegenerate, whose eigenvalues are λ∗1 < · · · <
λ∗k 6 λ∗k+1 6 · · · 6 λ∗d−m. Then (x∗,v∗1 , · · · ,v∗k) is a linearly stable steady state of

(29), if and only if x∗ is a k-saddle and HessE(x∗)[v∗i ] = λ∗i v
∗
i for i = 1, · · · , k.
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Proof We consider the Jacobian operator of the dynamics (29),

J =
∂(ẋ, v̇1, v̇2, · · · , v̇k)

∂(x,v1,v2, · · · ,vk)
=


Jx Jx1 Jx2 · · · Jxk
? J1 O · · · O
? ? J2 · · · O
...

...
...

...
? ? ? · · · Jk

 , (30)

whose blocks have the following expressions,

Jx =
∂ẋ

∂x
= −

(
I−

k∑
i=1

2viv
>
i

)(
H(x)−A(x)

(
A(x)>A(x)

)−1

(
∇2c(x) gradE(x)

)>)
− µ

m∑
l=1

(
cl(x)∇2cl(x) +∇cl(x)∇cl(x)>

)
,

Jxi =
∂ẋ

∂vi
= 2v>i gradE(x)I + 2vi gradE(x)>,

Ji =
∂v̇i
∂vi

= −

I−
i∑

j=1

2vjv
>
j

 H̃essE(x) +
〈
vi, H̃essE(x)[vi]

〉
I

−A(x)
(
A(x)>A(x)

)−1 (
∇2c(x)ẋ

)>
.

Here, H(x) is an asymmetric extension of the Riemannian Hessian (5) defined as

H(x) = PT (x)

(
∇2E(x)−∇2c(x)

(
A(x)>A(x)

)−1

A(x)>∇E(x)

)
. (31)

In the following, J(x∗,v∗1 , · · · ,v∗k) is denoted as J∗ and the blocks of J∗ are denoted
as J∗ with corresponding subscripts.

”⇐”: Supposing that x∗ is a k-saddle and HessE(x∗)[v∗i ] = λ∗i v
∗
i for i =

1, · · · , k, we have gradE(x∗) = 0 and λ∗k < 0 < λ∗k+1. With simple calculations,
(x∗,v∗1 , · · · ,v∗k) is a steady state of (29). Note that Jxi is null if gradE(x) = 0, so
the Jacobian (30) is block lower triangular, whose eigenvalues are determined by
the diagonal blocks,

J∗x = −

(
I−

k∑
i=1

2v∗i v
∗
i
>
)

H(x∗)− µ
m∑
l=1

∇cl(x∗)∇cl(x∗)>,

J∗i = −

I−
i∑

j=1

2v∗j v
∗
j
>

 H̃essE(x∗) + λ∗i I.

For HessE(x∗), we denote v∗i (i = k + 1, · · · , d −m) as the eigenvector of its
eigenvalue λ∗i so that {v∗i }

d−m
i=1 is an orthonormal basis of T (x∗). The equations

J∗xv∗j = −

(
I−

k∑
i=1

2v∗i v
∗
i
>
)

HessE(x∗)[v∗j ] =

{
λ∗jv
∗
j , 1 6 j 6 k,

−λ∗jv
∗
j , k < j 6 d−m,

(32)
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indicate that J∗x has eigenvalues of λ∗1, · · · , λ∗k, −λ∗k+1, · · · ,−λ
∗
d−m, and the equa-

tions
∇cj(x∗)

>J∗x = −µ‖∇cj(x∗)‖2∇cj(x∗)
>
, 1 6 j 6 m. (33)

indicate that J∗x has m eigenvalues of −µ‖∇c1(x∗)‖2, · · · , −µ‖∇cm(x∗)‖2, which
are different from the previous ones due to µ. Therefore, all the eigenvalues of J∗x
are negative. For J∗i , we have

J∗i v∗j =

{
(λ∗i + λ∗j )v

∗
j , 1 6 j 6 i,

(λ∗i − λ
∗
j )v
∗
j , i < j 6 d−m,

(34)

indicating eigenvalues of λ∗i + λ∗1, · · · , λ∗i + λ∗i , λ
∗
i − λ

∗
i+1, · · · , λ∗i − λ

∗
d−m, and

J∗i∇cj(x∗) = λ∗i∇cj(x
∗), 1 6 j 6 m, (35)

indicating an eigenvalues λ∗i with multiplicity m. Therefore, all the eigenvalues of
J∗i are negative, and the steady state (x∗,v∗1 , · · · ,v∗k) is linearly stable.

”⇒”: Supposing that (x∗,v∗1 , · · · ,v∗k) is a linearly stable steady state, we have
ẋ = 0 and v̇i = 0, indicatingI−

i−1∑
j=1

2v∗j v
∗
j
>

 H̃essE(x∗)[v∗i ] = µ∗i v
∗
i , (36)

where µ∗i =
〈

H̃essE(x∗)[v∗i ],v∗i

〉
. We now show by induction that for i = 1, · · · , k,

H̃essE(x∗)[v∗i ] = µ∗i v
∗
i 6= 0,

〈
v∗j ,v

∗
i

〉
= δij , j = 1, · · · , i− 1. (37)

The i = 1 case is obtained from (36) directly, and v∗1 ∈ T (x∗) indicates µ1 6= 0 due
to the nondegeneracy. Assumed that (37) holds for 1 6 i < l, by taking i = l in
(36) we have, H̃essE(x∗)−

l−1∑
j=1

2µ∗jv
∗
j v
∗
j
>

v∗l = µ∗l v
∗
l , (38)

from the symmetry of H̃essE(x∗). Since v∗1 , · · · ,v∗l−1 are eigenvectors of H̃essE(x∗)

according to the inductive assumption, H̃essE(x∗) and H̃essE(x∗)−
l−1∑
j=1

2µ∗jv
∗
j v
∗
j
>

share the same eigenvectors, so v∗l ∈ T (x∗) is also an eigenvector of H̃essE(x∗)

with an eigenvalue µ∗l 6= 0. Furthermore,
l−1∑
j=1

µ∗j 〈v
∗
l ,v
∗
j 〉v
∗
j = 0 leads to 〈v∗l ,v

∗
j 〉 = 0,

which completes the induction of (37). Consequently, from ẋ = 0 and x∗ ∈M, we
have gradE(x∗) = 0 and the Jacobian (30) is block lower triangular.

Finally, we show that the index of the stationary point x∗ is k, and µ∗i = λ∗i
for i = 1, · · · , k. Since HessE(x∗) is a symmetric operator on T (x∗) with some
eigenpairs {(µ∗i ,v

∗
i )}ki=1, we denote v∗i (i = k + 1, · · · , d−m) as the eigenvector of

its eigenvalue µ∗i such that {v∗i }
d−m
i=1 is an orthonormal basis of T (x∗). Similarly

to (32) and (33), the eigenvalues of J∗x are

µ∗1, · · · , µ∗k; −µ∗k+1, · · · ,−µ
∗
d−m; −µ‖∇c1(x∗)‖2, · · · ,−µ‖∇cm(x∗)‖2; (39)
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which have negative real parts from the linear stability. Therefore, {µ∗i }
k
i=1 are

negative and {µ∗i }
d−m
i=k+1 are positive, so x∗ is a k-saddle. Similarly to (34) and

(35), the eigenvalues of J∗i ,

µ∗i +µ∗1, · · · , µ∗i +µ∗i ; µ∗i −µ
∗
i+1, · · · , µ

∗
i −µ

∗
d−m; µ∗i (with multiplicity m); (40)

have negative real parts as well, which indicates µ∗i < µ∗i+1 for i = 1, · · · , k. Com-
paring the negative eigenvalues of HessE(x∗), we have µ∗i = λ∗i , which completes
our proof.

Remark 3 The CHiSD (25) actually searches for k-saddles on the isosurface of c(x),
while the initial condition (26) makes the dynamics search for saddle points on the
manifold M. The additional term in (29) is applied to pull the dynamics towards
the manifold in case of perturbation in order to obtain linear stability.

From Remark 1, the dynamics (29) and the dynamics (25) with the initial
condition (26) have the same orbits. Therefore, a linearly stable steady state
(x∗,v∗1 , · · · ,v∗k) of (29) is also asymptotically stable for (25) in the following sense.
As long as the initial condition (26) is sufficiently close to (x∗,v∗1 , · · · ,v∗k), the
dynamics (25) will converge to this steady state as well.

3 Numerical implementation

3.1 Retractions and vector transport

The numerical scheme of CHiSD (25) is supposed to maintain the manifold prop-
erty (21) in each iteration step. Since a simple explicit Euler scheme can easily
push x away from the manifold, we introduce the tools of retractions and vector
transport in manifold optimization to discretize CHiSD (25), and we refer to [1]
for more detailed information.

Strictly speaking, a tangent vector ξx to the manifold M at a point x ∈M is
a mapping from the set of germs of functions Fx(M) to R. Each tangent vector ξx
can be represented by a curve γ onM with γ(0) = x satisfying ξxf = d

dtf(γ(t))
∣∣
t=0

for ∀f ∈ Fx(M). The tangent space at x ∈ M, denoted by TxM, can now be
canonically identified with T (x) via the one-to-one correspondence ξx ∈ TxM 7→
γ′(0) = lim

τ→0

γ(τ)−γ(0)
τ ∈ T (x). Therefore, for x ∈ M, we treat the mapping ξx ∈

TxM and the tangent vector object ξ ∈ T (x) at x equally throughout the article.
The tangent bundle TM :=

⋃
x∈M

TxM denotes the set of all tangent vectors to

M.
The notion of moving x on the manifold in the direction of a tangent vector

is generalized by a retraction mapping. A retraction R is a smooth mapping from
TM to M, and the retraction of R to TxM, denoted by Rx, satisfies Rx(0x) = x

and d
dtRx (tηx)

∣∣
t=0

= ηx for ∀ηx ∈ TxM, where 0x is the zero element in TxM.
As a natural retraction on the Riemannian manifold in the geometric sense, the
exponential mapping at x ∈ M, denoted by Expx, maps η ∈ TxM to γ(1;x,η) ∈
M, where γ(t;x,η) is the unique geodesic such that γ(0) = x and γ̇(0) = η. For
the unit sphere Sd−1, the exponential mapping has a computable form,

Expx η = (cos ‖η‖)x+
sin ‖η‖
‖η‖ η, (41)
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while the exponential mapping of a general Riemannian manifold poses significant
numerical challenges to calculating cheaply. Therefore, other computable retrac-
tions are often applied as approximations of the exponential mapping. It should
be pointed out that for the same manifold, we can have different choices of re-
tractions, which might lead to different computational results. For the unit sphere
Sd−1, another clear form of the retraction is

Rx(η) =
x+ η

‖x+ η‖ = Expx

(
arctan ‖η‖
‖η‖ η

)
. (42)

Next we consider enforcing the directions vi on the tangent space. The notion
of vector transport T specifies how to transport a tangent vector ξx ∈ TxM as
x moves on the Riemannian manifold. A vector transport on a manifold M is
a smooth mapping from the Whitney sum TM ⊕ TM := {(ηx, ξx) : ηx, ξx ∈
TxM,x ∈M} to TM satisfying following properties:

1. Tηxξx ∈ TRx(ηx)M, where R is the retraction associated with T ;
2. T0xξx = ξx for ∀ξx ∈ TxM;
3. Tηx(aξx + bζx) = aTηxξx + bTηxζx for ∀ξx, ζx ∈ TxM and ∀a, b ∈ R.

The parallel translation (27) is a natural vector transport along a curve x(t) on the
manifold, where the parallel translation of orthonormal vectors remains orthonor-
mal. For the unit sphere Sd−1, as x ∈ Sd−1 moves to Expx η along the geodesics,
the parallel translation of a vector ξ ∈ TxM has a closed form,

Tηξ = ξ +
cos ‖η‖ − 1

‖η‖2 〈η, ξ〉η − sin ‖η‖
‖η‖ 〈η, ξ〉x ∈ TExpx ηM, (43)

where the exponential mapping (41) is the associated retraction. Parallel transla-
tion is not the only way to achieve vector transport, and is often difficult to cal-
culate numerically for general Riemannian manifolds as well. Alternatively, there
is considerable flexibility in how to choose the vector transport, and two typical
approaches to generating computationally tractable vector transport according to
the retraction operator R are

Tηξ =
d

dt
Rx(η + tξ)

∣∣∣∣
t=0

, and Tηξ = PT (Rx(η))ξ. (44)

Note that vector transport generally may not maintain the orthonormality of vec-
tors. For the unit sphere Sd−1 with the retraction (42), the two approaches yield

Tηξ =
1

‖x+ η‖ξ −
〈ξ,x+ η〉
‖x+ η‖3 (x+ η), and Tηξ = ξ − 〈ξ,x+ η〉

‖x+ η‖2 (x+ η). (45)

3.2 Numerical algorithms of CHiSD

With the help of vector transport T and the retraction R associated with T , we
are able to implement CHiSD (25) numerically with the initial condition (12).

Specifically, at the (n+1)-th iteration step, we aim to calculate x(n+1) and v
(n+1)
i

using x(n) and v
(n)
i in the previous step. The retraction Rx provides a practical way
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to pull the points from x+ T (x) back onto the manifold M, so we can implement
an explicit scheme with a retraction as

x(n+1) = Rx(n)

(
α(n)g(n)

)
, g(n) = −

(
I−

k∑
i=1

2v
(n)
i v

(n)
i

>
)

gradE
(
x(n)

)
,

(46)

to calculate x(n+1). Note that v
(n)
1 , · · · ,v(n)k are orthonormal vectors in T (x(n))

which approximate the corresponding eigenvectors of HessE(x(n)), and α(n) is the
step size to be determined. Therefore, g(n) lies in the tangent space T (x(n)), and
this iteration scheme ensures that x(n) always satisfies the equality constraints
(1).

The dynamics of vi consists of two terms: the first term solves the eigenvalue
problem (18) using gradient flow, while the second one corresponds to the parallel
translation as discussed in Remark 2. Accordingly, we deal with the two terms

successively. We first transport the previous vectors {v(n)i } to {v̌(n)i } in the tan-

gent space T (x(n+1)) using the vector transport Tα(n)g(n) at x(n), and then solve
the eigenvalue problem (18). Although an exact solution to the eigenvalue problem
works well, we recommend to find a rough solution to reduce the computational
costs, and vi will converge as x approaches a k-saddle. Since x(n+1) is close to

x(n), the transported vector v̌
(n)
i provides a good initial guess of the correspond-

ing eigenvector, so we simply apply one-step gradient flow for each eigenvector.
Practically, the Riemannian Hessian HessE(x) is often expensive to calculate, so

a dimer approximation u
(n)
i is applied to approximate H̃essE(x(n+1))[v̌

(n)
i ] with

a small l > 0 [21]. Finally,
{
v
(n+1)
i

}
is calculated from

{
ṽ
(n+1)
i

}
using a normal-

ized orthogonalization function orth(·) which can be realized by a Gram–Schmidt

procedure. Consequently, {v(n+1)
i } can be calculated with the following procedure

in each iteration step,

v̌
(n)
i = Tα(n)g(n)v

(n)
i ,

u
(n)
i = PT (x(n+1))

gradE(x(n+1) + lv̌
(n)
i )− gradE(x(n+1) − lv̌(n)i )

2l
,

d
(n)
i = −u(n)

i +
〈
u
(n)
i , v̌

(n)
i

〉
v̌
(n)
i +

i−1∑
j=1

2
〈
u
(n)
i , v̌

(n)
j

〉
v̌
(n)
j ,

ṽ
(n+1)
i = v̌

(n)
i + β(n)d

(n)
i ,[

v
(n+1)
1 , · · · ,v(n+1)

k

]
= orth

([
ṽ
(n+1)
1 , · · · , ṽ(n+1)

k

])
.

(47)

The iteration (46)–(47) is terminated if ‖ gradE(x(n))‖ is smaller than the toler-
ance.

Remark 4 The above iteration (47) for vi can be regarded as a one-step application
of the power method for I− β(n) H̃essE(x(n+1)) on the tangent space T (x(n+1)).

3.3 Construction of the solution landscape

In this subsection, we introduce a systematic numerical procedure to construct
the solution landscape of an energy functional subject to equality constraints.
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This procedure consists of a downward search algorithm and an upward search
algorithm, which is a generalization of the pathway map to constrained cases [47].

First, we present a toy model to illustrate our basic idea. Consider an energy
functional constrained on S2,

E(x1, x2, x3) = (x21 − 1)2 + x22 + 2x23,

s.t. c(x1, x2, x3) = x21 + x22 + x23 − 1 = 0,
(48)

whose energy landscape is shown in Fig. 1(a). Two minima C1(1, 0, 0) and C2(−1, 0, 0)
are connected by two 1-saddles B1(0, 1, 0) and B2(0,−1, 0). We aim to find these
minima and 1-saddles down from an index-2 critical point A(0, 0, 1), and construct
the solution landscape as shown in Fig. 1(b), which depicts how lower-index saddle
points are connected to the higher-index ones. The arrows in Fig. 1(b) are realized
using downward search algorithms based on the CHiSD.

(a) Energy landscape (b) Solu�on landscape

A

B1

index-2

index-1

index-0

B2

C1 C2

A

B1

B2

C1

C2

3

2

1

0

Fig. 1 Illustration of (a) an energy landscape of the function (48) and (b) the solution land-
scape starting from the maximum, A, down to minima C1 and C2. Two saddle points B1 and
B2 are connected to A. The indices labeled in (b) are those according to the Morse definition.

Starting from a parent state (high-index saddle point), the downward search is
the core procedure to search for the stationary points with lower indices that are
connected to this parent state. Given a k-saddle x̂ ∈ M, we let v̂1, · · · , v̂k ∈ T (x̂)
denote the k orthonormal eigenvectors of HessE(x̂) with negative eigenvalues λ̂1 6
· · · 6 λ̂k < 0. First we slightly perturb x̂ along an unstable direction v̂j chosen from
the unstable directions {v̂1, · · · , v̂k} with 0 < ε� 1. Then an m-CHiSD (m < k) is
started from the point Rx̂ (±εv̂j) and the m initial directions {vi(0)}mi=1 are chosen
from the unstable directions excluding v̂j . A typical choice of the initial condition is
(Rx̂ (±εv̂m+1) , v̂1, · · · , v̂m). Once a new m-saddle is found, we implement another
downward search from this newly-found saddle recursively until minima are found.
The downward search algorithm is presented in detail as Algorithm 1. Note that
each element (x,m, {v1, · · · ,vk}) in the queue A represents to find m-saddles from
the k-saddle x.

With the downward search, we can systematically search for multiple station-
ary points from a given parent state in a controlled procedure. However, if the
parent state is unknown, or in the case that multiple parent states exist, we need
a numerical procedure to find a parent state. Therefore, an upward search algo-
rithm is required to find a higher-index saddle from a low-index stationary point
(usually a minimum). Fortunately, the CHiSD also embeds a mechanism to search



Constrained high-index saddle dynamics 15

Algorithm 1 Downward search

Input: A k̂-saddle x̂, ε > 0.
1: Calculate the k̂ eigenvectors v̂1, · · · , v̂k̂ ∈ T (x̂) of HessE(x̂);

2: Set the queue A = {(x̂, k̂ − 1, {v̂1, · · · , v̂k̂})}, the solution set S = {x̂}, and the relation
set R = ∅;

3: while A is not empty do
4: Pop (x,m, {v1, · · · ,vk}) from A;
5: Push (x,m− 1, {v1, · · · ,vk}) into A if m > 1;
6: for j = 1 : k do
7: Determine the initial directions: {vi : i = 1, · · · ,m+ 1, i 6= min(j,m+ 1)};
8: if m-CHiSD from Rx (±εvj) converges to (x̃, ṽ1, · · · , ṽm) then
9: R← R∪ {(x, x̃)};

10: if x̃ /∈ S then
11: S ← S ∪ {x̃};
12: Push (x̃,m− 1, {ṽ1, · · · , ṽm}) into A if m > 1;
Output: The solution set S and the relation set R.

upward. Given a k-saddle x̂ ∈ M, more eigenvectors of HessE(x̂) with smallest
eigenvalues are calculated as v̂1, · · · , v̂K ∈ T (x), where K (K > k) is the highest
index of the saddle point to search for. Different from the downward search, we
choose a direction v̂j from the stable directions {v̂k+1, · · · , v̂K}, and slightly per-
turb x̂ along v̂j . An m-CHiSD (m > k) procedure is then started from Rx̂ (±εv̂j),
while the m initial directions {vi(0)}mi=1 need to include v̂j . Then this procedure
is implemented to newly-found saddles recursively until K-saddles are found or
no higher-index saddles can be found. A typical choice of the initial condition is
(Rx̂ (±εv̂m) , v̂1, · · · , v̂m). Besides the difference in initial conditions, the upward
search only aims to find parent states of the solution landscape, while the down-
ward search presents the relations between stationary points and gives a complete
picture of the solution landscape by exhaustively searching for multiple station-
ary points. Algorithm 2 presents the upward search algorithm in detail with the
typical choice.

Algorithm 2 Upward search

Input: A k̂-saddle x̂, ε > 0, the highest index K.
1: Calculate the k̂ eigenvectors v̂1, · · · , v̂K̂ ∈ T (x̂) of HessE(x̂);

2: Set the stack A = {(x̂, k̂ + 1, {v̂1, · · · , v̂K})} and the solution set S = {x̂},
3: while A is not empty do
4: Pop (x,m, {v1, · · · ,vK}) from A;
5: Push (x,m+ 1, {v1, · · · ,vK}) into A if m < K;
6: if m-CHiSD from (Rx(±εvm),v1, · · · ,vm) converges to (x̃, ṽ1, · · · , ṽm) then
7: if x̃ /∈ S then
8: S ← S ∪ {x̃} and calculate more eigenvectors ṽm+1, · · · , ṽK̃

of HessE(x̃);
9: Push (x̃,m+ 1, {ṽ1, · · · , ṽK}) into A if m < K;
Output: The solution set S.

The computation cost of downward and upward search mainly depends on the
CHiSD method, since each process can implement the CHiSD search individually,
the algorithm can be naturally parallelized to speed it up. In practice, the solution
landscape is achieved by a combination of downward search and upward search,
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and we can navigate up and down systematically on the energy landscape to
construct a complete solution landscape.

4 Numerical examples

4.1 Thomson problem

The Thomson problem considers the minimal-energy configuration of N classical
charged particles confined to a sphere which interact with each other via a Coulomb
potential f(r) = r−1, and was originally proposed as a representation of the atomic
structure [42]. The Thomson problem has attached much attention as a special
case of the 7th problem in Steven Smale’s eighteen problems for the 21st century
[41]. Many numerical attempts have been made to find local and global minima [2,
18], transition states [33,51] and high-index saddle points [34] to fully understand
the energy landscape of the Thomson problem.

In the Thomson problem, the coordinate of the i-th particle xi = (xi, yi, zi) ∈
R3 is constrained on the unit sphere S2, and the energy function of a configuration
(x1, · · · ,xN ) ∈ R3×N is,

E(x1, · · · ,xN ) =
∑
i<j

f
(∥∥xi − xj∥∥) . (49)

Because of the rotation symmetry, we specify the first particle to be the north
pole and the second particle to lie on the yz-plane [51]. In other words, the state
variables are constrained on a manifold,

M =
{

(x1, · · · ,xN ) ∈ R3×N : x1 = (0, 0, 1), x2 = 0, ‖xi‖2 = 1
}
, (50)

so that the Riemannian Hessian at a stationary point has no zero eigenvalues
generally. For x = (x1, · · · ,xN ) ∈ M and η = (0, (0,η2),η3, · · · ,ηN ) ∈ TxM
where η2 ∈ T(y2,z2)S

1 and ηi ∈ TxiS
2 for i > 3, the retraction operator is,

Rxη =
(
x1, (x2, R

S1

(y2,z2)η2), RS
2

x3
η3, · · · , RS

2

xN
ηN

)
, (51)

where RS
d−1

is the retraction operator on the unit sphere Sd−1 chosen as the expo-
nential mapping (41). For ξ = (0, (0, ξ2), ξ3, · · · , ξN ) ∈ TxM, the vector transport
from x to Rxη is

Tηξ =
(
0, (0, T S

1

η2
ξ2), T S

2

η3
ξ3, · · · , T S

2

ηN
ξN

)
, (52)

where T S
d−1

is the vector transport for the unit sphere Sd−1 with the form of
(43). Note that if N is large, the constraint amount m will be about as large as
N . Nevertheless, the computational costs of the retraction operator (51) and the
vector transport (52) will be O(N) because of the product structure of (50).

We aim to present multiple stationary points of the Thomson problem in order
to offer a full description for the energy landscape without random initial guesses.
A trivial stationary point of the Thomson problem is a planar polygon configu-
ration (PP) that N particles are evenly spaced on a great circle of S2, and is an
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(a) N = 5

2-saddle

1-saddle

minimum

(b) N = 7

2-saddle

1-saddle

minimum

4-saddle

3-saddle

(c) N = 9

2-saddle

minimum

4-saddle

3-saddle

6-saddle

5-saddle

1-saddle

PP

RD

RP

PP

RD

RP

PP

RP

RD

TTP

Fig. 2 The solution landscape of the Thomson problem with particle numbers (a) N = 5. (b)
7, and (c) 9. The configurations of stationary points are presented in the solution landscape.
Each red ball represents a particle on the sphere, and the red line segments are drawn to
show the relative positions. The height of each configuration approximately corresponds to
its relative energy. The index of each stationary point is labelled on the left side, and some
important stationary points are further labelled with their configurations. Each arrow from
a higher-index stationary point to a lower-index stationary point corresponds to a CHiSD
pathway by the downward search.

(N − 3)-saddle for N > 3. This trivial stationary point presents a natural parent
state for downward search which is implemented with fixed step sizes α(n) = 10−4

and β(n) = 10−3. In this low-dimensional example, we adopt the canonical in-
ner product and the Hessian is evaluated exactly. The computational results for
some small particle numbers N = 5, 7 and 9 are presented in Fig. 2, where the
stationary points with the same configuration are only shown once. From the triv-
ial (N − 3)-saddle, an (N − 4)-saddle of a regular pyramid configuration (RP) is
first located during the downward search, where (N − 1) particles evenly spaced
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on a latitude ring. The regular dipyramid configuration (RD) with two antipodal
particles and (N − 2) other particles evenly spaced on the equator is the minimal-
energy configuration for N = 5, 7, and a 4-saddle configuration for N = 9, while
the minimal-energy configuration for N = 9 is a triaugmented triangular prism
(TTP).

4.2 Bose–Einstein condensation

The experimental realization of BEC in vapors of magnetically-trapped alkali
atoms that occupy a single quantum state has attracted great interest in the
atomic physics community [3,13], The properties of BEC at an ultra-low tempera-
ture are well described by the macroscopic wave function ψ(x, t), whose evolution
is governed by the nonlinear Schrödinger equation (Gross–Pitaevskii equation),

i
∂

∂t
ψ(x, t) =

(
−1

2
∇2 + V (x) + β|ψ(x, t)|2

)
ψ(x, t), x ∈ Rd, (53)

where V (x) is a real-valued trapping potential on Rd and β is the dimensionless
interaction coefficient [4]. Two important invariants of (53) are the normalization
of the wave function, ∫

Rd

|ψ(x, t)|2dx = 1, (54)

and the energy per particle,

E(ψ(·, t)) =

∫
Rd

[
1

2
|∇ψ(x, t)|2 + V (x)|ψ(x, t)|2 +

β

2
|ψ(x, t)|4

]
dx. (55)

To find a stationary solution to (53), substituting ψ(x, t) = e−iµtφ(x) into (53)
gives

µ φ(x) =

(
−1

2
∇2 + V (x) + β|φ(x)|2

)
φ(x), x ∈ Rd, (56)

where µ is the chemical potential and φ(x) satisfies a unit complex sphere con-
straint,

φ ∈M =

{
ϕ ∈ L2(Rd,C) : E(ϕ) <∞,

∫
Rd

|ϕ(x)|2dx = 1

}
. (57)

The eigenfunction to the nonlinear elliptic eigenvalue problem (56) is the stationary
point of the energy

E(φ) =

∫
Rd

[
1

2
|∇φ(x)|2 + V (x)|φ(x)|2 +

β

2
|φ(x)|4

]
dx. (58)

with the sphere constraint (57), and the chemical potential µ can be calculated as,

µ =

∫
Rd

[
1

2
|∇φ(x)|2 + V (x)|φ(x)|2 + β|φ(x)|4

]
dx = E(φ)+

∫
Rd

β

2
|φ(x)|4dx. (59)

The ground state of BEC is defined as the eigenfunction of (56) subject to the
sphere constraint (57) with the lowest energy (58). Any eigenfunction of (56)
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subject to the sphere constraint (57) with a higher energy is usually called excited
states in the physics literature.

We consider a two-dimensional BEC system with a repulsive interaction pa-
rameter β = 300, where the condensates are tightly confined in the other di-
mension. The potential V (x) : R2 → R is simply chosen as a radial-symmetric
harmonic oscillator V (x) = 1

2 |x|
2. The existence, uniqueness up to a phase factor,

and smoothness of the ground state have been well studied in previous researches
[4,29], and there are many efficient numerical methods for computing the ground
state [4,5,46]. Furthermore, there have been some attempts to find several excited
states of BEC as well. By choosing proper initial guesses such as odd functions,
a few methods for finding ground states can also be applied to compute some
excited states with certain symmetry of BEC [5,46]. Some excited states of BEC
have also been obtained with Newton’s methods [23,24] and deflated continuation
algorithms [11,8,10], while how to systematically compute the excited states of
BEC remains a huge challenge.

The energy (58) implicates some invariance, which leads to zero eigenvalues of
Hessians at stationary points. For a stationary solution φ ∈ M, both eiϑφ(x) and
φ (Rϑx) are also stationary solutions with the same index and energy for ∀ϑ ∈ R,

where Rϑ =

(
cosϑ − sinϑ
sinϑ cosϑ

)
is the rotation around the origin. This invariance

accounts for two zero eigenvalues for Hessians of general stationary solutions. As
a special case, the ground state and central vortex states can be expressed as
φ(x) = eimθϕm(r) using the polar coordinate (r, θ) and the winding number m ∈ Z
of the central vortex, so the Hessians at these stationary solutions have only one
zero eigenvalue [4,6].

In the numerical computation, the wave function φ is truncated into a bounded
domain D = [−M,M ]2 with homogeneous Dirichlet boundary conditions,

E(φ) =

∫
D

[
1

2
|∇φ(x)|2 + V (x)|φ(x)|2 +

β

2
|φ(x)|4

]
dx,

φ(x) = 0, x ∈ ∂D,
(60)

because the stationary states decay to zero exponentially fast in the far field from
the effect of the trapping potential [4]. We discretize the wave function φ(x) ∈
L2(D) with M = 8 using finite difference methods with N = 128 nodes along each
dimension. It should be noted that the complex-valued function space L2(D) is a
real Hilbert space with the real inner product,

〈φ, ψ〉 =

∫
D

φ(x)ψ̄(x) + φ̄(x)ψ(x)

2
dx, (61)

and the gradient of (55), which is often referred to as the Wirtinger derivative, is

∇E(φ) = 2
δE

δφ̄
= −∇2φ+ 2V (x)φ+ 2βφ|φ|2. (62)

The retraction operator and the corresponding vector transport for this unit sphere
are chosen as (41) and (43).

From the ground state, we implement the upward search with fixed step sizes
α(n) = 10−6 and β(n) = 10−3 to search for excited states, which is slightly dif-
ferent from Algorithm 2 because of the zero eigenvalues of Hessians at stationary
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Fig. 3 An upward pathway sequence from the ground state to a 10-saddle of BEC. Each
dashed arrow represents an upward search to an excited state, and three transient states on
some upward dynamical pathways are presented. We show the probability density |φ|2 for each
state, and present the energy of each stationary solution.

solutions. For each stationary solution φi, we let ηi,1, · · · , ηi,m ∈ T (φi) denote m
orthonormal eigenvectors of HessE(x̂) corresponding to the smallest m eigenval-
ues λi,1 6 · · · 6 λi,m. Since the Hessian at the ground state φ0 has only one zero
eigenvalue λ0,1 = 0, the 1-CHiSD from the ground state cannot climb out of the
basin. Alternatively, we treat this degenerate minimum φ0 as a 1-saddle by re-
garding the zero eigenvector ηi,1 as an unstable direction, and a 2-CHiSD from(
Rφ0

(εη0,2), η0,1, η0,2
)

finally converges to a 2-saddle φ2. This 2-CHiSD upward
search involves a quantized vortex of winding number +1 moving from the do-
main edge to the center, and the 2-saddle φ2 is a central vortex state with only
one zero eigenvalue as shown in Fig. 3. Here, the jump of Morse index comes from
the degeneracy of this BEC system, that is, zero eigenvalues of the Riemannian
Hessians at the critical points. Similarly, we implement upward search from φ2 with
a 4-CHiSD from

(
Rφ2

(εη2,4), η2,1, · · · , η2,4
)

and find a degenerate 3-saddle φ3. The
3-saddle φ3 has two vortices with winding numbers +1 and −1 respectively, and
its Hessian has two zero eigenvalues λ3,4 = λ3,5 = 0. Therefore, the upward search
from φ3 is implemented with a 6-CHiSD from

(
Rφ3

(εη3,6), η3,1, · · · , η3,6
)

to find an
excited state with a higher index, which turns out to be a 4-saddle. This 6-CHiSD
upward search involves a new quantized vortex, and the three vortices of the 4-
saddle are aligned. This upward search procedure can be repeated to newly-found
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excited states, and Fig. 3 shows a sequence of seven upward-search attempts from
the ground state eventually to a 10-saddle. It should be noted that the upward
search (k + 3)-CHiSD from a k-saddle finally converges to a (k + 1)-saddle for
k = 3, 4, 5, and a (k + 2)-saddle for k = 6, 8.

5 Conclusions and discussions

In this article, we proposed a CHiSD method for searching for index-k saddle points
subject to general equality constraints. Applying the Riemannian gradients and
Hessians, we derived the dynamical system with a transformed gradient flow as the
formulation of CHiSD. The linear stability of CHiSD at the index-k constrained
saddle points is proved. In the numerical implementation of CHiSD, the retraction
operator and vector transport are introduced to discretize the dynamics. Combined
with the CHiSD method, one can construct the solution landscape on a constrained
manifold using downward/upward search algorithms.

We presented two numerical examples as applications of the CHiSD method.
For the Thomson problem, we constructed the solution landscape from a planar
configuration. Our results can be regarded as an improvement of the saddle point
amounts and the kinetic transition networks [33,34]. Although only cases with
5, 7 and 9 particles are considered here, our method can be applied to study
more particles in a straightforward way. The other application is to search for the
excited states of BEC, which correspond to a nonlinear eigenvalue problem. The
upward search algorithm is slightly varied in this case due to the zero eigenvalues
of Hessians at stationary points. We calculated the excited states using the upward
search algorithm, which can further applied to the 10-saddle, as it is conjectured
that the nonlinear eigenvalue problem (56) admits infinitely many eigenfunctions
which are linearly independent [6]. Furthermore, in a rotating BEC system, vortices
are energetically favored above a critical rotational frequency and this system can
admit multiple stable/metastable states [4,6]. We will systematically explore the
solution landscape of rotating BEC and identify probable mechanisms of excitation
in a subsequent work.

There are naturally some issues worthy of further investigations in order to
improve numerical efficiency. Since the computational costs mainly depend on cal-
culations of the eigenvectors of Hessians, one may consider more efficient methods
for computing the eigenvectors. For instance, if the problem is ill-conditioned, the
power iteration method (47) may present poor approximations of eigenvectors,
leading to a failure of convergence. Thus, other efficient numerical algorithms will
be needed to deal with such difficulties. Moreover, the fixed step size is used in
current version of the CHiSD method for simplicity, which can be adopted by
adaptive step sizes to accelerate the convergent rate. Furthermore, at the end of
CHiSD iterations, we can apply the second-order methods to accelerate the con-
vergence. Another important task is to apply the CHiSD method to explore more
practical applications, in which the framework of CHiSD will be adapted to the
numerical schemes originally designed for the gradient dynamics.
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