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Abstract We present analysis of two lowest-order hybridizable discontinuous
Galerkin methods for the Stokes problem, while making only minimal regularity
assumptions on the exact solution. The methods under consideration have previ-
ously been shown to produce H(div)-conforming and divergence-free approximate
velocities. Using these properties, we derive a priori error estimates for the velocity
that are independent of the pressure. These error estimates, which assume only
H1+s-regularity of the exact velocity fields for any s ∈ [0, 1], are optimal in a dis-
crete energy norm. Error estimates for the velocity and pressure in the L2-norm
are also derived in this minimal regularity setting. Our theoretical findings are
supported by numerical computations.
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1 Introduction

Finite element methods for incompressible flows that are pressure-robust have
become increasingly popular. Such methods produce approximate velocity fields
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for which the a priori velocity error estimates are independent of the pressure ap-
proximation. Numerous classical inf-sup stable finite elements, such as the MINI
element [1] and Bernardi–Raugel elements [3], are not pressure-robust [20], with
the velocity error polluted by the pressure approximation error scaled by the in-
verse of the viscosity, which can be large if the pressure is complicated or the
viscosity is small.

One way of achieving pressure-robustness is by stable mixed methods with
H(div)-conforming and divergence-free approximate velocities [20]. Methods with
these properties may relax H1-conformity and use discontinuous velocity approx-
imations, as constructing H1-conforming and inf-sup stable schemes that are also
divergence-free is difficult [20]. For this reason, discontinuous Galerkin (DG) meth-
ods seem to be a natural candidate for the construction of pressure-robust schemes.
Several classes of pressure-robust DG methods that produce H(div)-conforming
and divergence-free approximate velocities were introduced in [8,38].

A drawback of DG methods is that they are, on a given mesh, typically compu-
tationally more expensive than standard conforming methods. Hybridized discon-
tinuous Galerkin (HDG) methods were introduced to improve upon the computa-
tional efficiency of DG methods while retaining their desirable properties [7]. This
is accomplished by introducing extra degrees of freedom on cell facets which allow
for local cell-wise variables to be eliminated by static condensation. Examples of
H(div)-conforming and divergence-free HDG methods are given in [9,30,32] for
the Stokes problem and in [16,26,31] for the Navier–Stokes problem.

In this paper we study two closely related lowest-order hybridizable DG meth-
ods for the velocity-pressure formulation of the Stokes problem. Both methods
produce H(div)-conforming and divergence-free approximate velocities, and are
therefore pressure-robust. The first method is the lowest-order HDG method an-
alyzed in [30,32]. The velocity finite element space for this method consists of
discontinuous piecewise linear functions on cells and facets. As discussed in [32],
the computational cost of this method can be reduced, while maintaining pressure-
robustness, by using a continuous basis for the velocity facet space. Such an ap-
proach is reminiscent of embedded discontinuous Galerkin (EDG) methods [17].
This leads to the EDG–HDG method of [32], the lowest-order formulation of which
is the second method considered in this paper.

In [32], optimal pressure-robust velocity error estimates were obtained for
the HDG and EDG–HDG methods, assuming H2-regularity of the exact veloc-
ity solution. Moreover, numerical experiments in [32] suggest that even when
H2-regularity of the exact velocity solution fails to hold, the methods remain
convergent. Because of their computational efficiency, the lowest-order HDG and
EDG–HDG methods are appealing for problems with minimal regularity. How-
ever, error analysis for this minimal regularity case has not been developed. This
paper closes this gap by presenting analysis of these lowest-order methods under
H1+s-regularity of the exact velocity solution for any real number s ∈ [0, 1].

To put the error analysis of this paper into a broader context, we review briefly
the literature relevant to our analysis. Numerous classes of non-pressure-robust
nonconforming methods for the Stokes problem were analyzed under minimal reg-
ularity assumptions in [2,27]. Key to the analysis of [2,27] is a so-called enrichment
operator that maps nonconforming discrete functions to H1-conforming functions.
More recently, by using enrichment operators that map discretely divergence-free
functions to exactly divergence-free ones, this minimal regularity analysis has been
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extended to pressure-robust schemes. This is done in the works of [23,28,29,37],
which establish quasi-optimal and pressure-robust error estimates for various finite
element methods that achieve pressure-robustness by modifying the source term in
the discrete formulation. In [29,37] modified Crouzeix–Raviart methods are con-
sidered, while [28] focuses on modified conforming methods and [23] on modified
DG methods. Finally, a variety of conforming and nonconforming pressure-robust
methods based on an augmented Lagrangian formulation have been proposed and
analyzed under minimal regularity assumptions in [24].

The main contributions of this paper are as follows. First, we derive a bound
on the consistency error of the lowest-order HDG and EDG–HDG methods, by
means of an enrichment operator of the type considered in [23]. A consequence
of the hybridized formulation is that our consistency error bound contains a new
term not found in previous works. However, we show that it is still possible to
obtain optimal pressure-robust velocity error estimates in a discrete energy norm.
Pressure-robust velocity error estimates in the L2-norm are also derived, and we
conclude our analysis by deriving L2-error bounds for the pressure.

The remainder of this paper is organized as follows. In Section 2 we introduce
the Stokes problem and the methods to be analyzed, and discuss some prelimi-
nary results. The main analysis is carried out in Section 3, where we derive our
error estimates for the velocity and the pressure. In Section 4 our theoretical find-
ings are illustrated by numerical examples, and the paper ends with conclusions
in Section 5.

2 Preliminaries

Let Ω ⊂ Rd with d ∈ {2, 3} be a connected and bounded domain with poly-
hedral boundary ∂Ω. The codimension of ∂Ω is assumed to be one, but we do
not require that Ω be a Lipschitz domain. In particular, domains with cracks are
allowed. On a given set D ⊂ Ω, we let (·, ·)D denote the L2-inner-product on
D and ‖·‖D the L2-norm on D. Given an integer k ≥ 0, we let ‖·‖k,D and |·|k,D
denote the usual Hk-norm and Hk-semi-norm on D, respectively. If k > 0 is not
an integer, we let ‖·‖k,D denote the fractional order Hk-norm on D as defined in
[10,11]. In the following we omit the subscript D in the case of D = Ω.

2.1 Stokes problem

Let f ∈ L2(Ω)d be a prescribed body force and ν > 0 a given constant kine-
matic viscosity. The Stokes problem seeks a velocity field u ∈ H1

0 (Ω)d and pressure
field p ∈ L2

0(Ω) :=
{
q ∈ L2(Ω) :

∫

Ω
q dx = 0

}
such that

νa(u, v) + b(v, p) = (f, v) ∀v ∈ H1
0 (Ω)d, (2.1a)

b(u, q) = 0 ∀q ∈ L2
0(Ω), (2.1b)

where a : H1
0 (Ω)d ×H1

0 (Ω)d → R and b : H1
0 (Ω)d × L2

0(Ω) → R are the bilinear
forms

a(w, v) := (∇w,∇v), b(v, q) := −(∇ · v, q).
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It is known that eq. (2.1) is well-posed, see e.g. [14, Chapter 4]. Furthermore, within
the reduced space V := {v ∈ H1

0 (Ω)d : ∇ · v = 0} of divergence-free functions, the
velocity u ∈ V equivalently satisfies the reduced problem

νa(u, v) = (f, v) ∀v ∈ V. (2.2)

We introduce the space of weakly divergence-free vector fields with vanishing
normal component on ∂Ω,

L2
σ(Ω) := {w ∈ L2(Ω)d : (w,∇ψ) = 0 ∀ψ ∈ H1(Ω)}, (2.3)

and note that every vector field f ∈ L2(Ω)d admits a unique Helmholtz decompo-
sition [29, Theorem 2.1]

f = ∇φ+ Pf,

where φ ∈ H1(Ω)/R and Pf ∈ L2
σ(Ω).

The vector field Pf is called the Helmholtz projection of f , see e.g. [20, Sec-
tion 2]. We note that the reduced problem in eq. (2.2) is equivalent to

νa(u, v) = (Pf, v) ∀v ∈ V, (2.4)

since for all v ∈ V it holds that (f, v) = (Pf, v). In particular, the velocity solu-
tion u is determined only by the Helmholtz projection Pf of the body force. The
presence of Pf in eq. (2.4) will turn out to play an important role in the pressure-
robustness of our error estimates in Section 3, and we discuss why this is the case
in Remark 3.1.

2.2 Mesh-related notation

Let T = {K} be a conforming triangulation of Ω into simplices {K}. Let
K ∈ T . We use FK to indicate the collection of (d − 1)-dimensional faces of K.
We set hK = diam(K) and let nK denote the outward unit normal on ∂K. The
mesh size is defined as h := maxK∈T hK and the mesh skeleton is defined as
Γ0 =

⋃

K∈T ∂K.
Notice that, if cracks are present in the domain, it is possible for two distinct

elements K1,K2 ∈ T to share a face σ ∈ FK1
∩FK2

that lies on the boundary, i.e.
σ ⊂ ∂Ω. In this case, it will not be convenient to view σ as a single mesh face, as is
typically done for interior faces. Following [35], we therefore define the collection
of mesh faces as the quotient set

Fh :=
{
(σ,K) : K ∈ T , σ ∈ FK

}
/∼,

(σ1,K1) ∼ (σ2,K2) ⇐⇒
[
(σ1, K1) = (σ2,K2)

]
or

[
σ1 = σ2 and σ1 * ∂Ω

]
.

For F = [(σ,K)] ∈ Fh we set hF := diam(σ). Also, surface integration on F is
well-defined, with the understanding that

∫

F
v ds :=

∫

σ
v ds for all v ∈ L1(σ). The

boundary faces Fb and interior faces Fi are naturally defined as

Fb := {[(σ,K)] ∈ Fh : σ ⊂ ∂Ω}, Fi := Fh \ Fb,

and we note that ∂Ω =
⋃

[(σ,K)]∈Fb
σ since the codimension of ∂Ω is one.
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If F ∈ Fi is an interior face belonging to two distinct elements K1,K2 ∈ T ,
we let nF denote the unit normal on F pointing from K1 to K2, and we define on
F the jump operator J·K and average operator {{·}} in the usual way:

JφK|F := φ|K1
− φ|K2

, (2.5)

{{φ}}|F :=
1

2
(φ|K1

+ φ|K2
), (2.6)

where φ is any function defined piecewise on K1 ∪ K2. The ambiguity in the
ordering of K1,K2 will be unimportant. If F ∈ Fb is a boundary face belonging
to K ∈ T , we let nF denote the unit normal on F outward to K, and we define
on F the jump and average operators as

JφK|F = {{φ}}|F := φ|K , (2.7)

where φ is any function defined on K.
Finally, the following definition will be used in Appendix A. Let K ∈ T . Ob-

serve that we do not have FK ⊂ Fh because of how Fh is defined using equivalence
classes. We therefore define FK,h := {[(σ,K)] ∈ Fh : σ ∈ FK} so that FK,h ⊂ Fh

holds. The sets FK and FK,h intuitively encode the same information; they both
contain exactly (d+1) elements which describe the faces of K. The only difference
is that FK,h is defined using equivalence classes in Fh.

2.3 Discrete finite element spaces and norms

We introduce the following low-order discontinuous finite element spaces on Ω:

Xh := {vh ∈ L2(Ω)d : vh|K ∈ [P1(K)]d ∀K ∈ T },
Qh := {qh ∈ L2

0(Ω) : qh|K ∈ P0(K) ∀K ∈ T },

where Pk(D) is the space of polynomials with degree at most k on D. Also, let
P1(Fh) :=

∏

F∈Fh
P1(F ). We introduce the low-order discontinuous facet finite

element spaces

X̄h := {v̄h ∈ [P1(Fh)]
d : v̄h|F = 0 ∀F ∈ Fb},

Q̄h := P1(Fh).

Notice that X̄h can be viewed as the space of discontinuous piecewise-linear vector
functions on Γ0 that vanish on ∂Ω. Likewise, Q̄h can be viewed as the space of
discontinuous piecewise-linear scalar functions on Γ0, with the caveat that these
functions are double-valued on boundary faces shared by two distinct cells.

It will also be convenient to introduce the extended velocity spaces

X(h) := Xh +H1
0 (Ω)d, (2.8a)

X̄(h) := X̄h +H
1/2
0 (Γ0)

d, (2.8b)

where H
1/2
0 (Γ0)

d is the trace space of functions in H1
0 (Ω)d restricted to Γ0. We

use boldface notation for function pairs in X(h)× X̄(h) and Qh × Q̄h, i.e.

v = (v, v̄) ∈ X(h)× X̄(h) and qh = (qh, q̄h) ∈ Qh × Q̄h.
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Throughout this paper ∇h : X(h) → [L2(Ω)]d×d denotes the broken gradient
(∇hv)|K := ∇(v|K). On the space X(h) we introduce the discrete H1-norm

‖v‖2dg :=‖∇hv‖2 +|v|2J ,

where |·|J is the following jump semi-norm on X(h):

|v|2J :=
∑

F∈Fh

1

hF
‖JvK‖2F .

Similarly, on the product space X(h)× X̄(h) we introduce the discrete H1-norm

|||v|||2v :=‖∇hv‖2 +|v|2F ,

where |·|F is the following facet semi-norm on X(h)× X̄(h):

|v|2F :=
∑

K∈T

1

hK
‖v − v̄‖2∂K .

Finally, on the space Qh × Q̄h we introduce the norm

|||qh|||2p :=‖qh‖2 +‖q̄h‖2p ,

where ‖·‖p is the following norm on Q̄h:

‖q̄h‖2p :=
∑

K∈T

hK‖q̄h‖2∂K .

We use a . b to indicate a ≤ Cb where C is a positive constant depending only
on d,Ω and the shape-regularity of T . On occasion we will use inequalities of the
form a ≤ C(s)b, where C(s) is a positive constant depending only on d,Ω, shape-
regularity of T and s, where s ∈ [0, 1] corresponds to the order of the fractional
Sobolev space H1+s(Ω)d. In these cases, we will use the notation a .s b.

We conclude this subsection with the observation that

|v|J . |v|F , (2.9)

which follows from the triangle inequality. Note that eq. (2.9) implies

‖v‖dg . |||v|||v.

These inequalities will be used frequently in Section 3.
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2.4 The hybridized and embedded–hybridized discontinuous Galerkin methods

The lowest-order HDG and EDG–HDG methods analyzed in [32] utilize the
following finite element spaces:

X
v
h :=

{

Xh × X̄h (HDG method),

Xh × (X̄h ∩ C0(Γ0)
d) (EDG–HDG method),

(2.10a)

Q
p
h := Qh × Q̄h. (2.10b)

The HDG and HDG–EDG methods differ only in their choice of velocity facet
space, which is discontinuous for the HDG method and continuous for the EDG–
HDG method. The remainder of the analysis is agnostic as to whether the HDG
or EDG–HDG method is considered, with the presented analysis holding for both
methods.

The discrete formulation of eq. (2.1) seeks (uh,ph) ∈ Xv
h ×Qp

h such that

νah(uh, vh) + bh(vh,ph) = (f, vh) ∀vh ∈Xv
h , (2.11a)

bh(uh, qh) = 0 ∀qh ∈ Qp
h, (2.11b)

where ah : Xv
h ×Xv

h → R and bh : Xh ×Qp
h → R are the bilinear forms

ah(v,w) :=
∑

K∈T

∫

K

∇v : ∇w dx+
∑

K∈T

α

hK

∫

∂K

(v − v̄) · (w − w̄) ds

−
∑

K∈T

∫

∂K

[

(v − v̄) · ∂w

∂nK
+ (w − w̄) · ∂v

∂nK

]

ds,

(2.12)

bh(v, q) :=−
∑

K∈T

∫

K

(∇ · v)q dx+
∑

K∈T

∫

∂K

(v · nK)q̄ ds, (2.13)

and α > 0 is a penalty parameter. It was shown in [30, Lemma 4.2] that for
sufficiently large α the following coercivity result holds:

|||vh|||2v . ah(vh, vh) ∀vh ∈ Xv
h . (2.14)

Let us also mention that inf-sup stability of bh was established in [32, Lemma 8]:

|||qh|||p . sup
vh∈X

v
h
\{0}

bh(vh, qh)

|||vh|||v
∀qh ∈ Qp

h. (2.15)

A consequence of the stability properties in eqs. (2.14) and (2.15) is that the
discrete problem eq. (2.11) is well-posed, see e.g. [4, Chapter 4]. Furthermore, let
us introduce the discrete reduced space

V
v
h := {vh ∈ Xv

h : bh(vh, qh) = 0 ∀qh ∈ Qp
h}

= {vh ∈Xv
h : vh ∈ XBDM

h and ∇ · vh = 0},

where XBDM
h is the lowest-order Brezzi–Douglas–Marini (BDM) space [4],

XBDM
h = {vh ∈ Xh : JvhK|F · nF = 0 ∀F ∈ Fh}.
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Inf-sup stability of bh implies the best approximation result [5, Section 12.5]

inf
ṽh∈V v

h

|||u− ṽh|||v . inf
vh∈Xv

h

|||u− vh|||v, (2.16)

where u ∈ H1
0 (Ω)d is the velocity solution to eq. (2.1) and u = (u, u) ∈ X(h) ×

X̄(h). Also, the discrete velocity solution uh ∈ V v
h to eq. (2.11) satisfies the

discrete reduced problem

νah(uh, vh) = (f, vh) ∀vh ∈ V v
h . (2.17)

However, for vh ∈ V v
h it holds that vh ∈ L2

σ(Ω) (recall that L2
σ(Ω) is defined in

eq. (2.3)) and therefore (f, vh) = (Pf, vh). Hence the reduced problem eq. (2.17)
can equivalently be written as

νah(uh, vh) = (Pf, vh) ∀vh ∈ V v
h . (2.18)

Analogously to eq. (2.4), the presence of Pf in eq. (2.18) will play an important
role in the pressure-robustness of our error estimates in Section 3.

2.5 Enrichment and interpolation operators

Our minimal regularity error analysis of the lowest-order HDG and EDG–HDG
methods will utilize an enrichment operator Eh with the following properties.

Lemma 2.1 (Enrichment operator) There exists a linear operator
Eh : XBDM

h → H1
0 (Ω)d such that for all vh ∈ XBDM

h we have

(i)
∫

F
{{vh}} ds =

∫

F
Ehvh ds for all F ∈ Fi.

(ii) ∇ · vh = ∇ ·Ehvh.

(iii)
∑

K∈T h
2(k−1)
K |vh − Ehvh|2k,K . |vh|2J for all k ∈ {0, 1}.

(iv) ‖∇Ehvh‖ =‖Ehvh‖dg .‖vh‖dg.

An operator satisfying the statements in Lemma 2.1 was constructed in [23]. In [23]
the construction is outlined in detail for the two-dimensional case, but sketched
only briefly for the three-dimensional case. We present an alternative proof of
Lemma 2.1 for the three-dimensional case in Appendix A. Our construction is
based on the conforming and divergence-free finite element of [19] and is inspired by
[29, Lemma 4.7], in which a similar result is established for Crouzeix–Raviart finite
element functions. We mention in passing that our construction in Appendix A
can also be adapted to the two-dimensional case by using the two-dimensional
finite element of [18].

Let Xc
h := {vh ∈ Xh ∩ C0(Ω)d : vh|∂Ω = 0} be the conforming analogue of

Xh. Aside from Eh, we will also use the following quasi-interpolation operator Ih
to deduce optimal rates of convergence for the HDG and EDG–HDG methods.

Lemma 2.2 (Quasi-interpolation operator) There exists a linear operator
Ih : H1

0 (Ω)d → Xc
h such that for all s ∈ [0, 1] and v ∈ H1

0 (Ω)d ∩ H1+s(Ω)d we
have

∥
∥∇h(v − Ihv)

∥
∥ .s h

s‖v‖1+s . (2.19)
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Proof A proof of Lemma 2.2 can be found in [15,34], although these works assume
that Ω is a Lipschitz domain. For the sake of completeness, we now show that the
quasi-interpolation operator of [15] still satisfies eq. (2.19) when it is not assumed
that Ω is Lipschitz. The quasi-interpolation operator of [15] is given by Ih =
Ah ◦Πh, where Ah : Xh → Xc

h is the lowest-order averaging operator introduced
in [21, Theorem 2.2] and Πh : H1

0 (Ω)d → Xh the L2-orthogonal projector onto
Xh. Because we are assuming that ∂Ω has codimension one, every boundary vertex
of the mesh is contained in some boundary face of the mesh. As a result, by the
arguments used in [21, Theorem 2.2]:

∥
∥∇h(vh −Ahvh)

∥
∥ . |vh|J . (2.20)

Let v ∈ H1
0 (Ω)d ∩ H1+s(Ω)d. Using the triangle inequality, eq. (2.20), and a

continuous trace inequality [12, Lemma 1.49], we have
∥
∥∇h(v − Ihv)

∥
∥ ≤

∥
∥∇h(v −Πhv)

∥
∥+

∥
∥∇h(Πhv −AhΠhv)

∥
∥

.
∥
∥∇h(v −Πhv)

∥
∥+|Πhv|J

=
∥
∥∇h(v −Πhv)

∥
∥+|v −Πhv|J

.
( ∑

K∈T

h−2
K ‖v −Πhv‖2K +|v −Πhv|21,K

)1/2
.

(2.21)

Finally, eq. (2.19) follows from eq. (2.21) and standard approximation properties
of the L2-orthogonal projector Πh (see e.g. [12, Section 1.4.4]). ⊓⊔

3 Pressure-robust error analysis under minimal regularity

In [32], optimal and pressure-robust error estimates for the HDG and EDG–
HDG methods were derived assuming u ∈ H1

0 (Ω)d ∩H2(Ω)d. In this section, we
carry out error analysis for the more general case of u ∈ H1

0 (Ω)d ∩H1+s(Ω)d for
s ∈ [0, 1].

3.1 Velocity error estimates

Thus far we have considered ah on the finite element spaceXv
h (see eq. (2.10a)).

The first step in our analysis is to extend ah to the larger space Xv(h) := X(h)×
X̄(h) (see eq. (2.8)). The main difficulty is that for v ∈ X(h) and K ∈ T we
have only ∇v ∈ [L2(K)]d×d and therefore ∇v does not admit a well-defined trace
on ∂K. To deal with this problem, let πK : [L2(K)]d×d → [P0(K)]d×d denote
the L2-orthogonal projector onto [P0(K)]d×d. Hence (G − πKG,H)K = 0 for all
G ∈ [L2(K)]d×d and H ∈ [P0(K)]d×d. For any v,w ∈ Xv(h) we now define

ah(v,w) :=
∑

K∈T

∫

K

∇v : ∇w dx+
∑

K∈T

α

hK

∫

∂K

(v − v̄) · (w − w̄) ds

−
∑

K∈T

∫

∂K

[

(v − v̄) · ([πK∇w]nK) + (w − w̄) · ([πK∇v]nK)
]

ds.

(3.1)
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We will use this bilinear form in the following analysis. Observe that eq. (3.1)
reduces to the previous definition of ah (see eq. (2.12)) for v,w ∈ Xv

h. Moreover,
the following boundedness result holds on the extended space Xv(h).

Lemma 3.1 (Boundedness of ah) For all v,w ∈ Xv(h) there holds

ah(v,w) . |||v|||v|||w|||v.
Proof By definition we have that

ah(v,w) =
∑

K∈T

∫

K

∇v : ∇w dx

︸ ︷︷ ︸

I1

+
∑

K∈T

α

hK

∫

∂K

(v − v̄) · (w − w̄) ds

︸ ︷︷ ︸

I2

+
∑

K∈T

−
∫

∂K

(v − v̄) · ([πK∇w]nK) ds

︸ ︷︷ ︸

I3

+
∑

K∈T

−
∫

∂K

(w − w̄) · ([πK∇v]nK) ds

︸ ︷︷ ︸

I4

.

An application of the Cauchy–Schwarz inequality yields |I1| +|I2| . |||v|||v|||w|||v.
To bound |I3| we first apply Cauchy–Schwarz to get

|I3| ≤|v|F
( ∑

K∈T

hK‖πK∇w‖2∂K
)1/2

. |v|F
( ∑

K∈T

‖πK∇w‖2K
)1/2

≤|v|F
( ∑

K∈T

‖∇w‖2K
)1/2

≤ |||v|||v|||w|||v.

(3.2)

For the second inequality in eq. (3.2) we used a discrete trace inequality, and
for the third inequality we used stability of πK . Similar reasoning shows that
|I4| . |||v|||v|||w|||v. This completes the proof. ⊓⊔

The next ingredient in our analysis is to establish an upper bound on the
consistency error for the velocity solution of the method in eq. (2.11).

Lemma 3.2 (Consistency error for ah) Let u ∈ H1
0 (Ω)d be the velocity solu-

tion of eq. (2.1), let u = (u, u), and let uh ∈ Xv
h be the discrete velocity solution

of eq. (2.11). Then for all vh ∈ Xv
h and wh ∈ V v

h it holds that

ah(u− uh,wh) .
{

|||u− vh|||v +|vh|G +
1

ν
osc(Pf)

}

|wh|F , (3.3)

where we have introduced the notation

osc(g)2 :=
∑

K∈T

h2K‖g‖2K ∀g ∈ L2(Ω)d, (3.4)

|th|2G :=
∑

F∈Fi

hF ‖J∇hthKnF ‖2F ∀th ∈ Xh. (3.5)
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Proof Let vh ∈Xv
h and wh ∈ V v

h . We set

zh = wh − (Ehwh, Ehwh) = (wh − Ehwh, w̄h − Ehwh).

Then

ah(u− uh,wh) =
[
ah(u, (Ehwh, Ehwh))− ah(uh,wh)

]

+ ah(u− vh, zh) + ah(vh, zh)

=
[
a(u,Ehwh)− ah(uh,wh)

]

︸ ︷︷ ︸

I1

+ ah(u− vh, zh)
︸ ︷︷ ︸

I2

+ ah(vh, zh)
︸ ︷︷ ︸

I3

.

(3.6)

We first bound I1. Since wh ∈ V v
h we have wh ∈ XBDM

h with ∇ · wh = 0. Thus
Ehwh ∈ V by Item ii of Lemma 2.1. Using the reduced problems eq. (2.4) and
eq. (2.18), the Cauchy–Schwarz inequality, and Item iii of Lemma 2.1 with k = 0,

I1 =
1

ν
(Pf,Ehwh − wh)

≤ 1

ν
osc(Pf)

[
∑

K∈T

h−2
K ‖Ehwh − wh‖2K

]1/2

.
1

ν
osc(Pf)|wh|J

.
1

ν
osc(Pf)|wh|F .

(3.7)

We now bound I2. Using Item iii of Lemma 2.1 with k = 1 we have

|||zh|||2v =
∥
∥∇h(wh − Ehwh)

∥
∥2 +|wh|2F . |wh|2F

so that |||zh|||v . |wh|F. Hence by Lemma 3.1 we have

I2 . |||u− vh|||v|||zh|||v . |||u− vh|||v|wh|F . (3.8)

To bound I3 we use the definition eq. (3.1) of ah and integrate by parts element-
wise. Using that (∇2vh)|K = 0 as vh is piecewise linear, this results in

I3 =
∑

K∈T

α

hK

∫

∂K

(vh − v̄h) · (zh − z̄h) ds−
∫

∂K

(vh − v̄h) · ([πK∇zh]nK) ds

︸ ︷︷ ︸

I3,1

+
∑

K∈T

∫

∂K

z̄h · ([∇vh]nK) ds

︸ ︷︷ ︸

I3,2

.

(3.9)

Using the same arguments from Lemma 3.1 (namely those used in eq. (3.2)) one
sees that

I3,1 . |vh|F |||zh|||v = |u− vh|F |||zh|||v . |||u− vh|||v|wh|F . (3.10)
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Also, rewriting I3,2 in terms of facet integrals, applying Item i of Lemma 2.1, and
using the Cauchy–Schwarz inequality, we find

I3,2 =
∑

F∈Fi

∫

F

z̄h · (J∇vhKnF ) ds

=
∑

F∈Fi

∫

F

(w̄h − Ehwh) · (J∇vhKnF ) ds

=
∑

F∈Fi

∫

F

(w̄h − {{wh}}) · (J∇vhKnF ) ds

. |wh|F|vh|G .

(3.11)

Using eq. (3.10) and eq. (3.11) in eq. (3.9) we obtain

I3 .
[

|||u− vh|||v +|vh|G
]

|wh|F . (3.12)

Finally, using the bounds eqs. (3.7), (3.8) and (3.12) in eq. (3.6) yields the desired
result eq. (3.3). ⊓⊔

With boundedness and consistency results established for the method eq. (2.11),
we can now derive our main error estimate.

Theorem 3.1 (Velocity error) Let u ∈ H1
0 (Ω)d be the velocity solution of

eq. (2.1), let u = (u, u), and let uh ∈ Xv
h be the discrete velocity solution of

eq. (2.11). Then

|||u− uh|||v . inf
vh∈Xv

h

[

|||u− vh|||v +|vh|G
]

+
1

ν
osc(Pf). (3.13)

Proof Let vh ∈ Xv
h . Owing to eq. (2.16) we can find ṽh ∈ V v

h with |||u− ṽh|||v .

|||u− vh|||v. Let wh = (uh − ṽh) ∈ V v
h . Using discrete coercivity eq. (2.14) along

with the boundedness and consistency results Lemmas 3.1 to 3.2,

|||wh|||2v . ah(wh,wh)

= ah(uh − u,wh) + ah(u− ṽh,wh)

.
{[

|||u− ṽh|||v +|ṽh|G
]

+
1

ν
osc(Pf)

}

|||wh|||v.
(3.14)

Therefore, dividing eq. (3.14) by |||wh|||v we arrive at

|||uh − ṽh|||v .
[

|||u− ṽh|||v +|ṽh|G
]

+
1

ν
osc(Pf). (3.15)

Using the triangle inequality and eq. (3.15) we obtain

|||u− uh|||v ≤ |||u− ṽh|||v + |||uh − ṽh|||v
.

[

|||u− ṽh|||v +|ṽh|G
]

+
1

ν
osc(Pf).

(3.16)
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Also, by the triangle inequality and a discrete trace inequality we have

|ṽh|G ≤|ṽh − vh|G +|vh|G
.
∥
∥∇h(ṽh − vh)

∥
∥+|vh|G

≤ |||ṽh − vh|||v +|vh|G
≤ |||u− ṽh|||v + |||u− vh|||v +|vh|G .

(3.17)

Combining eqs. (3.16) to (3.17) and using that |||u− ṽh|||v . |||u−vh|||v we obtain

|||u− uh|||v .
[

|||u− vh|||v +|vh|G
]

+
1

ν
osc(Pf).

The desired result eq. (3.13) follows as vh ∈Xv
h is arbitrary. ⊓⊔

Remark 3.1 (Pressure-robustness of the data oscillation term) As discussed in
[29, Remark 5.9], the function 1

ν Pf is independent of both the pressure p and the
viscosity ν. This can be seen by extending the domain of the Helmholtz projector
P to [H−1(Ω)]d, and then utilizing the fact that −ν∆u + ∇p = f holds in the
distributional sense. One finds that

1

ν
Pf =

1

ν
P(−ν∆u+∇p) = P(−∆u) ∈ L2(Ω)d, (3.18)

since P(∇p) = 0. We refer the reader to [28, Section 3] for a more detailed discus-
sion of these ideas. A consequence of eq. (3.18) is that the data oscillation term
appearing in eq. (3.13) can equivalently be written as 1

ν osc(Pf) = osc(P(−∆u)).
Because this quantity depends only on the velocity, the error estimate eq. (3.13)
is pressure-robust. We emphasize that eq. (3.13) would not be a pressure-robust
error estimate if it contained 1

ν osc(f) instead of 1
ν osc(Pf).

Our next step is to show that the interpolation error term appearing in Theo-
rem 3.1 converges optimally with respect to the mesh size h.

Lemma 3.3 (Interpolation error) Let ψ ∈ H1
0 (Ω)d∩H1+s(Ω)d with s ∈ [0, 1],

and set ψ = (ψ,ψ). Then

inf
vh∈Xv

h

[

|||ψ − vh|||v +|vh|G
]

.s h
s‖ψ‖1+s . (3.19)

Proof For each F ∈ Fi we introduce the patch ωF of elements sharing F ,

ωF :=
⋃

{K ∈ T : F is a face of K}.



14 Aaron Baier-Reinio et al.

Note that ωF is the union of exactly two elements. Now let vh ∈ Xv
h and gF ∈

[P0(ωF )]
d×d be arbitrary. By a discrete trace inequality and the triangle inequality,

|vh|2G ≤
∑

F∈Fi

hF ‖J∇hvhK‖2F

=
∑

F∈Fi

hF ‖J∇hvh − gF K‖2F

.
∑

F∈Fi

‖∇hvh − gF ‖2ωF

.
∑

F∈Fi

[∥
∥∇h(ψ − vh)

∥
∥2

ωF
+‖∇ψ − gF ‖2ωF

]

. |||ψ − vh|||2v +
∑

F∈Fi

‖∇ψ − gF ‖2ωF
.

(3.20)

Since vh ∈ Xv
h and gF ∈ [P0(ωF )]

d×d are arbitrary, eq. (3.20) yields that

inf
vh∈Xv

h

[

|||ψ − vh|||v +|vh|G
]

.
( ∑

F∈Fi

inf
gF∈[P0(ωF )]d×d

‖∇ψ − gF ‖2ωF

)1/2

︸ ︷︷ ︸

I1

+ inf
vh∈Xv

h

|||ψ − vh|||v
︸ ︷︷ ︸

I2

.

(3.21)

A bound for I1 follows from the fractional order Bramble–Hilbert lemma [13,
Theorem 6.1] applied to the patches ωF :

I1 .s

( ∑

F∈Fi

h2sF ‖∇ψ‖2s,ωF

)1/2
. hs‖ψ‖1+s . (3.22)

To bound I2 we take vh = (Ihψ, Ihψ) ∈ Xv
h where Ih is the quasi-interpolation

operator introduced in Lemma 2.2. We find that

I2 ≤ |||ψ − vh|||v =
∥
∥∇h(ψ − Ihψ)

∥
∥ .s h

s‖ψ‖1+s . (3.23)

Using the bounds eqs. (3.22) to (3.23) in eq. (3.21) yields the desired result. ⊓⊔

An immediate consequence of Theorem 3.1 and Lemma 3.3 is the following
error estimate, which is pressure-robust and optimal in the discrete energy norm.

Corollary 3.1 (Pressure-robust error estimate) In addition to the assump-
tions of Theorem 3.1, assume that u ∈ H1+s(Ω)d with s ∈ [0, 1]. Then

|||u− uh|||v .s h
s‖u‖1+s +

1

ν
osc(Pf).

Also, owing to eq. (3.4), the data oscillation term can be estimated as

1

ν
osc(Pf) ≤ h

∥
∥
∥
∥

1

ν
Pf

∥
∥
∥
∥
.
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Remark 3.2 (Convergence under H1-regularity) In the case of s = 0, where only
H1-regularity of u is assumed, Corollary 3.1 does not predict that |||u−uh|||v → 0
as h → 0. This can still be proven, however, using Theorem 3.1 and a density
argument. Indeed, let ǫ > 0. By definition, H1

0 (Ω)d is the closure of C∞
0 (Ω)d

under the H1-norm. As u ∈ H1
0 (Ω)d we can therefore find φ ∈ C∞

0 (Ω)d with
|u− φ|1 < ǫ. Setting φ = (φ, φ), the triangle inequality and Lemma 3.3 then yield

inf
vh∈Xv

h

[

|||u− vh|||v +|vh|G
]

≤ |||u− φ|||v + inf
vh∈Xv

h

[

|||φ− vh|||v +|vh|G
]

= |u− φ|1 + inf
vh∈Xv

h

[

|||φ− vh|||v +|vh|G
]

. ǫ+ h‖φ‖2
≤ 2ǫ,

(3.24)

where the last inequality in eq. (3.24) holds for h sufficiently small. But ǫ > 0 is
arbitrary, and therefore eq. (3.24) implies that

lim
h→0

{

inf
vh∈Xv

h

[

|||u− vh|||v +|vh|G
]}

= 0. (3.25)

Using eq. (3.25) in Theorem 3.1 we see that |||u− uh|||v → 0 as h→ 0.

We now investigate convergence of the velocity in the L2-norm, by means of
the Aubin–Nitsche trick. In order to proceed we assume the domain Ω is such that
the following regularity holds (see e.g. [11]).

Assumption 1 (Regularity of the reduced Stokes problem) Let s0 ∈ [0, 1]
be fixed. We assume that for all g ∈ L2(Ω)d there holds φg ∈ H1+s0(Ω)d and

‖φg‖1+s0
.s0

‖g‖

where φg ∈ V is the solution to the reduced Stokes problem

a(φg, v) = (g, v) ∀v ∈ V.

Theorem 3.2 (Velocity error in the L2-norm) In addition to the assump-
tions of Corollary 3.1 and under Assumption 1 we have

‖u− uh‖ .s0
hs0

{

inf
vh∈Xv

h

[

|||u− vh|||v +|vh|G
]

+
1

ν
osc(Pf)

}

(3.26a)

.s h
s+s0‖u‖1+s + h1+s0

∥
∥
∥
∥

1

ν
Pf

∥
∥
∥
∥
. (3.26b)

Proof Let φ ∈ V,φh ∈ V v
h solve the reduced problems

a(φ, v) = (u− uh, v) ∀v ∈ V, (3.27a)

ah(φh, vh) = (u− uh, vh) ∀vh ∈ V v
h . (3.27b)
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Set φ = (φ,φ). By Assumption 1 we have φ ∈ H1+s0(Ω)d and ‖φ‖1+s0
.s0

‖u− uh‖. Applying Corollary 3.1 to the reduced problems eq. (3.27) (for which
the source term is u− uh and the viscosity is one), we find that

|||φ− φh|||v .s0
hs0‖φ‖1+s0

+ osc(P(u− uh))

≤ hs0‖φ‖1+s0
+ h‖u− uh‖

.s0
hs0‖u− uh‖ .

(3.28)

Using eqs. (3.27a) to (3.27b) and some algebraic manipulations, we have

‖u− uh‖2 = (u− uh, u)− (u− uh, uh)

= a(φ, u)− ah(φh,uh)

= ah(φ,u)− ah(φh,uh)

= ah(u− uh,φ− φh)
︸ ︷︷ ︸

I1

+ ah(φ− φh,uh)
︸ ︷︷ ︸

I2

+ ah(u− uh,φh)
︸ ︷︷ ︸

I3

.

(3.29)

To bound I1 we use Lemma 3.1 and eq. (3.28):

I1 . |||u− uh|||v|||φ− φh|||v .s0
hs0‖u− uh‖ |||u− uh|||v. (3.30)

To bound I2 we use Lemma 3.2, Lemma 3.3 and Assumption 1. This yields

I2 .
{

inf
vh∈Xv

h

[

|||φ− vh|||v +|vh|G
]

+ osc(P(u− uh))
}

|uh|F

.s0

{

hs0‖φ‖1+s0
+ osc(P(u− uh))

}

|uh|F
.s0

hs0‖u− uh‖|uh|F
≤ hs0‖u− uh‖ |||u− uh|||v.

(3.31)

To bound I3 we again use Lemma 3.2 along with eq. (3.28). We find

I3 .
{

inf
vh∈Xv

h

[

|||u− vh|||v +|vh|G
]

+
1

ν
osc(Pf)

}

|φh|F

≤
{

inf
vh∈Xv

h

[

|||u− vh|||v +|vh|G
]

+
1

ν
osc(Pf)

}

|||φ− φh|||v

.s0
hs0‖u− uh‖

{

inf
vh∈Xv

h

[

|||u− vh|||v +|vh|G
]

+
1

ν
osc(Pf)

}

.

(3.32)

Using the bounds eqs. (3.30) to (3.32) in eq. (3.29), and using Theorem 3.1 to
bound |||u− uh|||v, we obtain

‖u− uh‖2 .s0
hs0‖u− uh‖

{

inf
vh∈Xv

h

[

|||u− vh|||v +|vh|G
]

+
1

ν
osc(Pf)

}

. (3.33)

Dividing eq. (3.33) by ‖u− uh‖ we obtain eq. (3.26a). Finally, eq. (3.26b) follows
from eq. (3.26a) and Lemma 3.3. ⊓⊔
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3.2 Pressure error estimate

Let (u, p) ∈ H1
0 (Ω)d×L2

0(Ω) be the solution of eq. (2.1) and (uh,ph) ∈ Xv
h×Qp

h

the solution of eq. (2.11). Let πh : L2(Ω) → Qh be the L2-orthogonal projector
onto Qh. Note that (πhp− ph) ∈ Qh and therefore (p− πhp, πhp− ph) = 0. Hence
by the Pythagorean theorem, the pressure error can be decomposed as

‖p− ph‖2 =
∥
∥(p− πhp) + (πhp− ph)

∥
∥2

=‖p− πhp‖2 +‖πhp− ph‖2 .
(3.34)

The term‖p− πhp‖ is the best approximation error of p by functions in the discrete
space Qh under the L2-norm, and is unavoidably pressure-dependent. However,
the following theorem shows that the second term ‖πhp− ph‖ can be bounded
above by an error that is dependent on the velocity only.

Theorem 3.3 (Pressure error) Let (u, p) ∈ H1
0 (Ω)d × L2

0(Ω) solve eq. (2.1)
and set u = (u, u). Let (uh,ph) ∈ Xv

h ×Qp
h solve eq. (2.11). Then

‖πhp− ph‖ .
{

ν inf
vh∈Xv

h

[

|||u− vh|||v +|vh|G
]

+ osc(Pf)
}

. (3.35)

Proof Set rh := (πhp− ph) ∈ Qh. We utilize the auxiliary inf-sup condition estab-
lished in [32, Lemma 5], which tells us that

‖rh‖ . sup
wh∈XBDM

h
×(X̄h∩C0(Γ0)d)

(rh,∇ · wh)

|||wh|||v
. (3.36)

Consider wh ∈ XBDM
h × (X̄h ∩ C0(Γ0)

d). Then JwhK|F · nF = 0 for all F ∈ Fh so
that

− (ph,∇ · wh) = bh(wh,ph) = (f,wh)− νah(uh,wh). (3.37)

On the other hand, since ∇ · wh = ∇ · Ehwh ∈ Qh we have

(πhp,∇ · wh) = (p,∇ ·Ehwh)

= −b(Ehwh, p)

= −(f,Ehwh) + νa(u,Ehwh)

= −(f,Ehwh) + νah(u, (Ehwh, Ehwh)).

(3.38)

Set zh = wh − (Ehwh, Ehwh). Combining eq. (3.37) and eq. (3.38) we obtain

(rh,∇ · wh) = (f, wh − Ehwh)

− νah(uh,wh) + νah(u, (Ehwh, Ehwh))

= (f, wh − Ehwh)
︸ ︷︷ ︸

I1

+ ν ah(u− uh, (Ehwh, Ehwh))
︸ ︷︷ ︸

I2

−ν ah(uh, zh)
︸ ︷︷ ︸

I3

.

(3.39)

Since wh ∈ XBDM
h and ∇ · (wh −Ehwh) = 0 we have that (wh − Ehwh) ∈ L2

σ(Ω)
(recall eq. (2.3)). As a result, I1 = (Pf, wh−Ehwh). Applying the Cauchy–Schwarz
inequality and Item iii of Lemma 2.1 with k = 0 therefore yields

|I1| . osc(Pf)|wh|J . osc(Pf)|||wh|||v. (3.40)
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A bound for |I2| follows from Lemma 3.1 and Item iv of Lemma 2.1:

|I2| . |||u− uh|||v|||(Ehwh, Ehwh)|||v
= |||u− uh|||v‖Ehwh‖dg
. |||u− uh|||v|||wh|||v.

(3.41)

Also, the same arguments used in Lemma 3.2 show that

|I3| .
[

|||u− uh|||v +|uh|G
]

|||wh|||v. (3.42)

But for any vh ∈ Xv
h , the triangle inequality and a discrete trace inequality yields

|uh|G ≤|uh − vh|G +|vh|G
.
∥
∥∇h(uh − vh)

∥
∥+|vh|G

≤ |||uh − vh|||v +|vh|G
≤ |||u− uh|||v +

[

|||u− vh|||v +|vh|G
]

.

(3.43)

Combining eq. (3.42) and eq. (3.43) gives

|I3| .
{

|||u− uh|||v + inf
vh∈Xv

h

[

|||u− vh|||v +|vh|G
]}

|||wh|||v. (3.44)

Inserting the bounds eqs. (3.40), (3.41) and (3.44) into eq. (3.39), and using The-
orem 3.1 to bound |||u− uh|||v, we obtain

(rh,∇ · wh) .
{

ν inf
vh∈Xv

h

[

|||u− vh|||v +|vh|G
]

+ osc(Pf)
}

|||wh|||v. (3.45)

Finally, combining eq. (3.45) and the inf-sup condition eq. (3.36) we get

‖rh‖ .
{

ν inf
vh∈Xv

h

[

|||u− vh|||v +|vh|G
]

+ osc(Pf)
}

,

which is the desired result. ⊓⊔

Corollary 3.2 (Pressure convergence rate) In addition to the assumptions
of Theorem 3.3, assume that (u, p) ∈ H1+s(Ω)d×Hs(Ω) for some s ∈ [0, 1]. Then

‖p− ph‖ .s h
s‖p‖s + νhs‖u‖1+s + h‖Pf‖ . (3.46)

Proof By standard approximation properties of the L2-orthogonal projector,

‖p− πhp‖ .s h
s‖p‖s . (3.47)

On the other hand, combining Theorem 3.3 and Lemma 3.3 we find that

‖πhp− ph‖ .s νh
s‖u‖1+s + h‖Pf‖ . (3.48)

Using the bounds eq. (3.47) and eq. (3.48) in the decomposition eq. (3.34) yields
the desired result in eq. (3.46). ⊓⊔
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4 Numerical examples

In this section we support our theoretical findings with numerical examples.
Strictly speaking, the examples that we consider are outside of the scope of our
theory, because they involve inhomogenous Dirichlet boundary conditions. Nev-
ertheless, we will see that our numerical observations agree with the theoretical
predictions of Section 3.

All numerical examples have been implemented in NGSolve [33]. The penalty
parameter is taken as α = 6k2 where k is the polynomial degree of the velocity
finite element space. We discuss numerical results only for the EDG–HDG method;
our findings for the HDG method are very similar in all cases.

4.1 Convergence under minimal regularity

We consider the Stokes problem on the unit square Ω = (0, 1)2 with f = 0
and ν = 1. We impose Dirichlet boundary conditions on the discrete solution by
interpolating the exact solution. The exact solution is taken from [36, Example 4]
and in polar coordinates is given by

u =
3

2

√
r






cos
(

θ
2

)

− cos
(

3θ
2

)

3 sin
(

θ
2

)

− sin
(

3θ
2

)




 , p = −6r−1/2 cos

(
θ

2

)

. (4.1)

We note that (u, p) ∈ H1+s(Ω)d ×Hs(Ω) for all 0 ≤ s < 1/2.

The computed velocity and pressure errors for the EDG–HDG method using
the lowest-order P 1 −P 0 discretization and the P 2 −P 1 discretization are shown
in Table 4.1. Both discretizations are seen to converge at the same rate. The
velocity error in the discrete H1-norm and the pressure error in the L2-norm are
observed to converge as roughly h1/2. This is consistent with the regularity of the
exact solution and the predictions of Corollary 3.1 and Corollary 3.2. Finally, the
velocity error in the L2-norm is observed to converge as roughly h3/2. Because
Ω is convex and therefore Assumption 1 holds with s0 = 1 (see e.g. [22]), this
observed convergence rate is consistent with Theorem 3.2.

4.2 Pressure-robust velocity approximation

To demonstrate pressure-robustness in the minimal regularity setting, we con-
sider a Stokes problem, taken from [36, Example 3], on the L-shaped domain
Ω = (−1, 1)2 \ ([0, 1]× [−1, 0]) and we vary the viscosity ν. Consider

ψ(θ) =
1

1 + λ
sin((1 + λ)θ) cos(λω)− cos((1 + λ)θ)

− 1

1− λ
sin((1− λ)θ) cos(λω) + cos((1− λ)θ),
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Table 4.1 Computed errors for the minimal regularity test case of Section 4.1 using the EDG–
HDG method with different polynomial orders. In all cases, the discrete velocity solution is
divergence-free up to machine precision.

Degree Cells ‖u− uh‖ Rate |||u− uh|||v Rate ‖p− ph‖ Rate

P 1–P 0 24 7.2e-02 - 1.5e+00 - 5.8e+00 -
96 2.2e-02 1.7 8.1e-01 0.9 1.2e+00 2.3
384 7.6e-03 1.5 5.9e-01 0.5 8.2e-01 0.5
1536 2.8e-03 1.5 4.2e-01 0.5 5.8e-01 0.5
6144 9.8e-04 1.5 3.0e-01 0.5 4.1e-01 0.5

P 2–P 1 24 2.8e-02 - 8.4e-01 - 1.4e+00 -
96 7.6e-03 1.9 4.0e-01 1.1 5.2e-01 1.4
384 2.7e-03 1.5 2.9e-01 0.5 3.7e-01 0.5
1536 9.5e-04 1.5 2.0e-01 0.5 2.6e-01 0.5
6144 3.4e-04 1.5 1.4e-01 0.5 1.8e-01 0.5

and let λ = 856399/1572864 ≈ 0.54 and ω = 3π/2. Our exact solution (u, p) is
given in polar coordinates by

u = rλ
[

(1 + λ) sin(θ)ψ(θ) + cos(θ)ψ′(θ)
−(1 + λ) cos(θ)ψ(θ) + sin(θ)ψ′(θ)

]

, p = νp1 + p2,

where

p1 = rλ−1((1 + λ)2ψ′(θ) + ψ′′′(θ))/(1− λ), p2 = x3 + y3.

Note that −∇2u+∇p1 = 0 and therefore −ν∇2u+∇p = f where f = ∇p2. Also,
there holds (u, p) ∈ H1+s(Ω)d ×Hs(Ω) for all 0 ≤ s < λ.

We compare the lowest-order EDG–HDG method to the lowest-order EDG
method of [32] (see also [25] on the EDG method). The EDG method, which uses
a continuous facet finite element space for both the velocity and pressure, is not
pressure-robust [32]. We set the viscosity to be either ν = 1 or ν = 10−5. The
computed velocity errors for this example are shown in Figure 4.1.

For the EDG–HDG method, the velocity error is observed to be independent
of the viscosity, confirming pressure-robustness. The velocity error for this method
converges in the discrete H1-norm as roughly h0.54. This is consistent with the
regularity of u and Corollary 3.1. Furthermore, according to [6, Section 5], on this
domain Assumption 1 holds with s0 ≈ 0.54. Therefore, Theorem 3.2 predicts the
velocity error in the L2-norm to converge as roughly (h0.54)2 = h1.08, which is
consistent with the empirical convergence rates displayed in Figure 4.1.

When ν = 1 the velocity error for the EDG method is comparable to that of
the EDG–HDG method. However, when ν = 10−5 the velocity error for the EDG
method increases substantially, at least in the regime of large h. In this regime,
we hypothesize that the velocity error for the EDG method is dominated by the
pressure best approximation error scaled by the inverse viscosity. Recalling that
p = νp1 + p2, we can estimate the pressure best approximation error as

inf
qh∈Qh

‖p− qh‖ ≤ ν inf
qh∈Qh

‖p1 − qh‖+ inf
qh∈Qh

‖p2 − qh‖

.s νh
s‖p1‖s + h1‖p2‖1 ,

(4.2)
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Fig. 4.1 Computed velocity errors for the pressure-robustness test case of Section 4.2. We
compare the lowest-order EDG and EDG–HDG methods with ν = 1 and ν = 10−5.

Table 4.2 Computed errors for the cracked domain test case of Section 4.3 using the lowest-
order EDG–HDG method. In all cases, the discrete velocity solution is divergence-free up to
machine precision.

Cells ‖u− uh‖ Rate |||u− uh|||v Rate ‖p− ph‖ Rate

1680 2.0e-03 - 4.5e-01 - 5.8e-01 -
6720 1.0e-03 1.0 3.2e-01 0.5 3.6e-01 0.7
26880 5.0e-04 1.0 2.3e-01 0.5 2.4e-01 0.6
107520 2.5e-04 1.0 1.6e-01 0.5 1.6e-01 0.6
430080 1.2e-04 1.0 1.1e-01 0.5 1.1e-01 0.5

for any 0 ≤ s < λ. For h sufficiently large eq. (4.2) converges pre-asymptotically at
a rate of h1, while the asymptotic convergence rate of eq. (4.2) is hs. This behavior
appears to be reflected in Figure 4.1, where for ν = 10−5 the velocity error of the
EDG method pre-asymptotically converges at a faster rate than the EDG–HDG
method.

4.3 Domain with a crack

We consider the Stokes problem on Ω = (−1/10,1/10)2 \ ([0,1/10)×{0}) with
f = 0 and ν = 1. Notice that Ω has a crack along the positive x-axis. We use the
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same exact solution from eq. (4.1). The computed velocity and pressure errors for
the lowest-order EDG–HDG method are shown in Table 4.2.

The velocity error in the discrete H1-norm and the pressure error in the L2-
norm eventually both converge as roughly h1/2. This is consistent with the regu-
larity of the exact solution and the predictions of Corollary 3.1 and Corollary 3.2.
Furthermore, according to [6, Section 5], on this domain Assumption 1 holds for
any s0 < 1/2. Therefore, Theorem 3.2 predicts the velocity error in the L2-norm
to converge as roughly h1, which is consistent with the empirical convergence rate
seen in Table 4.2.

5 Conclusions

We have analyzed two lowest-order hybridizable DG methods for the Stokes
problem, while assuming onlyH1+s-regularity of the exact velocity solution for any
s ∈ [0, 1]. A salient feature of our analysis is that it allows for the case of a domain
with cracks. The key ingredient in our analysis is a suitable upper bound on the
consistency error of the hybridizable DGmethods, which we have derived by means
of a divergence-preserving enrichment operator. Our resultant error estimates for
the velocity are pressure-robust and optimal in the discrete energy norm. We also
obtained an error bound for the pressure that is dependent on the velocity only.
Our theoretical findings are supported by various numerical examples.
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A Enrichment operator

We prove here Lemma 2.1 for the three-dimensional case (d = 3). We shall use the angled
bracket notation 〈·, ·〉D; this is simply used to denote the L2-inner-product on a domain D

with dimension strictly less than d = 3.
For K ∈ T we recall from Section 2.2 that FK,h ⊂ Fh denotes the four faces of K. Also, let

EK denote the six edges of K and VK the four vertices of K. The collection of all mesh edges is
written as Eh := ∪K∈T EK = Eb ∪ Ei where Eb denotes the boundary edges and Ei the interior
edges. Likewise, the collection of all mesh vertices is written as Vh := ∪K∈T VK = Vb ∪ Vi

where Vb denotes the boundary vertices and Vi the interior vertices. For an interior edge e ∈ Ei,
we define the average of a function v on e as

{{v}}e :=
1

|Te|

∑

K∈Te

vK |e,

where Te := {K ∈ T : e ∈ EK} denotes the collection of elements having e as an edge and
vK := v|K . On boundary edges e ∈ Eb, it will be convenient to define {{v}}e := 0. Similarly,
for an interior vertex a ∈ Vi, the average of a function v on a is defined as

{{v}}a :=
1

|Ta|

∑

K∈Ta

vK(a),

where Ta := {K ∈ T : a ∈ VK} denotes the collection of elements having a as a vertex. On
boundary vertices a ∈ Vb it will be convenient to define {{v}}a := 0. Finally, throughout this
proof we continue to use the definition eqs. (2.6) to (2.7) of the average operator on faces.

For K ∈ T , let V (K) denote the local three-dimensional Guzmán–Neilan finite element
space defined by [19, eq. (3.9)]. This space has the properties [19, Lemma 3.4]

[P1(K)]3 ⊂ V (K), V (K) ⊂ [W 1,∞(K) ∩ C0(K̄)]3,

∇ · V (K) ⊂ P0(K), V (K)|∂K ⊂ [P3(∂K)]3.
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Moreover, a set of unisolvent degrees of freedom for v ∈ V (K) is given by [19, Theorem 3.5]

v(a) ∀a ∈ VK , (A.1a)

〈v, w〉e ∀e ∈ EK , w ∈ [P1(e)]
3, (A.1b)

〈v, w〉F ∀F ∈ FK,h, w ∈ [P0(F )]3. (A.1c)

For K ∈ T we now define the local operator EK : XBDM
h → V (K) as follows. For

vh ∈ XBDM
h we require that

(EKvh)(a) = {{vh}}a ∀a ∈ VK , (A.2a)

〈EKvh − {{vh}}e, w〉e = 0 ∀e ∈ EK , w ∈ [P1(e)]
3, (A.2b)

〈EKvh − {{vh}}, w〉F = 0 ∀F ∈ FK,h ∩ Fi, w ∈ [P0(F )]3, (A.2c)

〈EKvh, w〉F = 0 ∀F ∈ FK,h ∩ Fb, w ∈ [P0(F )]3. (A.2d)

The degrees of freedom eq. (A.1) imply that the operator EK is well-defined. We then define
Eh : XBDM

h → H1
0 (Ω)d by (Ehvh)|K = EKvh for all vh ∈ XBDM

h . Utilizing the inclusion

V (K)|∂K ⊂ [P3(∂K)]3 one can show that JEhvhK|F = 0 for all F ∈ Fh, and thus Ehvh ∈
H1

0 (Ω)d holds. It remains to verify that Eh satisfies Items i to iv from Lemma 2.1.
That Item i holds is an immediate consequence of eq. (A.2c). To prove Item ii, consider

the space P0,h := {qh ∈ L2(Ω) : qh|K ∈ P0(K) ∀K ∈ T } of piecewise constant functions. Let

vh ∈ XBDM
h and qh ∈ P0,h. Then element-wise integration by parts and eq. (A.2c) shows that

∫

Ω
(∇ ·Ehvh)qh dx =

∑

F∈Fi

∫

F
(Ehvh · nF )JqhKds

=
∑

F∈Fi

∫

F
({{vh}} · nF )JqhKds

=

∫

Ω
(∇ · vh)qh dx,

(A.3)

where the last equality in eq. (A.3) follows from the fact that JvhK|F · nF = 0 for all F ∈ Fh.
But Item ii now follows from eq. (A.3) as ∇ ·Ehvh,∇ · vh ∈ P0,h and qh ∈ P0,h is arbitrary.

To prove Item iii, fix k ∈ {0, 1} and vh ∈ XBDM
h . Consider K ∈ T and set wK :=

EKvh, vK = vh|K and zK = wK−vK . Since vK ∈ [P1(K)]3 ⊂ V (K), there holds zK ∈ V (K).
A scaling argument utilizing the degrees of freedom eq. (A.1) then shows that

h
2(k−1)
K |zK |2k,K .

∑

a∈VK

hK

∥
∥zK(a)

∥
∥2

2
+

∑

e∈EK

sup
κh∈[P1(e)]

3

‖κh‖e=1

∣
∣〈zK , κh〉e

∣
∣2

+
∑

F∈FK,h

1

hK
sup

κh∈[P0(F )]3

‖κh‖F=1

∣
∣〈zK , κh〉F

∣
∣2

≤
∑

a∈VK

hK

∥
∥{{vh}}a − vK(a)

∥
∥2

2

︸ ︷︷ ︸

I1

+
∑

e∈EK

∥
∥{{vh}}e − vK

∥
∥2

e

︸ ︷︷ ︸

I2

+
∑

F∈FK,h

F∈Fi

1

hK

∥
∥{{vh}} − vK

∥
∥2

F
+

∑

F∈FK,h

F∈Fb

1

hK
‖vK‖2F

︸ ︷︷ ︸

I3

.

(A.4)

Because ∂Ω has codimension one, every boundary vertex of the mesh is contained in some
boundary face of the mesh, and likewise for boundary edges. As a result, the same arguments
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used in [29, Lemma 4.7] show that

I1 .
∑

a∈VK

∑

F∈Fa

1

hF

∥
∥JvhK

∥
∥2

F
, (A.5)

I2 .
∑

e∈EK

∑

F∈Fe

1

hF

∥
∥JvhK

∥
∥2

F
, (A.6)

where Fa ⊂ Fh denotes the collection of all mesh faces having a as a vertex, and Fe ⊂ Fh

denotes the collection of all mesh faces having e as an edge. We note that, due to midpoint
continuity of Crouzeix–Raviart elements, there is no term analogous to I3 in [29, Lemma 4.7].
Fortunately, it is easy to see that we can bound I3 by means of

I3 .
∑

F∈FK,h

1

hF

∥
∥JvhK

∥
∥2

F
. (A.7)

Using the bounds eqs. (A.5) to (A.7) in eq. (A.4), and summing over K ∈ T , one obtains

∑

K∈T

h
2(k−1)
K |Ehvh − vh|

2
k,K .

∑

F∈Fh

1

hF

∥
∥JvhK

∥
∥2

F
= |vh|

2
J ,

so that Item iii holds. Lastly, Item iv follows from Item iii with k = 1 and the triangle inequality:

‖∇Ehvh‖ ≤
( ∑

K∈T

|vh − Ehvh|
2
1,K

)1/2
+

( ∑

K∈T

|vh|
2
1,K

)1/2

. |vh|J +
( ∑

K∈T

|vh|
2
1,K

)1/2

.‖vh‖dg .

This completes the proof of Lemma 2.1. ⊓⊔
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