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Abstract We propose a methodology to solve high-order PDE boundary
value problems with generalised periodicity, in the framework of the C0 interior
penalty method. The method is developed for the analysis of flexoelectricity-
based metamaterial unit cells, formalising the corresponding problem state-
ment and weak form, and giving details on the implementation of the local
and macro conditions for generalised periodicity. Numerical examples demon-
strate the high-order convergence of the method and its applicability in real-
istic problem settings.
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1 Introduction

Metamaterials are defined, in a broad sense, as materials that are engineered to
exhibit properties which are not found in naturally occurring materials [14].
They can be built by assembling multiple base materials (plastics, metals,
etc) and voids, in repeated spatial patterns at small scales. Thus, the inter-
esting features of metamaterials are not driven by the properties of the base
materials they are made of, but from its particular artificial structure. The
raising interest in the design of metamaterials has boosted research efforts
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from a theoretical standpoint [23], and also in the development of mathemat-
ical and computational models capable of capturing small scale phenomena.
In particular, the geometrical design of flexoelectrictity-based metamaterials,
to accumulate flexoelectric effects from small scale to macro scale, has re-
cently become an active field of research. The goal is to achieve an apparent
piezoelectric macroscopic response in metamaterials made of non-piezoelectric
constituents [13,18,17,7,3,15].

Flexoelectricity is a two-way electromechanical coupling, present in all di-
electrics, that is relevant only at small scales [20], and can be modelled by a set
of fourth-order Partial Differential Equations (PDEs) with proper boundary
conditions. There are several approaches in the literature for the solution of
fourth-order PDEs and, in particular, for the solution of flexoelectricity prob-
lems, such as mixed finite element methods [16,10], meshless methods [1], C1
approximations on regular grids with embedded domains [13,18,8,22,17,9] or
C0 interior penalty finite element methods (C0-IPM) [21].

In [21] the authors derive a new formulation for the solution of the flexo-
electricity problems in finite domains, based on the C0-IPM method initially
proposed for biharmonic equations [4,5,11]. Its good performance is exper-
imentally tested with synthetic problems and with realistic beam problems.
The C0-IPM method considers a standard C0 finite element (FE) approxi-
mation space, with degree p ≥ 2. Continuity of the normal derivatives and
equilibrium of forces, between elements and on the mesh vertexes, are im-
posed in weak form, by means of the introduction of integrals on the element
sides (faces in 3D). The main potential advantages of C0-IPM in front of
other methods are that (i) no additional unknowns are introduced, and (ii)
meshes can fit to the boundary avoiding the ill-conditioning issues, and the
costly numerical integration, typical in embedded methods with cropped ele-
ments. Moreover, as a FE method, numerical integration is straight-forward,
prescribed values of the solution can be directly enforced setting nodal values,
material interfaces do not need any special treatment as long as the mesh fits
to the interface, and meshes can be refined where needed to capture features
in the solution. In particular, in the presence of boundary layers in the electric
field, an anisotropic FE mesh can be considered to refine along the boundary
only in the orthogonal direction, as shown in the flexoelectric beam simula-
tions in [21]. As expected for a C0-IPM formulation for a fourth-order PDE
problem [4,5,12], the convergence rates are close to the convergence rates of
standard FEM in second-order PDEs. More precisely, the convergence tests in
[21] exhibit rates between p and p + 1 when a p-th degree FE approximation
is used, for p = 3, 4.

Given the good performance and flexibility of the method proposed in [21],
the goal of this work is to provide an efficient alternative for the computa-
tional design of flexoelectricity-based metamaterials, by reducing the C0-IPM
formulation in infinite metamaterial domains to a single unit cell. This leads
to the formalization and incorporation of the Generalised Periodicity (GP)
conditions into the standard C0-IPM formulation in [21].
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For the sake of conciseness, all derivations are done for 2D flexoelectricity,
and initially assuming GP in both directions. The methodology can, however,
be directly applied in 3D with further implementation effort, and to strain-
gradient elasticity problems, just setting to zero the flexoelectricity and piezo-
electricity coefficients. The reduction to GP in only one direction is straight-
forward and it is commented later.

The GP concept for the computational modelling of metamaterials built by
repetition of a unit cell, is formalised in section 2, together with the conditions
for a proper computational unit cell. The problem statement in the unit cell is
then presented in section 3, with the introduction of the GP conditions on the
boundary of the rectangle, so that the problem statement in the unit cell is
equivalent to the problem in the infinite metamaterial domain. The intersection
of the infinite domain with the boundary of the unit cell rectangle is treated as
an artificial interface, and high-order interface conditions are stated relating
the left and right boundaries, the bottom and top boundaries, and the corners
on the rectangle boundary.

Section 4 focuses on the derivation of the weak form with GP conditions.
First, the functional space complying with the GP jump conditions (for the
components of the displacement and for the electric potential) is defined as the
set of functions with constant difference between the left and right boundaries,
and between the bottom and top boundaries. Some properties of the GP space,
useful for the derivation of the weak form, are also stated. The weak form is
then derived using the rationale that standard C0-IPM applies on interior faces
and vertexes, translated now to the artificial boundaries and vertexes. That is,
continuity of the normal derivative of the displacement, equilibrium of forces
and conservation of electric charge are imposed in weak form, across artificial
boundaries in the unit cell, and also on the corners of the rectangle if they
are not in a material void. Using the properties of the GP space and the GP
conditions, it is proved that the new terms arising on the artificial boundaries
cancel out or can be simplified. Very conveniently, the resulting weak form
with GP conditions has an expression very close to the standard C0-IPM one,
just adding the Dirichlet macro-conditions, and extending the integrals on the
interface between elements to include also integrals on the bottom and left
boundaries, with a proper extension of the definition of the jump and mean
operators. As a side result of the weak form derivation, Neumann macro-
conditions are identified, as quantities dual to the jump of the displacement
or the potential, in each direction of the unit cell.

Computational aspects are commented in section 5, detailing the steps
to pleasantly adapt an existing C0-IPM code to incorporate GP conditions.
The considered strategy assumes that the computational mesh is such that the
nodes and sides on the artificial boundaries fulfill the periodicity of the unit cell
geometry. Thus, as naturally done for the solution of second order PDEs, the
difference of the nodal values on the top and bottom boundaries (or on the left
and bottom boundaries) is set to a constant, that can be prescribed or left as an
unknown of the problem, reducing the approximation space and the consequent
system of equations. However, flexoelectricity modeling involves fourth-order
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PDEs, thus integrals on the artificial GP boundary have to be incorporated in
the system to account for the high-order continuity and equilibrium conditions.
These integrals can be accounted for in the code in a straight-forward manner,
just adding the artificial GP faces in the list of interior faces.

This work does not cover the case of FE meshes with non-matching sides
at the top and bottom boundaries, and at the left and right boundaries. In the
case of non-matching sides, the continuity and equilibrium conditions could
be imposed in weak form, as in [3], with non-negligible implementation effort.
On other hand, the strategy considered here for the calculation of apparent
macroscopic properties is the one adopted in [17]. Alternative strategies based
on homogenization, as the ones compared in [19], could also be considered.
The chosen one is, however, naturally integrated in the C0-IPM formulation
and implementation, and it is suitable for any kind of geometry, also with
unstructured meshes.

Numerical tests demonstrate the applicability and good performance of
the proposed formulation with GP conditions. First, a convergence test with
synthetic solution shows how the proposed formulation for problems with GP
maintains the high-order convergence and accuracy of the C0-IPM method.
Second, two numerical examples show that the numerical solutions with the
proposed methodology are in agreement with the physics: the solution in a
unit cell with GP properly captures the solution of an infinite metamaterial,
as the limit for increasing number of concatenated cells, and it is independent
of the selected unit cell. Finally, some of the numerical experiments in [17] are
reproduced, showing qualitative agreement in the results.

2 Generalised Periodicity and unit cell

Metamaterials can be built by reproducing a certain pattern in space, or equiv-
alently, by infinitely concatenating a unit cell, as illustrated in the sketch in
Figure 1.

When considering an electroactive metamaterial with periodic geometric
structure in all directions, one expects the same periodic repetition, up to con-
stants, in the displacement and the electric potential, which leads to periodic
strain and electric fields. This idea is formalised in this section by introduc-
ing the concepts of generalised periodicity and unit cells, and some properties
derived from their definitions.

2.1 Generalised periodicity

Definition 1 (GP function) We say that a function f : Rn → R has gen-
eralised periodicity (GP), or that it is a GP function, of multi-period L =
(L1, ..., Ln), with multi-increment ∆ = (∆1, ...,∆n), if

f(x+ Liei) = f(x) +∆i, for 1 ≤ i ≤ n, ∀x ∈ Rn,
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Fig. 1 Example of a 2D domain with periodic geometry, and three different possible choices
of a unit cell representative. All of them give the same 2D pattern when infinitely concate-
nated.

where ei is the i-th canonical vector of Rn, and the jumps ∆i are the compo-
nents of the multi-increment. It can also be written as

f(x+ Liei) = f(x) + Liδi, for 1 ≤ i ≤ n, ∀x ∈ Rn,

with the jumps per unit length defined as δi = ∆i/Li.

As a direct consequence of the definition, by simply applying it repeatedly
in several directions, we have

f(x+

n∑
i=1

kiLiei) = f(x) +

n∑
i=1

ki∆i, ∀x ∈ Rn, ki ∈ K.

Thus, a GP function is completely determined in Rn from its value at a unit
cell, that is, in any rectangle (rectangular cuboid in 3D) with side (edge)
lenghts {Li}ni=1, as illustrated in figure 2 (left). In other words, the solution on
a metamaterial with periodic geometry with multi-period L, can be obtained
solving just on a unit cell, as illustrated in figure 2 (right), with proper GP
boundary conditions.

Finally, the following result provides an alternative characterization of GP
functions, that will be considered for the definition of synthetic analytical
solutions for numerical convergence tests.

Lemma 1 A function f is GP of multi-period L ∈ Rn iff there exist δ ∈ Rn
and a periodic function fp with multi-period L such that

f(x) = fp(x) + δ · x.
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Fig. 2 Example of a 1D GP function with period L = 1 and jump ∆ = 2 (left), and defor-
mation of a square unit cell with multi-period L = (1, 1) (right), detailing the displacement
at each corner in terms of the jumps. The deformation is the same at the top and bottom
boundaries, and at the left and right boundaries.

Proof The implication to the left is trivial. Assume f(x) = fp(x) + δ ·x with
fp periodic of multi-period L ∈ Rn, and δ ∈ Rn. Then f is indeed GP, since

f(x+ Liei) = fp(x+ Liei) + δ · (x+ Liei) = f(x) + Liδi.

For the implication to the right, assume f is GP and take the candidate
fp(x) := f(x) − δ · x. Then fp is indeed periodic of multi-period L ∈ Rn,
since

fp(x+Liei) = f(x+Liei)−δ·(x+Liei) = f(x)+Liδi−δ·(x+Liei) = fp(x).ut

2.2 2D unit cells

For the sake of simplicity, from now on, we restrict all the derivations and anal-
ysis to the two-dimensional metamaterials scenario. The proposed methodol-
ogy can be directly applied also to 3D, without further theoretical develop-
ments, but requiring additional implementation effort. With this mindset, if
not otherwise stated, the domain Ω is a perforated solid 2D rectangle, that is,
Ω ⊂ (0, Lx)× (0, Ly) ⊂ R2, corresponding to a unit cell.

It will come in handy to have an adequate nomenclature for the parts of
the boundary of the unit cell and, since an image is worth a thousand words,
we refer to Figure 3 (right), which compels this nomenclature in a typical
example of a unit cell geometry.

More precisely, S, N , W and E , are the bottom, top, left and right sides
of the domain Ω. They are artificial boundaries, in the sense that they would
not be boundaries in the infinite domain. Differently, the inner boundary ∂Ωi,
in pink, is a physical boundary also present in the infinite domain. We also
denote by CR := {CRk }

nR
k=1, CF := {CFk }

nF
k=1, and CT := {CTk }

nT
k=1, the sets of

rectangle, false, and true corners, respectively. By geometry periodicity in both
directions, the number of physical rectangle corners is nR = 0 if the corners
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Fig. 3 Example of infinite domain (left) defined by the repetition of the unit cell on the
right, and representation of the boundary and corners nomenclature in the unit cell (right).

of the rectangle are in a material void, and nR = 4 otherwise. True corners,
CT , are physical corners that would also be present in the infinite domain;
whereas false corners, CF , are artificial corners that only appear when a unit
cell representative is sliced. We also assume ∂Ωi to be a finite union of smooth
curves, not including its singular points if any, i.e, it does not include the
corners CR ∪ CF ∪ CT .

Obviously, there are some conditions for a computational domain Ω to be a
proper unit cell, corresponding to a periodic geometry when concatenated. We
will say that Ω is a valid unit cell if its sides satisfy the geometry periodicity
condition

E = {(Lx, y) : (0, y) ∈ W}, and N = {(x, Ly) : (x, 0) ∈ S}. (1)

Remark 1 Thanks to the geometry periodicity condition, the false corners CF
always appear in pairs which are in opposed sides of the unit cell, and either
vertically or horizontally aligned. That is, for every false corner CFi ∈ CF ,
there exists a unique false corner CFj ∈ CF \ CFi such that CFi − CFj ∈
{(±Lx, 0), (0,±Ly)}.

An additional constraint on the unit cell is added to reduce the cases and
simplify the derivations in the problem statement in section 3, and in the
corresponding weak form in section 4. We will assume that physical (true)
corners are not on the boundary of the rectangle (0, Lx) × (0, Ly), and that
there are no tangencies of the physical boundary with the boundary of the
rectangle. In this situation, the boundary of the computational domain Ω is
the disjoint union

∂Ω = S t N tW t E t ∂Ωi t CR t CF t CT .

Consequently, false corners sew the physical boundary on consecutive cells
with C1 continuity, i.e with continuous normal and tangent vectors, because
they do not coincide with physical true corners.
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Figure 4 depicts two non-valid unit cells. The case shown on the left vio-
lates the translation condition (1) on the W and E sides. In both cases, the
additional condition of non-having a physical true corner on the boundary of
the rectangle is not satisfied. These two non-valid choices of unit cell represen-
tative generate the same spatial pattern represented in Figure 3 (left), when
infinitely concatenated in the R2 plane, for which a valid unit cell can easily
be selected, making sure that no physical true corner is on the boundary of
the rectangle, as shown in Figure 3 (right). We highlight this fact to loosely
claim that one can always choose a valid unit cell representative, at least for
patterns that are realistic in an engineering sense.

Fig. 4 Examples of non-valid unit cells. Physical true corners (x) should not be on the
boundary of the rectangle.

3 Flexoelectricity problem statement with GP conditions

This section focuses on the statement of the flexoelectricity problem with
GP conditions. We consider the flexoelectricity model in [21], but the GP
conditions stated next can also be applied to other flexoelectricity models. For
the sake of conciseness, in this section and next derivations, GP is assumed in
both directions, since reducing to the case of GP in one direction is straight-
forward, as commented in section 4.5.

The problem statement with GP consists on finding the displacement,
u = (ux, uy)T , and the electric potential, φ, satisfiying the partial differen-
tial equations (PDEs)

∇ · (σ̂(u, φ)−∇ · σ̃(u, φ)) + b = 0 in Ω, (2a)

∇ · D̂(u, φ)− q = 0 in Ω, (2b)

subject to the physical boundary conditions

t(u, φ) = 0
r(u, φ) = 0
w(u, φ) = 0

 on ∂Ωi, (3a)

j(u, φ) = 0 on CT , (3b)
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the GP jump constraints

u(Lx, y) = u(0, y) +∆u
x

φ(Lx, y) = φ(0, y) +∆φ
x

}
for (0, y) on W,

u(x, Ly) = u(x, 0) +∆u
y

φ(x, Ly) = φ(x, 0) +∆φ
y

}
for (x, 0) on S,

(4)

the GP interface conditions on the sides

J∂u/∂nK = 0
Jt(u, φ)K = 0

Jr(u, φ)⊗ nK = 0
Jw(u, φ)K = 0

 on W ∪ S, (5)

the GP interface conditions on the rectangle corners CR (provided that CR 6=
∅) and on the false corners CF (provided that CF 6= ∅)

{j(u, φ)} = 0 on (CF ∪ CR) ∩
(
W ∪ S

)
, (6)

and the macro-conditions commented in remark 2, all together with the defi-
nitions of the operators, vectors and tensors explained next.

The mean, {·}, and jump, J·K, operators appearing in these equations are
defined on the left and bottom sides as

{f}(0, s) := (f(Lx, s) + f(0, s))/2

JfK(0, s) := f(Lx, s) + f(0, s)

}
if (0, s) ∈ W

{f}(s, 0) := (f(s, Ly) + f(s, 0))/2

JfK(s, 0) := f(s, Ly) + f(s, 0)

}
if (s, 0) ∈ S

(7)

the jump always involving an odd appearance of the normal vector, so that
there is always a change of sign, i.e. a jump operation.

The PDEs (2) and the physical boundary conditions (3) are the usual
ones in standard flexoelectricity boundary value problems [21]. Homogeneous
natural boundary conditions are assumed on the whole physical boundary,
since this is the usual case in metamaterial computations. The treatment of
other physical boundary conditions is not considered for the sake of simplicity,
but they can also be incorporated as in the standard problem, as commented
in section 4.5. In these equations, using Einstein’s notation (repeated indexes
sum over spatial dimensions), the local and double stress tensors, σ̂ and σ̃,
and the electric displacement tensor, D̂, are given by

σ̂ = C : ε−E · e ≡ σ̂ij = Cijk`εk` − E`e`ij ,

σ̃ = h
...∇ε−E · µ ≡ σ̃ijk = hijk`mn

∂ε`m
∂xn

− E`µ`ijk,

D̂ = κ ·E + e : ε+ µ
...∇ε ≡ D̂` = κ`mEm + e`ijεij + µ`ijk

∂εij
∂xk

.
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In these definitions, ε is the strain tensor (i.e., εij = (∂ui/∂xj + ∂uj/∂xi)/2),
E = −∇φ is the electric field, C is the elasticity tensor (which depends on the
Young modulus E and Poisson ratio ν), h is the strain-gradient tensor (defined
as hijk`mn = l2Cij`mδkn, where l is the internal length scale parameter), e and
µ are the tensors of piezoelectric and flexoelectric coefficients, and κ stands
for the dielectric permittivity. See appendix B in [8] for detailed definitions.

The physical boundary conditions (3a) set null traction, second traction
and surface charge density, defined as

ti(u, φ) :=

(
σ̂ij −

∂σ̃ijk
∂xk

−∇Sk σ̃ikj
)
nj + σ̃ijkÑjk,

ri(u, φ) := σ̃ijknjnk,

and
w(u, φ) := −D̂`(u, φ)n`,

where ∇Sk σ̃ikj is the surface divergence of σ̃ikj , and Ñ is the second order
geometry tensor, see [8] for details. Equation (3b) sets null punctual forces on
physical corners, with

ji(u, φ) := τLj σ̃
L
ij`n

L
` + τRj σ̃

R
ij`n

R
` , (8)

being nL and nR the unitary exterior normals on the left and right curves
sharing the corner, and τL and τR the unitary tangent vectors on each curve
pointing outward; see [8] for details.

The rest of the equations in the problem statement are introduced so that
the solution in the unit cell is equivalent to the GP solution in the infinite do-
main, and we refer to them as GP boundary conditions. Equations (4) impose
the solution to be GP functions, with multi-period L = (Lx, Ly), and jumps
∆u
x = (∆ux

x , ∆
uy
x )T , ∆u

y = (∆
uy
y , ∆ux

y )T for the displacement and ∆φ
x, ∆φ

y for
the potential.

Remark 2 (Macro-conditions) In practical applications, macro-conditions are
imposed to deform, or apply a voltage difference, in the unit cell. For each jump
variable, we can either set its value, or leave it as an unknown, setting the corre-
sponding dual macroscopic stress or macroscopic charge instead. For instance,
in a sensor setting, we can impose a longitudinal macro-strain with magnitude
−0.1 in the y direction, by setting ∆

uy
y /Ly = −0.1 and ∆ux

y = ∆
uy
x = 0,

leaving free, as unknowns, the rest of jumps, and having the potential accu-
mulation ∆φ

y as output of interest, see for instance [17]. The actual expression
of the macro-stresses and macro-charges, dual to the jumps, will be deduced
from the weak form in section 4.2, and commented in remarks 5 and 6.

Apart from the C0 continuity of the solution, we must also impose C1 con-
tinuity of the displacement and equilibrium of internal forces on the boundary
of the rectangle. The conditions to be imposed are analogous to the condi-
tions imposed on material interfaces, which are the ones imposed also between
elements in the C0-IPM method [21].
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That is, the W and S sides (and also, by geometry periodicity, the E and
N sides) are artificial interfaces in the infinite domain obtained by repetition
of the unit cell. Thus, continuity of the normal derivative of the displacement,
equilibrium of first and second tractions and conservation of charge, are im-
posed in conditions (5), just accounting for the fact that the solution in the
unit cell can be repeated in both directions, adding the corresponding constant
jumps, and noting that the derivative of a GP function is a periodic function.

Finally, condition (6) for the puntual forces on false corners and on the
rectangle corners (if not in a void) are a consequence of the following remark.

Remark 3 If a corner smoothly patches two curves, we have nL = nR and
τL = −τR. Plugging this in (8), for continuous σ̃, it can be easily checked
that j(u, φ) = 0. It would be the case, for instance, for an artificial corner
introduced in a smooth curve.

More precisely, by the additional assumptions in section 2.2, false corners
are artificial corners, with continuity of the normal vector on the boundary of
the infinite domain. Moreover, as noted in remark 1, false corners appear by
pairs which are in opposed sides of Ω, either vertically or horizontally aligned.
Thus, by remark 3, the punctual forces on the paired false corners must be in
equilibrium, summing to zero, as stated in condition (6) for CF .

Analogously, by replication of the unit cell in the vertical direction, using
remark 3, the sum of the punctual forces at the top and bottom corners of the
rectangle must be in equilibrium by pairs, i.e. the sum of the forces for the
two left corners and the sum for the two right corners is zero. With the same
reasoning by repetition in the horizontal direction, we conclude that condition
(6) is also satisfied for the rectangle corners CR.

4 C0-IPM with GP conditions

The C0-IPM formulation for flexoelectricity problems with GP is derived in
this section. GP is assumed in both directions, since the reduction to GP in
only one direction is straight-forward. The derivations are done in 2D, even
though the same methodology can be directly applied in 3D with extra imple-
mentation effort.

First, the C0-IPM space is recalled, and it is then modified to accommo-
date the GP jump conditions in strong form, also stating useful properties of
the functions. The weighted residual equations are derived for the mechanical
equilibrium equation, and for the electric equation, carefully accounting for
the GP conditions. The C0-IPM weak form for the coupled problem is then
stated. Finally, the application to the case with GP in only one direction is
commented.
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4.1 Functional spaces

In the C0-IPM formulation, the domain (in this case the unit cell, Ω) is split
in finite elements, {Ωe}nele=1, and the solution is assumed to be in the space

V := {v ∈ H1(Ω) : v ∈ H2(Ωe) for e = 1, . . . , nel}.

We aim at defining a space, subset of V, fulfilling the GP jump conditions (4).
To this end, consider the subset

VPL := {v ∈ V : v(0, y) = v(Lx, y) for (0, y) ∈ W,

v(x, 0) = v(x, Ly) for (x, 0) ∈ S},

corresponding to functions in V that are periodic in x and y simultaneously,
with multi-period L = (Lx, Ly). Now, we consider a pair of functions ϕx ∈ V
and ϕy ∈ V such that

ϕx(x, 0) = ϕx(x, Ly), ϕx(0, y) = 0, ϕx(Lx, y) = 1,

ϕy(0, y) = ϕy(Lx, y), ϕy(x, 0) = 0, ϕy(x, Ly) = 1,
(9)

(i.e. functions that are periodic in one direction, with unitary jump in the
other) and use them to define our GP space VGPL ⊂ V as

VGPL := VPL ⊕ 〈ϕx〉 ⊕ 〈ϕy〉. (10)

In other words, any function w ∈ [VGPL ]m (with m components) can be
expressed as

w = wp +∆w
x ϕ

x +∆w
y ϕ

y, (11)

where ∆w
x = w(Lx, ·)−w(0, ·) and ∆w

y = w(·, Ly)−w(·, 0) are the constant
jumps with the multi-period L = (Lx, Ly), and wp = w −∆w

x ϕ
x −∆w

y ϕ
y ∈

[VPL ]m is a periodic function.

Remark 4 In the light of lemma 1, the natural choice for the functions satis-
fying (9) is ϕx = x/Lx and ϕy = y/Ly. Nevertheless, in the unit cell Ω, any
choice in V satisfying the conditions (9) leads to the same space VGPL and, as
commented in remark 8 in section 5, other options may be more convenient.

Some properties of the functions in VGPL that will come in handy in the
next section are stated next.

Lemma 2 For w ∈ VGPL and f : ∂Ω → R,

JfK = 0 on W ⇒ JwfK(0, y) = ∆w
x f(Lx, y) for (0, y) ∈ W

JfK = 0 on S ⇒ JwfK(x, 0) = ∆w
y f(x, Ly) for (x, 0) ∈ S

{f} = 0 on W ⇒ {wf}(0, y) = 1
2∆

w
x f(Lx, y) for (0, y) ∈ W

{f} = 0 on S ⇒ {wf}(x, 0) = 1
2∆

w
y f(x, Ly) for (x, 0) ∈ S
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Proof We will prove the first statement only, as the proof for the other ones
is analogous. Since w ∈ VGPL , it can be written as in (11), and

JwfK(0, y) =
[
wp(Lx, y) +∆w

xϕ
x(Lx, y) +∆w

y ϕ
y(Lx, y)

]
f(Lx, y)

+
[
wp(0, y) +∆w

xϕ
x(0, y) +∆w

y ϕ
y(0, y)

]
f(0, y)

= wp(0, y)JfK +∆w
y ϕ

y(0, y)JfK +∆w
x f(Lx, y) on W.

Thus, using the hypothesis JfK = 0 yields the claim. ut

Lemma 3 For w ∈ VGPL and f ∈ L2(W ∪ E ∪ S ∪ N ),

JfK = 0 on W ⇒
∫
W∪E

wfd` = ∆w
x

∫
E
fd`,

JfK = 0 on S ⇒
∫
S∪N

wfd` = ∆w
y

∫
N
fd`.

Proof Again, we will prove the first statement only. Since the conditions for
lemma 2 are met, we have∫

W∪E
wfd` =

∫
W

JwfKd` = ∆w
x

∫
E
fd`,

as we wanted to show. ut

4.2 Weighted residual for the mechanical equilibrium equation

The weighted residual in equation (9) of [21] can be derived from (2a) in-
tegrating in each element, applying integration by parts twice and the sur-
face divergence theorem on the integrals involving tangential derivatives of
the weighting function v ∈ V, summing up for all elements, and imposing
high-order interface conditions between elements on interior sides, see [21] for
details. Here we start from its particularisation for the 2D case, writing it as∫

Ω

v · bdΩ =

∫
Ω

ε(v) : σ̂(u, φ) dΩ +

∫
Ω̂

∇ε(v)
...σ̃(u, φ) dΩ

−
∫
I

s
∂v

∂n

{
· {r(u, φ)} d` −

nc∑
k=1

v(Ck) · Jk(u, φ)

−
∫
∂Ω

v · t(u, φ) d` −
∫
∂Ω

∂v

∂n
· r(u, φ) d`,

(12)

where I is the union of the interior sides of the FE mesh, Ω̂ = Ω\I is the
union of the interior of the elements, and the mean and jump operators on I
are defined as usual; that is,

{f} := (fL + fR)/2, JfK := fL + fR on I, (13)



14 O. Balcells-Quintana, D. Codony and S. Fernández-Méndez

with the indexes L and R referring to the values taken from the left and right
elements sharing each side in I.

At the corners of Ω, i.e. {Ck}nck=1 = CRtCF tCT , Jk(u, φ) is the sum of the
punctual forces from all the elements sharing the corner Ck, see [21]. Assuming
that σ̃(u, φ) is continuous for the analytical solution (which is the case in
the absence of material discontinuities or applied external punctual forces),
Jk(u, φ) = j(u, φ)|Ck defined in (8). Consequently, in equation (12), Jk(u, φ)
has been set to zero on all the element vertexes that are not corners of the
domain, because at vertexes in the interior of smooth sides the corner punctual
force is zero by remark 3, and at interior vertexes it is null by equilibrium of
internal forces, or by simple algebraic cancelation of the sum.

Now, taking u,v ∈ [VGPL ]2 and φ ∈ VGPL , we can particularise and simplify
the last three terms in (12). First, identifying again the sum of the element cor-
ner forces with the punctual force in the domain corner, Jk(u, φ) = j(u, φ)|Ck ,
and using that it is null for the physical corners, in CT , due to the homogeneous
physical boundary condition (3b), we have

nc∑
k=1

v(Ck) · Jk(u, φ) =
∑

Ck∈CR∪CR
v(Ck) · j(u, φ)|Ck .

Now, expanding v ∈ VGPL as in (11), evaluating the sum at the four corners
of the rectangle, and using the properties (9), it is easy to check that∑

Ck∈CR
v(Ck) · j(u, φ)|Ck = ∆v

x

[
j(u, φ)|(Lx,0) + j(u, φ)|(Lx,Ly)

]
+∆v

y

[
j(u, φ)|(0,Ly) + j(u, φ)|(Lx,Ly)

]
+ vp(0, 0)

[
j(u, φ)|(0,0) + j(u, φ)|(Lx,0) +j(u, φ)|(0,Ly) + j(u, φ)|(Lx,Ly)

]
.

Thus, applying the GP conditions on the rectangle corners (6), the sum is∑
Ck∈CR

v(Ck) · j(u, φ)|Ck = 0.

Now, due to remark 1, the corners in CF appear by pairs that are in opposed
sides, vertically or horizontally aligned. Thus, the total summation over the
corners can be expressed as

nc∑
k=1

v(Ck) · Jk(u, φ) = 2
∑

Ck∈CF∩(W∪S)

{v · j(u, φ)}|Ck .

Moreover, using the GP material interface condition (6) on the false corners,
the hypothesis of lemma 2 are met, and the sum can be written as

nc∑
k=1

v(Ck) · Jk(u, φ) = ∆v
x ·
∑

Ck∈CF∩E

j(u, φ)|Ck +∆v
y ·

∑
Ck∈CF∩N

j(u, φ)|Ck . (14)
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We now focus on the first boundary integral in equation (12), which in-
volves the first traction force t. Splitting the boundary, the integral can be
decomposed in three integrals: on E ∪W, on S ∪N and on ∂Ωi, respectively.
Due to the GP material interface conditions on the traction (5), the conditions
of lemma 3 are met, and the integrals on E∪W and S∪N simplify accordingly.
Moreover, due to the homogeneous first Neumann boundary condition (3a),
the integral on ∂Ωi vanishes. Thus, we conclude∫

∂Ω

v · t(u, φ)d` = ∆v
x ·
∫
E
t(u, φ)d`+∆v

y ·
∫
N
t(u, φ)d`. (15)

It only remains to tackle the second boundary integral in equation (12).
Splitting the boundary again and using the second homogeneous Neumann
boundary condition (3a), the integral can be written as∫

∂Ω

∂v

∂n
· r(u, φ) d` =

∫
S∪W

s
∂v

∂n
· r(u, φ)

{
d`.

Now we recall a well-known identity in the context of interfaces or element
sides: JabnK = {a}JbnK + JanK{b}. Applying it on the artificial boundaries, S
and W, and using the GP condition for r in (5), the integral becomes∫

∂Ω

∂v

∂n
· r d` =

∫
S∪W

s
∂v

∂n

{
· {r(u, φ)} d`. (16)

Finally, plugging results (14), (15), and (16) into equation (12), we obtain
the weighted residual for the mechanical equilibrium equation with GP:∫

Ω

v · bdΩ =

∫
Ω

ε(v) : σ̂(u, φ) dΩ +

∫
Ω̂

∇ε(v)
...σ̃(u, φ) dΩ

−
∫
I∪S∪W

s
∂v

∂n

{
· {r(u, φ)} d`−∆v

y · F y(u, φ)−∆v
x · F x(u, φ), (17)

with

F x(u, φ) :=
∑

Ck∈CF∩E

j(u, φ)|Ck +

∫
E
t(u, φ)d`,

F y(u, φ) :=
∑

Ck∈CF∩N

j(u, φ)|Ck +

∫
N
t(u, φ)d`.

(18)

Remark 5 (Macro-stresses) F x and F y in (18) are the sum of the forces on
the E and N sides, respectively, including both traction forces and corner
punctual forces. In fact, F x/Ly and F y/Lx can be interpreted as macroscopic
stresses applied to the metamaterial in the macro scale, since they are the dual
quantities of the imposed macro-strains given by ∆u

x/Lx and ∆u
y /Ly, see [17].

The macro-conditions can then be either setting the jump (Dirichlet) or the
corresponding force (Neumann), for each component of the displacement and
for each direction.
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In all the examples in this manuscript, the loading is always done by set-
ting some jumps, and homogeneous Neumann macro-conditions are assumed
otherwise. As an example, if we set ∆u

x = (−0.1Lx, 0)T , and let free the rest
of jumps, then the mechanical Neumann macro-condition is F y(u, φ) = 0. In
this case, the weighting function v satisfies ∆v

x = 0, which is the homogeneous
version of the Dirichlet macro-condition. In any case, ∆v

y · F y(u, φ) + ∆v
x ·

F x(u, φ) = 0 holds. Thus, the weighted residual (17), valid for u ∈ [VGPL ]2

and φ ∈ VGPL , reduces to

∫
Ω

v · bdΩ =

∫
Ω

ε(v) : σ̂(u, φ) dΩ +

∫
Ω̂

∇ε(v)
...σ̃(u, φ) dΩ

−
∫
I∪S∪W

s
∂v

∂n

{
· {r(u, φ)} d` (19)

for any v ∈ [VGPL ]2 satisfying the Dirichlet macro-conditions in homogeneous
form.

4.3 Weighted residual for the electric displacement equation

We now derive the weighted residual for the PDE (2b). Multiplying it by a
test function ν ∈ VGPL , integrating over Ω, resourcing to integration by parts,
and using the definition of the electric charge density, w, we get∫

Ω

∇ν · D̂(u, φ) dΩ = −
∫
Ω

νq dΩ +

∫
∂Ω

νw(u, φ) d`.

Like before, we address the integral on ∂Ω splitting it in three integrals, on
E ∪W, on S ∪ N and on ∂Ωi, respectively. Due to the GP material interface
conditions for the electric charge density in (5), the conditions of lemma 3 are
met, and the integrals on E ∪W and S∪N simplify accordingly. Moreover, due
to the homogeneous physical boundary condition (3a) on the charge density,
w, the integral on ∂Ωi vanishes, and so we conclude∫

Ω

∇ν · D̂(u, φ) dΩ = −
∫
Ω

νq dΩ −∆ν
xQx −∆ν

yQy.

with

Qx := −
∫
E
w(u, φ)d`, Qy := −

∫
N
w(u, φ)d`. (20)

Remark 6 (Macro-charges) Qx and Qy in (20) are the total electric charges in
the E and N sides, respectively. In fact, Qx/Ly and Qy/Lx can be interpreted
as macroscopic electric displacements applied to the metamaterial in the macro
scale, since they are the dual quantities of the imposed macroscopic electric
fields given by −∆φ

x/Lx and −∆φ
y/Ly. The macro-conditions can then be either

setting the jump (Dirichlet) or the corresponding charge (Neumann), for each
direction.
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As we did for the weighted residual for the displacements, for each one
of the spatial directions, we either impose a jump of the potential, or leave
it free with an homogeneous Neumann macro-condition. For example, if we
impose ∆φ

x to some given value to apply a voltage difference, the rest of macro-
conditions are homogeneous Neumann, that is, Qy = 0. Thus, in any case, the
weighted residual equation for the electric potential reduces to the standard
one, ∫

Ω

∇ν · D̂(u, φ) dΩ = −
∫
Ω

νq dΩ, (21)

and it holds for any ν ∈ VGPL satisfying the homogeneous version of the Dirich-
let macro-conditions.

4.4 Weak form

We can now state the C0-IPM weak form with GP conditions, from the
weighted residual equations (19) and (21), following the standard procedure,
as in [21]. That is, we sum both equations, and we add terms to symmetrise
the weak form and to recover the coercivity of the strain-gradient elasticity
bilinear form.

For the sake of clarity, we will state the weak form for a particular case
of macro-conditions, imposing a compression in the horizontal direction, with
∆u
x/Lx = (−0.1, 0)T , and letting free all other jumps, with homogeneous Neu-

mann macro-conditions, i.e. Qx = Qy = 0 and F y = 0.
The weak form is then: find φ ∈ VGPL and u ∈ [VGPL ]2 such that

∆u
x = Lx

[
−0.1

0

]
(22)

and∫
Ω

ε(v) : σ̂(u, φ) dΩ +

∫
Ω̂

∇ε(v)
...σ̃(u, φ) dΩ +

∫
Ω

∇ν · D̂(u, φ) dΩ

−
∫
I∪S∪W

s
∂v

∂n

{
· {r(u, φ)}d`−

∫
I∪S∪W

{r(v, ν)} ·
s
∂u

∂n

{
d`

+

∫
I∪S∪W

β

s
∂v

∂n

{
·
s
∂u

∂n

{
d` =

∫
Ω

v · bdΩ −
∫
Ω

νq dΩ (23)

for all ν ∈ VGPL and v ∈ [VGPL ]2 such that ∆v
x = 0, where the jump and mean

operators are defined in (13) for the interior element sides in I, and in (7) for
the artificial boundaries S ∪W.

In (23), the term −
∫
I∪S∪W{r(v, ν)}·

q
∂u
∂n

y
d` is added to recover the sym-

metry of the weak form. It is analytically zero, since
q
∂u
∂n

y
= 0 on E ∪ N

due to the first GP interface conditions in (5), and on I due to the assumed
C1 continuity of the analytical solution u in the interior of Ω. The integral∫
I∪S∪W β

q
∂v
∂n

y
·
q
∂u
∂n

y
d`, also null for the analytical solution for the same
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reason, provides coercivity of the strain-gradient elasticity bilinear form, for
large enough stabilization parameter β. This parameter can be estimated solv-
ing an eigenvalue problem, see [21] for details. In the numerical examples, we
use β = 1 if l = 0, since any β > 0 is valid in this case, and β = 100El2/h,
otherwise.

It is worth noting the homogeneous version of the Dirichlet macro-condition
imposed on the weighting function, ∆v

x = 0, associated to the condition (22) on
the displacement, and recalling that homogeneous Neumann macro-conditions
are assumed for free jumps.

As a second example, in the so-called sensor setting we would impose a
jump on the potential, ∆φ

x = V , and the condition on the weighting functions
would be in this case, its homogeneous version, ∆ν

x = 0.

Remark 7 The weak form stated in this section does not have a unique so-
lution, since it is determined up to a constant for the potential, and rigid-
body-motion displacements. To have a unique solution, we prescribe the po-
tential and the displacement at one node, to set the constant for the potential
and to preclude rigid translations. Rigid rotations can be precluded imposing
∆ux
y = ∆

uy
x as in [17], although a unique solution is also obtained if the jump

∆
uy
x , or ∆ux

y , is set. The same applies for GP in only one direction if Neumann
boundary conditions are applied on the physical boundaries.

4.5 GP in one direction

As previously mentioned, following the same rationale, the C0-IPM weak form
can be easily derived for the case with GP in only one direction. In this case,
the integrals involving means and jumps restrict only to interior sides and the
GP boundary and, if non-homogeneous boundary conditions are imposed on
the physical boundary, some terms have to be added to the weak form, to
account for them as in the stardard case [21].

More precisely, if GP is assumed in the x-direction, the integrals in (23)
restrict to I ∪W, and we should add to the right-hand-side

s(v, ν) =

∫
Γu
N1

v ·tn d`+
∫
Γu
N2

∂v

∂n
·rn d`+

∑
Ck∈Γu

N1

v(Ck)·jext(Ck)−
∫
ΓφN1

νwn d`

if the physical boundary conditions are tn(u, φ) = tn on Γu
N1

, r(u, φ) = rn

on Γu
N2

, j(u, φ) = jext on the corners in Γu
N1

, and w(u, φ) = wn on ΓφN1
, with

Γu
N1

, Γu
N2

, Γu
N1
⊆ S ∪N

First Dirichlet boundary conditions (i.e. prescribed values of the displace-
ment or the potential) can be imposed directly setting the corresponding nodal
values. And, although they are usually not considered in realistic applications,
Nitsche’s method could be used to weakly impose second Dirichlet boundary
conditions on the displacement (i.e. conditions on the normal derivative), as
usual in standard C0-IPM methods.
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5 Implementation of C0-IPM with GP based on nodal FE basis
functions

In this section, we present a methodology to implement generalised periodicity
in the context of the FE method, which is applicable to any kind of PDE.
First we define the approximation space for the GP space, VGPL , in terms of
the standard nodal basis of the FE discretization. Then, given the system in
the standard nodal basis (in this case, the system for standard C0-IPM), we
detail how to reduce the system to the GP approximation space. Finally, we
add some comments on the complete implementation of the C0-IPM method
with GP.

5.1 Approximation space with GP

As mentioned before, the unit cell Ω ⊂ R2 is split in elements {Ωe}nele=1, and, as
usual in FE methods, a C0 element-by-element piecewise polynomial approxi-
mation is considered. The nodes of the FE mesh are denoted by {xi}nnodi=1 . We
denote by C the ordered set of the indexes of the nodes corresponding to the
0 or 4 corners of the rectangle; by W , E, S, N the indexes of the nodes on the
sidesW, E , S and N , respectively, not including the rectangle corners; and by
Z the set for the rest of the nodes.

Then, to simplify the implementation, we will assume that the ordering of
the nodes is such that

C < W < E < S < N < Z,

where two sets A and B are said to be A < B if ai < bj for all ai ∈ A and
bj ∈ B.

In addition, we will assume that the nodes on opposite sides of the domain
are horizontally or vertically aligned in pairs. That is,

{xi : (xi, 0) ∈ S} = {xi : (xi, Ly) ∈ N}
{yi : (0, yi) ∈ W} = {yi : (Lx, yi) ∈ E},

and we will denote by π and τ the permutations from one side to its opposite
side, in the horizontal and vertical directions, respectively. That is,

yi = yπ(i) for i ∈W, xi = xτ(i) for i ∈ S.

Now, let us denote by {Ni}nnodi=1 the standard FE basis functions. We aim
at finding a basis satisfying GP jump conditions in both directions. The case
with GP only in the horizontal or vertical direction can be derived analogously.

Consider a scalar function u in the FE space,

u(x) =

nnod∑
i=1

uiNi(x), (24)
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complying with the GP jump conditions with multi-period L = (Lx, Ly), that
is

u(Lx, y) = u(0, y) +∆u
x u(x, Ly) = u(x, 0) +∆u

y .

Then, its nodal values satisfy

uπ(i) = ui +∆u
x for i ∈W, uτ(j) = uj +∆u

y for i ∈ S. (25)

In addition, if the corners are not in a void, the values at the four corners can
be expressed in terms of one corner as

uSE = uSW +∆u
x, uNW = uSW +∆u

y , uNE = uSW +∆u
x +∆u

y , (26)

where SW , SE, NW and NE denote the indexes of the nodes for the bottom-
left, bottom-right, top-left and top-right corners of the rectangle, respectively.

Thus, if the corners are not in a void, the function u ∈ VGPL can be ex-
pressed as

u =
∑
i∈Z

uiNi +
∑
i∈W

ui[Ni +Nπ(i)] +
∑
i∈S

ui[Ni +Nτ(i)]

+ uSW [NSW +NSE +NNE +NNW ]+

+∆u
x

[
NSE +NNE +

∑
i∈E

Ni

]
+∆u

y

[
NNE +NNW +

∑
i∈N

Ni

]
,

and the approximation space with GP jump conditions is < N̂i >
nGP
i=1 with

N̂ =



N̂1

N̂2

N̂3

N̂3+1

...

N̂3+|W |
N̂r+1

...

N̂r+|S|
N̂r+|S|+1

...

N̂nGP



:=



NSE +NNE +
∑
i∈E Ni

NNE +NNW +
∑
i∈N Ni

NSW +NSE +NNW +NNE
N4+1 +Nπ(4+1)

...
N4+|W | +Nπ(4+|W |)
Ns+1 +Nπ(s+1)

...
Ns+|S| +Nπ(s+|S|)
Ns+|S|+|N |+1

...
Nnnod



, (27)

r = 3 + |W |, s = 4 + 2|W | and nGP = 3 + |W |+ |S|+ |Z|.
If the corners of the rectangle are in a void, N̂3 is not included in the basis,

N̂1 =
∑
i∈E Ni, and N̂2 =

∑
i∈N Ni.

In any case, the new basis can be expressed in terms of the standard one
as

N̂(x) = PN(x) (28)

with a matrix P ∈ RnGP×nnod , whose non-null coefficients are ones in the
proper locations, see details in [2].
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Remark 8 The coefficients corresponding to the first two basis functions in
(27) are the jumps in each direction, ∆u

x and ∆u
y . These two basis functions

are in fact particular cases of the functions ϕx and ϕy satisfying (9). The
rest of the functions in the basis are periodic in both directions, altogether
generating an approximation space for VGPL as defined in (10).

We can also express the coefficients of the approximation in the GP space
{ûi}nGPi=1 (i.e. the nodal values for xi ∈ [0, Lx)× [0, Ly) and the jumps ∆u

x and
∆u
y ) in terms of the nodal values in the standard FE space, {ui}nnodi=1 . Indeed,

u ∈ VGP∩ < Ni >
nnod
i=1 =< N̂i >

nGP
i=1 can uniquely be expressed in both spaces

as (24) or as

u(x) =

nGP∑
i=1

ûiN̂i(x), (29)

which in vector form reads

u(x) = NT (x)u = N̂
T

(x)û.

Replacing now (28) we deduce that NT (x)u = NT (x)PT û for any x ∈ Rn.
Thus, the coefficients in both basis are related by

u = PT û. (30)

5.2 System reduction

Let us assume now that we have the system of equations corresponding to
the discretization of the PDEs without Dirichlet or GP conditions. In our
application of interest, this is the matrix K and the right-hand-side f , that we
would obtain with a function implementing the standard C0-IPM method for
flexoelectricity, such that

wTKx = wT f ∀ w ∈ R3nnod , with x =

u1

u2

φ

 , (31)

being u1, u2 and φ the nodal values of the components of the displacement
and of the potential, in the standard FE nodal basis. Assuming now that the
displacement and the potential approximations are in the GP space, from (30)
we know that the coefficients, x̂ and ŵ, of the solution and the weighting
functions in the basis with GP ((27) in the case of GP in both directions)
satisfy

x = QT x̂, w = QT ŵ with Q =

P
P

P

 .
Replacing in (31) we get

ŵTQKQT x̂ = ŵTQf , ∀ ŵT ∈ R3nGP .

Thus, the system in the reduced GP space is

K̂x̂ = f̂ with K̂ = QKQT , f̂ = Qf
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5.3 Steps to implement GP conditions in a C0-IPM FE code

In the light of the previous sections, given a function that implements the stan-
dard C0-IPM, the implementation of the C0-IPM system with GP is straight-
forward. The steps to follow are:

1. Adding the sides on the boundary of the rectangle to the list of interior
sides.

2. Computing the matrix, K, and the right-hand-side vector, f , with the stan-
dard C0-IPM function, and the modified list of interior sides.

3. Reducing the matrix and the right-hand-side vector to the GP approxima-
tion space, as explained in sections 5.1 and 5.2.

4. Imposing macro-conditions by setting the coefficients of the approximation
(29) corresponding to the jumps to be prescribed, and also prescribe the
displacement and the potential at one node (if GP is applied in both di-
rections, or GP is assumed in one direction and homogeneous Neumann
conditions are considered on the physical boundary), to preclude rigid body
motions and set the constant of the potential. It can be implemented as
usually done for Dirichlet boundary conditions in the FE method.

5. Solving the linear system to obtain the coefficients of the solution in the
GP basis, x̂, including also the nodal values of the displacement and the
potential set in step 4.

6. Building the vector of nodal values in the standard FE basis, x = QT x̂, to
include the rectangle corners and the rest of nodes on E and W, satisfying
the GP jump conditions (25) and (26).

In the first and second step, horizontally, we conceptually identify the mesh
sides onW and E , and we add this sides to the list of interior sides, taking the
element including the side inW as right element and the element including the
twin side in E as left element. We proceed in the same way vertically. In this
way, the integrals involving jumps and means on I in the standard C0-IPM
method now include also the integrals on W ∪ S to adapt to the GP weak
form (23) with the extended definition of the jump and mean operators on
the artificial boundaries (7). The first two steps of the procedure account then
for the weak imposition of the GP conditions corresponding to equilibrium of
tractions and high-order artificial interface conditions in equations (5) and (6).

Steps from 3 to 6 take care of the implementation of the GP jump condi-
tions (4) and the Dirichlet macro-conditions.

6 Numerical experiments

6.1 Convergence tests with a synthetic solution

In this section we perform a convergence test with a synthetic problem in the
rectangle Ω = [0, Lx] × [0, Ly], with Lx = 2 and Ly = 1, and with a circular
perforation of radii 0.25 in its centre. Figure 5 shows the coarsest mesh used
in the test, with triangular elements of degree p = 3.



C0-IPM with generalised periodicity 23

Fig. 5 Coarsest mesh used in the convergence test, with triangular elements of degree p = 3.

All the data is defined so that the analytical solution is

ux(x, y) = sin (2π(x+ y)) + x∆ux
x /Lx + y∆ux

y /Ly,

uy(x, y) = cos (2π(x+ y)) + x∆uy
x /Lx + y∆uy

y /Ly,

φ(x, y) = sin (2π(x+ y)) + cos (2π(x+ y)) + x∆φ
x/Lx + y∆φ

y/Ly,

(32)

with the jumps per unit length

∆ux
x /Lx = 0.1,

∆ux
y /Ly = 0.2,

∆uy
x /Lx = −0.2,

∆uy
y /Ly = −0.1,

∆φ
x/Lx = 0.5,

∆φ
y/Ly = −0.5.

Note that lemma 1 guarantees that (32) is indeed GP in the x and y directions.
For this synthetic test, we consider the unrealistic material parameters

E = 2.5, ν = 0.25,

l = 1.1, κL = 1.21,

eL = 7.2, eT = 1.33, eS = 1.73,

µL = 1.5, µT = 1.34, µS = 5.47,

with x as the principal piezoelectric direction. Note that, being a synthetic test,
all the involved quantities are unitless and of the same order of magnitude.

Figure 6 shows the evolution of the L2 error under uniform mesh refine-
ment, for degree p = 3 and p = 4, with triangular (P) elements of characteristic
size hk = 0.5k for k = 2, ..., 5. The IPM parameter is βk = 100El2/hk. When
no GP is assumed, first Dirichlet boundary conditions (prescribed values of
the displacement and the potential) and second Neumann conditions (given
value of r) are set on the east, west, south, and north boundaries. When GP is
considered only in the x direction, first Dirichlet boundary conditions and sec-
ond Neumann conditions are set on the south and north boundaries, and ∆ux

x ,
∆
uy
x , ∆φ

x are prescribed in the horizontal direction. When GP is considered in
both directions, all six jumps are set.

The C0-IPM with GP exhibits the behaviour expected for a C0-IPM for-
mulation for fourth-order PDEs. That is, the convergence rates can be slightly
lower that the ones that one would expect in a standard FE method. More
precisely, the analysis in [6] for the 2D biharmonic equation, with first and
second Dirichlet conditions, concludes that C0-IPM is convergent for degree
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Fig. 6 Convergence plots for the synthetic problem, for the displacement (left) and the
potential (right). The numbers are the slope in each segment for the case with GP in the x
and y directions.

p = 2, but may have convergence rates lower than p + 1 depending on the
penalty parameter. In the context of flexoelectricity, the numerical tests in
[21] show convergence rates around p + 1 for the displacement and p for the
potential, for degree p = 3, 4. Thus, we can conclude that the methodology
proposed here, to solve problems with GP, does not compromise the accuracy
and convergence of C0-IPM.

6.2 Consistency test 1: GP as a limit behaviour

GP appears in bulk metamaterials as a limit behaviour far away from the
boundary. The current example aims at reproducing this behaviour as a val-
idation test. To this end, we consider a unit cell consisting of a solid square
of size L := Lx = Ly = 2.5 [µm] with a triangular perforation within it with
vertexes at (0.25L, 0.2115L), (0.25L, 0.7885L) and (0.75L, 0.5L), and we build
a cell array by concatenating it 2N+1 times along the x direction, as depicted
in Figure 7. Note that the choice of an odd number for the cell array length
ensures the existence of a central cell.

Fig. 7 A cell array made by concatenation of a unit cell with a triangular hole within it.
The “zig-zag” gape with three dots indicates that there are many unit cells in between. The
numbers in the horizontal axis indicate the number of concatenated unit cells, not the actual
x coordinate. The blue shaded unit cell indicates the central cell of the array.
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Our goal is to impose boundary conditions that are equivalent to a me-
chanical compression in the x direction for both the unit cell and the array
of cells. For the unit cell we impose GP in the x direction, while for the cell
array we will not impose GP, but physical boundary conditions over the whole
boundary. What we expect to see is that the solution in the central cell of the
array tends to the solution in the unit cell with GP, as we increase the total
number of cells 2N + 1.

For this test, we consider triangular elements of degree p = 4 with charac-
teristic element size h = 0.1L. The computational mesh for a single unit cell
is shown in Figure 8, and the computational meshes for each of the cell arrays
is obtained by properly concatenating it 2N + 1 times. Particularly, we test
the cell array lengths (2N + 1) = 5, 11, 17, 23.

Fig. 8 Computational mesh for the single unit cell, with triangular elements of degree p = 4
and characteristic size h = 0.1L.

The material parameters are

E = 100 [GPa], ν = 0.37,
κ = 11 [nJ V−2 m−1],
eT = −4.4 [J V−1 m−2], µT = µL = 1 [µJ V−1 m−1],
l = µS = eS = eL = 0,

(33)

with x taken as the principal piezoelectric direction, and the IPM stabilization
parameter is β = 1. The material parameters are realistic, in the sense that
they are of the order of magnitude of true flexoelectric materials.

Regarding the boundary conditions, the triangle boundary, and the bottom
and top sides of both the unit cell and the cell array, are free boundaries,
with homogeneous first and second Neumann conditions. For the unit cell, we
impose GP in the x direction and set the increment per unit length values to

∆ux
x /Lx = −0.1, ∆uy

x = 0.

The jump for the potential per unit length, δφx = ∆φ
x/Lx, is free, and it is, in

fact, an output of interest. Thus, an homogeneous Neumann macro-condition
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is assumed on the potential. For the cell array, at the left and right sides we
consider an equivalent compression

u(0, y) = (0, 0)T , u((2N + 1)L, y) = (∆ux
x (2N + 1), 0)T .

Note that in the latter we have prescribed the vertical displacements too,
which we did not for the unit cell. The idea is that, as N goes to infinity, the
central cell of the array should be numb to this difference, and capture the GP
phenomena anyways.

Figure 9 (left) shows the evolution of the L2 difference between the poten-
tial distribution, within the centre unit cell of the array, and the single unit
cell with GP. The convergence confirms the hypothesis for N going to infinity.
Figure 9 (right) shows the evolution of the jump per unit length for the po-
tential at the centre cell of the array, for increasing number of cells. The jump
is computed as the difference between nodes that are at the same height, at
the left and right sides of the centre cell, for heights y = 0.1L, 0.5L, 0.6L. In
all cases, the jump per unit length tends to δφx , i.e. to the jump obtained with
the single unit cell with GP.

Fig. 9 L2 difference between the potential distributions of the centre unit cell of the array
and the single unit cell with GP, against the number of cells (left), and evolution of the

approximation of δφx = ∆φx/Lx for the centre unit cell of the array computed as the difference

at three different heights. The black dashed line stands for the value of δφx obtained with
the single unit cell with GP.

We also observe that the approximation to δφx has 2 correct significant digits
with an array of just 5 cells, but the convergence to reduce the difference is
slow. A very large computational domain would be needed to capture the limit
behaviour of the centre unit cell of the array with higher accuracy. Thus, as
expected, solving for a unit cell with GP allows to compute the jump in the
potential accurately with far less computational cost.
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6.3 Consistency test 2: independence on the choice of the unit cell

The solution to the flexoelectric problem should not depend on the unit cell
representative. With this mindset, consider a 2D infinite solid region with
circular perforations of radius r = 0.25L and centres (m,n)L, where m,n ∈ Z
and L = 2.5 [µm]. This pattern can be obtained by concatenating any of the
unit cell representatives depicted in figure 10, among others.

Fig. 10 Portion, Σ, of the 2D infinite pattern, and three different unit cell selections. The
x and y axes are adimensionalised (i.e., relative to the cell width L = 2.5 [µm]).

A compression is applied in the vertical direction producing a difference
(jump) in the potential. That is, we set

∆ux
y = 0, ∆uy

y /Ly = −0.1,

the rest of jumps (∆ux
x , ∆

uy
x , ∆φ

x and ∆φ
y ) are let free, and the output of

interest is the generated potential difference per unit length, δφy = ∆φ
y/Ly.

The material parameters are the ones in equation (33), and y is taken as the
piezoelectric direction.

About the computational meshes, triangular elements of degree p = 4 are
considered, with characteristic sizes h = 0.1L and h = 0.05L. The stabilisation
parameter is set to β = 1.

The value of the jump per unit length of the potential δφy obtained in each
case is shown in table 1. Comparison of the results for each of the element
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sizes reveals that the computed values using h = 0.1L already have 4 correct
significant digits regardless of the considered unit cell.

δφy [V/µm] A B C Σ
h = 0.1L −2.23428 −2.23427 −2.23411 −2.23408
h = 0.05L −2.23363 −2.23363 −2.23363 −2.23363

Table 1 Vertical jump of the potential per unit length for the 3 unit cells and the portion
domain Σ, for characteristic element size h = 0.1L and h = 0.05L.

Figure 11 shows the FEM solutions φA, φB , and φC , for h = 0.05L, over
each one of the unit cell domains in figure 10; where it is worth recalling that,
in this problem, the potential is determined up to a constant. In figure 12 these
three solutions are shown together on Σ, setting the constants of the potential
to properly patch. The potential obtained solving on Σ with h = 0.05L is also
shown for visual comparison. Thus, this test illustrates that the results are
indeed independent from the choice of the unit cell representative.

Fig. 11 FEM solution for the electric potential over each one of the considered unit cells,
for h = 0.05L. The x and y axes are adimensionalised (i.e., relative to the cell width L = 2.5
[µm]), and the electric potential is in Volts. The potential is determined up to a constant.

6.4 Some practical examples

A particular application of flexoelectric metamaterials consists on emulat-
ing effective piezoelectric response through geometric polarisation of non-
piezoelectric materials. In this section, we aim at reproducing some of the
results obtained in [17] as a final validation test. We must note, however, that
the model considered here is the so-called direct model, whereas the model in
[17] considers also converse effects, see [9] for further details. Consequently,
their model has two different length scale parameters for the mechanic and
electric high-order terms, `mech and `elec, while here we use a single one, l, for
the mechanic phenomena only. Accordingly, we set the value of l so that the
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Fig. 12 Electric potential: patched solution from the three different unit cells (top) and
solution over Σ (bottom).

ratio l/Lx matches that of `mech/Lx of the model in [17], and we expect to
obtain similar results in a qualitative but not quantitative manner.

According to [17], we consider the unit cell geometries shown in Figure 13.
The unit cell width is Lx = L = 5 [µm] for all unit cells, and the beam width
is 0.06L. The height Ly and the area fraction ra of each unit cell are shown
in table 2. The chosen value for Lx is similar to that used in [17], and the
magnitude of the beam width is comparable.

2d-ch A B C D

Ly 1L 1L
√

3L
√

3L/3
√

3L/3
ra 0.140 0.199 0.177 0.345 0.299

Table 2 Geometric parameters of the unit cell geometries used in the experiment.
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Fig. 13 Sketches of the unit cell geometries used in the experiment, emulating the ones in
[17]. The x and y axes are adimensionalised (i.e., relative to the cell width L = 5 [µm]).

We take the material parameters used in [17], which correspond to a flex-
oelectric but non-piezoelectric material,

E = 152 [GPa], ν = 0.33, l = 0.01, κ = 8 [nJ V−2 m−1],
µL = 1.21 [µJ V−1 m−1], µT = 1.10 [µJ V−1 m−1],
µS = 0.055 [µJ V−1 m−1],
eT = eS = eL = 0,

(34)

with y taken as the principal piezoelectric direction.
For the computational meshes, triangular elements of degree p = 4 are

considered, with characteristic size h = 0.01L. The stabilisation parameter is
set to β = 100El2/h.

Regarding the boundary conditions, a compression is applied in the vertical
direction producing a difference (jump) in the potential. Following [17], we set

∆uy
y /Ly = −0.1, ∆ux

y = ∆uy
x = 0,

and the rest of the jumps (∆ux
x , ∆φ

x and ∆φ
y ) are let free. The output of interest

in this experiment is the absolute value of the ratio between the generated
potential difference and the input vertical compression, |∆φ

y/∆
uy
y |, for each

one of the unit cell geometries.
The results of the experiment, collected in figure 14, are in qualitative

agreement with those in [17], with values of |∆φ
y/∆

uy
y | of the same order of

magnitude. The only centro-symmetric geometry, namely design 2d-Ch, ex-
hibits a null effective piezoelectric response, as anticipated in [17]. The relative
performance of designs A, B, and C, matches that of [17], although the model
considered here predicts weaker response for design D. The shown digits are
all correct significant digits, and have been checked with finer meshes with
characteristic size h = 0.005L.
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Fig. 14 Absolute value of the ratio between the generated potential difference and the

input vertical compression, |∆φy/∆
uy
y |, for each one of the unit cell geometries.

Fig. 15 Electric potential over each one of the deformed unit cell geometries. The x and y
axes are adimensionalised (i.e., relative to the cell width L = 5 [µm]). The electric potential
has been scaled as φ/∆

uy
y , and its units are [GV/m].
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Figure 15 depicts the FEM solutions for the electric potential over the
deformed meshes, for each one of the unit cell geometries, in dimensionless
units. The electric potential has been scaled as φ/∆

uy
y .

7 Conclusions

The C0-IPM formulation is adapted in this work to solve high-order PDEs with
generalised periodicity (GP), with application to the design of flexoelectricity-
based metametarials.

The problem is stated in the unit cell with high-order GP conditions, in-
cluding local and macro conditions. Local GP conditions impose constant jump
between opposite sides of the unit cell, as well as C1 continuity of the dis-
placement and equilibrium of forces, including high-order tractions and corner
forces. Macro-conditions can be either Dirichlet, setting a value for the jump,
or Neumann, setting the dual quantity. The actual expression of the macro-
stresses (electric displacements) is deduced from the weak form derivation as
the total sum of the forces (charges) on the unit cell sides.

When the Neumann macro-conditions are assumed to be homogeneous, the
resulting C0-IPM weak form is exactly the same as for the standard case, but
extending the definition of the jump and the integrals on the interior sides, to
include also the sides on the artificial boundary of the unit cell. Taking profit
of this, a methodology to introduce GP conditions in an existing standard C0-
IPM code, in a straight-forward way, is explained. It is based on identifying
opposite sides in the artificial boundary, considering them as interior sides,
and using a change of basis matrix to transform the resulting system into the
system in the GP space.

All derivations are done in 2D, although they can also be directly applied
in 3D, with additional implementation effort. The reduction to strain-gradient
elasticity is direct, just considering null material parameters for piezoelectricity
and flexoelectricity coupling.

Numerical experiments show that the proposed methodology for problems
with GP retains the high-order convergence of the C0-IPM method [21], with
convergence of order p + 1 for the displacement and p for the potential, for
approximation degree p = 3, 4. The applicability of the formulation in prac-
tical situations is also demonstrated, showing consistency with the physical
phenomena. Imposing GP conditions on a unit cell successfully captures the
limit behaviour of bulk metamaterials, with minimum computational cost. Fi-
nally, the results obtained for some specific unit cell geometries of interest are
in qualitative agreement with those obtained in previous works.
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