
POLE RECOVERY FROM NOISY DATA ON IMAGINARY AXIS

LEXING YING

Abstract. This note proposes an algorithm for identifying the poles and residues of a
meromorphic function from its noisy values on the imaginary axis. The algorithm uses
Möbius transform and Prony’s method in the frequency domain. Numerical results are
provided to demonstrate the performance of the algorithm.

1. Introduction

Let g(z) be a meromorphic function of the form

(1) g(z) =

Np∑
j=1

rj
ξj − z

where the number of poles Np, the pole locations {ξj}, and residues {rj} are all unknown,
except that ξj are away from the imaginary axis iR. The problem is to recover Np, {ξj}
and {rj}, given the noisy access of g(z) along the imaginary axis iR. Two access models are
particularly relevant: (1) the random access model where one can get noisy values of g(z)
anywhere on iR and (2) the Matsubara model where one can only get the noisy values of g(z)
at the Matusbara grid

zn =

{
2nπiβ , for bosons,

(2n+ 1)πiβ , for fermions.

To make the problem numerically well-defined, we assume

• There exists constants 0 < a < b such that the poles {ξj} reside within the union of

the two disks of radius b−a
2 centered at − b+a

2 and b+a
2 , respectively. See Figure 1 for

an illustration.

This assumption is quite natural because otherwise any algorithm is forced to sample exten-
sively along the imaginary axis towards infinity.

There is also a matrix-valued version of this problem, where

(2) G(z) =

Np∑
j=1

Rj
ξj − z

where G(z) and Rj are matrices of size Nb × Nb. The task is then to recover Np, {ξj} and
{Rj}. A particularly important special case is where Rj = vjv

∗
j for some vj ∈ CNb [10].

This problem has many applications in scientific and engineering disciplines. One of the
key examples is the reconstruction of spectral density from Matsubara Green’s function [5].
This problem is highly related to a couple of other well-studied problems, including rational
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Figure 1. The unknown poles are inside the two circles. The algorithm can
access the noisy function values along the imaginary axis.

function approximation and interpolation [1,2,4,9,11,13], Pade approximation [8], contractive
analytic continuation [6, 7], approximation with exponential sums [3, 12], and hybridization
fitting [10].

Since this problem is quite ill-posed, a solution should be relatively robust to a reasonable
level of noise. The main content of this note is a simple algorithm based on conformal mapping
and Prony’s method that naturally draws ideas from the references list above.

2. Algorithm

2.1. Continuous version. Let us consider the scalar case (1). Below we describe the algo-
rithm as if one can manipulate continuous objects. The overall plan is to

• locate the poles in the left and right half plane separately using Möbius transform
and Prony’s method,
• compute the residues using least square.
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Figure 2. Möbius transform. Left: the z plane. Right: the t plane.

We introduce the following Möbius transform from z ∈ C to t ∈ C

(3) t =
z −
√
ab

z +
√
ab
, z = −

√
ab
t+ 1

t− 1
.

This transform maps

• the right half-plane C+ in z to the interior of the unit disk D in t,
• the left half-plane C− in z to the exterior of D in t,
• the imaginary axis iR in z to the unit circle in t,
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• the two circles centered at − b+a
2 and b+a

2 in z to two concentric circles with radius
√
b−
√
a√

b+
√
a

and
√
b+
√
a√

b−
√
a

in t (see Figure 2 for an illustration).

The function g(t) ≡ g(z(t)) in the t space also enjoys a pole representation

g(z) =

Np∑
j=1

wj
τj − t

+ const

for locations {τj} and residues {wj}. Since {τj} are the images of the poles {zj} under the
Möbius transform, it is equivalent to locating {τj}.

Let us consider the integrals

(4)
1

2πi

∫
∂D

g(t)

tk
dt

t

for integer values of k. The integrals for negative and positive values of k give information
about the poles inside D and the ones outside D, respectively. For any k ≤ −1,

1

2πi

∫
∂D

g(t)

tk
dt

t
=

1

2πi

∫
∂D

∑
|τj |<1

+
∑
|τj |>1

 wj
τj − t

t|k|+1dt

=
1

2πi

∑
|τj |<1

wj

∫
1

τj − t
t|k|−1dt =

1

2πi

∑
|τj |<1

wjt
|k|−1
j

∫
1

τj − t
dt = −

∑
|τj |<1

wjτ
−(k+1)
j ,

where the second equality uses the fact
wj

τj−t is analytic in D for |τj | > 1 and the third equality

uses the fact that
τ
|k|−1
j −t|k|−1

τj−t is a polynomial hence analytic in D. Hence the integrals (4) for

k ≤ −1 contain information about the poles inside D.
For any k ≥ 1,

1

2πi

∫
∂D

g(t)

tk
dt

t
=

1

2πi

∫
∂D

∑
|τj |<1

+
∑
|τj |>1

 wj
τj − t

· 1

tk+1
dt

=
1

2πi

∑
|τj |>1

wj

∫
∂D

1

τj − t
· 1

tk+1
dt =

1

2πi

∑
|τj |>1

wj

∫
∂D

1

τj

(
1 +

t

tj
+ · · ·

)
1

tk+1
dt

=
1

2πi

∑
|τj |>1

wj
1

τk+1
j

∫
∂D

1

t
dt =

∑
|τj |>1

wjτ
−(k+1)
j ,

where the second equality uses the fact that for |τj | < 1 the product
wj

τj−t ·
1

tk+1 is analytic

outside D with at least quadratic decay, the fourth step uses the fact that only the term with
tk in the power expansion gives non-zero contribution. Hence the integrals (4) for k ≥ 1
contain information about the poles outside D.

Since the integral (4) is over the unit circle, it is closely related to the Fourier transform
of the function g(θ) ≡ g(eiθ):

(5)
1

2πi

∫
∂D

g(t)

tk
dt

t
=

1

2πi

∫ 2π

0
g(θ)e−ikθidθ =

1

2π

∫ 2π

0
g(θ)e−ikθdθ = ĝk.
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To recover the poles inside D, we use Prony’s method to the Fourier coefficients. From the
integrals with k ≤ −1, define the semi-infinite vector

ĝ− ≡

ĝ−1ĝ−2
...

 ≡ 1

2πi

∫
∂D
g(t)

t
0

t1

...

dt ≡

−
∑
|τj |<1wjτ

0
j

−
∑
|τj |<1wjτ

1
j

...


Let us define S to be the shift operator that shifts the semi-infinite vector upward (and drops
the first element). For any τj with |τj | < 1,

S

τ
0
j

τ1j
...

 =

τ
1
j

τ2j
...

 , i.e., (S − τj)

τ
0
j

τ1j
...

 = 0.

Since the operators S − τj all commute,

(6)
∏
|τi|<1

(S − τi)

τ
0
j

τ1j
...

 = 0.

Since ĝ− is a linear combination of such semi-infinite vectors,∏
|τi|<1

(S − τi) ĝ− = 0.

Suppose that
∏
|τi|<1 (t− τi) = p0t

0 + · · · + pdt
d with coefficients pi, where the degree d is

equal to the number of poles in D. Then (6) becomes

(7) p0(S
0ĝ−) + · · ·+ pd(S

dĝ−) = 0, i.e.,

ĝ−1 ĝ−2 · · · ĝ−(d+1)

ĝ−2 ĝ−3 · · · ĝ−(d+2)
...

...
...

...


p0. . .
pd

 = 0.

This implies that the number of poles in D is equal to the smallest value d such that the
matrix in (7) is rank deficient. In addition, (p0, . . . , pd) can be computed as a non-zero vector
in the null-space of this matrix. Once (p0, . . . , pd) are available, the roots of

p(t) = p0t
0 + . . . pdt

d

are the poles {τj} inside D.
To recover the poles outside D, we use again Prony’s method but to a different part of the

Fourier coefficients. From the integrals with k ≥ 1, define the semi-infinite vector

ĝ+ ≡

ĝ1ĝ2
...

 ≡ 1

2πi

∫
∂D
g(t)

t
−2

t−3

...

dt ≡


∑
|τj |>1wjτ

−2
j∑

|τj |>1wjτ
−3
j

...


With the same shift operator S, for any τj with |τj | > 1

S

τ
−2
j

τ−3j
...

 =

τ
−3
j

τ−4j
...

 , i.e., (S − τ−1j )

τ
−2
j

τ−3j
...

 = 0.
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Since the operators S − τ−1j all commute,

(8)
∏
|τi|>1

(S − τ−1i )

τ
−2
j

τ−3j
...

 = 0.

Since ĝ+ is a linear combination of such semi-infinite vectors,∏
|τi|>1

(S − τ−1i )ĝ+ = 0.

Suppose that
∏
|τi|>1(t − τ

−1
i ) = p0t

0 + · · · + pdt
d with coefficients pi, where the degree d is

equal to the number of poles outside D. Then (8) becomes

(9) p0(S
0ĝ+) + · · ·+ pd(S

dĝ+) = 0, i.e.,

ĝ1 ĝ2 · · · ĝd+1

ĝ2 ĝ3 · · · ĝd+2
...

...
...

...


p0. . .
pd

 = 0.

This implies that the number of poles outside D is equal to the smallest value d such that the
matrix in (9) is rank deficient. As before, (p0, . . . , pd) can be computed as a non-zero vector
in the null-space of this matrix and the roots of

p(t) = p0t
0 + . . . pdt

d

are {τ−1j }. Taking inverse of these roots gives the poles {τj} outside D.
Once the poles inside and outside D in the t plane are ready, we take the union and apply

(3) to get the poles {ξ1, . . . , ξNp} in the z plane. With the poles located, the least square
problem

Np∑
j=1

rj
ξj − z

≈ g(z)

computes the residues {rj}.

2.2. Implementation. To implement this algorithm numerically, we need to take care sev-
eral numerical issues.

• The semi-infinite matrix in (7) and (9). In the implementation, we pick a value dmax

that is believed to be the upper bound of the number of poles and form the matrix

(10) H =


ĝ−1 ĝ−2 · · · ĝ−dmax

ĝ−2 ĝ−3 · · · ĝ−(dmax+1)
...

...
...

...
ĝ−l ĝ−(l+1) · · · ĝ−(dmax+l−1)

 or H =


ĝ1 ĝ2 · · · ĝdmax

ĝ2 ĝ3 · · · ĝ(dmax+1)
...

...
...

...
ĝl ĝl+1 · · · ĝ(dmax+l−1)

 ,
respectively for (7) and (9), with l satisfying l ≥ dmax. We find that in practice
l = dmax is enough.
• Numerical estimation of the rank d in (7) and (9). To address this, let s1, s2, . . . , sdmax

be the singular values of the matrix H. The numerical rank is chosen to be the smallest
d such that sd+1/s1 is below the noise level.
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• Computation of the vector p. We first compute the singular value decomposition
(SVD) of 

ĝ−1 ĝ−2 · · · ĝ−(d+1)

ĝ−2 ĝ−3 · · · ĝ−(d+2)
...

...
...

...
ĝ−l ĝ−(l+1) · · · ĝ−(d+l)

 or


ĝ1 ĝ2 · · · ĝd+1

ĝ2 ĝ3 · · · ĝd+2
...

...
...

...
ĝl ĝl+1 · · · ĝd+l

 ,
respectively for (7) and (9). p is then chosen to be the last column of the V matrix.
• The matrix H in (10) requires the Fourier transform ĝk from k = −(dmax + l − 1) to

(dmax + l− 1). In the random access model, we choose an even Ns ≥ 2(dmax + l) and
define for n = 0, . . . , Ns − 1

(11) tn = exp

(
i
2πn

Ns

)
, zn = −

√
ab
tn + 1

tn − 1
.

Using samples {g(tn)} at the points {tn} corresponds to approximating (4) with the
trapezoidal rule. The trapezoidal rule is exponentially convergent for smooth functions
when the step size h = 2π

Ns
is sufficient small. In the current setting, this corresponds

to

h�
√
a

b
, i.e., Ns �

√
b

a
.

Applying the fast Fourier transform to {g(tn)} gives {ĝk} for k = −Ns
2 , . . . ,

Ns
2 − 1.

Among them, ĝ−(dmax+l−1), . . . , ĝ(dmax+l−1) are used to form the H matrix in (10).
• In the Matsubara model, g(z) is only given at the Matsubara grid

zn =

{
2nπiβ , for bosons,

(2n+ 1)πiβ , for fermions.

computing the integral (5) is not convenient in the t space since the images tn = zn−
√
ab

zn+
√
ab

are not uniformly distributed. Instead, using (3) the integral is equal to

1

2πi

∫ −i∞
+i∞

g(z)

(
z −
√
ab

z +
√
ab

)−(k+1)
2
√
ab

(z +
√
ab)2

dz ≈ −1

β

∑
n∈Z

g(zn)

(
zn −

√
ab

zn +
√
ab

)−(k+1)
2
√
ab

(zn +
√
ab)2

,

in the z variable, where the last step uses the trapezoidal quadrature on the Matsubara
grid. The trapezoidal rule is exponentially convergent in the regime a � π/β. Since
the last sum is over all integers, it needs to be truncated between −Nm and Nm for
some integer Nm. Noticing that the terms in the sum decays only quadratically, Nm

is typically chosen to be quite large for a good accuracy.
• The least square solve for {rj}. Using the zn points in (11), we solve the following

system

r = argminx∈CNp

1

2
‖Ax− b‖2, A =

[
1

ξj − zn

]
n,j

, b =

 g(z1)
. . .

g(zNs)

 ,
The entries of r are the residues {rj}.
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2.3. Matrix-valued version. Let us comment on the matrix-valued version (2). The algo-
rithm remains essentially the same. Below we list the differences.

• Ĝk is now the matrix-valued Fourier coefficients from the samples G(tn) ≡ G(z(tn)).
• The SVD is applied to the lN2

b × (d+ 1) matrices
cv(Ĝ−1) cv(Ĝ−2) · · · cv(Ĝ−(d+1))

cv(Ĝ−2) cv(Ĝ−3) · · · cv(Ĝ−(d+2))
...

...
...

...

cv(Ĝ−l) cv(Ĝ−(l+1)) · · · cv(Ĝ−(d+l))

 or


cv(Ĝ1) cv(Ĝ2) · · · cv(Ĝd+1)

cv(Ĝ2) cv(Ĝ3) · · · cv(Ĝd+2)
...

...
...

...

cv(Ĝl) cv(Ĝl+1) · · · cv(Ĝd+l)


where cv(·) turns a matrix into a column vector.
• The least square problem is applied to

R = argmin
X∈CNp×N2

b

1

2
‖AX −B‖2, A =

[
1

ξj − zn

]
n,j

, B =

 rv(G(z1))
. . .

rv(G(zNs))

 ,
where rv(·) turns a matrix into a row vector. Each row of R is then reshaped back to
the Nb×Nb matrix Rj . In the special case of Rj = vjv

∗
j , vj can be further constructed

by applying a rank-1 approximation to Rj .

2.4. Special cases and extensions. Below we include a few comments concerning special
cases and direct extensions.

• We have assumed that the poles reside in the two disks in the z plane. In many
applications, it is known that the poles are actually on the real axis. In such as case,
the Fourier coefficients ĝk and hence the matrix H are real. Therefore, a real SVD
can be used while determining the rank d and the coefficients (p0, . . . , pd). Finally,
the roots of p(z) are also real. These considerations can significantly improve stability
as shown in Section 3.
• We have not specified any noise model. If the noise model is known, it is possible to

denoise the values g(zn) before applying the algorithm described. Such a denoising
step can potentially improve the accuracy and stability of pole locations.
• The algorithm can also be extended to the general setting, where the imaginary axis
iR is replaced with any simple curve in the Riemann sphere. If the curve is smooth,
the extension is straightforward as the trapezoidal quadrature can still be applied.
When the curve is non-smooth, special quadrature is often needed for good accuracy.

3. Numerical results

This section presents a few numerical examples. In all examples, a = 1, b = 100. The noise
added to g(z) is multiplicative:

gnoisy = gexact · (1 + σNC(0, 1)).

This is a reasonable model since in many applications the magnitude of the noise is often
proportional to the magnitude of the signal. For each example, we present the numerical
results for both the random access model and the Matsubara model. For the random access
model, Ns = 1024. For the Matsubara model, Nm = 106 and β = 10π.

Example 1. We first consider the case of complex pole locations. Within each circle, we
place four poles and the residues {rj} are of unit order. Figure 3 plots the results at the noise
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Figure 3. Complex pole locations, with different levels of noise. Left: random
access model. Right: Matsubara model.

level σ = 0, 10−6, 10−5, and 10−4, where the left and right columns are for the random access
and Matsubara models, respectively. The results show that

• At σ = 0, the algorithm gives perfect reconstruction at machine accuracy.
• At σ = 10−6, the poles are accurately identified.
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• At σ = 10−5, the number of poles are correctly recovered, though the locations of the
two poles far from iR are wrong.
• At σ = 10−4, only the six poles close to iR are identified.

Example 2. Next we consider the case of real pole locations. Within each circle, there
are 4 poles and the residues {rj} are again of unit order. Figure 4 summarizes the results at
the noise level σ = 0, 10−5, 10−4, and 10−3.

• At σ = 0, the algorithm gives perfect reconstruction.
• At σ = 10−5, the poles are also recovered perfectly.
• At σ = 10−4, the pole locations are recovered accurately, though with some errors for

the two poles farthest away from iR.
• At σ = 10−3, only the six poles close to iR are identified.

A comparison with the previous example suggests that enforcing the real constraints signifi-
cantly improves the stability and accuracy of the algorithm.

Example 3. Finally, we consider the matrix-valued version. The dimension Nb of the
matrix Rj is set to be Nb = 4. When other parameters are fixed, larger values of Nb signifi-
cantly improve the accuracy since it effectively provides more data. Within each circle, there
are again 4 poles and the residues {vj} (and equivalently {Rj}) are of unit order. Figure 5
summarizes the results at the noise level σ = 0, 10−4, 10−3, and 10−2.

• At σ = 0, the algorithm again gives perfect reconstruction.
• At σ = 10−4, the reconstruction is near perfect.
• At σ = 10−3, the pole locations are recovered with good accuracy, though there are

some errors for the two poles away from iR.
• At σ = 10−2, only the six poles close to iR are identified.

Noticing that the noise level in this example is much higher than the ones used in the previous
examples, the results confirm that the matrix-valued version is easier, especially when Nb is
large.
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functions: Carathéodory formalism, Physical Review B 104 (2021), no. 16, 165111.

[8] Pedro Gonnet, Stefan Guttel, and Lloyd N Trefethen, Robust padé approximation via svd, SIAM review
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[10] Carlos Mejuto-Zaera, Leonardo Zepeda-Núñez, Michael Lindsey, Norm Tubman, Birgitta Whaley, and Lin
Lin, Efficient hybridization fitting for dynamical mean-field theory via semi-definite relaxation, Physical
Review B 101 (2020), no. 3, 035143.



10 POLE RECOVERY FROM NOISY DATA ON IMAGINARY AXIS

-100 -50 0 50 100
-100

-50

0

50

100
noise std: 0e+00

samples

exact

recovered

-100 -50 0 50 100
-100

-50

0

50

100
noise std: 0e+00

samples

exact

recovered

-100 -50 0 50 100
-100

-50

0

50

100
noise std: 1e-05

samples

exact

recovered

-100 -50 0 50 100
-100

-50

0

50

100
noise std: 1e-05

samples

exact

recovered

-100 -50 0 50 100
-100

-50

0

50

100
noise std: 1e-04

samples

exact

recovered

-100 -50 0 50 100
-100

-50

0

50

100
noise std: 1e-04

samples

exact

recovered

-100 -50 0 50 100
-100

-50

0

50

100
noise std: 1e-03

samples

exact

recovered

-100 -50 0 50 100
-100

-50

0

50

100
noise std: 1e-03

samples

exact

recovered

Random access model Matsubara model

Figure 4. Real pole locations, with different levels of noise. Left: random
access model. Right: Matsubara model.
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Figure 5. Matrix case with real poles, with different levels of noise. Left:
random access model. Right: Matsubara model.
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