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Abstract

The two-step backward differential formula (BDF2) with unequal time-steps is applied
to construct an energy stable convex-splitting scheme for the Cahn-Hilliard model. We focus
on the numerical influences of time-step variations by using the recent theoretical framework
with the discrete orthogonal convolution kernels. Some novel discrete convolution embedding
inequalities with respect to the orthogonal convolution kernels are developed such that a
concise L2 norm error estimate is established at the first time under an updated step-ratio
restriction 0 < rk := τk/τk−1 ≤ ruser, where ruser can be chosen by the user such that
ruser < 4.864. The stabilized convex-splitting BDF2 scheme is shown to be mesh-robustly
convergent in the sense that the convergence constant (prefactor) in the error estimate is
independent of the adjoint time-step ratios. The suggested method is proved to preserve
a modified energy dissipation law at the discrete levels if 0 < rk ≤ ruser, such that it
is mesh-robustly stable in an energy norm. On the basis of ample tests on random time
meshes, a useful adaptive time-stepping strategy is applied to efficiently capture the multi-
scale behaviors and to accelerate the long-time simulation approaching the steady state.
Keywords: Cahn-Hilliard model; adaptive BDF2 method; discrete energy dissipation law;
orthogonal convolution kernels; discrete convolution embedding inequality; error estimate
AMS subject classifications. 35Q99, 65M06, 65M12, 74A50

1 Introduction

The Cahn-Hilliard (CH) model is an efficient approach to describe the coarsening dynamics of
a binary alloy system [4] and has been applied in other fields including image inpainting [2] and
tumor growth [5]. Consider a free energy functional of Ginzburg–Landau type,

E[Φ] =

∫
Ω

[ε2
2
|∇Φ|2 + F (Φ)

]
dx with F (Φ) :=

1

4
(Φ2 − 1)2 (1.1)
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where x ∈ Ω ⊆ R2 and 0 < ε < 1 is a bounded parameter that is proportional to the interface
width. Then the Cahn-Hilliard equation would be given by the H−1 gradient flow associated
with the free energy functional E[Φ],

∂tΦ = κ∆µ with µ := δE
δΦ = F ′(Φ)− ε2∆Φ, (1.2)

where the parameter κ is the mobility related to the characteristic relaxation time of system
and µ is the chemical potential. Assume that Φ is periodic over the domain Ω. By applying the
integration by parts, one can find the volume conservation,(

Φ(t), 1
)

=
(
Φ(t0), 1

)
, (1.3)

and the following energy dissipation law,

dE

dt
=
(
δE
δΦ , ∂tΦ

)
= κ (µ,∆µ) = −κ ‖∇µ‖2 ≤ 0, (1.4)

where (u, v) :=
∫

Ω uv dx, and the associated L2 norm ‖v‖ =
√

(v, v) for all u, v ∈ L2(Ω).
The main aim of this paper is to present a rigorous stability and convergence analysis of

the BDF2 method with variable time-steps for simulating the CH model (1.2). Consider the
nonuniform time levels 0 = t0 < t1 < · · · < tN = T with the time-step sizes τk := tk − tk−1

for 1 ≤ k ≤ N , and denote the maximum time-step size τ := max1≤k≤N τk. Let the adjoint
time-step ratio rk := τk/τk−1 for 2 ≤ k ≤ N . Our analysis will focus on the influence of non-
uniform time grids (with the associated time-step ratios) on the numerical solution by carefully
evaluating the stability and convergence.

This is motivated by the following facts:

• The BDF2 method is A-stable and L-stable such that it would be more suitable than
Crank-Nicolson type schemes for solving the stiff dissipative problems, see e.g. [3, 6].

• The nonuniform grid and adaptive time-stepping techniques [12, 18–20, 24] are powerful
in capturing the multi-scale behaviors and accelerating the long-time simulations of phase
field models including the CH model.

• The convergence theory of variable-steps BDF2 scheme remains incomplete for nonlinear
parabolic equations. Actually, the required step-ratio constraint for the L2 norm stability
are severer than the classical zero-stability condition rk < 1 +

√
2, given by Grigorieff [11].

Always, they contain some undesirable pre-factors Cr exp(CrΓn) or Cr exp(Crtn), see e.g.
[1, 9, 10, 28], where Γn may be unbounded when certain time-step variations appear and
Cr may be infinity as the step-ratios approach the zero-stability limit 1 +

√
2.

In recent works [18,19,22], a novel technique with discrete orthogonal convolution (DOC) kernels
was suggested to verify that, if 0 < rk <

(
3 +
√

17
)
/2 ≈ 3.561, the BDF2 scheme is computa-

tionally robust with respect to the time-step variations for linear diffusions [22], the phase field
crystal model [18] and the molecular beam epitaxial model without slope selection [19].

Nonetheless, due to the lack of some convolution embedding inequalities with respect to
the DOC kernels, the techniques in [18,19,22] are inadequate to handle more general nonlinear
problems such as the underlying nonlinear CH model (and Allen-Chan model). The main aim
of this paper is to fill this gap by establishing some discrete convolution embedding inequalities
with respect to the DOC kernels. Also, the recent analysis in [18, Lemma A.1] with a step-scaled
matrix motivates us to update the previous zero-stability restriction in [22] as follows,
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S0. 0 < rk ≤ ruser(< 4.864) for 2 ≤ k ≤ N ,

where the value of ruser can be chosen in adaptive time-stepping computations by the user such
that ruser < 4.864, such as ruser = 2, 3 or 4 for practical choices. Under the step-ratio constraint
S0, we will present an L2 norm error estimate with an improved prefactor, see Theorem 4.1,

Cφ exp
(
cεtn−1

)
.

Here and hereafter, any subscripted C, such as Cu and Cφ, denotes a generic positive constant,
not necessarily the same at different occurrences; while, any subscripted c, such as cε, cΩ, cp, cz
and so on, denotes a fixed constant. The appeared constants may be dependent on the given
data (typically, the interface width parameter ε) and the solution but are always independent
of the spatial lengths, the time tn, the step sizes τn and the step ratios rn. It is interesting to
emphasize that, under the step-ratio constraint S0, the involved constants are bounded even
when the step-ratios rn approach ruser such that the BDF2 scheme is mesh-robustly convergent.

To the best of our knowledge, this is the first time such an optimal L2 norm error estimate of
variable-steps BDF2 method is established for the Cahn-Hiliard (and Allen-Cahn) type models.
As a closely related work, the BDF2 scheme for the Allen-Chan equation was also investigated
in [20] by using the discrete complementary convolution kernels. The BDF2 scheme was proved
to preserve the maximum bound principle if the step-ratios satisfy the classical zero-stability
condition rk < 1 +

√
2. The maximum norm error estimate with a prefactor 1

1−η exp( tn
1−η ) was

obtained, where the parameter η → 1 as max rk → 1 +
√

2. It is to mention that, under the
constraint S0, one can follow the present analysis to obtain a new L2 norm error estimate that
is robustly stable to the variations of time-steps.

Given a grid function {vk}Nk=0, put Oτvk := vk − vk−1, ∂τv
k := Oτvk/τk for k ≥ 1. Taking

vn = v(tn), we view the variable-steps BDF2 formula as a discrete convolution summation

D2v
n :=

n∑
k=1

b
(n)
n−kOτv

k for n ≥ 2, (1.5)

where the discrete convolution kernels b
(n)
n−k are defined for n ≥ 2,

b
(n)
0 :=

1 + 2rn
τn(1 + rn)

, b
(n)
1 := − r2

n

τn(1 + rn)
and b

(n)
j := 0 for j ≥ 2. (1.6)

Without losing the generality, assume that an accurate solution φ1 is available. We consider
the stability and convergence of the convex-splitting BDF2 scheme for solving the CH equation
(1.2) subject to the periodic boundary conditions:

D2φ
n = κ∆hµ

n with µn :=
(
φn
)3 − φ̂n − (ε2 +Aτ2

)
∆hφ

n for 2 ≤ n ≤ N, (1.7)

where φ̂n := (1 + rn)φn−1 − rnφn−2 and the stabilized parameter A > 0. The spatial operators
are approximated by the Fourier pseudo-spectral method, as described in the next section.

The unique solvability of the convex-splitting scheme (1.7) is established in Theorem 2.1 by
using the fact that the solution of nonlinear scheme (1.7) is equivalent to the minimization of

a convex functional. Lemma 2.1 shows that the BDF2 convolution kernels b
(n)
n−k are positive

definite provided the adjacent time-step rations rk satisfy S0. Theorem 2.2 shows that the
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convex-splitting BDF2 method (1.7) has a modified energy dissipation law at the discrete levels
for a properly large parameter A, see Remark 3.

We are to emphasize that the solution estimates in section 2 are based on the original form
(1.7), but in the subsequent L2 norm error analysis we will use an equivalent convolution form

with a class of discrete orthogonal convolution (DOC) kernels. The DOC kernels {θ(n)
n−k}

n
k=2 are

defined by (this definition is slightly different from those in [18,19,22] since we do not introduce

the discrete kernel b
(1)
0 for the first-level solver)

θ
(n)
0 :=

1

b
(n)
0

for n ≥ 2 and θ
(n)
n−k := − 1

b
(k)
0

n∑
j=k+1

θ
(n)
n−jb

(j)
j−k for n ≥ k + 1 ≥ 3. (1.8)

One has the following discrete orthogonal identity

n∑
j=k

θ
(n)
n−jb

(j)
j−k ≡ δnk for 2 ≤ k ≤ n, (1.9)

where δnk is the Kronecker delta symbol. By exchanging the summation order and using the
identity (1.9), it is not difficult to check that

n∑
j=2

θ
(n)
n−jD2v

j =

n∑
j=2

θ
(n)
n−jb

(j)
j−1Oτv

1 +

n∑
j=2

θ
(n)
n−j

j∑
`=2

b
(j)
j−`Oτv

`

= θ
(n)
n−2b

(2)
1 Oτv

1 + Oτv
n for n ≥ 2. (1.10)

Acting the DOC kernels θ
(m)
m−n on the first equation in (1.7) and summing n from n = 2 to m,

we apply (1.10) to find the equivalent convolution form (replacing m by n)

Oτφ
n = −θ(n)

n−2b
(2)
1 Oτφ

1 + κ

n∑
j=2

θ
(n)
n−j∆hµ

j for 2 ≤ n ≤ N . (1.11)

Note that, by following the proof of [21, Lemma 2.1], we have

m∑
j=k

b
(m)
m−jθ

(j)
j−k ≡ δmk for 2 ≤ k ≤ m. (1.12)

With the help of this mutually orthogonal identity, one can recover the original form (1.7) by

acting the BDF2 kernels b
(m)
m−n on the new formulation (1.11). In this sense, the DOC kernels

define a reversible discrete transform between (1.7) and the convolution form (1.11).
To perform the L2 norm error analysis, section 3 presents some properties of the DOC kernels

θ
(n)
n−k and some new convolution embedding inequalities with respect to the DOC kernels, see

Lemmas 3.1–3.9. By making use of the H1 norm solution bound obtained in Lemma 2.2, we
establish an optimal L2 norm error estimate in section 4. Numerical tests and comparisons are
presented in section 5 to validate the accuracy and effectiveness of the BDF2 method (1.7),
especially when coupled with an adaptive stepping strategy.
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2 Solvability and energy dissipation law

We use the same spatial notations in [18]. Set the space domain Ω = (0, L)2 and consider the
uniform length hx = hy = h := L/M in each direction for an even positive integer M . Let
Ωh :=

{
xh = (ih, jh) | 1 ≤ i, j ≤ M

}
and put Ω̄h := Ωh ∪ ∂Ω. Denote the space of L-periodic

grid functions Vh := {v | v = (vh) is L-periodic for xh ∈ Ω̄h}.
For a periodic function v(x) on Ω̄, let PM : L2(Ω) → FM be the standard L2 projection

operator onto the space FM , consisting of all trigonometric polynomials of degree up to M/2,
and IM : L2(Ω)→ FM be the trigonometric interpolation operator [25], i.e.,

(PMv) (x) =

M/2−1∑
`,m=−M/2

v̂`,me`,m(x), (IMv) (x) =

M/2−1∑
`,m=−M/2

ṽ`,me`,m(x),

where the complex exponential basis function e`,m(x) := eiν(`x+my) with ν = 2π/L. The coef-
ficients v̂`,m refer to the standard Fourier coefficients of function v(x), and the pseudo-spectral
coefficients ṽ`,m are determined such that (IMv) (xh) = vh.

The Fourier pseudo-spectral first and second order derivatives of vh are given by

Dxvh :=

M/2−1∑
`,m=−M/2

(iν`) ṽ`,me`,m(xh), D2
xvh :=

M/2−1∑
`,m=−M/2

(iν`)2 ṽ`,me`,m(xh).

The differentiation operators Dy and D2
y can be defined in the similar fashion. In turn, we can

define the discrete gradient and Laplacian in the point-wise sense, respectively, by

∇hvh := (Dxvh,Dyvh)T and ∆hvh :=
(
D2
x +D2

y

)
vh.

For any grid functions v, w ∈ Vh, define the discrete inner product 〈v, w〉 := h2
∑

xh∈Ωh
vhwh,

and the associated L2 norm ‖v‖ := ‖v‖l2 =
√
〈v, v〉. Also, we will use the discrete lq norm

‖v‖lq := q

√
h2
∑

xh∈Ωh
|vh|q and the H1 seminorm

∥∥∇hv∥∥ :=
√
h2
∑

xh∈Ωh
|∇hvh|2. It is easy

to check the discrete Green’s formulas, 〈−∆hv, w〉 = 〈∇hv,∇hw〉 and
〈
∆2
hv, w

〉
= 〈∆hv,∆hw〉,

see [6,7,25] for more details. Also we have the following discrete embedding inequality simulating
the Sobolev embedding H1(Ω) ↪→ L6(Ω),∥∥v∥∥

l6
≤ cΩ

(∥∥v∥∥+
∥∥∇hv∥∥) for any v ∈ Vh. (2.1)

For the underlying volume-conservative problem, it is also to define a mean-zero function
space V̊h :=

{
v ∈ Vh | 〈v, 1〉 = 0

}
⊂ Vh. As usual, following the arguments in [6, 8], one can

introduce an discrete version of inverse Laplacian operator (−∆h)−γ as follows. For a grid
function v ∈ V̊h, define

(−∆h)−γ vh :=

M/2−1∑
`,m = −M/2
(`,m) 6= 0

(
ν2
(
`2 +m2

))−γ
ṽ`,me`,m(xh),

and an H−1 inner product 〈v, w〉−1 :=
〈

(−∆h)−1 v, w
〉
. The associated H−1 norm ‖·‖−1 can be

defined by ‖v‖−1 :=
√
〈v, v〉−1 . We have the following Poincaré type inequality with the usual
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Poincaré constant cp,
∥∥v∥∥−1

≤ cp
∥∥v∥∥, and the generalized Hölder inequality,∥∥v∥∥2 ≤
∥∥∇hv∥∥∥∥v∥∥−1

for any v ∈ V̊h. (2.2)

Also the discrete embedding inequality (2.1) can be simplified as (cz := cΩ + cΩcp)∥∥v∥∥
l6
≤ cz

∥∥∇hv∥∥ for any v ∈ V̊h. (2.3)

2.1 Unique solvability

Let E[φk] be the discrete version of free energy functional (1.1), given by

E[φk] :=
ε2

2

∥∥∇hφk∥∥2
+
〈
F (φk), 1

〉
for k ≥ 1. (2.4)

To focus on the numerical analysis of the BDF2 solution, it is to assume that

A1. A starting scheme is properly chosen to compute the first-level solution φ1 such that it
preserves the volume,

〈
φ1, 1

〉
=
〈
φ0, 1

〉
=
〈
PMΦ0, 1

〉
, and also preserves certain (maybe,

modified) energy dissipation law. There exists a positive constant c0, depended on the
domain Ω, the mobility κ, the interface parameter ε and the initial value φ0, such that

E[φ1] +
τ2

2κ

∥∥∂τφ1
∥∥2

−1
+
τ1τ2

2

∥∥∂τφ1
∥∥2

+
Aτ2

2

∥∥∇hφ1
∥∥2 ≤ c0.

Remark 1. Assumption A1 can be satisfied by many of first-level solvers. The BDF1 scheme
would be suited for computing a second-order solution φ1; however, a very small initial step τ1

would not be suggested here since it arrives at a large step-ratio r2 and eventually affects the
accuracy of solution in the whole simulation, see numerical results in [23].

The Crank-Nicolson scheme at the first time-level can generate a second-order difference
quotient ∂τφ

1; but a very small initial step τ1 would not be suggested either because it would be
prone to generate nonphysical oscillations. To control possibly initial oscillations, we suggest
a special step-ratio r2 =

√
2/2 in the implementation of our scheme (1.7). Actually, by taking

φγ := φ1, φ1 := φ2, τ∗ := τ1 + τ2 and γ := τ1/τ∗ with r2 = 1/γ − 1 , the first two steps of (1.7)
are equivalent to the following TR-BDF2 method

φγ − φ0

γτ∗
=
κ

2
∆hµ

γ +
κ

2
∆hµ

0,
2− γ

(1− γ)τ∗
φ1 − 1

γ(1− γ)τ∗
φγ +

1− γ
γτ∗

φ0 = κ∆hµ
1,

which was shown to be L-stable for γ = 2−
√

2, see [16, 27].

Under the assumption A1, the solution φn of the BDF2 scheme (1.7) preserves the volume,〈
φn, 1

〉
=
〈
φ0, 1

〉
for n ≥ 2. Actually, taking the inner product of (1.7) by 1 and applying the

discrete Green’s formulas, one can check that
〈
D2φ

j , 1
〉

= 0 for j ≥ 2. Multiplying both sides

of this equality by the DOC kernels θ
(n)
n−j and summing the index j from j = 2 to n, we get

n∑
j=2

θ
(n)
n−j
〈
D2φ

j , 1
〉

= 0 for n ≥ 2.

It leads to
〈
Oτφn, 1

〉
= 0 directly by taking vj = φj in the equality (1.10). Simple induction

yields the volume conversation law,
〈
φn, 1

〉
=
〈
φn−1, 1

〉
= · · · =

〈
φ0, 1

〉
for n ≥ 1.

6



Theorem 2.1. If A1 holds, the convex-splitting BDF2 scheme (1.7) is uniquely solvable.

Proof. For any fixed time-level indexes n ≥ 2, consider the following energy functional G on the
space V∗h :=

{
z ∈ Vh |

〈
z, 1
〉

=
〈
φn−1, 1

〉}
,

G[z] :=
b
(n)
0

2

∥∥z − φn−1
∥∥2

−1
+ b

(n)
1

〈
Oτφ

n−1, z − φn−1
〉
−1

+
κ

2

(
ε2 +Aτ2

)∥∥∇hz∥∥2
+ κ
〈
z3/4− φ̂n, z

〉
. (2.5)

It is easily to verity the functional G is strictly convex since, for any λ ∈ R and any ψ ∈ V̊h,

d2G

dλ2
[z + λψ]

∣∣∣
λ=0

= b
(n)
0

∥∥ψ∥∥2

−1
+ κ
(
ε2 +Aτ2

)∥∥∇hψ∥∥2
+ 3κ

∥∥zψ∥∥2
> 0.

Thus the functional G has a unique minimizer, denoted by φn, if and only if it solves the equation

0 =
dG

dλ
[z + λψ]

∣∣∣
λ=0

=
〈
b
(n)
0 (z − φn−1) + b

(n)
1 Oτφ

n−1, ψ
〉
−1

+ κ
〈
z3 − φ̂n −

(
ε2 +Aτ2

)
∆hz, ψ

〉
=
〈
b
(n)
0 (z − φn−1) + b

(n)
1 Oτφ

n−1 − κ∆h

[
z3 − φ̂n −

(
ε2 +Aτ2

)
∆hz

]
, ψ
〉
−1
.

This equation holds for any ψ ∈ V̊h if and only if the unique minimizer φn ∈ V∗h solves

b
(n)
0 (φn − φn−1) + b

(n)
1 Oτφ

n−1 − κ∆h

[
(φn)3 − φ̂n −

(
ε2 +Aτ2

)
∆hφ

n
]

= 0,

which is just the convex-splitting BDF2 scheme (1.7). It completes the proof.

2.2 Discrete energy dissipation law

In our previous work [22, Lemma 2.1], the BDF2 kernels b
(n)
n−k are shown to be positive definite

if the adjacent time-step ratios 0 < rk <
3+
√

17
2 . The following result shows that this sufficient

condition can be further improved in the theoretical manner. This improvement is inspired
by [18, LemmaA.1] to find a lower bound for the eigenvalues of the step-scaled matrix B̃, see
Lemma 3.2 below. For simplicity, we denote

RL (z, s) :=
2 + 4z − z3/2

1 + z
− s3/2

1 + s
, for 0 < z, s < r∗, (2.6)

where r∗ ≈ 4.864 is the positive root of the equation 1 + 2r∗ − r3/2
∗ = 0. According to the proof

of [18, LemmaA.1], RL
(
z, s
)

is increasing in (0, 1) and decreasing in (1, r∗) with respect to z.
Also, RL (z, s) is decreasing with respect to s such that

RL (z, s) > min{RL (0, r∗) , RL
(
r∗, r∗

)
} =

2(1 + 2r∗ − r3/2
∗ )

1 + z
= 0 for 0 < z, s < r∗.

Lemma 2.1. Let 0 < rk < 4.864 for 2 ≤ k ≤ N . For any real sequence {wk}nk=1, it holds that

2wk

k∑
j=1

b
(k)
k−jwj ≥

r
3/2
k+1

1 + rk+1

w2
k

τk
−

r
3/2
k

1 + rk

w2
k−1

τk−1
+RL(rk, rk+1)

w2
k

τk
for k ≥ 2.
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So the discrete convolution kernels b
(k)
k−j are positive definite in the sense that

2
n∑
k=2

wk

k∑
j=2

b
(k)
k−jwj ≥

n∑
k=2

RL(rk, rk+1)
w2
k

τk
for n ≥ 2.

Proof. Applying the inequality −2ab ≥ −a2 − b2, we take uk := wk/
√
τk to find

2wk

k∑
j=1

1

τ2
k

b
(k)
k−jwj = 2τkb

(k)
0 u2

k + 2
√
τkτk−1b

(k)
1 ukuk−1

≥ 2 + 4rk
1 + rk

u2
k −

r
3/2
k

1 + rk

(
u2
k + u2

k−1

)
=

r
3/2
k+1

1 + rk+1

w2
k

τk
−

r
3/2
k

1 + rk

w2
k−1

τk−1
+RL(rk, rk+1)

w2
k

τk
for k ≥ 2.

Summing this inequality from k = 2 to n, it is straightforward to obtain the claimed positive
definiteness result. It completes the proof.

Remark 2. This lemma updates the sufficient condition of [22, Lemma 2.1]. Thus by following
the discussions in [22, Remark 3 and Remark 5], one can verify that the variable-step BDF2
method is A-stable if 0 < rk < 4.864 for 2 ≤ k ≤ N .

Next theorem shows that the numerical scheme (1.7) preserves a modified energy dissipation
property at the discrete levels, and it is mesh-robustly stable in an energy norm.

Theorem 2.2. Let S0 holds. If the stabilized parameter A is properly large such that

A ≥ (rn + rn+1 − 1)4

64R2
L(rn, rn+1)

κ2

ε2
, (2.7)

the convex-splitting BDF2 scheme (1.7) preserves the following energy dissipation law

E [φn] ≤ E [φn−1] ≤ E [φ1] for n ≥ 2,

where the modified discrete energy E [φk] is defined by

E [φk] := E[φk] +

√
rk+1τk+1

2κ(1 + rk+1)

∥∥∂τφk∥∥2

−1
+
τkτk+1

2

∥∥∂τφk∥∥2
+
Aτ2

2

∥∥∇φk∥∥2
. (2.8)

Proof. The volume conversation implies Oτφn ∈ V̊h for n ≥ 1. Then we make the inner product
of (1.7) by (−∆h)−1Oτφn/κ and obtain

1

κ

〈
D2φ

n,Oτφ
n
〉
−1
−
(
ε2 +Aτ2

) 〈
∆hφ

n,Oτφ
n
〉

+
〈
(φn)3 − φ̂n,Oτφn

〉
= 0. (2.9)

With the help of the summation by parts and 2a(a − b) = a2 − b2 + (a − b)2, the second term
at the left hand side of (2.9) reads(

ε2 +Aτ2
) 〈
∇hφn,∇hOτφn

〉
=

1

2

(
ε2 +Aτ2

) (∥∥∇hφn∥∥2 −
∥∥∇hφn−1

∥∥2
+
∥∥∇hOτφn∥∥2)

.
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It is easy to check the following identity

4a3(a− b) = a4 − b4 +
[
2a2 + (a+ b)2

]
(a− b)2.

Then the nonlinear term in (2.9) can be bounded by〈
(φn)3,Oτφ

n
〉
≥ 1

4

∥∥φn∥∥4

l4
− 1

4

∥∥φn−1
∥∥4

l4
.

Noting the following identity

[(1 + rn)b− rnc] (a− b) =
1

2
(a2 − b2) +

rn
2

(b− c)2 − rn+1

2
(a− b)2

+
r̄n
2

(a− b)2 − rn
2

(a− 2b+ c)2,

where r̄n := rn + rn+1 − 1 for brevity. Then the extrapolation term in (2.9) can be treated by〈
φ̂n,Oτφ

n
〉

=
1

2

(∥∥φn∥∥2 −
∥∥φn−1

∥∥2)
+
rn
2

∥∥Oτφn−1
∥∥2 − rn+1

2

∥∥Oτφn∥∥2

+
r̄n
2

∥∥Oτφn∥∥2 − rn
2

∥∥OτOτφn∥∥2
.

The condition of (2.7) gives that RL(rn, rn+1) ≥ κr̄2
n/(8εA

1/2). Taking wj = Oτφj in the first
inequality of Lemma 2.1, it is not difficult to get

1

κ

〈
D2φ

n,Oτφ
n
〉
−1
≥
√
rn+1τn+1

2κ(1 + rn+1)

∥∥∂τφn∥∥2

−1
−
√
rnτn

2κ(1 + rn)

∥∥∂τφn−1
∥∥2

−1
+

r̄2
nε
−1

16τnA
1
2

∥∥Oτφn∥∥2

−1
.

Thus it follows from (2.9) that

E [φn] +
r̄2
nε
−1

16τnA
1
2

∥∥Oτφn∥∥2

−1
+

1

2

(
ε2 +Aτ2

) ∥∥∇hOτφn∥∥2 − r̄n
2

∥∥Oτφn∥∥2 ≤ E [φn−1] (2.10)

for n ≥ 2. Recalling the definition of the maximum time-step τ , one has

1

2

(
ε2 +Aτ2

) ∥∥∇hOτφn∥∥2 ≥ ετA
1
2

∥∥∇hOτφn∥∥2 ≥ ετnA
1
2

∥∥∇hOτφn∥∥2
.

An application of the generalized Hölder inequality (2.2) obtains

r̄n
2

∥∥Oτφn∥∥2 ≤ |r̄n|
2

∥∥∇hOτφn∥∥∥∥Oτφn∥∥−1
≤ ετnA

1
2

∥∥∇hOτφn∥∥2
+

r̄2
nε
−1

16τnA
1
2

∥∥Oτφn∥∥2

−1
.

Combining it with (2.10) yields E [φn] ≤ E [φn−1] for n ≥ 2. It completes the proof.

Remark 3. It is seen that this stabilization parameter constraint (2.7) requires A = O(κ2/ε2).
Recalling the monotonicity of function RL(z, s), we detail some requirements of A to ensure
energy stability:

(i) If time-step ratios 0 < rn, rn+1 ≤ 2, and then RL(rn, rn+1) ≥ RL(0, 2) = 2 − 2
√

2
3 . One

needs A ≥ (2+2−1)4

64R2
L(0,2)

κ2

ε2
≈ 1.133κ2/ε2.
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(ii) If time-step ratio 2 < rn ≤ 3, one can choose rn+1 such that 0 < rn+1 ≤ 2, and then

RL(rn, rn+1) ≥ RL(3, 2) = 42−9
√

3−8
√

2
12 . It requires A ≥ 2.527κ2/ε2.

(iii) If the current ratio is somewhat large such that 3 < rn ≤ ruser, one can choose a small
ratio rn+1. For example, the step-ratio ruser = 4 taken in adaptive time-steps computations
shows that A ≥ 1.778κ2/ε2 is enough if 0 < rn+1 ≤ 1.

In Section 5, we consider the model parameters κ = 2 × 10−3, ε = 5 × 10−2 and ruser = 4 for
adaptive simulations. In such case, a mild constraint A ≥ 3/625 is sufficient.

Remark 4. The stabilized technique was originally introduced by Xu and Tang [30] to build
large time-stepping semi-implicit methods for phase filed models. After that, various artifi-
cial stabilization terms were proposed, for instance, the second-order stabilization terms [29,30]
Aτ∆h

(
φn − φn−1

)
, Aτ

(
φn − φn−1

)
and A

(
φn − 2φn−1 + φn−2

)
, such that the discrete energy

stability holds unconditionally (or with reasonable stability condition); however, the energy sta-
bility were all based on the assumptions that nonlinear force F ′(Φ) is Lipschitz continuous or
the derivative of F ′(Φ) is uniformly bounded. He et al. [15] used the first-order stabilized term
A∆h

(
φn − φn−1

)
in which the energy stability relayed on uniform bounds of the maximum norm

of the numerical solutions. Recently, under the time-step ratio 0 < rk < 3 +
√

17/2 ≈ 3.561,
the stabilized term Aτn∆h

(
φn − φn−1

)
was first introduced in the variable-steps BDF2 method

for CH model to achieve the unconditionally modified energy dissipation law [9]; while the sta-
bilization parameter A could blow up for time-step ratios rk → 3.561. In current work, under
the time-step ratio condition S0, we introduce a new second-order stabilization term by adding a
dissipation term Aτ2∆hφ

n to ensure the energy stability for the convex-splitting BDF2 scheme
(1.7). Although the stabilized term Aτ2∆hφ

n is taken as the maximum time step τ in every time
step, it avoids all the assumptions of nonlinear force F ′(Φ) and the bounds of numerical solu-
tions. Meanwhile, the new artificial diffusion coefficient A is bounded under the condition S0.
Specially, the detailed discussion in Remark 3 shows that this new artificial diffusion coefficient
A is of order κ2/ε2 in the practical numerical computations.

Lemma 2.2. Let S0 and A1 hold. If the stabilized parameter A fulfills (2.7), the solution of
BDF2 time-stepping scheme (1.7) is bounded in the sense that∥∥φn∥∥+

∥∥∇hφn∥∥ ≤ c1 :=
√

4ε−2c0 + (2 + ε2) |Ωh| for n ≥ 2,

where c1 is dependent on the domain Ω, the interface parameter ε and the starting value φ1, but
independent of the time tn, the time-step sizes τn and the time-step ratios rn.

Proof. Under the assumption A1, the definition (2.8) of E [φn] gives

E [φ1] ≤ E[φ1] +
τ2

2κ

∥∥∂τφ1
∥∥2

−1
+
τ1τ2

2

∥∥∂τφ1
∥∥2

+
Aτ2

2

∥∥∇hφ1
∥∥2 ≤ c0.

Thus the discrete energy dissipation law in Theorem 2.2 implies c0 ≥ E [φn] ≥ E[φn]. Reminding
the inequality ‖φn‖4l4 ≥ 2(1 + ε2) ‖φn‖2− (1 + ε2)2 |Ωh|, due to the simple fact (a2− 1− ε2)2 ≥ 0,
one applies the definition (2.4) of E[φn] to get

4c0 ≥ 2ε2
∥∥∇hφn∥∥2

+ 4
〈
F (φn), 1

〉
≥ 2ε2

∥∥∇hφn∥∥2
+ 2ε2 ‖φn‖2 − ε2(2 + ε2) |Ωh| ,

and then(∥∥φn∥∥+
∥∥∇hφn∥∥)2 ≤ 2 ‖φn‖2 + 2

∥∥∇hφn∥∥2 ≤ 4ε−2c0 + (2 + ε2) |Ωh| for n ≥ 2.

It implies the claimed result and completes the proof.
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3 Some discrete convolution inequalities

Our error analysis is closely related to the convolution form (1.11), so we need some detail

properties and discrete convolution inequalities with respect to the DOC kernels θ
(n)
n−j . It is to

emphasize that the positive constants m1, m2 and m3 involved in this section are independent of
the time tn, time-step sizes τn and the step ratios rn. Actually, they would take different values
for different choices of step ratios rn, but are bounded with respect to the changes of step ratios,
even when rn approaches the user limit ruser.

3.1 Simple properties of DOC kernels

Following the proofs of [22, Lemma 2.2, Corollary 2.1 and Lemma 2.3], we can obtain some
simple properties of the DOC kernels.

Lemma 3.1. If S0 holds, the DOC kernels θ
(n)
n−j defined in (1.8) satisfy:

(I) The discrete kernels θ
(n)
n−j are positive definite;

(II) The discrete kernels θ
(n)
n−j are positive and θ

(n)
n−j =

1

b
(j)
0

n∏
i=j+1

r2
i

1 + 2ri
for 2 ≤ j ≤ n;

(III)
n∑
j=2

θ
(n)
n−j ≤ τn such that

n∑
k=2

k∑
j=2

θ
(k)
k−j ≤ tn for n ≥ 2.

We introduce the following two (n− 1)× (n− 1) matrices

B2 :=


b
(2)
0

b
(3)
1 b

(3)
0
. . .

. . .

b
(n)
1 b

(n)
0

 and Θ2 :=


θ

(2)
0

θ
(3)
1 θ

(3)
0

...
...

. . .

θ
(n)
n−2 θ

(n)
n−3 · · · θ

(n)
0

 ,

where the discrete kernels b
(n)
n−k and θ

(n)
n−k are defined by (1.6) and (1.8), respectively. It follows

from the discrete orthogonal identity (1.9) that

Θ2 = B−1
2 . (3.1)

If the step ratios condition S0 holds, Lemma 2.1 shows that the real symmetric matrix

B := B2 +BT
2 (3.2)

is positive definite, that is,

wTBw = 2

n∑
k=2

wk
k∑
j=2

b
(k)
k−jw

j ≥
n∑
k=2

RL(rk, rk+1)

τk
(wk)2 ,

where the function RL(z, s) is defined by (2.6) and the vector w := (w2, w3, · · · , wn)T . According
to Lemma 3.1 (I), the following symmetric matrix

Θ := Θ2 + ΘT
2 = B−1

2 + (B−1
2 )T = (B−1

2 )T (B2 +BT
2 )B−1

2 = (B−1
2 )TBB−1

2 (3.3)

is also positive definite in the sense of wTΘw = 2
∑n,k

k,j θ
(k)
k−jw

jwk > 0. Here and hereafter, we

denote
∑n,k

k,j :=
∑n

k=2

∑k
j=2 for the simplicity of presentation.
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3.2 Eigenvalue estimates

To facilitate the proofs in what follows, we are to define the following step-scaled matrix

B̃2 := ΛτB2Λτ =


b̃
(2)
0

b̃
(3)
1 b̃

(3)
0
. . .

. . .

b̃
(n)
1 b̃

(n)
0


(n−1)×(n−1)

, (3.4)

where the diagonal matrix Λτ := diag
(√
τ2,
√
τ3, · · · ,

√
τn
)

so that the step-scaled discrete ker-

nels b̃
(k)
0 and b̃

(k)
1 are given by

b̃
(k)
0 =

1 + 2rk
1 + rk

and b̃
(k)
1 = −

r
3/2
k

1 + rk
for 2 ≤ k ≤ n. (3.5)

Moreover, we will use the following real symmetric matrix,

B̃ := B̃2 + B̃T
2 = ΛτBΛτ . (3.6)

The following two lemmas present some eigenvalue estimates of B̃ and B̃T
2 B̃2. To avoid

possible confusions, we define the vector norm
∣∣∣∣∣∣ · ∣∣∣∣∣∣ by

∣∣∣∣∣∣u∣∣∣∣∣∣ :=
√
uTu for any real vector u and

the associated matrix norm
∣∣∣∣∣∣U ∣∣∣∣∣∣ :=

√
λmax

(
UTU

)
.

Lemma 3.2. If S0 holds, there exists a positive constant m1 such that λmin

(
B̃
)
≥ m1 > 0.

Proof. This proof can be followed from [18, Lemma A.1]. We include the main ingredient for
the completeness. Applying the Gerschgorin’s circle theorem to the matrix B̃, one has

λmin

(
B̃
)
≥ min

2≤k≤n
RL (rk, rk+1) > RL (ruser, ruser) =

2(1 + 2ruser − r3/2
user)

1 + ruser
> 0,

where RL
(
z, s
)

is defined by (2.6). It completes the proof by taking m1 = 2(1+2ruser−r3/2user)
1+ruser

.

Lemma 3.3. If S0 holds, there exists a positive constant m2 such that λmax

(
B̃T

2 B̃2

)
≤ m2.

Proof. This proof can be followed from [18, Lemma A.2]. We include the main ingredient for
the completeness. By writing out the tri-diagonal matrix B̃T

2 B̃2 and applying the Gerschgorin’s
circle theorem, one can find

λmax

(
B̃T

2 B̃2

)
≤ max

2≤k≤n
RU (rk, rk+1) < RU (ruser, ruser) ,

where the function RU (z, s) is defined by

RU (z, s) :=
(1 + 2z)(1 + 2z + z3/2)

(1 + z)2 +
s3/2(1 + 2s+ s3/2)

(1 + s)2 for 0 ≤ z, s < ruser.

An upper bound is then obtained by taking m2 = RU (ruser, ruser).
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By the above two lemmas, we can bound the minimum eigenvalue of Θ.

Lemma 3.4. If S0 holds, the real symmetric matrix Θ in (3.3) satisfies

vTΘv ≥ m1

m2

∣∣∣∣∣∣Λτv∣∣∣∣∣∣2 for any vector v.

Proof. Lemma 3.2 says that real symmetric matrix B̃ is positive definite. There exists a non-
singular upper triangular matrix Ũ such that B̃ = ŨT Ũ . By using (3.3) and (3.6), one gets

vTΘv = vT (B−1
2 )TBB−1

2 v = vT (B−1
2 )TΛ−1

τ B̃Λ−1
τ B−1

2 v =
∣∣∣∣∣∣ŨΛ−1

τ B−1
2 v

∣∣∣∣∣∣2.
Thus it follows that∣∣∣∣∣∣Λτv∣∣∣∣∣∣2 =

∣∣∣∣∣∣ΛτB2Λτ Ũ
−1ŨΛ−1

τ B−1
2 v

∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣B̃2Ũ
−1
∣∣∣∣∣∣2∣∣∣∣∣∣ŨΛ−1

τ B−1
2 v

∣∣∣∣∣∣2
≤
∣∣∣∣∣∣B̃2

∣∣∣∣∣∣2∣∣∣∣∣∣Ũ−1
∣∣∣∣∣∣2vTΘv = λmax

(
B̃T

2 B̃2

)
λmax

(
B̃−1

)
vTΘv.

Thus Lemmas 3.2 and 3.3 yield the claimed inequality.

To evaluate the maximum eigenvalue of Θ, consider the inverse matrix of the matrix B̃2,

Θ̃2 := B̃−1
2 = Λ−1

τ Θ2Λ−1
τ =


θ̃

(2)
0

θ̃
(3)
1 θ̃

(3)
0

...
...

. . .

θ̃
(n)
n−2 θ̃

(n)
n−3 · · · θ̃

(n)
0

 , (3.7)

where the step-scaled DOC kernels θ̃
(k)
k−j follow from Lemma 3.1 (II),

θ̃
(k)
k−j :=

1
√
τkτj

θ
(k)
k−j =

1 + rj
1 + 2rj

k∏
i=j+1

r
3/2
i

1 + 2ri
for 2 ≤ j ≤ k ≤ n. (3.8)

Lemma 3.5. If S0 holds, then there exists a positive constant m3 such that

vTΘv ≤m3

∣∣∣∣∣∣Λτv∣∣∣∣∣∣2 for any vector v.

Proof. Let Θ̃ = Θ̃2 + Θ̃T
2 . Since 0 < x3/2

1+2x < m∗ := r
3/2
user

1+2ruser
< 1 for any x ∈ [0, ruser], one can

apply the formula (3.8) to get

Rn,k :=
k∑
j=2

θ̃
(k)
k−j +

n∑
j=k

θ̃
(j)
j−k ≤

k∑
j=2

mk−j
∗ +

n∑
j=k

mj−k
∗ <

2

1−m∗
for 2 ≤ k ≤ n.

One has λmax

(
Θ̃
)
≤ max2≤k≤nRn,k < m3 := 2

1−m∗ by the Gerschgorin’s circle theorem. It

implies wT Θ̃w ≤ m3

∣∣∣∣∣∣w∣∣∣∣∣∣2 for any w and the choice w := Λτv completes the proof.
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3.3 Discrete convolution inequalities

The following two lemmas describe the Young-type convolution inequality.

Lemma 3.6. If S0 holds, then for any real sequences {vk}nk=2 and {wk}nk=2,

n,k∑
k,j

θ
(k)
k−jw

kvj ≤ ε
n,k∑
k,j

θ
(k)
k−jv

kvj +
1

2m1ε

n∑
k=2

τk(w
k)2 for ∀ ε > 0.

Proof. Let w := (w2, w3, · · · , wn)T . A similar proof of [18, Lemma A.3] gives

n,k∑
k,j

θ
(k)
k−jv

jwk ≤ ε
n,k∑
k,j

θ
(k)
k−jv

jvk +
1

2ε
wTB−1w for any ε > 0.

From the proof Lemma 3.4, we have B−1 = Λτ Ũ
−1
(
Λτ Ũ

−1
)T

and then

wTB−1w =wTΛτ Ũ
−1
(
Λτ Ũ

−1
)T

w =
∣∣∣∣∣∣(Ũ−1

)T
Λτw

∣∣∣∣∣∣2
≤
∣∣∣∣∣∣(Ũ−1

)T ∣∣∣∣∣∣2∣∣∣∣∣∣Λτw∣∣∣∣∣∣2 = λmax

(
(B̃)−1

)
wTΛ2

τw ≤ m−1
1

n∑
k=2

τk(w
k)2,

where Lemma 3.2 has been used. It completes the proof.

Lemma 3.7. If S0 holds, then for any real sequences {vk}nk=2 and {wk}nk=2,

n,k∑
k,j

θ
(k)
k−jw

kvj ≤ ε
n∑
k=2

τk(v
k)2 +

m3

4m1ε

n∑
k=2

τk(w
k)2 for ∀ ε > 0.

Proof. For fixed time index n, taking ε := 2ε0/m3 in Lemma 3.6 yields

n,k∑
k,j

θ
(k)
k−jw

kvj ≤ 2ε0

m3

n,k∑
k,j

θ
(k)
k−jv

kvj +
m3

4m1ε0

n∑
k=2

τk(w
k)2

≤ ε0

n∑
k=2

τk(v
k)2 +

m3

4m1ε0

n∑
k=2

τk(w
k)2,

where Lemma 3.5 was used in the last inequality. It completes the proof by choosing ε0 := ε.

We now present two discrete embedding-type convolution inequalities by considering three
time-space discrete functions uk, vk and wk (2 ≤ k ≤ n) in the space Vh or its subspace V̊h.

Lemma 3.8. Assume that uk, wk ∈ Vh, vk ∈ V̊h (2 ≤ k ≤ n) and there exists a constant cu
such that

∥∥uk∥∥
l3
≤ cu for 2 ≤ k ≤ n. If S0 holds, then for any ε > 0,

n,k∑
k,j

θ
(k)
k−j
〈
ujvj , wk

〉
≤ ε

n,k∑
k,j

θ
(k)
k−j
〈
∇hvj ,∇hvk

〉
+
c2
zc

2
um2m3

2m2
1ε

n∑
k=2

τk
∥∥wk∥∥2

.
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Proof. For fixed time index n, taking vj := ujhv
j
h and ε := ε1 in Lemma 3.7, we have

n,k∑
k,j

θ
(k)
k−j
〈
ujvj , wk

〉
≤ ε1

n∑
k=2

τk
∥∥ukvk∥∥2

+
m3

4m1ε1

n∑
k=2

τk
∥∥wk∥∥2

.

The well–known Hölder inequality and the discrete embedding inequality (2.3) imply that∥∥ukvk∥∥ ≤ ∥∥uk∥∥
l3

∥∥vk∥∥
l6
≤ cz

∥∥uk∥∥
l3

∥∥∇hvk∥∥ ≤ czcu∥∥∇hvk∥∥. We derive that

n∑
k=2

τk
∥∥ukvk∥∥2 ≤ c2

zc
2
u

n∑
k=2

τk
∥∥∇hvk∥∥2

.

Then it follows that

n,k∑
k,j

θ
(k)
k−j
〈
ujvj , wk

〉
≤ ε1c

2
zc

2
u

n∑
k=2

τk
∥∥∇hvk∥∥2

+
m3

4m1ε1

n∑
k=2

τk
∥∥wk∥∥2

. (3.9)

Following the proof of Lemma 3.4, it is not difficult to get (cf. [19])

n∑
k=2

τk
∥∥∇hvk∥∥2 ≤ 2m2

m1

n,k∑
k,j

θ
(k)
k−j
〈
∇hvj ,∇hvk

〉
.

Inserting this inequality into (3.9) and choosing the parameter ε1 := m1ε/(2c
2
zc

2
um2), we get the

claimed inequality and complete the proof.

Lemma 3.9. Assume that uk ∈ Vh, wk ∈ V̊h (2 ≤ k ≤ n) and there exists a constant cu such
that

∥∥uk∥∥
l3
≤ cu for 2 ≤ k ≤ n. If S0 holds, then for any ε > 0,

n,k∑
k,j

θ
(k)
k−j
〈
ujwj ,∆hw

k
〉
≤ ε

n,k∑
k,j

θ
(k)
k−j
〈
∆hw

j ,∆hw
k
〉

+
c4
zc

4
um

3
2m

2
3

m5
1ε

3

n∑
k=2

τk
∥∥wk∥∥2

.

Proof. For fixed time index n, we start the proof from (3.9) by setting wj := ∆hw
j , vj := wj

and ε1 := m2m3/(ε4m
2
1), that is,

n,k∑
k,j

θ
(k)
k−j
〈
ujwj ,∆hw

k
〉
≤ c

2
zc

2
um2m3

2m2
1ε4

n∑
k=2

τk
∥∥∇hwk∥∥2

+
m1ε4

2m2

n∑
k=2

τk
∥∥∆hw

k
∥∥2

≤ c
2
zc

2
um2m3

2m2
1ε4

n∑
k=2

τk
∥∥∇hwk∥∥2

+ ε4

n,k∑
k,j

θ
(k)
k−j
〈
∆hw

j ,∆hw
k
〉
, (3.10)

where Lemma 3.4 has been used to handle the last term. Furthermore, by using the classical
Young’s inequality and Lemma 3.4, one gets

n∑
k=2

τk
∥∥∇hwk∥∥2

=
n∑
k=2

τk
〈
−∆hw

k, wk
〉
≤ ε3

2

n∑
k=2

τk
∥∥∆hw

k
∥∥2

+
1

2ε3

n∑
k=2

τk
∥∥wk∥∥2

≤ m2ε3

m1

n,k∑
k,j

θ
(k)
k−j
〈
∆hw

j ,∆hw
k
〉

+
1

2ε3

n∑
k=2

τk
∥∥wk∥∥2

.
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Inserting this inequality into (3.10), we have

n,k∑
k,j

θ
(k)
k−j
〈
ujwj ,∆hw

k
〉
≤
(c2

zc
2
um

2
2m3ε3

2m3
1ε4

+ ε4

) n,k∑
k,j

θ
(k)
k−j
〈
∆hw

j ,∆hw
k
〉

+
c2
zc

2
um2m3

4m2
1ε3ε4

n∑
k=2

τk
∥∥wk∥∥2

.

Now by choosing ε4 := ε/2 and ε3 := m3
1ε4ε/(c

2
zc

2
um

2
2m3), we obtain the claimed inequality.

4 Robust L2 norm error estimate

4.1 Convolutional consistency and technical lemma

Let ξjΦ be the local consistency errors of the convex-splitting BDF2 scheme (1.7), arising from
the BDF2 formula (1.5), the extrapolation approximation and the artificial stabilization term,
at the time t = tj , that is,

ξjΦ :=
[
D2Φ(tj)− ∂tΦ(tj)

]
+ κ
[
∆Φ̂(tj)−∆Φ(tj)

]
+ κAτ2∆2Φ(tj). (4.1)

We will consider a convolutional consistency error ΞkΦ defined by

ΞkΦ :=

k∑
j=2

θ
(k)
k−jξ

j
Φ for k ≥ 2. (4.2)

Lemma 4.1. If S0 holds, the convolutional consistency error ΞkΦ in (4.2) satisfies

n∑
k=2

∣∣ΞkΦ∣∣ ≤ tnτ2 max
1≤j≤n

(
3
∣∣Φ′′′(tj)∣∣+ 2κ

∣∣∆Φ′′(tj)
∣∣+ κA

∣∣∆2Φ(tj)
∣∣) for n ≥ 2.

Proof. By following the proof of [18, Lemma 3.4], the convolution consistency error for the BDF2
formula (1.5) can be bounded by

k∑
j=2

θ
(k)
k−j
∣∣D2Φ(tj)− ∂tΦ(tj)

∣∣ ≤ 3

k∑
j=1

θ
(k)
k−jτj

∫ tj

tj−1

∣∣Φ′′′(s)∣∣ dsds for k ≥ 2.

By using the Taylor’s expansion formula, one has

v̂j − vj =

∫ tj

tj−1

(s− tj)v′′(s) ds− rj
∫ tj−1

tj−2

(s− tj−2)v′′(s) ds,

which in turn yields (by taking v := ∆Φ)

k∑
j=2

θ
(k)
k−jκ

∣∣∆Φ̂(tj)−∆Φ(tj)
∣∣ ≤ κ k∑

j=1

θ
(k)
k−jτj

∫ tj

tj−2

∣∣∆Φ′′(s)
∣∣ ds for k ≥ 2.
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For the stabilization term, it is straightforward to derive

k∑
j=2

θ
(k)
k−j
∣∣κAτ2∆2Φ(tj)

∣∣ ≤ κAτ2
k∑
j=1

θ
(k)
k−j
∣∣∆2Φ(tj)

∣∣ for k ≥ 2.

Collecting the above estimates and using Lemma 3.1 (III), one obtains the claimed estimate on
the convolutional consistency immediately. This completes the proof.

We use the standard seminorms and norms in the Sobolev space Hm(Ω) for m ≥ 0. Let
C∞per(Ω) be a set of infinitely differentiable L-periodic functions defined on Ω, and Hm

per(Ω) be
the closure of C∞per(Ω) in Hm(Ω), endowed with the semi-norm | · |Hm

per
and the norm ‖·‖Hm

per
.

For simplicity, denote | · |Hm := | · |Hm
per

, ‖·‖Hm := ‖·‖Hm
per

, and ‖·‖L2 := ‖·‖H0 . Next lemma

lists some approximations, cf. [25, 26], of the L2-projection operator PM and trigonometric
interpolation operator IM defined in subsection 2.1.

Lemma 4.2. For any u ∈ Hq
per(Ω) and 0 ≤ s ≤ q, it holds that

‖PMu− u‖Hs ≤ Cuhq−s|u|Hq , ‖PMu‖Hs ≤ Cu ‖u‖Hs ; (4.3)

and, in addition if q > 3/2,

‖IMu− u‖Hs ≤ Cuhq−s|u|Hq , ‖IMu‖Hs ≤ Cu ‖u‖Hs . (4.4)

4.2 Convergence analysis

Note that, the energy dissipation law (1.4) of CH model (1.2) shows that E[Φn] ≤ E[Φ(t0)]. From
the formulation (1.1), it is easy to check that

∥∥Φn
∥∥
H1 can be bounded by a time-independent

constant. Let Φn
M :=

(
PMΦ

)
(·, tn) be the L2-projection of exact solution at time t = tn. The

projection estimate (4.3) in Lemma 4.2 yields∥∥Φn
M

∥∥+
∥∥∇hΦn

M

∥∥ ≤ ∥∥PMΦn
∥∥
H1 ≤ c2 for 1 ≤ n ≤ N , (4.5)

where c2 is dependent on the domain Ω and initial data Φ(t0), but independent of the time tn.
We are in the position to prove the L2 norm convergence of the adaptive BDF2 scheme (1.7).

In this main theorem, c3 := c2
Ω(c2

1 + c1c2 + c2
2), c4 := 16κc4

zc
4
3m

3
2m

2
3/(m

5
1ε

6), c5 := 288κ/
(
m1ε

2
)

and cε := 2 (c4 + c5). These fixed constant may be dependent on the given data, the solution
and the starting values, but are always independent of the time tn, time-step sizes τn and step
ratios rn. Moreover, they remain bounded even when rn approach the user limit ruser.

Theorem 4.1. Assume that the CH problem (1.2) has a smooth solution Φ ∈ C3
(
[0, T ];Hm+4

per

)
for some integer m ≥ 0. Suppose further that the step-ratios condition S0 and the stabilized
constraint (2.7) hold such that the convex-splitting BDF2 scheme (1.7) is unique solvable and
energy stable. If τ ≤ 1/cε, the solution φn is robustly convergent in the L2 norm,

∥∥Φn − φn
∥∥ ≤ Cφ exp

(
cεtn−1

)(∥∥Φ1
M − φ1

∥∥+ τ
∥∥∂τ (Φ1

M − φ1)
∥∥+ tnh

m

+ tnτ
2 max

0<t≤T

(∥∥Φ(t)
∥∥
H4 +

∥∥Φ′′(t)
∥∥
H2 +

∥∥Φ′′′(t)
∥∥
L2

))
for 2 ≤ n ≤ N.
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Proof. We evaluate the L2 norm error ‖Φn − φn‖ by a usual splitting,

Φn − φn = Φn − Φn
M + en,

where en := Φn
M−φn ∈ V̊h is the difference between the projection Φn

M and the numerical solution
φn of the convex-splitting BDF2 scheme (1.7). Actually, the projection solution Φn

M ∈ FM , the
volume conservative property becomes available at the discrete level〈

Φn
M , 1

〉
=
〈
Φ0
M , 1

〉
=
〈
φ0, 1

〉
=
〈
φn, 1

〉
,

which implies the error function en ∈ V̊h. Applying Lemma 4.2, one has

‖Φn − Φn
M‖ = ‖IM (Φn − Φn

M )‖L2 ≤ Cφ ‖IMΦn − Φn
M‖L2 ≤ Cφhm

∣∣Φn
∣∣
Hm .

Once an upper bound of ‖en‖ is available, the claimed error estimate follows immediately,

‖Φn − φn‖ ≤ ‖Φn − Φn
M‖+ ‖en‖ ≤ Cφhm

∣∣Φn
∣∣
Hm + ‖en‖ for 1 ≤ n ≤ N. (4.6)

To bound ‖en‖, we consider two stages: Stage 1 analyzes the space consistency error for
a semi-discrete system having a projected solution ΦM ; With the help of the Young-type and

embedding convolution inequalities with respect to DOC kernels θ
(k)
k−j and the solution estimate

in Lemma 2.2, Stage 2 derives the error estimate for the fully discrete error system.

Stage 1: Consistency analysis of semi-discrete projection A substitution of the pro-
jection solution ΦM and differentiation operator ∆h into the original equation (1.2) yields the
semi-discrete system

∂tΦM = κ∆hµM + ζP with µM = F ′(ΦM )− ε2∆hΦM , (4.7)

where ζP (xh, t) represents the spatial consistency error arising from the projection of exact
solution, that is,

ζP := ∂tΦM − ∂tΦ + κ(∆µ−∆hµM ) for xh ∈ Ωh. (4.8)

Following the proof of [18, Theorem 3.1], and using Lemma 4.2, it is not difficult to obtain
that ‖ζP ‖ ≤ Cφhm and ‖ζP (tj)‖ ≤ Cφhm for j ≥ 2. Then Lemma 3.1 (III) yields

n∑
k=2

∥∥Υk
P

∥∥ ≤ Cφhm n∑
k=2

k∑
j=2

θ
(k)
k−j ≤ Cφtnh

m where Υk
P :=

k∑
j=2

θ
(k)
k−jζP (tj) for k ≥ 2. (4.9)

Stage 2: L2 norm error of fully discrete system From the projection equation (4.7), one
can apply the BDF2 formula to obtain the following approximation equation

D2Φn
M = κ∆hµ

n
M + ζnP + ξnΦ with µnM =

(
Φn
M

)3 − Φ̂n
M −

(
ε2 +Aτ2

)
∆hΦn

M , (4.10)

where the local consistency errors ξnΦ and ζnP := ζP (tn) are defined by (4.1) and (4.8), respectively.
Subtracting the full discrete scheme (1.7) from the approximation equation (4.10), we have the
following error system

D2e
n = κ∆h

[
fnφ e

n − ên −
(
ε2 +Aτ2

)
∆he

n
]

+ ζnP + ξnΦ for 2 ≤ n ≤ N , (4.11)
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where the nonlinear term fnφ := (Φn
M )2 + Φn

Mφ
n + (φn)2 and ên := en−1 − en−2. Thanks to the

estimates in Lemma 2.2 and (4.5), one applies the embedding inequality (2.1) to find that∥∥fnφ∥∥l3 ≤∥∥Φn
M

∥∥2

l6
+
∥∥Φn

M

∥∥
l6

∥∥φn∥∥
l6

+
∥∥φn∥∥2

l6
≤ c3. (4.12)

Multiplying both sides of equation (4.11) by the DOC kernels θ
(k)
k−n, and summing up n from

n = 2 to k, we apply the equality (1.10) with vj = ej to obtain

Oτe
k = −θ(k)

k−2b
(2)
1 Oτe

1 + κ
k∑
j=2

θ
(k)
k−j∆h

[
f jφe

j − êj −
(
ε2 +Aτ2

)
∆he

j
]

+ Υk
P + ΞkΦ (4.13)

for 2 ≤ k ≤ N , where ΞkΦ and Υk
P are defined by (4.2) and (4.9), respectively. Making the inner

product of (4.13) with 2ek, and summing k from 2 to n, we obtain

∥∥en∥∥2 ≤
∥∥e1
∥∥2 − 2

n∑
k=2

θ
(k)
k−2b

(2)
1

∥∥ek∥∥∥∥Oτe1
∥∥+ Jn + 2

n∑
k=2

〈
Υk
P + ΞkΦ, e

k
〉

(4.14)

for 2 ≤ n ≤ N , where Jn is defined by

Jn := 2κ

n,k∑
k,j

θ
(k)
k−j
〈
f jφe

j − êj −
(
ε2 +Aτ2

)
∆he

j ,∆he
k
〉
. (4.15)

Taking uj := f jφ (with the upper bound cu := c3), wj := ej and ε = ε2/2 in Lemma 3.9, one
applies the solution bound (4.12) to obtain

2κ

n,k∑
k,j

θ
(k)
k−j
〈
f jφe

j ,∆he
k
〉
≤ κε2

n,k∑
k,j

θ
(k)
k−j
〈
∆he

j ,∆he
k
〉

+ c4

n∑
k=2

τk
∥∥ek∥∥2

.

For the second term of (4.15), one applies the Young-type convolution inequality in Lemma 3.6
by taking wk := ∆he

k, vj := −êj and ε = ε2/2 to get

2κ

n,k∑
k,j

θ
(k)
k−j
〈
− êj ,∆he

k
〉
≤ κε2

n,k∑
k,j

θ
(k)
k−j
〈
∆he

j ,∆he
k
〉

+ c5

n−1∑
k=1

τk
∥∥ek∥∥2

.

An application of the positive definiteness of the kernels θ
(k)
k−j in Lemma 3.1 (I) yields

2κ

n,k∑
k,j

θ
(k)
k−j
〈
−Aτ2∆he

j ,∆he
k
〉
< 0.

Then the term Jn in (4.15) can be bounded by

Jn ≤ cε
2

n∑
k=1

τk
∥∥ek∥∥2

.
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Therefore, it follows from (4.14) that

∥∥en∥∥2 ≤
∥∥e1
∥∥2 − 2

n∑
k=2

θ
(k)
k−2b

(2)
1

∥∥ek∥∥∥∥Oτe1
∥∥+

cε
2

n∑
k=1

τk
∥∥ek∥∥2

+ 2
n∑
k=2

∥∥ek∥∥∥∥Υk
P + ΞkΦ

∥∥
for 2 ≤ n ≤ N . Choosing some integer n0 (1 ≤ n0 ≤ n) such that

∥∥en0
∥∥ = max1≤k≤n

∥∥ek∥∥.
Taking n := n0 in the above inequality, one can obtain

∥∥en0
∥∥ ≤ ∥∥e1

∥∥− 2
∥∥∂τe1

∥∥ n0∑
k=2

θ
(k)
k−2b

(2)
1 τ1 +

cε
2

n0∑
k=1

τk
∥∥ek∥∥+ 2

n0∑
k=2

∥∥Υk
P + ΞkΦ

∥∥.
By using Lemma 3.1 (II), one has

−θ(k)
k−2b

(2)
1 τ1 = τ1

k∏
i=2

r2
i

1 + 2ri
= τk

k∏
i=2

ri
1 + 2ri

≤ τk
2k−1

for 2 ≤ k ≤ N,

such that

−
n∑
k=2

θ
(k)
k−2b

(2)
1 τ1 ≤ τ

n∑
k=2

1

2k−1
≤ τ for 2 ≤ n ≤ N.

Thus one gets

∥∥en∥∥ ≤ ∥∥en0
∥∥ ≤ ∥∥e1

∥∥+ 2τ
∥∥∂τe1

∥∥+
cε
2

n∑
k=1

τk
∥∥ek∥∥+ 2

n∑
k=2

∥∥Υk
P + ΞkΦ

∥∥.
Under the maximum step constraint τ ≤ 1/cε, we have

∥∥en∥∥ ≤ 2(1 + cε)
∥∥e1
∥∥+ 4τ

∥∥∂τe1
∥∥+ cε

n−1∑
k=2

τk
∥∥ek∥∥+ 4

n∑
k=2

∥∥Υk
P + ΞkΦ

∥∥.
The discrete Grönwall inequality [22, Lemma 3.1] yields the following estimate

∥∥en∥∥ ≤ 2 exp
(
cεtn−1

)[
(1 + cε)

∥∥e1
∥∥+ 2τ

∥∥∂τe1
∥∥+ 2

n∑
k=2

∥∥Υk
P

∥∥+ 2

n∑
k=2

∥∥ΞkΦ
∥∥]

for 2 ≤ n ≤ N . Furthermore, the convolutional consistency error established in Lemma 4.1
together with the regularity condition Φ ∈ C3

(
[0, T ];Hm+4

per

)
and Lemma 4.2, gives the bound

of the global temporal error term
∑n

k=2

∥∥ΞkΦ
∥∥. Therefore by applying the error estimate (4.9)

and the triangle inequality (4.6), we complete the proof.

5 Numerical experiments

We run the BDF2 scheme (1.7) for the CH equation (1.2). In our computations, the parameter
A = 3/625 according to Remark 3. The TR-BDF2 method is always employed to obtain the
first-level solution. A simple fixed-point iteration with the termination error 10−12 is employed
to solve the nonlinear algebra equations at each time level.
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5.1 Robustness tests on random time meshes

Example 1. To facilitate the robustness test of the convex-splitting BDF2 method (1.7), we
consider an exact solution Φ(x, t) = cos(t) sin(x) sin(y) with the model parameters κ = 2× 10−3

and ε = 5× 10−2 by adding a corresponding exterior force to the CH model (1.2).

In the following examinations, the computational domain (0, 2π)2 is discretized by us-
ing 1282 spatial meshes. Then the problem is solved until time T = 1 on random time
meshes. To be more precise, we take the time step sizes τk := Tσk/S for 1 ≤ k ≤ N , where
σk ∈ (0, 1) is the uniformly distributed random number and S =

∑N
k=1 σk. Since the spec-

tral accuracy in space is standard, we only test the time accuracy with the numerical error
e(N) := max1≤n≤N ‖Φ(tn)− φn‖ in each run. The numerical order of convergence is estimated
by Order := log (e(N)/e(2N)) /log (τ(N)/τ(2N)), where τ(N) denotes the maximum time-step
size for total N subintervals.

Table 1: Accuracy of BDF2 method (1.7) on random time meshes.

N τ e(N) Order max rk N1

40 3.96e-02 3.69e-04 1.94 17.27 3
80 2.44e-02 1.08e-04 2.55 46.22 5
160 1.29e-02 2.75e-05 2.13 167.41 16
320 6.28e-03 7.07e-06 1.90 264.04 29
640 3.05e-03 1.57e-06 2.08 1584.01 62

The numerical results obtained using a set of random meshes are tabulated in Table 1. In
addition to the discrete L2 numerical error between the exact solution and the numerical solution,
the maximum time-step size τ , the maximum step ratio max rk and the number (denote by N1)
of time levels with the step ratios rk ≥ 4.864 are also recorded, respectively.

As observed, the convex-splitting BDF2 method (1.7) still achieves the second-order accuracy
on arbitrary nonuniform meshes even though some step ratios lager than r∗ ≈ 4.864. The
numerical results indicate that the BDF2 method is robust with respect to the step-size variations
than previous theoretical predictions. Also, the improved condition 0 < rk < 4.864 is still a
sufficient condition for second-order convergence.

(a) time-step size τ = 10−1 (b) time-step size τ = 5 × 10−2 (c) time-step size τ = 10−2

Figure 1: Solution curves by BDF2, CN and CNCS methods at T = 0.1.
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(a) time-step size τ = 10−1 (b) time-step size τ = 5 × 10−2 (c) time-step size τ = 10−2

Figure 2: Original energy curves by BDF2, CN and CNCS methods until T = 0.1.

Example 2. We next simulate the coarsening dynamics of the CH equation (1.2). Precisely, the
initial condition is taken as Φ0(x) = rand(x), where rand(x) generates random numbers between
−0.001 to 0.001 uniformly. Here, the mobility coefficient κ = 2 × 10−3 and the interfacial
thickness ε = 5 × 10−2 are taken in the following numerical simulations. Always, the spatial
domain (0, 2π)2 is discretized by using 1282 spatial meshes.

5.2 Numerical comparisons

To further benchmark the convex-splitting BDF2 scheme with the random initial data generated
in Example 2, we run several numerical tests to explore the numerical behaviors near the initial
time. We also implement the unconditionally energy stable Crank-Nicolson (CN) method [31],

∂τφ
n = κ∆hµ

n− 1
2 with µn−

1
2 =

1

2

[
(φn)2 + (φn−1)2

]
φn−

1
2 − φn−

1
2 − ε2∆hφ

n− 1
2 ,

and the second-order Crank-Nicolson convex-splitting (CNCS) method [8, 13],

∂τφ
n = κ∆hµ̂

n− 1
2 with µ̂n−

1
2 =

1

2

[
(φn)2 + (φn−1)2

]
φn−

1
2 − φ̌n−

1
2 − ε2∆hφ̂

n− 1
2 ,

where φn−
1
2 := (φn + φn−1)/2, φ̂n−

1
2 :=

(
3φn + φn−2

)
/4 and φ̌n−

1
2 =

(
3φn−1 − φn−2

)
/2. Since

the CNCS method requires two initialization steps, a first-order convex-splitting scheme [9] is
used here to obtain the first-level solution.

The random initial data initiates a fast coarsening dynamics at the beginning time. We
use a random initial profile to test the effectiveness of various numerical methods with different
time step sizes. The numerical solution curves are summarized in Figure 1, where the reference
solution is obtained by using the convex-splitting BDF2 method with a uniform time-step size
τ = 10−3. We observe that solutions of CN and CNCS methods tend to generate non-physical
oscillations when some large time steps are used. In contrast, the convex-splitting BDF2 solution
is more robust and accurate than the CN and CNCS schemes with the same time step size. It
seems that the BDF2 method is more suitable than Crank-Nicolson type schemes when large
time-step sizes are adopted.

5.3 Simulation of coarsening dynamics

In this subsection, we simulate the coarsening dynamics by using the convex-splitting BDF2
method (1.7) with the random initial condition. In what follows, to capture the multiple time
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(a) Original energy (b) Time step sizes

Figure 3: Energy curves and adaptive time-step sizes for different parameters β.

Table 2: CPU time (in seconds) and total time steps comparisons.

Strategies τ = 10−2 β = 10 β = 102 β = 103

CPU time 109.116 35.601 39.238 71.880
Time levels 10000 2098 2710 5671

scales accurately and to improve the computational efficiency for long-time simulations, the time
steps are selected by using the following adaptive time-stepping strategy [17],

τada = max

{
τmin,

τmax√
1 + β

∥∥∂τφn∥∥2

}
so that τn+1 = min

{
τada, ruserτn

}
, (5.1)

where β > 0 is a user chosen parameter, τmax and τmin are the predetermined maximum and
minimum time steps, respectively.

We take ruser = 4, τmin = 5 × 10−5 and τmax = 5 × 10−2 in the adaptive time-stepping
algorithm (5.1), and run the convex-splitting BDF2 method (1.7) until time T = 100. The
reference solution is obtained by applying a small time step τ = 10−2. As seen in Figure 3, we
use three different user parameters β = 10, 102 and 103 to compute the discrete original energy
and the corresponding adaptive time-steps. One can observe that the discrete energy curves using
the adaptive stepping algorithm are comparable to the reference one. On the other hand, the
adjustments of time-steps are closely relied on the user parameter β. As expected, a large β leads
to small time-step sizes, and a small β generates large step sizes. The CPU time (in seconds)
and the adaptive time levels recorded in Table 2 show the effectiveness and efficiency of the
adaptive time-stepping algorithm, which makes the long-time dynamics simulations practical.

We next perform the coarsening dynamic simulations by using the above adaptive time-
stepping strategy with the setting β = 103 until time T = 1000. The evolution of microstructure
for the CH model due to the phase separation at different time are summarized in Figure 4. As
seen, the microstructure is relatively fine and consists of many precipitations at early time. The
coarsening, dissolution, merging processes are also observed. The time evolutions of original
energy, volume and the adaptive step sizes are summarized in Figure 5. The subplot (a) of
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(a) time t = 10 (b) time t = 100 (c) time t = 300

(d) time t = 500 (e) time t = 800 (f) time t = 1000

Figure 4: The profile of numerical solution φ at different time for the CH model.

(a) Energy scaling (b) Volume difference (c) Adaptive step sizes

Figure 5: Numerical results show original energy, volume and adaptive time steps of the CH
equation during the coarsening dynamics.

Figure 5 demonstrates a very good agreement with the expected scaling law, i.e., the energy
decreases as O(t−

1
3 ).
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