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Abstract

Efficient and accurate numerical approximation of the full Boltzmann equation has been

a longstanding challenging problem in kinetic theory. This is mainly due to the high dimen-

sionality of the problem and the complicated collision operator. In this work, we propose a

highly efficient adaptive low rank method for the Boltzmann equation, concerning in partic-

ular the steady state computation. This method employs the fast Fourier spectral method

(for the collision operator) and the dynamical low rank method to obtain computational

efficiency. An adaptive strategy is introduced to incorporate the boundary information

and control the computational rank in an appropriate way. Using a series of benchmark

tests in 1D and 2D, we demonstrate the efficiency and accuracy of the proposed method in

comparison to the full tensor grid approach.

Key words. dynamical low rank method, Boltzmann equation, steady state solution, adaptive

method, fast Fourier spectral method, normal shock wave

1 Introduction

Kinetic theory describes the non-equilibrium dynamics of gases or systems comprised of

a large number of particles. It provides rich information at the mesoscopic level when the

well-known fluid mechanical laws of Navier-Stokes and Fourier become inadequate. Various

applications of kinetic theory can be found in fields such as rarefied gas dynamics [4], plasma

physics [2], semiconductor modeling [19] and biological and social sciences [22].

In this work, we are interested in the efficient numerical approximation of the nonlinear

Boltzmann equation [3, 28], which is the central model in kinetic theory and reads as

∂tf + v · ∇xf = Q(f, f), t > 0, x ∈ Ωx ⊂ R
d, v ∈ R

d, (1.1)

where f = f(x,v, t) is the phase space distribution function of time t, position x, and particle

velocity v; Q is the Boltzmann collision operator, which is a quadratic integral operator modeling
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the binary interactions between particles. It is convenient to introduce the bilinear form of Q:

Q(g, f)(v) =

∫

Rd

∫

Sd−1

B(|v − v∗|, cosχ)[g(v′
∗)f(v

′)− g(v∗)f(v)] dσ dv∗, (1.2)

where the post-collisional velocities (v′,v′
∗) are defined in terms of pre-collisional velocities

(v,v∗) through the conservation of momentum and energy during the collision:

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′
∗ =

v + v∗

2
− |v − v∗|

2
σ, (1.3)

with σ being a vector over the unit sphere Sd−1. The collision kernel B is a non-negative function

depending on |v − v∗| and cosine of the deviation angle χ, i.e., the angle between v − v∗ and

v′ − v′
∗. It should be noted that collisions happen only in the velocity space, thus time and

spatial dependence is omitted in (1.2). This property has important consequence in design of

efficient numerical methods as we shall see later. With the distribution function f , one can

retrieve the macroscopic quantities via its moments:

∫

Rd

f(x,v, t)




1

v
1
2 |v|2


dv =




ρ(x, t)

ρ(x, t)u(x, t)
1
2ρ(x, t)|u(t,x)|2 + d

2ρ(x, t)RT (x, t)


 , (1.4)

where ρ(x, t), u(x, t), and T (x, t) are the density, bulk velocity, and temperature, R is the

Boltzmann constant.

Despite of the long history and wide application of the Boltzmann equation, numerically

solving the Boltzmann equation still faces great challenges nowadays. This is mainly due to

the high dimensionality of the equation and the complicated collision operator. The prevailing

method is the direct simulation Monte Carlo (DSMC) method [23, 1] because it can avoid the

curse of dimensionality. DSMC method models binary collisions stochastically but could suffer

from slow convergence in certain cases such as low speed or near continuum flows. On the

other hand, the deterministic method based on discretization of the equation on representative

grids has undergone significant development over the past decade. This is partly due to the

rapid growth of the computing power as well as the algorithmic advance in approximation of the

Boltzmann collision operator. Regarding the latter, the Fourier spectral method [25, 26] stands

out for its high accuracy and possibility of being further accelerated by the fast Fourier transform

(FFT). The readers can refer to [6, 14] for a review of such methods. Relevant to the current

work, we mention the fast algorithm proposed in [20] which can efficiently evaluate the collision

operator for certain collision kernel in O(MNd
v
logNv) complexity, where Nv is the number of

points in each velocity dimension and M is the number of points over Sd−1. Even equipped

with the fast solver for the collision operator, solving the Boltzmann equation deterministically

can still be very expensive. In the full tensor grid approach, the overall complexity (per time

step) would be O(Nd
x
MNd

v
logNv), where Nx is the number of discretization points used in each

spatial dimension. This motivates us to seek more efficient method to overcome the intrinsic

high dimensionality of the problem.

Recently, a class of dynamical low rank method has been applied to solving kinetic equations

including the Vlasov equation [10, 11], Boltzmann-BGK equation [7, 9] and radiation transfer

equation [8, 27]. The basic idea is to find a low-rank approximation of the unknown function

f by projecting the equation onto the tangent space of the low-rank solution manifold. Upon
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a further operator splitting, the original Nd
x
Nd

v
dimensional problem can be reduced to a few

Nd
x
or Nd

v
dimensional problems. We mention that this formulation can only be done easily if

the original equation has a tensor structure (x and v are separated in some sense). For some

collision operators, e.g., the BGK operator which is highly nonlinear due to the f dependent

Maxwellian function, extra effort is needed to make the method efficient [9].

In this work, we apply the dynamical low rank method to the Boltzmann equation (1.1)

and investigate the performance of the method in a series of benchmark tests that concern the

steady state solutions. Our contribution can be summarized as follows: 1) The dynamical low

rank method is for the first time applied to the nonlinear Boltzmann equation (1.1). Even

though the collision operator Q(f, f) is quite complicated, it is local in x hence is highly suited

in the low rank framework. Moreover, the previously developed fast Fourier spectral method

can be applied straightforwardly to accelerate the overall method. 2) We propose an adaptive

strategy to add and remove basis along the time evolution. In particular, the stage of adding the

basis is strongly motivated by our underlying problem. Most benchmark tests for the Boltzmann

equation involve steady state solutions (e.g., normal shock, Couette flow, thermally driven cavity

flow, etc. [15]) for which the boundary condition is highly non-trivial and plays an important

role. We show that to accurately simulate this type of problems, the boundary information

needs to be added to the solution on the fly. As a consequence, dropping the basis becomes

mandatory, otherwise the numerical rank will increase constantly. This is in contrast to most

of the previous dynamical low rank methods on kinetic equations, where a fixed rank can often

be used throughout the simulation. 3) Using asymptotic analysis and heuristic arguments, we

identify a class of problems – normal shock problem – whose steady state solutions are indeed

low rank in some regimes, and further confirm it in numerical experiments. This provides some

theoretical guarantee for the proposed low rank method to be an efficient approach for solving

the nonlinear Boltzmann equation.

The rest of this paper is organized as follows. In Section 2, we describe the dynamical

low rank method for the Boltzmann equation, including the time, velocity and physical space

discretization as well as the treatment of the boundary condition. In Section 3, we introduce

an adaptive strategy to add and drop basis in the dynamical low rank method during the time

evolution. In Section 4, we analyze the normal shock problem and demonstrate the low rank

property of the solution in both the weak and strong shock wave regimes. Section 5 presents

numerical examples in 1D and 2D using the proposed adaptive dynamical low rank method.

Several benchmark tests for the nonlinear Boltzmann equation are considered: normal shock,

Fourier flow, lid driven cavity flow, and thermally driven cavity flow. The paper is concluded in

Section 6.

2 The dynamical low rank method for the Boltzmann equa-

tion

In this section, we introduce the dynamical low rank method for the Boltzmann equation

(1.1). We first present the formulation in the continuous setup, where we highlight the special

structure of the collision operator in obtaining an efficient low rank approximation. We then

describe the discretization in the velocity space and physical space, and treatment of the typical
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boundary conditions of the Boltzmann equation. Finally, we add the time discretization to

obtain a fully discrete low rank scheme.

The starting point of the method is to constrain the distribution function f(x,v, t) to a low

rank manifold M such that

f(x,v, t) =
r∑

i,j=1

Xi(x, t)Sij(t)Vj(v, t), (2.1)

where r is the representation rank and the basis functions {Xi}1≤i≤r ⊂ L2(Ωx) and {Vj}1≤j≤r ⊂
L2(Ωv) are orthonormal:

〈Xi, Xj〉
x
= δij , 〈Vi, Vj〉

v
= δij , 1 ≤ i, j ≤ r, (2.2)

with 〈·, ·〉x and 〈·, ·〉v being the inner products on L2(Ωx) and L2(Ωv), respectively. Note here

we consider a finite velocity domain Ωv rather than the whole space Rd to avoid the complication

in the infinite domain. This is a reasonable assumption because the majority of the numerical

methods for kinetic equations need to first truncate the velocity domain and then perform the

discretization. It can often be done without much loss of accuracy since f decays sufficiently

fast as v goes to infinity.

We rewrite equation (1.1) as

∂tf = −v · ∇xf +Q(f, f) := RHS. (2.3)

To ensure uniqueness of the dynamical factors Xi, Sij , and Vj through equation (2.3), we impose

the following gauge conditions by constraining the derivatives in the null space (for details, see

[16]):

〈∂tXi, Xj〉
x
= 0, 〈∂tVi, Vj〉

v
= 0, 1 ≤ i, j ≤ r. (2.4)

We now project the right hand side of (2.3) onto the tangent space of M:

∂tf = Pf (RHS), (2.5)

where the orthogonal projector Pf can be written as

Pf (RHS) =
r∑

j=1

〈Vj ,RHS〉vVj −
r∑

i,j=1

Xi〈XiVj ,RHS〉x,vVj +
r∑

i=1

Xi〈Xi,RHS〉x. (2.6)

To avoid the possible ill-conditioning of the matrix S = (Sij)1≤i,j≤r , one can perform a

simple operator splitting [17] to decompose (2.6) into three subflows:

∂tf =

r∑

j=1

〈Vj ,RHS〉vVj , (2.7)

∂tf = −
r∑

i,j=1

Xi〈XiVj ,RHS〉x,vVj , (2.8)

∂tf =

r∑

i=1

Xi〈Xi,RHS〉x. (2.9)

Using the orthogonality condition (2.2) and the gauge condition (2.4), we can further simplify

each subflow and proceed in the following three substeps:

4



• K-step: Define Kj(x, t) =
r∑

i=1

Xi(x, t)Sij(t) then f(x,v, t) =
r∑

j=1

Kj(x, t)Vj(v, t). We can

rewrite equation (2.7) as

∂t




r∑

j=1

KjVj


 =

r∑

j=1

(∂tKjVj +Kj∂tVj) =

r∑

j=1

〈Vj ,RHS〉vVj . (2.10)

Using the orthogonality of {Vj}1≤j≤r and 〈∂tVj , Vk〉
v
= 0 for 1 ≤ j, k ≤ r, we have

∂tKj = 〈Vj ,RHS〉
v

= −
r∑

l=1

〈vVjVl〉
v
· ∇xKl +

r∑

m,n=1

〈VjQ (Vm, Vn)〉
v
KmKn, j = 1, . . . , r,

(2.11)

where the simplification of the last term relies crucially on the bilinearity of the collision

operator (1.2) as well as the fact that collisions act locally in the physical space. It can be

seen that (2.11) together with ∂tVj = 0 solve (2.10). Since the solution to the subflow is

unique, we thus know {Vj}1≤j≤r remains unchanged during this substep.

• S-step: We can argue similarly to obtain that the subflow (2.8) is equivalent to

∂tSij = −〈XiVj ,RHS〉x,v

=

r∑

k,l=1

〈vVjVl〉v · 〈Xi∇xXk〉xSkl −
r∑

k,l,m,n=1

〈XiXkXl〉x〈VjQ(Vm, Vn)〉vSkmSln, i, j = 1, . . . , r.

(2.12)

During this substep, both {Vj}1≤j≤r and {Xi}1≤i≤r remain unchanged.

• L-step: Define Li(v, t) =
r∑

j=1

Sij(t)Vj(v, t) then f(x,v, t) =
r∑

i=1

Xi(x, t)Li(v, t). By similar

arguments, the subflow (2.9) is equivalent to

∂tLi = 〈Xi,RHS〉x,

= −
r∑

l=1

v · 〈Xi∇xXl〉xLl +

r∑

m,n=1

Q(Lm, Ln)〈XiXmXn〉x, i = 1, . . . , r.
(2.13)

During this substep, {Xi}1≤i≤r remains unchanged.

Therefore, we have obtained a set of low rank equations (2.11)-(2.13) in the continuous

setting. The task remains is to apply the proper discretization to these equations in the velocity

space, physical space, and time, which we will detail in the following subsections.

2.1 Velocity space discretization

Examining the equations (2.11)-(2.13), we can see that all terms pertaining to the collision

operator have the form of Q(h1, h2), where h1 and h2 are some functions of v. Luckily this isn’t

much change from the original collision operator in (1.1) and we can apply the well-developed

fast Fourier spectral methods.

Specifically, for 2D Maxwell molecules (d = 2 and B = const) and 3D hard spheres (d = 3 and

B = const|v−v∗|), we can use the algorithm proposed in [21] with complexity O(MNd
v
logNv),
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where Nv is the number of points in each dimension of the velocity space and M ≪ Nd−1
v

is the

number of points used on the sphere Sd−1; for general collision kernel B = B(|v − v∗|, cosχ),
we can use the algorithm proposed in [12] with complexity O(MNd+1

v
logNv). Both algorithms

can be implemented as a discrete velocity method: one chooses an appropriate velocity domain

[−Lv, Lv]
d and uniform grid points {vq}; the collision solver takes discrete values {h1(vq)} and

{h2(vq)} and outputs {Q(h1, h2)(vq)} on the same set of grid points. For more details, the

readers can refer to [21, 12].

2.2 Physical space discretization

There are various ways to discretize the equations (2.11)-(2.13) in the physical space, for

example, one can apply the Fourier spectral method [10] or the high resolution finite difference

scheme [9] directly to these equations. Generally speaking, the conventional scheme used for the

original equation needs to be tailored when solving the equations resulted from the low rank

projection. The issue also becomes a bit tricky when the boundary condition is not periodic.

Here we adopt a “first discretize, then project” strategy, which is simpler because it follows

directly from the scheme for the original equation. We mention that this idea is similar to the

so-called kinetic flux vector splitting (KFVS) scheme [5], a well-known method for solving the

compressible Euler equations derived from the kinetic equation. For simplicity, we focus on the

first order upwind scheme in this work. To extend it to high order, similar strategy for the KFVS

scheme [18] can be considered.

We use the one-dimensional case (d = 1) to illustrate the idea. Extension to high dimension

with rectangular grid is straightforward as implemented in our numerical examples. Assume

Ωx = [−Lx, Lx] with uniform grid points chosen as xp = −Lx + (p − 1
2 )∆x, p = 1, . . . , Nx,

∆x = 2Lx

Nx
. Since the transport term in the Boltzmann equation (1.1) is linear, it is very easy to

apply the upwind scheme:

∂tf(x, v, t) =− v + |v|
2

f(x, v, t)− f(x−∆x, v, t)

∆x

− v − |v|
2

f(x+∆x, v, t) − f(x, v, t)

∆x
+Q(f(x, v, t), f(x, v, t))

:=− v+D+f(x, v, t)− v−D−f(x, v, t) +Q(f(x, v, t), f(x, v, t)),

(2.14)

where v± = v±|v|
2 , and D± are first order upwind operators.

For equation (2.14), we can apply the same projection process as we did previously to equa-

tion (2.3) to obtain (i.e., the analogs of (2.11)-(2.13)):

• K-step:

∂tKj(x, t) =−
r∑

l=1

〈v+Vj(v, t)Vl(v, t)〉vD+Kl(x, t)−
r∑

l=1

〈v−Vj(v, t)Vl(v, t)〉vD−Kl(x, t)

+

r∑

m,n=1

〈Vj(v, t)Q(Vm(v, t), Vn(v, t))〉vKm(x, t)Kn(x, t).

(2.15)
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• S-step:

∂tSij(t) =

r∑

k,l=1

〈v+Vj(v, t)Vl(v, t)〉v〈Xi(x, t)D+Xk(x, t)〉xSkl

+

r∑

k,l=1

〈v−Vj(v, t)Vl(v, t)〉v〈Xi(x, t)D−Xk(x, t)〉xSkl

−
r∑

k,l,m,n=1

〈Xi(x, t)Xk(x, t)Xl(x, t)〉x〈Vj(v, t)Q(Vm(v, t), Vn(v, t))〉vSkmSln.

(2.16)

• L-step:

∂tLi(v, t) =−
r∑

l=1

v+〈Xi(x, t)D+Xl(x, t)〉xLl(v, t) −
r∑

l=1

v−〈Xi(x, t)D−Xl(x, t)〉xLl(v, t)

+

r∑

m,n=1

Q(Lm(v, t), Ln(v, t))〈Xi(x, t)Xm(x, t)Xn(x, t)〉x.

(2.17)

2.3 Treatment of the boundary condition

In the low rank framework, boundary condition for f(x,v, t) needs to be transformed to the

boundary condition of {Kj}1≤j≤r. In fact, this transformation has a non-trivial impact on the

fully discrete scheme which we shall describe in the next subsection.

For a boundary point x ∈ ∂Ωx with outward pointing normal n(x) and boundary velocity

uw(x, t), general boundary conditions for Boltzmann equation (1.1) are defined through the

inflow direction:

f(x,v, t) = fbdy(x,v, t), (v − uw(x, t)) · n(x) < 0, (2.18)

where fbdy is a prescribed function. The other half of f(x,v, t) is given from interior of the

domain (outflow). We thus define

f b(x,v, t) =

{
fbdy(x,v, t), (v − uw(x, t)) · n(x) < 0,

f(x,v, t), (v − uw(x, t)) · n(x) ≥ 0.
(2.19)

Accordingly, we can project the full boundary f b(x,v, t) to the space spanned by {Vj}1≤j≤r to

obtain boundary values for {Kj}1≤j≤r:

Kj(x, t) =〈f b(x,v, t), Vj(v, t)〉v
=〈fbdy(x,v, t)1(v−uw(x,t))·n(x)<0, Vj(v, t)〉v + 〈f(x,v, t)1(v−uw(x,t))·n(x)≥0, Vj(v, t)〉v

=〈fbdy(x,v, t)1(v−uw(x,t))·n(x)<0, Vj(v, t)〉v +

r∑

l=1

Kl(x, t)〈1(v−uw(x,t))·n(x)≥0Vl(v, t)Vj(v, t)〉v,

(2.20)

where the Kl term appearing on the right hand side of (2.20) can be approximated using values

inside the domain (extrapolation) since the term results from the outflow.

Two typical boundary conditions used when solving the Boltzmann equation (1.1) are the

following inflow boundary and Maxwell diffusive boundary. For inflow boundary, we take
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uw(x, t) = 0 and

fbdy(x,v, t) =
ρin(x, t)

(2πTin(x, t))d/2
exp

(
−|v − uin(x, t)|2

2RTin(x, t)

)
, v · n(x) < 0, (2.21)

where ρin, uin and Tin are the density, bulk velocity and temperature of the prescribed inflow.

For the Maxwell diffusive boundary, we take

fbdy(x,v, t) = ρw(x, t) exp

(
−|v− uw(x, t)|2

2RTw(x, t)

)
, (v − uw(x, t)) · n(x) < 0, (2.22)

where Tw is the wall temperature, and ρw is determined by conservation of mass through the

wall:

ρw(x, t) = −
∫
(v−uw(x,t))·n(x)≥0(v − uw(x, t)) · n(x)f(x,v, t) dv

∫
(v−uw(x,t))·n(x)<0

(v − uw(x, t)) · n(x) exp
(
− |v−uw(x,t)|2

2RTw(x,t)

)
dv

. (2.23)

2.4 Time discretization and the fully discrete scheme

We now add the time discretization to (2.11)-(2.13) to obtain a fully discrete scheme. Since

most of the examples we are interested in this paper concern the stationary Boltzmann equation,

the first order time discretization suffices. For high order method in time, the readers can refer

to [8] and references therein.

Given the initial condition f(x,v, 0) = f0(x,v), we first perform the singular value decompo-

sition f0(x,v) =
∑r

i,j=1 X
0
i (x)S

0
ijV

0
j (v) to obtain (X0

i , S
0
ij , V

0
j ), where a fixed, reasonable rank

r is chosen and used in the following computation.

Suppose at time step tn, (Xn
i , S

n
ij , V

n
j ) are available. In order to obtain (Xn+1

i , Sn+1
ij , V n+1

j )

at tn+1, we proceed as follows:

1. K-step.

(a) Construct Kn
j =

∑r
i=1 X

n
i S

n
ij .

(b) Perform the forward Euler step in (2.11) to obtain Kn+1
j :

Kn+1
j = Kn

j −∆t

r∑

l=1

〈
vV n

j V n
l

〉
v

· ∇xK
n
l +∆t

r∑

m,n=1

〈
V n
j Q (V n

m, V n
n )
〉
v

Kn
mKn

n , j = 1, . . . , r.

(2.24)

(c) Compute the QR decomposition of Kn+1
j =

∑r
i=1 X

n+1
i S

(1)
ij to obtain updated Xn+1

i

and S
(1)
ij .

The overall arithmetic complexity of this step is O
(
r3Nd

v
+ r3Nd

x
+ r2MNd

v
logNv

)
(sup-

pose the algorithm in [21] is used for evaluating the collision operator).

2. S-step.

(a) Perform the forward Euler step in (2.12) to obtain S
(2)
ij :

S
(2)
ij = S

(1)
ij +∆t

r∑

l=1

〈vV n
j V n

l 〉v · 〈Xn+1
i ∇xK

n+1
l 〉x

−∆t

r∑

m,n=1

〈V n
j Q(V n

m, V n
n )〉v

r∑

l=1

(
r∑

k=1

(
〈Xn+1

i Xn+1
k Xn+1

l 〉xS(1)
km

)
S
(1)
ln

)
, i, j = 1, . . . , r.

(2.25)
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Since some of the quantities have been computed in the K-step, they can be reused in

this step, for example, the term Q(V n
m, V n

n ). Note that we changed the second term

on the right hand side such that it uses ∇xK
n+1
j rather than ∇xX

n+1
j . This is crucial

because we have only available the boundary condition expressed in terms of Kn+1
j

as seen in Section 2.3.

The overall arithmetic complexity of this step is O
(
r3Nd

x
+ r4

)
.

3. L-step.

(a) Construct Ln
i =

∑r
j=1 S

(2)
ij V n

j and K̃n+1
j =

∑r
i=1 X

n+1
i S

(2)
ij .

(b) Perform the forward Euler step in (2.13) to obtain Ln+1
i :

Ln+1
i = Ln

i −∆t

r∑

l=1

v · 〈Xn+1
i ∇xK̃

n+1
l 〉xV n

l

+∆t

r∑

p,q=1

Q(V n
p , V n

q )

r∑

n=1

(
r∑

m=1

(
〈Xn+1

i Xn+1
m Xn+1

n 〉xS(2)
mp

)
S(2)
nq

)
, i = 1, . . . , r.

(2.26)

The term involving the collision operator is rearranged so that the previously com-

puted values can be reused. For the same reason as in the S-step, ∇xK̃
n+1
j is intro-

duced to avoid using ∇xX
n+1
l .

(c) Compute the QR decomposition of Ln+1
i =

∑r
j=1 S

n+1
ij V n+1

j to obtain updated V n+1
j

and Sn+1
ij .

The overall arithmetic complexity of this step is O
(
r2Nd

x
+ r3Nd

v
+ r4

)
.

To simplify the notation, we treat x, v as the continuous variables in the above presentation.

The discretization in x and v can be added straightforwardly following the discussion in Section

2.1 and Section 2.2. The inner products 〈 · 〉v, 〈 · 〉x are evaluated using the midpoint rule at

the discrete velocity and spatial grid points.

If r is small, the computational complexity of the above algorithm will be dominated by the

evaluation of the collision operator O(r2MNd
v
logNv), which can be much more efficient than

the full tensor method whose complexity is O(Nd
x
MNd

v
logNv).

3 An adaptive dynamical low rank method

The dynamical low rank method introduced in the last section uses a fixed rank r throughout

the entire time evolution. This turns out to be a bad strategy when solving the stationary

Boltzmann equation subject to inflow or Maxwell diffusive boundary conditions. The reason

is two-fold: 1) The boundary keeps sending new information to the interior of the domain so

that the basis Xi, Sij , Vj initialized according to the initial condition is not sufficient to capture

the solution at later time. Thus new basis needs to be injected to the solution over time. 2)

For many benchmark tests of the Boltzmann equation, the steady state solutions are often low

rank (see Section 4 for a partial justification). Therefore, keeping adding basis without dropping

anything would unnecessarily increase the computational cost. In this section, we provide an

adaptive strategy to add and delete basis during the time evolution of a dynamical low rank

method.
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3.1 Adding basis from the boundary

Assume that at the boundary x ∈ ∂Ωx, f(x,v, t) is given by

f(x,v, t) = f b(x,v, t), (3.1)

where f b(x,v, t) is defined in (2.19).

Since the function f b(x,v, t) does not necessarily belong to the space spanned by {Vj}1≤j≤r,

using a fixed set of basis will result in information loss.

We can fix this problem by explicitly adding boundary conditions as basis into {Vj}1≤j≤r.

For example, at the beginning of time step tn, suppose in the fully discrete scheme there are

Nbx spatial points on the boundary ∂Ωx, N
d
v
velocity points over the velocity space Ωv and Nd

x

spatial points over the physical space Ωx. We can represent the function f b(x,v, tn) using a

matrix Fb ∈ R
Nbx×Nd

v . We then proceed as follows:

1. Compute the SVD of Fb to obtain Fb = UbΣbQ
T
b where Ub, Qb are orthonormal and Σb is

diagonal with descending singular values.

2. Drop singular values in Σb that are smaller than 10−10. Suppose there are rb singular

values remaining, set Q̄b = Qb(:, 1 : rb) ∈ R
Nd

v
×rb .

3. Concatenate a random matrix Xh ∈ R
Nd

x
×rb to Xn, Q̄b to V n and extend Sn with zero

padding:

X̂ = [Xn, Xh] ∈ R
Nd

x
×(r+rb), Ŝ =

[
Sn

0

]
∈ R

(r+rb)×(r+rb), V̂ = [V n, Q̄b] ∈ R
Nd

v
×(r+rb).

(3.2)

4. Perform the QR decomposition of X̂ and V̂ to orthonormalize new basis as X̂ = XqSx and

V̂ = VqSv. Set Sq = SxŜS
T
v .

Then (Xq, Sq, Vq) are the new basis and we proceed as in Section 2.4. If f b(x,v, t) = f b(v, t) is

spatially homogeneous, we can directly start at step 3 and concatenate Fb to V n.

3.2 Dropping basis adaptively

To avoid the rank accumulation from the above procedure, we can decrease the rank r by

dropping some small singular values of matrix (Sij)1≤i,j≤r .

At the end of time step tn as described in Section 2.4, we proceed as follows to adjust the

rank:

1. Compute the SVD of Sn+1 = (Sn+1
ij )1≤i,j≤r to obtain Sn+1 = UΣQT , where U,Q ∈ R

r×r

are orthonormal and Σ ∈ R
r×r is diagonal with descending singular values.

2. Drop singular values in Σ that are less than some tolerance drop tol. Suppose there are r′

singular values remaining, we set Ū = U(:, 1 : r′), Σ̄ = Σ(1 : r′, 1 : r′) and Q̄ = Q(:, 1 : r′).

Define S̄n+1 = Σ̄.

3. Update the basis as [X̄n+1
1 , X̄n+1

2 , . . . , X̄n+1
r′ ] = [Xn+1

1 , Xn+1
2 , . . . , Xn+1

r ]Ū and [V̄ n+1
1 , V̄ n+1

2 , . . . , V̄ n+1
r′ ] =

[V n+1
1 , V n+1

2 , . . . , V n+1
r ]Q̄ where {X̄n+1

i }i=1,...,r′ and {V̄ n+1
i }i=1,...,r′ are the updated spa-

tial and velocity basis functions respectively.

10



drop tol plays an important role in overall computational efficiency and accuracy. Large

drop tol causes low accuracy for some high-rank solutions and small drop tol suffers from

heavy computation by large computational rank. We dynamically choose drop tol according to

the accuracy of the current solution. More details are given in Section 5.1.

4 Normal shock problem and low rank property of the

solution

Generally speaking, it is hard to predict or analyze the rank of the solution to the Boltz-

mann equation due to its highly nonlinear structure. As such, the dynamical low rank method

introduced above is really like a black box solver since one cannot tell in advance the rank of the

solution until the actual simulation is run. If the rank turns out to be high, the method becomes

slow and might not be competitive to the full tensor method. Nevertheless, in this section we

identify a class of problems whose solutions are indeed low rank so that we have confidence about

the efficiency of the low rank method.

The normal shock problem [4] is a classical benchmark test in rarefied gas dynamics and

has been used to validate all kinds of numerical methods for the nonlinear Boltzmann equation.

Consider a plane shock wave perpendicular to a flow. The flow is in the x1 direction. The gas

is uniform at upstream infinity (x1 → −∞) and downstream infinity (x1 → +∞) and the whole

flow is stationary. We are interested in the shock profile developed in this setup with various

Mach numbers.

The governing equation is the following 1D stationary Boltzmann equation:

v1∂x1
f = Q(f, f), (4.1)

with boundary condition

lim
x1→−∞

f(x1,v) = fL(v) = M(ρL,uL, TL)(v) =
ρL

(2πRTL)d/2
exp

(
− (v1 − uL)

2 + v22 + ...+ v2d
2RTL

)
,

lim
x1→+∞

f(x1,v) = fR(v) = M(ρR,uR, TR)(v) =
ρR

(2πRTR)d/2
exp

(
− (v1 − uR)

2 + v22 + ...+ v2d
2RTR

)
,

(4.2)

where M(ρ,u, T ) is the Maxwellian distribution; (ρL,uL, TL) and (ρR,uR, TR) are the density,

bulk velocity and temperature of the upstream and downstream flows; and R is the gas constant.

The net flow of mass, momentum and energy into the shock must be equal to the ones out

of the shock:
∫

v1fL(v)



1

v1

v2


 dv =

∫
v1fR(v)



1

v1

v2


 dv. (4.3)

Rewriting equation (4.3) in terms of macroscopic quantities ρL,R, uL,R and TL,R, we have the

following Rankine-Hugoniot relations

ρLuL = ρRuR,

ρLu
2
L + ρLRTL = ρRu

2
R + ρRRTR,

ρLuL

(
u2
L + (d+ 2)RTL

)
= ρRuR

(
u2
R + (d+ 2)RTR

)
.

(4.4)
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Given the upstream quantities (ρL, uL, TL) and using the upstream flow Mach number defined

by

ML =
uL

(γRTL)
1

2

, γ =
d+ 2

d
, (4.5)

we can solve equation (4.4) to obtain

ρR = ρL
(d+ 1)M2

L

M2
L + d

, uR = uL
M2

L + d

(d+ 1)M2
L

, TR = TL
((d+ 2)M2

L − 1)(M2
L + d)

(d+ 1)2M2
L

. (4.6)

In the following, we consider two scenarios where one can obtain some low rank approximation

to the solutions of (4.1)-(4.2).

4.1 Weak shock wave: ML = O(1)

When ML = 1, it is clear from (4.6) that there will be no jump hence no shock. When

ML = O(1) but bigger than 1, a weak shock will be developed. We assume

ML = 1 + ε, (4.7)

where ε is a small parameter. In fact, ε is on the same order of the mean free path [24]. We

then rescale x1 according to x̃1 = εx1. The equation (4.1) thus becomes

v1∂x̃1
f =

1

ε
Q(f, f). (4.8)

On the other hand, we can see from (4.6) that the macroscopic quantities of upstream flow and

downstream flow are very close:

ρR

ρL
= 1 +

d(M2
L − 1)

M2
L + d

= 1 +O(ε),

uR

uL
= 1− d(M2

L − 1)

(d+ 1)M2
L

= 1 +O(ε),

TR

TL
= 1 +

(d+ 1)(M4
L − 1) + (M2

L − 1)2

(d+ 1)2M2
L

= 1 +O(ε).

(4.9)

Hence
fR

fL
= 1 +O(ε). (4.10)

Therefore, it is reasonable to assume

f(x̃1,v) = fL(v) + εf1(x̃1,v) +O(ε2), (4.11)

where f1(x̃1,v) is yet to be determined.

The rest of the analysis is similar to the Hilbert expansion. Substituting (4.11) into (4.8)

and matching orders, we obtain at order O(ε):

Q(f1, fL) +Q(fL, f1) = v1∂x̃1
fL(v) ≡ 0. (4.12)

Using the linearized Boltzmann collision operator [3] defined by

LM(f) :=
1

M (Q(M,Mf) +Q(Mf,M)) , M is a Maxwellian, (4.13)

12



we can write (4.12) as

LfL

(
f1

fL

)
(x̃1,v) = 0. (4.14)

The kernel property of LM implies that f1
fL

must be a linear combination of collision invariants

1, v, |v|2 and we may write

f1(x̃1,v) = fL(v)
(
a(x̃1) + b(x̃1) · v + c(x̃1)|v|2

)
, (4.15)

where a, b and c are functions of x1 only. Together with (4.11), we have

f(x̃1,v) = fL(v)(1 + εa(x̃1) + εb(x̃1) · v + εc(x̃1)|v|2) +O(ε2). (4.16)

Therefore, up to order O(ε), the solution f(x̃1,v) is a low rank separated function in x̃1 and v.

We mention that the derivation of O(ε) term does not require specific properties of the

collision kernel B. One can continue this process to derive O(ε2) term, which is a low rank

function as well and depends on the kernel B, see [24] for details.

4.2 Strong shock wave: ML → ∞
When ML is very large, a strong shock wave will develop and one cannot hope for any asymp-

totic expansion as in the previous subsection. Over the years, people have tried to find various

approximations to the solution in this regime and it turns out many heuristic solutions match

well with the experiments, yet are low rank [4, 13]. Here we present one such approximation due

to Mott-Smith, who obtained the first solution of Boltzmann’s equation for the shock structure

problem in 1951. More sophisticated approximations exist but they more or less follow a similar

idea as Mott-Smith.

The starting point is a bimodal distribution (and low rank) approximation of f as

f(x1,v) = a1(x1)fL(v) + a2(x1)fR(v). (4.17)

To satisfy the Rankine-Hugoniot equations, we must have a1(x1) + a2(x1) ≡ 1. We thus write

a(x1) = a1(x1) and a2(x1) = 1− a(x1). In order to determine a(x1), one additional condition is

needed. The simplest way is to enforce the moment equation by multiplying equation (4.1) by∫
· v21 dv: ∫

v31∂x1
f dv =

∫
v21Q(f, f) dv, (4.18)

which reduces to

a′(x1)
(
ρLuL(u

2
L + 3RTL)− ρRuR(u

2
R + 3RTR)

)
= αa(x1)(1− a(x1)), (4.19)

with

α =

∫
v21 (Q(fL, fR) +Q(fR, fL)) dv. (4.20)

Using (4.4), (4.19) can be further simplified to

(d− 1)ρLuLR(TL − TR)a
′(x1) = −αa(x1)(1 − a(x1)). (4.21)

This equation easily integrates to

a(x1) =
1

exp(βx1) + 1
, β =

α

(d− 1)ρLuLR(TL − TR)
. (4.22)
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Therefore, we have found a closed form solution in the form of (4.17). Note that to evaluate

α, we need to make use of specific properties of the collision kernel B. Accordingly, we can see

that the spatial change in ρ across the shock wave increases with increasing Mach number ML

of the upstream:

ρ(x1)

ρL
=

1 +
(d+1)M2

L

M2

L+d
exp(βx1)

1 + exp(βx1)
. (4.23)

5 Numerical examples

In this section, we evaluate the accuracy and efficiency of the proposed dynamical low rank

method by several classical benchmark tests in rarefied gas dynamics, including normal shock

wave (1D), Fourier flow (1D), lid driven cavity flow (2D), and thermally driven cavity flow (2D).

All these examples concern the steady-state solution of the Boltzmann equation and we use the

first order method in both time and space as described in Section 2, and Fourier spectral method

for 2D Maxwell molecules [21] to evaluate the collision operator. The results are compared with

full tensor method using the same discretization.

5.1 Convergence criterion

Unlike time dependent problems, we need a proper stopping criterion for solving the steady

state solutions.

For the full tensor method, we define the error as

errfull tensor = ‖fn+1
full tensor − fn

full tensor‖L2 =
〈
fn+1
full tensor − fn

full tensor, f
n+1
full tensor − fn

full tensor

〉 1

2

x,v
.

(5.1)

For the low rank method, we define the error similarly as

errlow rank = ‖fn+1
low rank − fn

low rank‖L2 =
〈
fn+1
low rank − fn

low rank, f
n+1
low rank − fn

low rank

〉 1

2

x,v
, (5.2)

where fn
low rank =

∑r
i,j=1 X

n
i S

n
ijV

n
j . Rather than reconstructing fn

low rank, the above error term

can be broke into three pieces:

fn+1
low rank − fn

low rank =
r∑

i,j=1

Xn+1
i Sn+1

ij V n+1
j −

r∑

i,j=1

Xn
i S

n
ijV

n
j

=

r∑

j=1

(
Kn+1

j −Kn
j

)
V n
j +

r∑

i,j=1

Xn+1
i

(
S
(2)
ij − S

(1)
ij

)
V n
j +

r∑

i=1

Xn+1
i

(
Ln+1
i − Ln

i

)

:=

r∑

j=1

∆KjV
n
j +

r∑

i,j=1

Xn+1
i ∆SijV

n
j +

r∑

i=1

Xn+1
i ∆Li

(5.3)

where the notation follows Section 2.4. By orthogonality of {Xi}1≤i≤r and {Vj}1≤j≤r, (5.2) can

be simplified as

err2low rank =
〈
fn+1
low rank − fn

low rank, f
n+1
low rank − fn

low rank

〉
x,v

=

r∑

j=1

〈∆Kj ,∆Kj〉
x
+

r∑

i,j=1

∆S2
ij +

r∑

i=1

〈∆Li,∆Li〉v + I + II + III,
(5.4)
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where I, II and III are cross terms:

I = 2

r∑

i,j=1

〈
∆Kj , X

n+1
i

〉
x
∆Sij .

II = 2
r∑

i,j=1

〈
∆Li, V

n
j

〉
v

∆Sij .

III = 2
r∑

i,j=1

〈
∆Kj , X

n+1
i

〉
x

·
〈
∆Li, V

n
j

〉
v

.

(5.5)

We emphasize that it is crucial to evaluate errlow rank using (5.4)-(5.5), since the cost of recon-

structing fn
low rank is O(r2Nd

x
Nd

v
) which is comparable to a full tensor method.

In general, we set a fixed convergence tolerance res tol and terminate the time iteration

whenever errlow rank, errfull tensor ≤ res tol for both the full tensor method and low rank method.

For the adaptive low rank method discussed in Section 3, we have

|errlow rank − erradalow rank| ≤ ‖f̄n+1
low rank − fn+1

low rank‖L2 ≤ (r − r′)
1

2 · drop tol, (5.6)

where erradalow rank = ‖f̄n+1
low rank − fn

low rank‖L2 , f̄n+1
low rank is the solution at the end of time step

tn after adding and removing basis. We dynamically set drop tol = c · erradalow rank and control

erradalow rank through

1

1 + c(r − r′)
1

2

errlow rank ≤ erradalow rank ≤ 1

1− c(r − r′)
1

2

errlow rank. (5.7)

In the following tests, we set c = 0.2 and always use the adaptive dynamical low rank method

with convergence criterion erradalow rank ≤ res tol.

5.2 Normal shock wave

We first consider the normal shock problem (4.1)-(4.2) with several different Mach numbers

ML. We take R = 1, d = 2, hence γ = 2, ML = uL

(2TL)1/2
. In the following, the spatial domain is

chosen as x1 ∈ [−30, 30] with Nx = 1000; and the velocity domain is (v1, v2) ∈ [−Lv, Lv]
2.

We choose the upstream and downstream condition as

(ρL, ρR) =

(
1,

3M2
L

M2
L + 2

)
, (uL, uR) =

(√
2ML,

ρLuL

ρR

)
, (TL, TR) =

(
1,

4M2
L − 1

3ρR

)
,

and the initial condition as

ρ0(x1) =
tanh(αx1) + 1

2(ρR − ρL)
+ρL, T0(x1) =

tanh(αx1) + 1

2(TR − TL)
+TL, u0(x1) =

(
tanh(αx1) + 1

2(uR − uL)
+ uL, 0

)
,

with α = 0.5.

When showing the numerical results, we are mainly interested in the macroscopic quantities:

density ρ(x1), bulk velocity u(x1) (in first dimension) and temperature T (x1). Their normalized

values will be plotted, which are defined by

ρ̂(x1) =
ρ(x1)− ρL

ρR − ρL
, û(x1) =

u(x1)− uR

uL − uR
, T̂ (x1) =

T (x1)− TL

TR − TL
.
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5.2.1 Weak shock wave: Mach 1.4

In this subsection we consider Mach number to be ML = 1.4 and set Nv = 32, Lv = 13.11.

We set the reference solution fref as the solution from the full grid method with convergence

criterion res tol = 4× 10−10.

We check both the full grid method and adaptive low rank method by varying convergence

criterion res tol. The error is defined as ‖fref − fnum‖L2 where fnum is the solution from either

the full grid or low rank method. At the same time, we record the computational time needed

for both methods to reach the same convergence criterion.

From figure 1, we can see that the low rank method can achieve the same accuracy much

more efficiently compared to the full grid method. From figure 2, we can see that both methods

match well with the reference solution. The rank in the adaptive low rank method grows slowly

as time evolves and is stabilized to 16 before reaching the convergence criterion.

10-8 10-7 10-6

res_tol

10-4

10-3

10-2

l2
 e

rr
or

full grid method
low rank method

10-8 10-7 10-6

res_tol

0

0.5

1

1.5

2

2.5

3

co
m

pu
ta

tio
na

l t
im

e

104

full grid method
low rank method

Figure 1: Normal shock wave (Mach 1.4). Left: error of the full grid method and the adaptive low

rank method for different convergence criterion res tol. Right: computational time in seconds

for both methods.

5.2.2 Strong shock wave: Mach 3.8 & Mach 6.5

In this subsection we consider the strong shock wave with two different Mach numbers ML =

3.8 and ML = 6.5. We compare the full grid method and the adaptive low rank method using

the same convergence criterion res tol = 4.6× 10−7.

For the case ML = 3.8, we use Nv = 32 and Lv = 20.97. The full grid method needs 18540

seconds to converge; and the adaptive low rank method needs 7556 seconds to converge. For the

case ML = 6.5, we use Nv = 48 and Lv = 34.08. The full grid method needs 44379 seconds to

converge; and the adaptive low rank method needs 16157 seconds to converge.

The results of both cases are reported in figure 3. The full grid method and the adaptive low

rank method match well. On the other hand, the rank in the adaptive low rank method behaves

similarly as in the weak shock wave: the numerical rank is a bit higher but still quite low rank

and stabilized before reaching the convergence criterion.
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Figure 2: Normal shock wave (Mach 1.4). Left: rank evolution of the adaptive low rank method.

Right: normalized density, bulk velocity and temperature of the full grid method and the adap-

tive low rank method using res tol = 3× 10−7, in comparison to the reference solution.

5.3 Fourier flow

We next consider a Fourier heat transfer problem. The spatial domain is 1D: x1 ∈ [0, 2] with

Nx = 200; and the velocity domain is 2D: (v1, v2) ∈ [−Lv, Lv]
2 with Lv = 7.86 and Nv = 32.

The Maxwell diffusive boundary condition is assumed at x1 = 0 with wall quantities uw = (0, 0),

Tw = 1 and x1 = 2 with uw = (0, 0), Tw = 1.2. For the initial condition, we use a spatially

homogeneous Maxwellian with ρ0 = 1, u0 = (0, 0) and T0 = 1.

The convergence criterion is set as res tol = 2× 10−7 for both the full grid method and the

adaptive low rank method. For the full grid method, we need 925 seconds to reach convergence,

while for the low rank method, we only need 509 seconds. The temperature profile as shown in

figure 4 matches well for both methods. Furthermore, we can see that the numerical rank in the

adaptive low rank method is stabilized to 11 in a very short time.

5.4 Lid driven cavity flow

We now consider the 2D lid driven cavity flow problem. The spatial domain is rectangular

(x1, x2) ∈ [0, 0.5]2 with Nx = 100 in each dimension; and the velocity domain is (v1, v2) ∈
[−Lv, Lv]

2 with Lv = 7.86 and Nv = 32. The Maxwell diffusive boundary condition is assumed

at all boundaries. The wall quantities at x2 = 0.5 are uw = (1, 0), Tw = 1, while at all other

boundaries we set uw = (0, 0), Tw = 1. For the initial condition, we use a spatially homogeneous

Maxwellian with ρ0 = 1, u0 = (1, 1) and T0 = 1.

The convergence criterion is set as res tol = 2× 10−7 for both the full grid method and the

adaptive low rank method. For the full grid method, we need 29043 seconds to reach convergence,

while for the low rank method, we only need 8323 seconds. We compare the temperature and

velocity profile in figure 5 and a good match is obtained.

From figure 6, we can see that the rank in the adaptive low rank method is increasing

with time and no stabilization is observed here, which implies this is an intrinsically high rank
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Figure 3: Normal shock wave (Mach 3.8 & Mach 6.5). Top: rank evolution of the adaptive

low rank method with Mach 3.8 (Left) and Mach 6.5 (Right); Bottom: normalized density,

bulk velocity and temperature of the full grid method and the adaptive low rank method using

res tol = 4.6× 10−7 with Mach 3.8 (Left) and Mach 6.5 (Right).
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Figure 4: Fourier flow. Left: rank evolution in the adaptive low rank method; Right: temperature

profile of the full grid method and the adaptive low rank method using res tol = 2× 10−7.
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problem. Nevertheless, the error decay in the adaptive low rank method behaves similarly as in

the full grid method (so our adaptive procedure does reasonable things in the actual simulation).
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Figure 5: Lid driven cavity flow. Top: temperature profile of the full grid method (Left) and

low rank method (Right); Middle: x1-component velocity of the full grid method (Left) and low

rank method (Right); Bottom: x2-component velocity of the full grid method (Left) and low

rank method (Right). Convergence criterion is res tol = 2× 10−7 for both methods.

5.5 Thermally driven cavity flow

We finally consider the 2D flow induced by thermal gradients. The spatial domain is

rectangular (x1, x2) ∈ [0, 2]2 with Nx = 100 in each dimension; and the velocity domain is

(v1, v2) ∈ [−Lv, Lv]
2 with Lv = 6.55 and Nv = 32. The Maxwell diffusive boundary condition

is assumed at all boundaries. We set the wall quantities at x2 = 0, x2 = 2 with uw = (0, 0)

and Tw follows a linear function ranging from 1 to 1.2 as in figure 7. At x1 = 0, x1 = 2, the
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Figure 6: Lid driven cavity flow. Left: rank evolution in the adaptive low rank method; Right:

error decaying behaviors of the full grid method (errfull tensor) and low rank method (erradalow rank).

wall quantities are set with uw = (0, 0) and Tw = 1. For the initial condition, we use a spatially

homogeneous Maxwellian with ρ0 = 1, u0 = (0, 0) and T0 = 1.

Figure 7: Thermally driven cavity flow. Wall temperature profile at x2 = 0 and x2 = 2.

The convergence criterion is set as res tol = 2× 10−7 for both the full grid method and the

adaptive low rank method. For the full grid method, we need 19011 seconds to reach convergence

criterion, while for the low rank method, we only need 7112 seconds. We plot the temperature

and velocity profile for both methods as in figure 8 where we can see a good match.

Similarly as in the previous test, we track the rank evolution in the adaptive low rank method

and the error decay behavior of both methods in figure 9. For this problem, the rank increases

more rapidly, yet the low rank method can still produce reasonable solution more efficiently

compared to the full grid method.

6 Conclusions

We have introduced an adaptive dynamical low rank method for the nonlinear Boltzmann

equation, concerning in particular the steady state computation. This method employs the

fast Fourier spectral method (for the collision operator) and the dynamical low rank method
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Figure 8: Thermally driven cavity flow. Top: temperature profile of the full grid method (Left)

and low rank method (Right); Middle: x1-component velocity of the full grid method (Left) and

low rank method (Right); Bottom: x2-component velocity of the full grid method (Left) and low

rank method (Right). Convergence criterion is res tol = 2× 10−7 for both methods.
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Figure 9: Thermally driven cavity flow. Left: rank evolution in the adaptive low rank method;

Right: error decaying behaviors of the full grid method (errfull tensor) and low rank method

(erradalow rank).

to obtain computational efficiency. An adaptive strategy was introduced to incorporate the

boundary information and control the computational rank by monitoring the residual error. A

series of benchmark tests were performed to demonstrate the efficiency and accuracy of the

proposed method in comparison to the full tensor grid method.

Data availability

This manuscript has no associated data.
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