
A Geometric Proximal Gradient Method for Sparse

Least Squares Regression with Probabilistic Simplex

Constraint

Guiyun Xiao∗ Zheng-Jian Bai†

December 29, 2021

Abstract

In this paper, we consider the sparse least squares regression problem with probabilistic
simplex constraint. Due to the probabilistic simplex constraint, one could not apply the `1
regularization to the considered regression model. To find a sparse solution, we reformulate
the least squares regression problem as a nonconvex and nonsmooth `1 regularized minimiza-
tion problem over the unit sphere. Then we propose a geometric proximal gradient method
for solving the regularized problem, where the explicit expression of the global solution to
every involved subproblem is obtained. The global convergence of the proposed method is
established under some mild assumptions. Some numerical results are reported to illustrate
the effectiveness of the proposed algorithm.
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1 Introduction

In this paper, we focus on the solution of the following least squares regression with probabilistic
simplex constraint:

min
x∈Rn

1

2
‖Ax− b‖2

subject to (s.t.) 1Tnx = 1,

x ≥ 0

(1.1)
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for some sparse x ∈ Rn, where A ∈ Rm×n, 0 ∈ Rn is a zero vector, 1n ∈ Rn is a vector of all
ones, and x ≥ 0 means that x is a entry-wise nonnegative vector. Such problem arises in various
applications such as the construction of probabilistic Boolean networks [10], nonparametric
distribution estimation [8, §7.2], and sparse hyperspectral unmixing [16], etc.

There exist various numerical methods for solving the optimzation model related to problem
(1.1). For example, Iordache et al. [16] introduced the Moore-Penrose pseudoinverse method,
the orthogonal matching pursuit method, the iterative spectral mixture analysis method, and
the `2–`1 sparse regression technique. Bioucas-Dias and Figueiredo [6] presented the alternat-
ing direction method of multipliers (ADMM) algorithm for solving the following minimization
problem:

min
x∈Rn

1

2
‖Ax− b‖2 + λ‖x‖1 + χ{1}(1

Tx) + χRn
+

(x), (1.2)

where λ > 0 is a regularized parameter, Rn+ denotes the nonnegative orthant of Rn (R+ = R1
+),

and χD is a characteristic function of a set D ⊂ Rn defined by

χD(x) =

{
0, x ∈ D,

+∞, otherwise.

Salehani et al. [25] provided the ADMM method for solving the following regularized constrained
sparse regression:

min
x∈Rn

1

2
‖Ax− b‖2 + λΩ(δ,x)

s.t. 1Tnx = 1, x ≥ 0,

where λ > 0 is a regularized parameter and Ω(δ,x) :=
∑n

j=1
2
π arctan(

xj
δ ) with 0 < δ < 1 is an

arctan function, which is used to approximate `0 norm since limδ→0 Ω(δ,x) = ‖x‖0. In [9, 10],
Chen et al. gave a (generalized) maximum entropy rate method for solving problem (1.1). In
[26], Wen et al. presented a projection-based gradient descent method for solving problem (1.1).
In [14], Deng et al. provided a partial proximal-type operator splitting method for solving the
`1/2 regularization version of problem (1.1):

min
x∈Rn

1

2
‖Ax− b‖2 + λ‖x‖1/21/2

s.t. 1Tnx = 1, x ≥ 0,

where λ > 0 is a regularized parameter.
In this paper, we first reformulate the regression model (1.1) as an nonconvex minimization

problem over the unit sphere. To find a sparse solution, we add the `1-penalty to the nonconvex
minimization problem. Then we introduce a geometric proximal gradient method for solving
the regularized problem. This is motivated by the book due to Hastie et al. [15] and the paper
due to Bolte et al. [7]. As noted in [15], the lasso or `1 regularization is widely employed for
learning the sparsity of the regression parameters {xi} in high-dimensional linear regression and
inverse problems. In [7], Bolte et al. presented a proximal alternating linearized minimization
algorithm for solving nonconvex and nonsmooth optimization problems, where, in each iteration,
one only need to apply the proximal forward-backward scheme to minimizing the sum of a smooth
function with a nonsomooth one. However, in each iteration of the proposed method, we need
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to use the proximal mapping to the nonconvex and nonsmooth minimization of the sum of a
smooth function with the `1 regularization item over the unit sphere, which gives a challenge
since it is hard to simplify the proximal mapping as the projection onto a closed set. We shall
analyze the special property of the involved proximal mapping and give the explicit expression
of a global minimizer of each involved subproblem. By using the Kurdyka- Lojasiewicz property
defined in [7], the global convergence of the proposed method is established and we also show
that each sequence generated by our method converges to a critical point of some regularized
function under some mild assumptions. Some numerical results are reported to illustrate the
effectiveness of the proposed method.

Throughout this paper, we use the following notation. Let Rm×n be the set of all m × n
real matrices and Rn = Rn×1. Let Rn be equipped with the Euclidean inner product 〈·, ·〉 and
its induced norm ‖ · ‖. Let Rm×n be equipped with the Frobenius inner product 〈·, ·〉F and
its induced Frobenius norm ‖ · ‖F . The superscript “·T ” stands for the transpose of a matrix
or vector. In denotes the identity matrix of order n. The symbol ‘�’ means the Hadamard
product of two vectors. Let | · | be the absolute value of a real number or the components
of a real vector. Denote by ‖ · ‖0 and ‖ · ‖2 the number of nonzero entries of a vector or a
matrix and the matrix 2-norm, respectively. Denote by diag(C) a diagonal matrix with the
same diagonal entries as a square matrix C. For any matrix C = (cij) ∈ Rm×n, let ‖C‖1 :=∑

i,j |cij |. For any c = (c1, . . . , cn)T ∈ Rn, let max(c,0) := (max(c1, 0), . . . ,max(cn, 0))T and

sign(c) := (sign(c1), . . . , sign(cn))T , where sign(ck) = 1 if ck > 0, sign(ck) = −1 if ck < 0 and
sign(ck) ∈ [−1, 1] if ck = 0.

The rest of this paper is organized as follows. In Section 2, we reformulate the sparse least
squares regression problem with probabilistic simplex constraint as a `1 regularized problem over
the unit sphere and present a geometric proximal gradient method for solving the regularized
problem. In Section 3, we derive the explicit expression of the global minimizer of each involved
subproblem and estalish the global convergence of the proposed method under some mild as-
sumptions. In Section 4, we discuss some extensions. In Section 5, we report some numerical
tests to indicate the effectiveness of our method. Finally, some concluding remarks are given in
Section 6.

2 A geometric proximal gradient method

In this section, we first reformulate problem (1.1) as a nonconvex and nonsmooth minimization
problem over the unit sphere. To find a sparse solution, we use the `1-penalty to the nonconvex
and nonsmooth minimization problem. Then we propose a geometric proximal gradient method
for solving the regularized problem.

2.1 Reformulation

To find a sparse solution, sparked by [15], it is desired to directly add `1-penalty to problem
(1.1), i.e.,

min
x∈Rn

1

2
‖Ax− b‖2 + λ‖x‖1

s.t. 1Tnx = 1, x ≥ 0,
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where λ > 0 is a regularized parameter. However, the `1 norm of x is a constant since ‖x‖1 =
1Tnx = 1 for all possible points in the feasible set:

K := {x ∈ Rn | 1Tnx = 1, x ≥ 0}.

In the following, we reformulate problem (1.1) as a nonconvex and nonsmooth minimization
problem over the unit sphere. It is easy to see that the feasible set K of problem (1.1) can be
written as

K = {y � y | yTy = 1, y ∈ Rn}.

We note that the unit sphere Sn−1 := {y ∈ Rn | yTy = 1} is a Riemannian submanifold of Rn .
Then problem (1.1) is reduced to the following minimization problem over the unit sphere:

min
y∈Rn

1

2
‖A(y � y)− b‖2

s.t. y ∈ Sn−1
(2.1)

We note that if y# ∈ Sn−1 is a solution to problem (2.1), then x# := y#�y# ∈ K is a solution
to problem (1.1).

To find a sparse solution to problem (1.1), by adding the `1-penalty to problem (2.1), we get
the following `1 regularized problem:

min
y∈Rn

1

2
‖A(y � y)− b‖2 + λ‖y‖1

s.t. y ∈ Sn−1,
(2.2)

where λ > 0 is a regularized parameter.

We point out that problem (2.2) is a nonconvex and nonsmooth minimization problem over
the Riemannian manifold Sn−1. For simplicity, we define

f(y) :=
1

2
‖A(y � y)− b‖2, g(λ,y) := λ‖y‖1, F (λ,y) := f(y) + g(λ,y) + χSn−1(y). (2.3)

Using Definition A.1, we can easily check that χSn−1 is a proper lsc function on Rn.

2.2 Geometric proximal gradient method

In this subsection, we propose a geometric proximal gradient method with the varied regular-
ization parameter λ for solving problem (2.2). As in [23, p. 20] and [7], for a proper lsc function
φ : Rn → [−∞,∞] and a constant α > 0, the proximal mapping of φ is defined by

proxφt (ŷ) = argmin
y∈Rn

{
φ(y) +

1

2α
‖y − ŷ‖2

}
.

For example, for the characteristic function χD of a set D ⊂ Rn, the proximal mapping of χD is
given by

proxχDt (ŷ) = argmin
y∈D

‖y − ŷ‖,
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i.e., the projection onto D. In particular, if D = Sn−1, then the projection onto Sn−1 has a
unique solution if ŷ 6= 0 [2]. To apply the proximal gradient method (see for instance [4]) to
problem (2.2), we need to use the proximal mapping to minimizing the sum of the linearization
of the smooth function f at the current iterate yk, the nonsmooth function g(λ, ·), and the
characteristic function χSn−1 , i.e., the next iterate yk+1 is defined by

yk+1 = argmin
y∈Sn−1

{
f(yk) +

〈
y − yk,∇f(yk)

〉
+ λ‖y‖1 +

1

2α
‖y − yk‖2

}
,

where α and λ are two positive constants.

Based on the above analysis, our geometric proximal gradient algorithm for solving problem
(2.2) can be described as follows.

Algorithm 2.1 Geometric proximal gradient method with varied regularized parameter

Step 0. Choose y0 ∈ Sn−1, α0 > 0, λ0 > 0, ρ1, ρ2, ρ3 ∈ (0, 1), γ1, γ2 > 0, δ1 > 0, δ2 > 0. Let
k := 0.

Step 1. Take α = α0 and compute

yk = argmin
y∈Sn−1

{
f(yk) +

〈
y − yk,∇f(yk)

〉
+

1

2α
‖y − yk‖2 + λk‖y‖1

}
. (2.4)

Step 2. Repeat until F (λk,y
k) ≤ F (λk,y

k)− 1
2γ2‖yk − yk‖2

Set α = max{γ1, αρ1}.
if F (λk,y

k) > δ1F (λk,y
k), then set α = max{γ1, αρ2}.

if |F (λk,y
k)− F (λk,y

k)| < δ2F (λk,y
k), then replace λk by λkρ3.

Compute

yk = argmin
y∈Sn−1

{
f(yk) +

〈
y − yk,∇f(yk)

〉
+

1

2α
‖y − yk‖2 + λk‖y‖1

}
.

end (Repaeat)

Set yk+1 := yk, αk+1 := α, and λk+1 := λk.

Step 3. Replace k by k + 1 and go to Step 1.

On Algorithm 2.1, we have the following remarks.

Remark 2.1 From the proof of Lemma 3.5 below, we observe that the condition F (λk,y
k) ≤

F (λk,y
k) − 1

2γ2‖yk − yk‖2 holds if we fix αk+1 such that αk+1 ≤ 1/(Lf + γ2), where Lf is
the Lipschitz constant as given in Lemma 3.3. However, this upper bound may be very small
numerically, which is not necessary in practice. Therefore, in Algorithm 2.1, we find a search
stepsize αk+1 starting from a resonable large α0 > 0.
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Remark 2.2 In Algorithm 2.1, we choose a regularization parameter λ such that the relative
error |F (λk+1,y

k+1) − F (λk,y
k)|/F (λk,y

k) is not too small. From the latter numerical tests,
we see that such adjustment of the regularization parameter may achieve a good tradeoff between
sparsity and objective function value.

3 Convergence analysis

In this section, we discuss the global convergence of Algorithm 2.1. We first derive the explicit
expression of the global minimizer of the nonconvex and nonsmooth minimization problem as
defined in (2.4). Then we show the propose method is globally convergent and the sequence {yk}
generated by Algorithm 2.1 converges to a critical point of problem (2.2) with some regularization
parameter under the assumption that λk is fixed for all k sufficiently large.

3.1 Explicit expression of yk defined in (2.4)

In this subsection, we derive the explicit expression of yk ∈ Sn−1 defined in (2.4), which aims to
solve the following minimization problem: For any given d ∈ Sn−1 and two constants α, λ > 0,
compute

min
y∈Rn

〈
y − d,∇f(d)

〉
+

1

2α
‖y − d‖2 + λ‖y‖1

s.t. y ∈ Sn−1.
(3.1)

To find a global solution to problem (3.1), we first derive the following necessary condition.

Lemma 3.1 If y ∈ Sn−1 solves problem (3.1), then we have

y � z ≥ 0,

where z := d− α∇f(d).

Proof. Let y := (y1, . . . , yn)T and z := (z1, . . . , zn)T . For the sake of contradiction, suppose
there exists an index 1 ≤ t ≤ n such that ytzt < 0. It follows that y ∈ Sn−1 is a solution to
problem (3.1) if and only if

y = argmin
y∈Sn−1

{ 1

2α
‖y − z‖2 + λ‖y‖1

}
. (3.2)

Let ỹ = (y1, . . . , yt−1,−yt, yt+1, . . . , yn)T . Then it is easy to verify that ỹ ∈ Sn−1 and( 1

2α
‖y − z‖2 + λ‖y‖1

)
−
( 1

2α
‖ỹ − z‖2 + λ‖ỹ‖1

)
= − 2

α
ytzt > 0.

This contradicts the assumption that y solves (3.2). Therefore, we have y � z ≥ 0.

On the explicit expression of a global solution to problem (3.1), we have the following theo-
rem.
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Theorem 3.2 Let z = d − α∇f(d) ≡ (z1, . . . , zn)T . Define v = (v1, . . . , vn)T ∈ Rn and
w = (w1, . . . , wn)T ∈ Rn by

vj =

{
1, if zj ≥ 0,

−1, otherwise
and wj = λ− 1

α
|zj |, (3.3)

for j = 1, . . . , n. Let t = argminj∈[n]wj and w− = min(0,w). Then a global solution to (3.1) is
given by

y =


(0, . . . , 0︸ ︷︷ ︸

t−1

, vt, 0, . . . , 0︸ ︷︷ ︸
n−t

)T , if w ≥ 0,

− w−
‖w−‖ � v, otherwise.

Proof. Using Lemma 3.1 and (3.2) we have

y = argmin
y∈Sn−1

∗

{
− 1

α
yT z + λ‖y‖1

}
, (3.4)

where Sn−1
∗ := {y ∈ Sn−1 | y � z ≥ 0}. For any y ∈ Sn−1

∗ , we have

− 1

α
yT z + λ‖y‖1 =

n∑
j=1

(
− 1

α
yjzj + λ|yj |

)
=

n∑
j=1

(
− 1

α
|yj ||zj |+ λ|yj |

)
=

n∑
j=1

(
λ− 1

α
|zj |
)
|yj | ≡

n∑
j=1

wj |yj |, (3.5)

where wj ’s are defined by (3.3).

We now determine a global solution y ∈ Sn−1 to problem (3.1) as follows: We first assume
that w ≥ 0. Let

y = (0, . . . , 0︸ ︷︷ ︸
t−1

, vt, 0, . . . , 0︸ ︷︷ ︸
n−t

)T ≡ (y1, . . . , yn)T ∈ Sn−1
∗ , (3.6)

where v is defined by (3.3) and t = argminj∈[n]wj . Then, for any y ∈ Sn−1
∗ , we have

n∑
j=1

wj |yj | ≥ wt
n∑
j=1

|yj | ≥ wt
n∑
j=1

y2
j = wt =

n∑
j=1

wj |yj |.

Hence, it follows from (3.4) and (3.5) that y defined in (3.6) solves problem (3.1).

On the other hand, suppose there exists at least one index l ∈ [n] such that wl < 0. Let
w− = min(0,w) 6= 0 and

y = − w−
‖w−‖

� v ≡ (y1, . . . , yn)T ∈ Sn−1
∗ , (3.7)
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where v is defined by (3.3). Then, for any y ∈ Sn−1
∗ , we have

n∑
j=1

wj |yj | ≥
∑
wj<0

wj |yj | = 〈w−, |y|〉 ≥ −‖w−‖‖y‖ = −‖w−‖ =

n∑
j=1

wj |yj |.

This, together with (3.4) and (3.5), implies that y defined by (3.7) solves problem (3.1).

Based on Theorem 3.2, we can easily find the explicit expression of yk ∈ Sn−1 defined in
(2.4), which is stated as Algorithm 3.2.

Algorithm 3.2 Computing a global solution to (2.4)

Step 0. Compute zk = yk − α∇f(yk) ≡ (zk1 , . . . , z
k
n)T . Set vk = (vk1 , . . . , v

k
n)T ∈ Rn and

wk = (wk1 , . . . , w
k
n)T ∈ Rn with

vkj =

{
1, if zkj ≥ 0,

−1, otherwise
and wkj = λk − 1

α
|zkj |, j = 1, . . . , n.

Step 1. find jk = argminj∈[n]w
k
j and set wk

− := min(0,wk).

Step 2. If wkjk ≥ 0, then set yk = (0, . . . , 0︸ ︷︷ ︸
jk−1

, vkjk , 0, . . . , 0︸ ︷︷ ︸
n−jk

)T ; otherwise, set yk = − wk
−

‖wk
−‖
� vk.

3.2 Lipschitz continuity of the gradient mapping ∇f

It is easy to verify that the gradient of f defined in (2.3) at y ∈ Sn−1 is given by

∇f(y) = 2
(
ATA(y � y)−ATb

)
� y. (3.8)

On the global Lipschitz continuity of ∇f on the closed unit ball in Rn, we have the following
result.

Lemma 3.3 Let B1(0) := {y ∈ Rn | ‖y‖ ≤ 1} be the closed unit ball in Rn. Then there exists
a constant Lf > 0 such that

‖∇f(y1)−∇f(y2)‖ ≤ Lf‖y1 − y2‖, ∀y1,y2 ∈ B1(0).

Proof. It follows from (3.8) that, for any y1,y2 ∈ B1(0),

‖∇f(y1)−∇f(y2)‖
= 2

∥∥(ATA(y1 � y1)−ATb
)
� y1 −

(
ATA(y2 � y2)−ATb

)
� y2

∥∥
≤ 2

∥∥(ATA(y1 � y1)
)
� y1 −

(
ATA(y2 � y2)

)
� y2

∥∥+ 2
∥∥(ATb)� (y1 − y2)

∥∥
≤ 2

∥∥(ATA(y1 � y1)
)
� (y1 − y2)

∥∥+ 2
∥∥(ATA(y1 � y1 − y2 � y2)

)
� y2

∥∥
+2
∥∥(ATb)� (y1 − y2)

∥∥
≤ 2

∥∥(ATA(y1 � y1)
)
� (y1 − y2)

∥∥+ 2
∥∥(ATA(y1 � (y1 − y2))

)
� y2

∥∥
8



+2
∥∥(ATA((y1 − y2)� y2)

)
� y2

∥∥+ 2
∥∥(ATb)� (y1 − y2)

∥∥
≤ 2

∥∥ATA(y1 � y1)
∥∥ ‖y1 − y2‖+ 2

∥∥ATA(y1 � (y1 − y2))
∥∥ ‖y2‖

+2
∥∥ATA((y1 − y2)� y2)

∥∥ ‖y2‖+ 2
∥∥ATb

∥∥ ‖y1 − y2‖
≤ 2

∥∥ATA∥∥
2
‖y1 � y1‖ ‖y1 − y2‖+ 2

∥∥ATA∥∥
2
‖y1‖ ‖y1 − y2‖ ‖y2‖

+2
∥∥ATA∥∥

2
‖y1 − y2‖ ‖y2‖2 + 2

∥∥ATb
∥∥ ‖y1 − y2‖

≤ Lf ‖y1 − y2‖ ,

where the fourth inequality follows from the fact that ‖z1 � z2‖ ≤ ‖z1‖‖z2‖ for all z1, z2 ∈ Rn,
the fifth and sixth inequalities use ‖y1 � y1‖ ≤ ‖y1‖ ≤ 1 and ‖y2‖ ≤ 1 for all y1,y2 ∈ B1(0),
and Lf = 6‖ATA‖2 + 2‖ATb‖.

We also recall the descent lemma for the continuously differentiable function f defined in
(2.3) (see for instance [5, 22]).

Lemma 3.4 Under the same assumptions as in Lemma 3.3, we have

f(y2) ≤ f(y1) + 〈y2 − y1,∇f(y1)〉+
Lf
2
‖y2 − y1‖2, ∀y1,y2 ∈ B1(0).

3.3 Global convergence of Algorithm 2.1

In this subsection, we establish the global convergence of Algorithm 2.1. We first derive the
monotonicity of the sequences {λk} and {F (λk,y

k)} generated by Algorithm 2.1 in a similar
way as [7, Lemma 3].

Lemma 3.5 Let {(yk, αk, λk)} be the sequence generated by Algorithm 2.1. Then the following
conclusions hold true.

i) The sequence {λk} is monotonically decreasing, which converges to a a limit λ∗.

ii) We can find αk > 0 such that the sequence {F (λk,y
k)} is monotonically decreasing and

for all k ≥ 0,

F (λk,y
k)− F (λk+1,y

k+1) ≥ γ2

2
‖yk+1 − yk‖2.

iii)
∞∑
k=0

‖yk+1 − yk‖2 <∞.

Proof. i) From Algorithm 2.1, it is easy to see that the sequence {λk} is monotonically decreasing
and bounded below. Therefore, it converges to a limit λ∗.

ii) Let k ≥ 0 be fixed. It follows from Step 1 and Step 2 Algorithm 2.1 that

yk+1 = argmin
y∈Sn−1

{
f(yk) + 〈y − yk,∇f(yk)〉+

1

2αk+1
‖y − yk‖2 + λk+1‖y‖1

}
,
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which, together with the fact that yk,yk+1 ∈ Sn−1, and λk+1 ≤ λk, yields

〈yk+1 − yk,∇f(yk)〉+
1

2αk+1
‖yk+1 − yk‖2 + λk+1‖yk+1‖1 ≤ λk+1‖yk‖1 ≤ λk‖yk‖1. (3.9)

Using Lemma 3.4 and (3.9) we have

f(yk+1) + λk+1‖yk+1‖1

≤ f(yk+1)− 〈yk+1 − yk,∇f(yk)〉 − 1

2αk+1
‖yk+1 − yk‖2 + λk‖yk‖1

=
(
f(yk) + λk‖yk‖1

)
− 1

2αk+1
‖yk+1 − yk‖2

+
(
f(yk+1)− f(yk)− 〈yk+1 − yk,∇f(yk)〉

)
≤

(
f(yk) + λk‖yk‖1

)
− 1

2

(
1

αk+1
− Lf

)
‖yk+1 − yk‖2.

Taking αk+1 ≤ 1/(Lf + γ2) we have(
f(yk) + λk+1‖yk‖1

)
−
(
f(yk+1) + λk+1‖yk+1‖1

)
≥ γ2

2
‖yk+1 − yk‖2.

This implies that

F (λk,y
k)− F (λk+1,y

k+1) ≥ γ2

2
‖yk+1 − yk‖2, ∀k ≥ 0. (3.10)

This shows that the sequence {Fk(yk)} is monotonically decreasing.
iii) It follows from (3.10) that, for any integer l > 0,

l∑
k=0

‖yk+1 − yk‖2 ≤ 2

γ2

(
F (λ0,y

0)− F (λl+1,y
l+1)

)
≤ 2

γ2
F (λ0,y

0)

and thus
∞∑
k=0

‖yk+1 − yk‖2 <∞.

Lemma 3.6 Let {(yk, αk, λk)} be the sequence generated by Algorithm 2.1. For any k ≥ 0, let

qk := ∇f(yk+1)−∇f(yk)− 1

αk+1
(yk+1 − yk).

Then there exist ηk+1 ∈ ∂y(‖yk+1‖1) and ζk+1 ∈ ∂̂χSn−1(yk+1) such that qk = ∇f(yk+1) +
λk+1η

k+1 + ζk+1 ∈ ∂yF (λk+1,y
k+1) and we have for all k ≥ 0,

‖qk‖ ≤
(
Lf +

1

γ1

)
‖yk+1 − yk‖,

where Lf is a constant defined as in Lemma 3.3.
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Proof. Let k ≥ 0 be fixed. From Step 1 and Step 2 Algorithm 2.1 we obtain αk+1 ≥ γ1 > 0 and

yk+1 = argmin
y∈Rn

{
f(yk) + 〈y − yk,∇f(yk)〉+

1

2αk+1
‖y − yk‖2 + λk+1‖y‖1 + χSn−1(y)

}
,

whose first-order optimality condition is given by

∇f(yk) +
1

αk+1
(yk+1 − yk) + λk+1η

k+1 + ζk+1 = 0,

where ηk+1 ∈ ∂y(‖yk+1‖1) and ζk+1 ∈ ∂̂χSn−1(yk+1). Therefore,

∇f(yk) + λk+1η
k+1 + ζk+1 = − 1

αk+1
(yk+1 − yk)

and thus

∇f(yk+1) + λk+1η
k+1 + ζk+1 = ∇f(yk+1)−∇f(yk)− 1

αk+1
(yk+1 − yk) ≡ qk.

It is easy to see that

∇f(yk+1) + λk+1η
k+1 + ζk+1 ∈ ∂yF (λk+1,y

k+1).

Hence, qk ∈ ∂yF (λk+1,y
k+1).

On the other hand, we note that yk,yk+1 ∈ Sn−1. Using the definition of qk and Lemma
3.3 we obtain, for all k ≥ 0,

‖qk‖ ≤ ‖∇f(yk+1)−∇f(yk)‖+
1

αk+1
‖yk+1 − yk‖

≤
(
Lf +

1

αk+1

)
‖yk+1 − yk‖ ≤

(
Lf +

1

γ1

)
‖yk+1 − yk‖.

On the global convergence of Algorithm 2.1, we have the following result.

Theorem 3.7 Let {(yk, αk, λk)} be the sequence generated by Algorithm 2.1 with limk→∞ λk
= λ∗. Then any accumulation point of {yk} is a critical point of F (λ∗, ·).

Proof. Let y∗ ∈ Sn−1 be an accumulation point of the sequence {yk}. Then there exists a
subsequence {ykt} converging to y∗. We note that χSn−1 is lsc. Thus,

lim inf
t→∞

χSn−1(ykt) ≥ χSn−1(y∗). (3.11)

From Step 1 and Step 2 Algorithm 2.1 we have

yk+1 = argmin
y∈Rn

{
f(yk) + 〈y − yk,∇f(yk)〉+

1

2αk+1
‖y − yk‖2 + λk+1‖y‖1 + χSn−1(y)

}
11



and thus

〈yk+1 − yk,∇f(yk)〉+
1

2αk+1
‖yk+1 − yk‖2 + λk+1‖yk+1‖1 + χSn−1(yk+1)

≤ 〈y∗ − yk,∇f(yk)〉+
1

2αk+1
‖y∗ − yk‖2 + λk+1‖y∗‖1 + χSn−1(y∗). (3.12)

By hypothesis, limk→∞ λk = λ∗. By Algorithm 2.1, we know that αk+1 ∈ [γ1, α0] for all k ≥ 0
and {yk} is bounded. Using Lemma 3.5 iii) we have

lim
k→∞

‖yk+1 − yk‖ = 0.

Hence, taking k = kt in (3.12) and let t→∞ and using the continuity of f we obtain

lim sup
t→∞

χSn−1(ykt) ≤ χSn−1(y∗).

This, together with (3.11), implies that

lim
t→∞

χSn−1(ykt) = χSn−1(y∗).

Therefore,

lim
t→∞

F (λkt ,y
kt) = lim

t→∞

(
f(ykt) + λkt‖ykt‖1 + χSn−1(ykt)

)
= f(y∗) + λ∗‖y∗‖1 + χSn−1(y∗) = F (λ∗,y

∗). (3.13)

On the other hand, using Lemma 3.5 iii) we have

lim
k→∞

‖yk+1 − yk‖ = 0.

By Lemma 3.6 we have qk ∈ ∂yF (λk+1,y
k+1) and

‖qk‖ ≤
(
Lf +

1

γ1

)
‖yk+1 − yk‖

and thus
lim
k→∞

qk = 0.

Since ∂yF (·) is closed, we know that 0 ∈ ∂yF (λ∗,y
∗), i.e., y∗ is a critical point of F (λ∗, ·).

In the rest of this section, we show the the sequence {yk} generated by Algorithm 2.1
converges under some assumptions. We first give some necessary results.

Let L(y0) be the set of all accumulation points of the sequence {yk} generated by Algorithm
2.1, i.e.,

L(y0) = {y∗ ∈ Sn−1 | there exists a subsequence {ykt} such that limt→∞ ykt = y∗}.

On the set L(y0), we have the following result.

12



Lemma 3.8 Let {(yk, αk, λk)} be the sequence generated by Algorithm 2.1 with limk→∞ λk = λ∗.
Then L(y0) is a nonempty and compact set and the function F (λ∗, ·) is finite and constant on
L(y0).

Proof. It is obvious that L(y0) is nonempty and compact since the sequence {yk} is bounded. By
Lemma 3.5 ii) we know that the sequence {F (λk,y

k)} is monotonically decreasing and bounded
below. Hence, the sequence {F (λk,y

k)} converges to a limit F∗, i.e., limk→∞ F (λk,y
k) = F∗.

By the definition of F as in (2.3) we have

F (λ∗,y
k) = F (λk,y

k)− (λk − λ∗)‖yk‖1. (3.14)

By Lemma 3.5 i) we have limk→∞ λk = λ∗. Since the sequence {yk} is bounded, it follows from
(3.14) that

lim
k→∞

F (λ∗,y
k) = F∗.

For any y∗ ∈ L(y0), there exists a subsequence {ykt} such that limt→∞ ykt = y∗. By using the
similar proof of (3.13) we obtain

F (λ∗,y
∗) = F∗

Hence, the function F (λ∗, ·) is finite and constant on L(y0).

On the convergence of the sequence {yk} generated by Algorithm 2.1, we have the following
theorem, whose proof is similar to [7, Theorem 1]. We give the proof here for the sake of
completeness.

Theorem 3.9 Let {(yk, αk, λk)} be the sequence generated by Algorithm 2.1. If λk = λ∗ for all
k sufficiently large, then the sequence {yk} converges to a critical point of F (λ∗, ·).

Proof. From Algorithm 2.1 we observe that yk ∈ Sn−1 for all k ≥ 0 and thus the sequence {yk}
is bounded. Let y∗ be an accumulation point of {yk}. Then, there exists a subsequence {ykt}
such that limt→∞ ykt = y∗. By Theorem 3.7, we know that y∗ is a critical point of F (λ∗, ·).
Following the similar proof of the first part of Theorem 3.7 we have

lim
t→∞

F (λkt ,y
kt) = F (λ∗,y

∗). (3.15)

If there exists an integer k̂ > 0 such that F (λk̂,y
k̂) = F (λ∗,y

∗), then it follows from Lemma 3.5

ii) that yk̂+1 = yk̂. By the induction, we can easily show that yk = yk̂ for all k ≥ k̂ and thus
limk→∞ yk = y∗. Therefore, the conclusion holds.

We now suppose F (λk,y
k) 6= F (λ∗,y

∗) for all k ≥ 0. By Lemma 3.5 ii) we know that the
sequence {F (λk,y

k)} is monotonically decreasing and thus F (λk,y
k) > F (λ∗,y

∗) for all k ≥ 0.
For any η > 0, it follows from (3.15) that for all k sufficiently large, λk = λ∗ and

F (λ∗,y
k) < F (λ∗,y

∗) + η

It is obvious that limk→∞ dist(yk,L(y0)) = 0. Therefore, for any ε > 0, we have for all k
sufficiently large,

dist(yk,L(y0)) < ε.

13



Thus, for all k sufficiently large,

yk ∈ {y ∈ Sn−1 | dist(y,L(y0)) < ε} ∩ {F (λ∗,y
∗) < F (λ∗,y) < F (λ∗,y

∗) + η}.

It follows from Lemma 3.8 that L(y0) is compact and F (λ∗, ·) is constant on L(y0). Hence,
using Lemma A.5 with C = L(y0) and h = F (λ∗, ·) we have, for all k sufficiently large,

ξ′
(
F (λ∗,y

k)− F (λ∗,y
∗)
)

dist(0, ∂yF (λ∗,y
k)) ≥ 1,

where ξ is a concave function defined as in Definition A.4. By Lemma 3.6 we have for all k
sufficiently large,

dist(0, ∂yF (λ∗,y
k)) ≤

(
Lf +

1

γ1

)
‖yk − yk−1‖

and thus, for all k sufficiently large,

ξ′
(
F (λ∗,y

k)− F (λ∗,y
∗)
)
≥ γ1

1 + γ1Lf
‖yk − yk−1‖−1

. (3.16)

By Lemma A.5, we know that ξ is concave. Then we have for all k sufficiently large,

ξ
(
F (λ∗,y

k)− F (λ∗,y
∗)
)
− ξ
(
F (λ∗,y

k+1)− F (λ∗,y
∗)
)

≥ ξ′
(
F (λ∗,y

k)− F (λ∗,y
∗)
)(
F (λ∗,y

k)− F (λ∗,y
k+1)

)
. (3.17)

For arbitrary integers r, s > 0, let

Θr,s := ξ
(
F (λ∗,y

r)− F (λ∗,y
∗)
)
− ξ
(
F (λ∗,y

s)− F (λ∗,y
∗)
)

and Ψ :=
2(1 + γ1Lf )

γ2γ1
.

From Lemma 3.5 ii), (3.16) and (3.17) we have for all k sufficiently large,

Θk,k+1 ≥
‖yk+1 − yk‖2

Ψ‖yk − yk−1‖
.

Thus, for all k sufficiently large,

‖yk+1 − yk‖2 ≤ ΨΘk,k+1‖yk − yk−1‖.

This, together with the fact that 2
√
ab ≤ a+ b for all a, b ≥ 0, yields, for all k sufficiently large,

2‖yk+1 − yk‖ ≤ ‖yk − yk−1‖+ ΨΘk,k+1 ≤ ‖yk − yk−1‖+ Ψξ(F (λ∗,y
`+1)− F (λ∗,y

∗)).

Therefore, using the definition of Θk,k+1 and noting that χSn−1 ≥ 0, we have for all ` sufficiently
large,

2

k∑
j=`+1

‖yj+1 − yj‖ ≤
k∑

j=`+1

‖yj − yj−1‖+ Ψ

k∑
j=`+1

Θj,j+1

≤
k∑

j=`+1

‖yj+1 − yj‖+ ‖yl+1 − yl‖+ Ψ
k∑

j=`+1

Θj,j+1

=

k∑
j=`+1

‖yj+1 − yj‖+ ‖yl+1 − yl‖+ ΨΘ`+1,k+1

14



≤
k∑

j=`+1

‖yj+1 − yj‖+ ‖yl+1 − yl‖+ Ψξ
(
F (λ∗,y

`+1)− F (λ∗,y
∗)
)
.

This implies that, for all ` sufficiently large,

k∑
j=`+1

‖yj+1 − yj‖ ≤ ‖yl+1 − yl‖+ Ψξ
(
F (λ∗,y

`+1)− F (λ∗,y
∗)
)
.

Taking k →∞ we have
∞∑
k=1

‖yk+1 − yk‖ ≤ ∞.

This shows that the sequence {yk} is cauchy sequence and thus the sequence {yk} is convergent.
Therefore, the sequence {yk} converge to y∗, which is a critical point of F (λ∗, ·).

4 Extensions

In this section, we extend the geometric proximal gradient method proposed in Section 2 to some
sparse least squares regression with rectangular stochastic matrix constraint and the inverse
eigenvalue problem for stochastic matrices.

4.1 Rectangular stochastic matrix constrained least squares regression

A matrix X = (xij) ∈ Rn×r is called a rectangular column (row) stochastic matrix if all its
entries are nonnegative and all its column (row) sum equals one, i.e., 1TnX = 1Tr (or X1r = 1n).

In the following, we consider the following singly rectangular stochastic matrix constrained
least squares regression:

min
X∈Rn×r

1

2
‖AX −B‖2F

s.t. 1TnX = 1Tr , X ≥ 0,
(4.1)

where A ∈ Rm×n and X ≥ 0 means that X is a entry-wise nonnegative matrix. Such problem
arises in sparse hyperspectral unmixing [18].

In [17], Iordache et al. gave the ADMM method for solving the following total variation
regularization problem:

min
X∈Rn×r

1

2
‖AX −B‖2F + λ‖X‖1 + λTV TV (X)

s.t. X ≥ 0,

where λ, λTV > 0 are two regularization parameters and TV (X) :=
∑

i,j ‖xi−xj‖1 with xj being

the j-th column of X. However, the constraint 1TnX = 1Tr is not involved. In [21], Moussaoui et
al. presented a primal-dual interior point method for solving the following regularized model :

min
X∈Rn×r

1

2
‖AX −B‖2F + λR(X)

s.t. X ≥ 0,
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where λ > 0 is the regularization parameter and R(X) is used to estimate the abundance maps
in hyperspectral imaging.

To find a sparse solution to problem (4.1), we reformulate problem (4.1) as an nonconvex
and nonsmooth minimization problem over a Riemannian manifold. We first note that

{X ∈ Rn×r | 1TnX = 1Tr , X ≥ 0} = {Y � Y ∈ Rn×r | Y ∈ OB(n, r)},

where the set OB(n, r) is the rectangular oblique manifold:

OB(n, r) := {Y ∈ Rn×r | diag(Y TY ) = Ir}.

Instead of problem (4.1), one may consider the following `1 regularization problem:

min
Y ∈Rn×r

1

2
‖A(Y � Y )−B‖2F + λ‖Y ‖1

s.t. Y ∈ OB.
(4.2)

Let

p(Y ) :=
1

2
‖A(Y � Y )−B‖2F , q(λ, Y ) := λ‖Y ‖1, G(λ, Y ) := p(Y ) + q(λ, Y ) + Φ(Y ), (4.3)

where Φ is a characteristic function of OB(n, r) defined by

Φ(Y ) =

{
0, Y ∈ OB(n, r),

+∞, otherwise.

Then one may apply Algorithm 2.1 to problem (4.2), where in each iteration, one needs to

find the explicit expression of Y
k ∈ OB(n, r) such that

Y
k

= argmin
Y ∈OB(n,r)

{
p(Y k) +

〈
Y − Y k,∇p(Y k)

〉
F

+
1

2α
‖Y − Y k‖2F + λk‖Y ‖1

}
. (4.4)

For any integer k ≥ 0, let

Y k := [yk1 ,y
k
2 , . . . ,y

k
r ] and ∇p(Y k) := [∇p1(Y k),∇p2(Y k), . . . ,∇pr(Y k)].

Thus Y k ∈ OB(n, r) if and only if ykj ∈ Sn−1 for j = 1, . . . , n. Hence, we can solve (4.4) by
solving

ykj = argmin
yj∈Sn−1

{〈
yj − ykj ,∇p1(Y k)

〉
+

1

2α
‖yj − ykj ‖2 + λk‖yj‖1

}
, (4.5)

for j = 1, . . . , r, which have explicit expressions as yk defined in (2.4) of Algorithm 2.1.

In addition, it is obvious that for any Y ∈ OB(n, r),

∇p(Y ) = 2
(
ATA(Y � Y )−ATB

)
� Y. (4.6)

As in section 3.2, we can establish the global Lipschitz continuity of ∇p as follows.
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Lemma 4.1 Let B2(0) := {Y = [y1,y2, . . . ,yr] ∈ Rn×r | ‖yj‖ ≤ 1 for j = 1, . . . , n} be the
closed subset in Rn×n. Then, for the function p defined in (4.3), there exists a constant Lp > 0
such that

‖∇p(Y1)−∇p(Y2)‖F ≤ Lp‖Y1 − Y2‖F , ∀Y1, Y2 ∈ B2(0),

where Lp = 6n‖ATA‖2 + 2‖ATB‖F .

Finally, one may develop the global convergence of Algorithm 2.1 for problem (4.2) as in
section 3.3.

4.2 Inverse eigenvalue problem for stochastic matrices

In this subsection, we consider the inverse eigenvalue problem for stochastic matrices of the
reconstruction of a sparse row stochastic matrix from the prescribed stationary distribution
vectors. Such problem arises in the inverse problem of reconstructing a Markov Chain from
the prescribed steady-state probability distribution [12] and the construction of probabilistic
Boolean networks [10]. It was also mentioned in [13, p. 104] as a stochastic inverse eigenvalue
problem.

The inverse eigenvalue problem for stochastic matrices with the prescribed stationary distri-
bution vectors {di ∈ Rn}mi=1 aims to reconstruct a matrix X ∈ Rn×n such that

dTi X = dTi , X1n = 1n, i = 1, . . . ,m, X ≥ 0.

Alternatively, we consider the following least square regression problem:

min
X∈Rn×n

1

2
‖DX −D‖2F

s.t. X1n = 1n, X ≥ 0,
(4.7)

where D := [d1, . . . ,dm]T .
To find a sparse solution to problem (4.7), as in section 4.1, we consider the following `1

regularization problem:

min
Y ∈Rn×n

1

2
‖D(Y � Y )−D‖2F + λ‖Y ‖1

s.t. Y ∈ OB.
(4.8)

where the set OB is the oblique manifold [1]:

OB := {Y ∈ Rn×n | diag(Y Y T ) = In}.

Let

p(Y ) :=
1

2
‖D(Y � Y )−D‖2F , q(λ, Y ) := λ‖Y ‖1, G(λ, Y ) := p(Y ) + q(λ, Y ) + Φ(Y ), (4.9)

where Φ is a characteristic function of OB defined by

Φ(Y ) =

{
0, Y ∈ OB,

+∞, otherwise.
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We can use Algorithm 2.1 to problem (4.8), where we need to find the explicit expression of

Y
k ∈ OB defined as in (4.4). For any integer k ≥ 0, let

Y k := [yk1 ,y
k
2 , . . . ,y

k
n]T and ∇p(Y k) := [∇p1(Y k),∇p2(Y k), . . . ,∇pn(Y k)]T .

Then Y k ∈ OB if and only if ykj ∈ Sn−1 for j = 1, . . . , n, where ykj ∈ Sn−1 is determined by
(4.5), which has an explicit expression.

As in section 3.2, we can establish the global Lipschitz continuity of ∇p, where the function
p is defined in (4.9). We have for any Y ∈ OB,

∇p(Y ) = 2
(
DTD(Y � Y )−DTD

)
� Y. (4.10)

By using the similar proof of Lemma 4.1, we have the following result on the global Lipschitz
continuity of ∇p.

Lemma 4.2 Let B3(0) := {Y = [y1,y2, . . . ,yn]T ∈ Rn×n | ‖yj‖ ≤ 1 for j = 1, . . . , n} be the
closed subset in Rn×n. Then, for the function p defined in (4.9), there exists a constant Lp > 0
such that

‖∇p(Y1)−∇p(Y2)‖F ≤ Lp‖Y1 − Y2‖F , ∀Y1, Y2 ∈ B3(0),

where Lp = 6n‖DTD‖2 + 2‖DTD‖F .

Therefore, one may solve problem (4.8) via Algorithm 2.1, whose global convergence can be
established as in section 3.3.

5 Numerical experiments

In this section, we report the numerical performance of Algorithm 2.1 for solving the sparse
least squares regression problem (2.2). To illustrate the effectiveness of our method, we compare
the proposed algorithm with the projection-based gradient descent method (PG) [26] for solving
problem (1.1) and the ADMM method [6] for solving problem (1.2). Our numerical tests are
implemented by running MATLAB R2019a on a personal laptop (Intel Core i7-8559U @ 2.7GHz,
16 GB RAM).

In our numerical tests, for Algorithm 2.1, the PG method, and the ADMM method, the
initial guess is set to be x0 = 1n/n and y0 = 1n/

√
n (X0 = (x0

ij) with x0
1j = · · · = x0

nj = 1/
√
n

for j = 1, . . . , r and Y 0 = (y0
ij) with y0

1j = · · · = y0
nj = 1/

√
n for j = 1, . . . , r for problem (4.1), or

X0 = (x0
ij) with x0

ij = 1/n for i, j = 1, . . . , n and Y 0 = (y0
ij) with y0

ij = 1/
√
n for i, j = 1, . . . , n

for problem (4.7), the stopping criterion is set to be

‖yk � yk − yk−1 � yk−1‖
‖yk−1 � yk−1‖

≤ tol and
‖xk − xk−1‖
‖xk−1‖

≤ tol,

or
‖Y k � Y k − Y k−1 � Y k−1‖F

‖Y k−1 � Y k−1‖F
≤ tol and

‖Xk −Xk−1‖F
‖Xk−1‖F

≤ tol,

and the largest number of iterations is set to be ITmax, where “tol” is a prescribed tolerance.
For Algorithm 2.1, we also set ρ1 = ρ3 = 0.9, ρ2 = 0.6, γ2 = 10−5, γ1 = 0.9/(Lf + γ2) > 0,

18



δ1 = 4.0, and δ2 = 10−4. Let ‘nnz.’, ‘ct.’, ‘kkt.’, and ‘obj.’, denote the number of nonzeros
in the computed solution, the total computing time in seconds, the KKT residual of respective
models, and the objective function values at the final iterates of the corresponding algorithms,
accordingly.

We first consider the following Lasso problem as in [19].

Example 5.1 Let b ∈ Rm be generated by the linear regression model:

b = Ax∗ + νn, n ∼ N(0, I),

where the rows of A ∈ Rm×n are generated by a Gaussian distribution N(0, In) and the regression
coefficient vector x∗ = |x̄|/‖x̄‖1 with x̄ ∈ Rn being a sparse normally distributed random vector
generated by the MATLAB built-in function sprandn with 5% uniformly distributed nonzero entries.
We set ν = 0.001‖Ax‖/‖n‖. We report our numerical results for m = 20j and n = 300j with
j = 1, 2, 3, 4, 5.

In Table 5.1, we report the numerical results for Example 5.1 with tol = 10−4 and ITmax =
2000. We observe from Table 5.1 that both the PG method and the ADMM method need less
running time than Algorithm 2.1, where the PG method is the most efficient method in terms of
the running time and the ADMM method is the most effective method in terms of the objective
function value. However, Algorithm 2.1 can find a much sparser solution than the PG method
and the ADMM method with acceptable running time, where Algorithm 2.1 with fixed λ can
find the most sparse solution with a relatively large objective function value while Algorithm
2.1 can reach a good tradeoff between sparsity and objective function value.

Next, we consider a numerical example in hyperspectral applications [19].

Example 5.2 Suppose the simulated data b ∈ Rm be generated by

b = Ax∗ + n,

where A is a 224 × 440 Gaussian random matrix with zero-mean unit variance, the noise n is
generated by zero-mean i.i.d. Gaussian sequences of random variables, and the true fractional
abundance vector x∗ = |x̄|/‖x̄‖1 with x̄ ∈ Rn being a sparse normally distributed random vector
generated by sprandn with 2% uniformly distributed nonzero entries. The signal-to-noise ratio
(SNR) is defined by

SNR = 10 log10

E(‖Ax∗‖2)

E(‖n‖2)
,

where the expectation E(·) is approximated with sample mean over ten runs.

Table 5.2 display the numerical results for Example 5.2 with different SNRs, λ = 10−2,
λ0 = 3.0 × 10−2, tol = 10−5 and ITmax = 3000, where RSNR means the reconstruction SNR,
which is defined by

RSNR = 10 log10

E(‖x∗‖2)

E(‖x∗ − x#‖2)
.

Here, x# denotes the computed solution.
We see from Table 5.2 that the proposed algorithm provides a high-precision solution.
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j = 1 and ‖x∗‖0 = 15
Alg. nnz. kkt. obj. ct.

PG 75 4.3348× 10−3 9.3194× 10−7 0.0053
ADMM 299 9.0578× 10−4 1.3590× 10−9 0.0046

Alg. 2.1 with fixed λ = 10−2 15 5.44691× 10−2 9.7324× 10−4 1.1132
Alg. 2.1 with λ0 = 10−2 33 1.3475× 10−3 7.7540× 10−7 0.6467

j = 2 and ‖x∗‖0 = 30
Alg. nnz. kkt. obj. ct.

PG 225 5.2341× 10−3 2.7488× 10−7 0.0059
ADMM 600 2.0430× 10−6 3.0117× 10−15 0.0207

Alg. 2.1 with fixed λ = 0.7071× 10−2 33 2.3521× 10−2 1.7426× 10−3 1.5774
Alg. 2.1 with λ0 = 0.7071× 10−2 52 4.9274× 10−4 2.2965× 10−7 0.7816

j = 3 and ‖x∗‖0 = 45
Alg. nnz. kkt. obj. ct.

PG 325 6.2055× 10−3 2.1367× 10−7 0.0084
ADMM 900 1.9741× 10−6 2.4255× 10−15 0.0270

Alg. 2.1 with fixed λ = 0.5774× 10−2 47 3.9036× 10−3 9.5213× 10−4 1.7178
Alg. 2.1 with λ0 = 0.5774× 10−2 90 4.8763× 10−4 3.8463× 10−8 0.8099

j = 4 and ‖x∗‖0 = 57
Alg. nnz. kkt. obj. ct.

PG 578 5.7746× 10−3 8.4740× 10−8 0.0178
ADMM 1200 3.3031× 10−7 4.9351× 10−17 0.0382

Alg. 2.1 with fixed λ = 0.5× 10−2 61 2.2108× 10−3 1.2072× 10−3 3.1507
Alg. 2.1 with λ0 = 0.5× 10−2 123 4.0730× 10−4 5.2864× 10−8 0.8082

j = 5 and ‖x∗‖0 = 72
Alg. nnz. kkt. obj. ct.

PG 494 1.0113× 10−2 3.5405× 10−7 0.0138
ADMM 1500 1.7913× 10−6 1.1327× 10−15 0.0494

Alg. 2.1 with fixed λ = 0.5× 10−2 81 2.7140× 10−2 1.0152× 10−3 4.0649
Alg. 2.1 with λ0 = 0.5× 10−2 143 3.8337× 10−4 8.3343× 10−8 2.1601

Table 5.1: Numerical results for Example 5.1.

PG ADMM Alg. 2.1 with fixed λ Alg. 2.1
SNR (dB) RSNR (dB) ct. RSNR ct. RSNR ct. RSNR ct.

40 47.9440 0.0038 46.9500 0.0145 56.3501 0.9834 54.8873 3.1782
50 58.3520 0.0030 58.1053 0.0087 66.4631 0.9139 65.2922 3.9925
60 66.9302 0.0025 63.9141 0.0047 75.0466 1.0746 73.3215 3.1640

Table 5.2: Numerical results for Example 5.2 with different SNRs (averaged over ten runs).

We now focus on the following two numerical examples on the inverse problem of recon-
structing a probabilistic Boolean network (PBN) from a prescribed transition probability matrix
[9, 10, 14, 26].

Example 5.3 We consider a three-gene network and the prescribed transition probability matrix
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is given by

P1 =



0.1200 0 0.6000 0.4200 0 0 0 0
0.2800 0 0 0.1800 0 0 0 0

0 0.4000 0 0 0.4000 0.1800 0 0
0 0 0 0 0 0.4200 0 0.6000

0.1800 0 0.4000 0.2800 0 0 0 0
0.4200 0 0 0.1200 0 0 0 0

0 0.6000 0 0 0.6000 0.1200 0 0
0 0 0 0 0 0.2800 1.0000 0.4000


.

In this PBN, there are 1024 Boolean networks (BNs).

Example 5.4 We consider a three-gene network and the prescribed transition probability matrix
is given by

P2 =



0.5672 0.4328 0.2881 0 0.1447 0 0.4328 0
0 0 0.1447 0 0.2881 0 0 0
0 0 0 0 0 0 0 0.3776
0 0 0 0.4328 0 0 0 0.1896

0.4328 0.5672 0.3376 0 0.1896 0 0.5672 0
0 0 0.1896 0 0.3776 0 0 0
0 0 0 0 0 0.6657 0 0.2881
0 0 0 0.5672 0 0.3343 0 0.1447


.

In this PBN, there are 2048 BNs.

In Figures 5.1–5.2 and Tables 5.3–5.4, we report the numerical results for Examples 5.3–5.4
with λ = λ0 = 10−2, tol = 10−5, and ITmax = 3000. From Figures 5.1–5.2, we observe that
the proposed algorithm generates a much sparser solution than the other two methods. From
Tables 5.3–5.4, we also see that Algorithm 2.1 can achieve a good tradeoff between sparsity and
objective function value.

nnz. kkt. obj. ct.

PG 817 6.2553× 10−5 1.2039× 10−11 0.0050
ADMM 1024 4.0931× 10−8 2.8067× 10−18 0.0167

Alg. 2.1 with fixed λ = 10−2 10 4.2592× 10−2 2.9591× 10−3 0.6303
Alg. 2.1 with λ0 = 10−2 17 3.6060× 10−5 1.6691× 10−9 0.3647

Table 5.3: Numerical results for Example 5.3.

Finally, we consider the following numerical example on the construction of a transition
probability matrix from a given stationary distribution [10].

Example 5.5 Construct a sparse transition probability matrix from the given stationary distri-
bution vector:

d1 = (0.1282, 0.2139, 0.0667, 0.1766, 0.1758, 0.0887, 0.1324, 0.0177)T .
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Figure 5.1: The probability distribution x# for Example 5.3.
.

nnz. kkt. obj. ct.

PG 1786 4.9093× 10−4 1.8462× 10−4 0.0129
ADMM 2048 1.3327× 10−8 2.0000× 10−4 0.0589

Alg. 2.1 with fixed λ 8 2.2379× 10−2 4.3463× 10−4 1.0068
Alg. 2.1 17 1.9996× 10−2 3.6000× 10−4 3.0860

Table 5.4: Numerical results for Example 5.4.

We apply Algorithm 2.1 to Example 5.5 with tol = 10−6 and ITmax = 6000, where rres. =
‖d1X

# − d1‖/‖d1‖ denotes the relative residual for the computed solution X#. Here, we set
δ2 = 10−5 and ρ3 = 0.95 and the other parameters are set as above. Then the computed
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Figure 5.2: The probability distribution x# for Example 5.4.

transition probability matrix via the PG method is given by

X# =



0.1293 0.2004 0.0782 0.1695 0.1688 0.0965 0.1328 0.0246
0.1261 0.2448 0.0409 0.1931 0.1920 0.0714 0.1319 0
0.1272 0.1642 0.1007 0.1481 0.1478 0.1102 0.1290 0.0727
0.1290 0.2270 0.0587 0.1843 0.1834 0.0838 0.1338 0
0.1291 0.2266 0.0590 0.1841 0.1832 0.0841 0.1338 0
0.1280 0.1772 0.0926 0.1558 0.1553 0.1053 0.1304 0.0555
0.1294 0.2029 0.0767 0.1709 0.1702 0.0956 0.1330 0.0213
0.1256 0.1354 0.1185 0.1311 0.1310 0.1211 0.1261 0.1111



while the computed transition probability matrix via Algorithm 2.1 with fixed λ = 10−3 is given
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by

X# =



0 1.0000 0 0 0 0 0 0
0.3676 0 0 0 0 0 0.6324 0

0 0 1.0000 0 0 0 0 0
0.2842 0 0 0 0.7158 0 0 0

0 0 0 0.7005 0.2995 0 0 0
0 0 0 0 0 1.0000 0 0
0 0.5547 0 0.4453 0 0 0 0
0 1.0000 0 0 0 0 0 0


and the computed transition probability matrices via Algorithm 2.1 with λ0 = 1.0 × 10−3 and
λ0 = 5.0× 10−4 are respectively given by

X# =



0 1.0000 0 0 0 0 0 0
0.3644 0 0 0 0 0 0.6356 0

0 0 1.0000 0 0 0 0 0
0.3046 0 0 0.2240 0.4714 0 0 0

0 0 0 0.4534 0.5466 0 0 0
0 0 0 0 0 1.0000 0 0
0 0.5403 0 0.4597 0 0 0 0
0 1.0000 0 0 0 0 0 0


,

X# =



0 0.3081 0 0 0 0.6919 0 0
0.3811 0 0 0 0 0 0.6189 0

0 0.5008 0.4992 0 0 0 0 0
0.2644 0 0 0.3018 0.4339 0 0 0

0 0 0 0.4358 0.5642 0 0 0
0 0.6233 0.3767 0 0 0 0 0
0 0.6474 0 0.3526 0 0 0 0
0 0 0 0 0 0 0 1.0000


.

Alg. rres. nnz. ct.

PG 2.0325× 10−5 61 0.0188
Alg. 2.1 with fixed λ 5.0415× 10−2 12 0.0984

Alg. 2.1 with λ0 = 1.0× 10−3 4.9338× 10−2 13 0.0896
Alg. 2.1 with λ0 = 5.0× 10−4 3.7022× 10−5 16 0.2291

Table 5.5: Numerical results for Example 5.5.

The numerical results for Example 5.5 are listed in Table 5.5. From Table 5.5, we can observe
that the computed solution via Algorithm 2.1 with fixed/varied regularized parameter is much
sparser than the PG method. We point out that, for Algorithm 2.1 with varied regularized
parameter, a good tradoff between sparsity and residual can be obtained if an initial guess of
the regularized parameter is selected appropriately.
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6 Concluding remarks

In this paper, we have considered the sparse least squares regression problem with probabilistic
simplex constraint, which is reformulated as a `1 regularized minimization problem over the
unit sphere. Then a geometric proximal gradient method is proposed for solving the regularized
problem. The global convergence of the proposed method is established under some mild as-
sumptions. In each iteration of our method, we have derived the explicit expression of the global
minimizer of the sum of the linearization of the smooth part at the current iterate, the regu-
larized function, and a quadratic proximal term over the unit sphere. Numerical experiments
demonstrate the effectiveness of the proposed geometric algorithm.
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Appendix A

In this appendix, we give some preliminary results on subgradients of nonsmooth functions and
Kurdyka- Lojasiewicz (KL) property. We first recall the definition of lower semicontinuity in
[23, 24].

Definition A.1 Let h be a function from Rn to [−∞,∞]. Then h is proper if dom h := {a ∈
Rn | h(a) <∞} 6= ∅ and h(a) > −∞ for all a ∈ Rn. Moreover, h is lower semicontinuous (lsc)
at ā ∈ Rn if

lim inf
a→ā

h(a) ≥ h(ā).

and lower semicontinuous on Rn if it is lsc for every ā ∈ Rn.

Next, we recall some subdifferentials (subgradients) for nonsmooth functions in [20, 23].

Definition A.2 Let h : Rn → [−∞,+∞] be a proper lsc function. Then, the set

∂̂h(ā) :=

{
r ∈ Rn | lim inf

a→ā

h(a)− h(ā)− 〈r,a− ā〉
‖a− ā‖

≥ 0

}
.

is the presubdifferential or Fréchet subdifferential of h at ā ∈ dom h and we set ∂̂h(ā) := ∅ if
ā /∈ dom h. Moreover, the set

∂h(ā) :=
{

r ∈ Rn | ∃ak → ā, h(ak)→ h(ā) and rk ∈ ∂̂h(ak)→ r as k →∞
}

(A.1)

is the limiting subdifferential of h at ā ∈ Rn.

As noted in [23, Theorem 8.6], we know that, for each ā ∈ dom g, ∂̂h(ā) ⊂ ∂h(ā), where
∂̂h(ā) is convex and closed while ∂h(ā) is closed. If ā ∈ Rn is a minimizer of h, then 0 ∈ ∂h(ā)
and ā is a critical point of h.

On the partial subdifferential of a nonsmooth function F defined in (2.3), we have the
following result from [3, 7, 23].

Lemma A.3 Let F be defined in (2.3). Then for all (λ,y) with λ > 0 and y ∈ Rn, we have

∂yF (λ,y) = {∇f(y) +∇yg(λ,y) + ∂χSn−1(y)}.

We now recall the Kurdyka- Lojasiewicz (KL) property for a nonsmooth function [3, 7].
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Definition A.4 (Kurdyka- Lojasiewicz property) Let h : Rn → [−∞,+∞] be a proper lsc func-
tion. Then h is said to have the Kurdyka- Lojasiewicz property at ā ∈ dom ∂h := {a ∈ Rn |
∂h(a) 6= ∅} if there exist µ ∈ (0,+∞], a neighborhood B of ā and a function ξ : [0, µ)→ R+ such
that ξ is concave and continuously differentiable on (0, µ) and continuous at 0 with ξ(0) = 0 and
ξ′(x) > 0 for all x ∈ (0, µ), and the Kurdyka- Lojasiewicz inequality

ξ′
(
h(a)− h(ā)

)
dist(0, ∂h(ā)) ≥ 1

holds for all a ∈ B ∩ {a ∈ Rn | h(ā) < h(a) < h(ā) + µ}, where dist(0, ∂h(ā)) := inf{‖r‖ | r ∈
∂h(ā)}.

Finally, we recall the general result from [7, Lemma 6] on the KL property for a nonsmooth
function.

Lemma A.5 Let h : Rn → [−∞,+∞] be a proper lsc function. Suppose h is constant on
a compact set C ⊂ Rn. If h has the KL property at each point of C. Then, there exist two
constants µ1 > 0 and µ2 > 0 and a function ξ as defined in Definition A.4 such that

ξ′
(
h(a)− h(ā)

)
dist(0, ∂h(ā)) ≥ 1,

for all ā in C and all a ∈ {a ∈ Rn | dist(a, C) < µ1} ∩ {a ∈ Rn | h(ā) < h(a) < h(ā) + µ2}.
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