
ON ADAPTIVE GRAD-DIV PARAMETER SELECTION ∗
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Abstract. We propose, analyze and test a new adaptive penalty scheme that picks the penalty parameter ε element by
element small where ∇ · uh is large. We start by analyzing and testing the new scheme on the most simple but interesting
setting, the Stokes problem. Finally, we extend and test the algorithm on the incompressible Navier Stokes equation on complex
flow problems. Tests indicate that the new adaptive-ε penalty method algorithm predicts flow behavior accurately. The scheme
is developed in the penalty method but also can be used to pick a grad-div stabilization parameter.
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1. Introduction. Consider the incompressible Navier-Stokes equations (NSE) with no-slip boundary
condition:

ut + u · ∇u+∇p− ν∆u = f, and ∇ · u = 0, in Ω× [0, T ],

u = 0, on ∂Ω× [0, T ], and u(x, 0) = u0(x), in Ω.
(1.1)

Here u is the velocity, f is the known body force, p is the pressure, and ν is the viscosity.
The penalty approximation to the Navier-Stokes equations replaces ∇·u = 0 by ∇·u+εp = 0 and eliminates
the pressure. This uncouples velocity and pressure, and the resulting system is much easier to solve:

uε,t + uε · ∇uε +
1

2
(∇ · uε)uε − ν∆uε −∇(

1

ε
∇ · uε) = f in Ω× [0, T ],

uε = 0, on ∂Ω× [0, T ], and uε(x, 0) = u0(x), in Ω.
(1.2)

Here uε · ∇uε + 1
2 (∇ · uε)uε is the modified bilinear term introduced by Temam [21]. This bilinear term

ensures the dissipativity of the system (1.2). Supposing the spacial discretization, a simple penalty method
is given as follows. Given un ≈ u(x, tn), kn = tn+1 − tn the nth time step

un+1
ε − unε
kn

+ unε · ∇un+1
ε +

1

2
(∇ · unε )un+1

ε − ν∆un+1
ε −∇(

1

εn+1
∇ · un+1

ε ) = f(tn+1), in Ω,

un+1
ε = 0, on ∂Ω and u0

ε = uε(x, 0) = u0(x), in Ω.

(1.3)

The term −∇(ε−1∇·u) also arises in artificial compression method and with grad-div stabilization. Penalty
methods require less computing time and reduced storage but still face two unsolved problems:

1. How to recover the pressure accurately, and
2. How to pick an effective value of the grad-div coefficient ε.

Herein we present a self-adaptive algorithm answering question 2.
There are many papers devoted to the parameter choice of grad-div term for both grad-div stabilization

problem and penalty problem. Jenkins, John, Linke, and Rebholz [14] found that the grad-div parameter
for Stokes problem depends on the used norm, the solution, the finite element space and type of mesh used.
Ainsworth, Allendes, Barrenechea and Rankin [1] introduced an approach to select stabilization parameters
for the Stokes problem.

The velocity error of penalty methods is also sensitive to the choice of ε, see Bercovier and Engelman [3].
Care must be taken when choosing ε. If ε is too large, it will poorly model incompressible flow. Choosing ε
too small will cause numerical conditioning problems, see Hughes, Liu and Brooks [12]. In [12], the authors
introduced a theory for determining the penalty parameter, which depends on Reynolds number Re and
viscosity µ. The optimal choice of the penalty parameter also varies according to the time discretization
schemes and space discretization schemes used, see Shen [20]. With so many dependencies, an automatic
choice of ε naturally becomes a problem to consider.

∗The research was partially supported by NSF grant DMS-2110379.
†Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260 (xix55@pitt.edu).
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In Layton and McLaughlin [18] self-adaptive ε selection in time (but not in space) algorithms were
developed, analyzed and tested. The basic idea in [18] is to monitor ‖∇ · un‖ and pick ε = ε(tn) to make
‖∇ · un‖ < Tolerance in (1.3) in the computation of un+1.

The natural question we answer herein is: can we let ε = ε(x, t) and pick ε(x, tn) pointwise or element
by element small where ∇ · uh is large to enforce in a realizable sense∫

Ω

|∇ · uh|2 dx < Tolerance2. (1.4)

This means ε is chosen small where ∇·uh is large (and large where small). As a result, the term (ε−1∇·uh,∇·
vh) becomes nonlinear. To our knowledge, this natural idea has not been considered. Picking ε pointwise
and elementwise are two related ideas, but the resulting two algorithms are different; see (1.9) and (1.11)
below.

The idea we use is the path of many adaptive methods: monitor the residual (the left-hand side of (1.4)),
localize the global tolerance (1.4) and where the local residual

∫
∆
|∇·uh|2 dx is large, pick ε∆ small (and visa

versa). Picking ε locally in space leads to a nonlinear grad-div term in (1.3) quite amenable to numerical
analysis. In the next sections, we start the detailed analysis and test of this idea using the simplest setting,
the Stokes problem.

1.1. Previous Work. Bernardi, Girault and Hecht [4, 5] derived posterior error estimates for the
Stokes problem with penalty. They performed the tests on adaptive meshes and also tested using local
penalty parameters. Falk [7] derived a new finite element method that uses the trial function, which is not
div-free. By eliminating the constraint, one can use a simple finite elements, which inspired the proof in
Section 3.2. Heavner and Rebholz [11] considered a local choice of grad-div stabilization parameter. And in
numerical tests, they showed that local choice of stabilization parameter provides more accurate solutions.

1.2. Formulation. We begin the analysis and testing of this idea for the simplest interesting setting,
the Stokes problem

− ν∆u+∇p = f(x), ∇ · u = 0. (1.5)

On a bounded, open polygonal domain Ω subject to no-slip boundary conditions u = 0 on ∂Ω. Let d denote
the dimension of Ω, d = dim(Ω) = 2 or 3.

The penalty method replaces ∇ · u = 0 by ∇ · uε + εp = 0 and eliminate pressure using p = −ε−1∇ · uε:

− ν∆uε −∇
(

1

ε
∇ · uε

)
= f(x) in Ω. (1.6)

Let Xh ⊂ X := (H0,1(Ω))d, d = 2 or 3 denote a finite element space for the fluid velocity. (·, ·) is the L2 inner
product with norm ‖ · ‖ and ∆ denotes a mesh element (so that

∫
Ω
φ dx =

∑
∆

∫
∆
φ dx). The area/volume

of a region D is denoted |D|. The L2(∆) norm on a mesh element (
∫

∆
φ2 dx)1/2 is denoted as ‖φ‖∆.

The penalty approximation we consider to (1.5) is: find uh ∈ Xh such that

ν(∇uhε ,∇vh) +
∑
∆

∫
∆

ε−1
∆ ∇ · u

h
ε∇ · vh dx = (f, vh), ∀vh ∈ V h. (1.7)

The idea is the same as behind most adaptive algorithms: Monitor the residual to control the error; localize
a global residual tolerance; where the local residual ‖∇ · uh‖2∆ is large pick ε∆ small.

To develop this, we begin with the basic stability estimate. Setting vh = uh in (1.7) we find

ν‖∇uhε ‖2 +
∑
∆

∫
∆

ε−1
∆ |∇ · u

h
ε |2 dx = (f, uhε ) = (f, u) + o(1),

thus
∑
∆

∫
∆

ε−1
∆ |∇ · u

h
ε |2 dx = O(1).
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This sugggests that globally halving (doubling) ε halves (doubles) ‖∇ · uhε ‖2.
Next, we localize the global tolerance TOL for ‖∇ · uhε ‖ as follows:

We seek ‖∇ · uhε ‖2 ≈ 1
2TOL2 or

‖∇ · uhε ‖2 =
∑
∆

∫
∆

|∇ · uhε |2 dx ≈
1

2
TOL2 =

1

2

∑
∆

TOL2

|Ω|
|∆|.

Thus we define the local tolerance

LocTol∆ :=
1

2

TOL2

|Ω|
|∆|,

and seek to enforce

‖∇ · uhε ‖2∆ ≈ LocTol∆.

If this local tolerance is satisfied, the global tolerance is satisfied:

‖∇ · uhε ‖2 =
∑
∆

∫
∆

|∇ · uhε |2 dx ≈
∑
∆

LocTol∆ =
1

2
TOL2.

The usual procedure would be to select (on each triangle ∆) εold, solve for uhε , compute the ratio

r =
LocTol∆
‖∇ · uhε ‖2∆

,

then adjust ε by εnew = r × εold and resolve. The first step is therefore (starting with ε∆ ≡ 1)

ε∆ = ‖∇ · uhε ‖−2
∆ × LocTol∆,

There are two options. Both result in a nonlinear discretization.
Option 1. Elementwise Penalty (EP)

ε∆ :=
LocTol∆
‖∇ · uhε ‖2∆

,

so that ∑
∆

∫
∆

ε−1
∆ ∇ · u

h
ε∇ · vh dx =

∑
∆

LocTol−1
∆ ‖∇ · u

h
ε ‖2∆

∫
∆

∇ · uhε∇ · vh dx. (1.8)

Then (1.7) becomes: find uhε ∈ Xh such that∫
Ω

ν∇uhε : ∇vh dx+
∑
∆

1

LocTol∆
‖∇ · uhε ‖2∆

∫
∆

∇ · uhε∇ · vh dx =

∫
Ω

f · vh dx. (1.9)

Option 2. Pointwise Penalty (PP)

ε∆(x) :=
LocTol∆
|∇ · uhε (x)|2

,

so that ∑
∆

∫
∆

ε−1
∆ ∇ · u

h
ε∇ · vh dx =

∑
∆

LocTol−1
∆

∫
∆

|∇ · uhε |2∇ · uhε∇ · vh dx. (1.10)

Then (1.7) becomes: find uhε ∈ Xh such that∫
Ω

ν∇uhε : ∇vh dx+
∑
∆

1

LocTol∆

∫
∆

|∇ · uhε |2∇ · uhε∇ · vh dx =

∫
Ω

f · vh dx. (1.11)

We focus herein on the analysis of option 2 (PP) and numerical result of option 1 (EP). In option 2 (PP),
the resulting nonlinearity is both strongly monotone and locally Lipschitz continuous, sharing structures with
the p-Laplacian. Then, there is a well-trodden analytical path to be adapted here. Before proceeding, we
address two points:
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1. Imposing the global condition locally suggests but does not imply the local condition is satisfied.
This will be tested in our experiments Section 6.1. We adapt based on the local condition but aim
for global TOL to be satisfied.

2. No analysis herein addresses how to pick TOL. TOL is user supplied.
Section 2 introduces some notation and preliminaries. Section 3 analyzes the stability and error for the

Stokes problem of the new pointwise penalty (PP) method. In Section 4, algorithmic aspects are discussed
for the Stokes problem and the Navier Stokes problem using the elementwise penalty (EP) method. Section
5, we present three numerical tests using the elementwise penalty (EP). The first two are for the Stokes
problem and the third one is an extension to the Navier Stokes equations. Finally, in Section 6, we draw
conclusions and point out future research directions.

2. Notation and Preliminaries. Let H1
0 (Ω) = {u ∈ L2(Ω) : ∇u ∈ L2(Ω) and u|∂Ω = 0 in L2(∂Ω)}.

Let X be the velocity space = (H1
0 (Ω))d, Q be the pressure space = L2

0(Ω). Let Xh be the finite element
velocity space of continuous piecewise polynomials based on conforming partition of Ω into elements, denoted
∆, Xh ⊂ X. Assume Xh satisfies the approximation properties:

inf
v∈Xh

‖u− v‖ ≤ Chm+1|u|m+1, u ∈ Hm+1(Ω)d,

inf
v∈Xh

‖∇(u− v)‖ ≤ Chm|u|m+1, u ∈ Hm+1(Ω)d.
(2.1)

The space H−1(Ω) denotes the dual space of bounded linear functionals defined on H1
0 (Ω). This space is

equipped with the norm:

‖f‖−1 = sup
06=v∈X

(f, v)

‖∇v‖
.

Denote a(u, v, w) =
∑

∆ LocTol−1
∆

∫
∆
|∇ · u|2∇ · v∇ · w dx for any u, v, w ∈ X.

Lemma 2.1. (Useful inequalities see p.7 [17]) (Hölder’s and Young’s inequalities) For any δ, 0 < δ <∞
and 1

p + 1
q = 1, 1 ≤ p, q ≤ ∞,

(u, v) ≤ ‖u‖Lp‖v‖Lq , and (u, v) ≤ δ

p
‖u‖pLp +

δ−q/p

q
‖v‖qLq . (2.2)

On each mesh element ∆ denote (φ, ψ)∆ =
∫

∆
φ ·ψ dx. The nonlinear term satisfies the following, often

called Strong Monotonicity, and Local Lipschitz continuity.
Lemma 2.2. (Strong Monotonicity and Local Lipschitz continuity) Let u, v, w ∈ X, on each mesh

element ∆, then there exist constants C1, C2 such that the following inequalities hold:

(|∇ · u|2∇ · u− |∇ · w|2∇ · w,∇ · (u− w))∆ ≥ C1‖∇ · (u− w)‖4L4(∆), (2.3)

(|∇ · u|2∇ · u− |∇ · w|2∇ · w,∇ · v)∆ ≤ C2r
2‖∇ · (u− w)‖L4(∆)‖∇ · v‖L4(∆), (2.4)

where r = max{‖∇ · u‖L4(∆), ‖∇ · w‖L4(∆)}.

Proof. (of Local Lipschitz continuity)

(|∇ · u|2∇ · u− |∇ · w|2∇ · w,∇ · v)∆

= (|∇ · u|2∇ · u− |∇ · u|2∇ · w,∇ · v)∆ + (|∇ · u|2∇ · w − |∇ · w|2∇ · w,∇ · v)∆

=

∫
∆

|∇ · u|2∇ · (u− w)∇ · v dx+

∫
∆

∇ · w(∇ · u+∇ · w)(∇ · u−∇ · w)∇ · v dx

=

∫
∆

∇ · (u− w)∇ · v(|∇ · u|2 +∇ · u∇ · w + |∇ · w|2) dx

≤
∫

∆

|∇ · (u− w)||∇ · v|(|∇ · u|+ |∇ · w|)2 dx

≤ ‖∇ · (u− w)‖L4(∆)‖∇ · v‖L4(∆)

(∫
∆

(|∇ · u|+ |∇ · w|)4 dx

)1/2

,
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Denote r = max(‖∇ · u‖L4(∆), ‖∇ · w‖L4(∆)), then we have

(|∇ · u|2∇ · u− |∇ · w|2∇ · w,∇ · v)∆ ≤ C2r
2‖∇ · (u− w)‖L4(∆)‖∇ · v‖L4(∆).

The proof of Strong Monotonicity follows similarly to the p-Laplacian in Barrett and Liu [2], Glowinski and
Marroco [8], omit the part here.

3. Analysis. In this section, we derived stability bounds for both new penalty methods (PP (1.11) and
EP (1.9)) and error estimates for the pointwise penalty (PP) method (1.11).

3.1. Stability. First, we consider the elementwise penalty (EP) method (1.9). Recall that LocTol∆ =
1
2TOL

2 |∆|
|Ω| .

Theorem 3.1. Suppose T h be a mesh of Ω and ∆ denote a mesh element in T h, the solution to (1.9)
is stable, and the following stability bound holds

ν

2
‖∇uhε ‖2 +

∑
∆

1

LocTol∆
‖∇ · uhε ‖4∆ ≤

1

2ν
‖f‖2−1.

Proof. Take vh = uhε in (1.9):

ν‖∇uhε ‖2 +
∑
∆

1

LocTol∆
‖∇ · uhε ‖2∆‖∇ · uhε ‖2∆ =

∫
Ω

f · uhε dx,

As (f, uhε ) ≤ ‖f‖−1‖∇uhε ‖ and apply Hölder’s and Young’s inequalities (2.2):

ν‖∇uhε ‖2 +
∑
∆

1

LocTol∆
‖∇ · uhε ‖4∆ ≤

1

2ν
‖f‖2−1 +

ν

2
‖∇uhε ‖2.

Combine similar terms and the claimed stability bound then follows.
From Theorem 3.1, we have the following proposition.

Proposition 3.2. Let N denote the number of elements ∆ in mesh T h and TOL denote the global
tolerance, then the solution uhε to (1.9) satisfy

‖∇ · uhε ‖4 ≤
(
N ·max |∆|

4ν|Ω|

)
TOL2‖f‖2−1.

Proof. From Theorem 3.1, we have∑
∆

1

LocTol∆
‖∇ · uhε ‖4∆ ≤

1

2ν
‖f‖2−1.

Recall LocTol∆ = 1
2TOL

2 |∆|
|Ω| , ∑

∆

2

TOL2

|Ω|
|∆|
‖∇ · uhε ‖4∆ ≤

1

2ν
‖f‖2−1,

∑
∆

1

|∆|
‖∇ · uhε ‖4∆ ≤

TOL2

4ν|Ω|
‖f‖2−1,

1

max |∆|
∑
∆

(∫
∆

|∇ · uhε |2 dx
)2

≤ TOL2

4ν|Ω|
‖f‖2−1,

∑
∆

(∫
∆

|∇ · uhε |2 dx
)2

≤ max |∆|
|Ω|

TOL2

4ν
‖f‖2−1.

5



Using the Cauchy Schwartz inequality:

1

N

(∑
∆

∫
∆

|∇ · uhε |2 dx

)2

≤
∑
∆

(∫
∆

|∇ · uhε |2 dx
)2

≤ max |∆|
|Ω|

TOL2

4ν
‖f‖2−1.

Then the result follows.
Next, we consider the pointwise penalty (PP) method (1.11). Recall that LocTol∆ = 1

2TOL
2 |∆|
|Ω| .

Theorem 3.3. Suppose T h be a mesh of Ω and ∆ denote the mesh element in T h, the solution to (1.11)
is stable, and the following stability bound holds

ν

2
‖∇uhε ‖2 +

∑
∆

1

LocTol∆
‖∇ · uhε ‖4L4(∆) ≤

1

2ν
‖f‖2−1.

Proof. Take vh = uhε in (1.11):

ν‖∇uhε ‖2 +
∑
∆

1

LocTol∆

∫
∆

|∇ · uhε |4 dx =

∫
Ω

f · uhε dx,

As (f, uhε ) ≤ ‖f‖−1‖∇uhε ‖ and apply Hölder’s and Young’s inequalities (2.2):

ν‖∇uhε ‖2 +
∑
∆

1

LocTol∆
‖∇ · uhε ‖4L4(∆) ≤

1

2ν
‖f‖2−1 +

ν

2
‖∇uhε ‖2.

Combine similar terms and the claimed stability bound then follows.
Directly from the result of Theorem 3.3, we have the following proposition.

Proposition 3.4. Let TOL denote the global tolerance, then the solution uhε to (1.11) satisfy

‖∇ · uhε ‖4L4 ≤
(

max |∆|
4ν|Ω|

)
TOL2‖f‖2−1.

Proof. From Theorem 3.3, there holds∑
∆

1

LocTol∆
‖∇ · uhε ‖4L4(∆) ≤

1

2ν
‖f‖2−1.

Recall LocTol∆ = 1
2TOL

2 |∆|
|Ω| , ∑

∆

2

TOL2

|Ω|
|∆|
‖∇ · uhε ‖4L4(∆) ≤

1

2ν
‖f‖2−1,

∑
∆

1

|∆|
‖∇ · uhε ‖4L4(∆) ≤

TOL2

4ν|Ω|
‖f‖2−1,

1

max |∆|
∑
∆

(∫
∆

|∇ · uhε |4 dx
)1

≤ TOL2

4ν|Ω|
‖f‖2−1.

Then the result follows.

3.2. Error analysis. We consider the error between continuous Stokes problem (1.5) and discretized
pointwise penalized (PP) Stokes problem (1.11). Recall Q := {q ∈ L2(Ω) :

∫
Ω
q dx = 0}. The variational

form of the Stokes problem (1.5) is:
Find (u, p) ∈ (X,Q) such that∫

Ω

ν∇u : ∇v dx−
∫

Ω

p(∇ · v) dx =

∫
Ω

f · v dx for all v ∈ X,

and
∫

Ω

(∇ · u)q dx = 0 for all q ∈ Q.
(3.1)

6



Theorem 3.5. Let (u, p) be a solution to the Stokes problem (3.1) and uhε be the solution of the penalty
approximation (1.11). Let d denote the dimension of Ω and C1, C2 be two constants defined as in (2.3) and
(2.4). TOL denote the global tolerance and LocTol∆ be the local tolerance for each element ∆ in mesh T h.
Then it follows that

ν‖∇(u− uhε )‖2 + C1

∑
∆

LocTol−1
∆ ‖∇ · (u− u

h
ε )‖4L4(∆) ≤ inf

vh∈Xh
C(C1, C2)

∑
∆

LocTol−1
∆ ‖∇ · (u− v

h)‖4L4(∆)

+C(ν)h2m−2‖u‖2Hm+1(Ω) + h2‖p‖2 + Cν−1/4‖f‖1/2−1 TOL
1/2(max |∆|)1/4‖p‖2.

Remark 3.6. If Xh has a divergence free subspace with good approximation properties, the first term
of the RHS of the estimate in Theorem 3.5 vanishes.

Proof. As a(u, u, vh) =
∑

∆ LocTol−1
∆

∫
∆
|∇ · u|2∇ · u∇ · vh dx and ∇ · u = 0, so a(u, u, vh) = 0. From

(3.1), adding a(u, u, v) to the left-hand-side :

ν(∇u,∇v)− (p,∇ · v) + a(u, u, v) = (f, v), ∀ v ∈ X.

Subtract (1.11) and let v = vh:

ν(∇(u− uhε ),∇vh) + a(u, u, vh)− a(uhε , u
h
ε , v

h) = (p,∇ · vh).

Denote e = u− uhε , let ∀ ũ ∈ Xh, η = u− ũ and φh = uhε − ũ, then e = η − φh, the error equation becomes:

ν(∇η,∇vh) + a(u, u, vh)− a(ũ, ũ, vh)

= ν(∇φh,∇vh) + a(uhε , u
h
ε , v

h)− a(ũ, ũ, vh) + (p,∇ · vh),

Letting vh = φh, the error equation becomes:

ν(∇φh,∇φh) + a(uhε , u
h
ε , φ

h)− a(ũ, ũ, φh) = ν(∇η,∇φh) + a(u, u, φh)− a(ũ, ũ, φh)− (p,∇ · φh).

Apply Strong Monotonicity (2.3) to a(uhε , u
h
ε , φ

h)− a(ũ, ũ, φh):

a(uhε , u
h
ε , φ

h)− a(ũ, ũ, φh)

=
∑
∆

1

LocTol∆

∫
∆

(|∇ · uhε |2∇ · uhε − |∇ · ũ|2∇ · ũ)∇ · (uhε − ũ) dx

≥
∑
∆

1

LocTol∆
C1

∫
∆

|∇ · (uhε − ũ)|4 dx.

Apply Local Lipschitz continuity (2.4) to a(u, u, φh)− a(ũ, ũ, φh):

a(u, u, φh)− a(ũ, ũ, φh)

=
∑
∆

1

LocTol∆

∫
∆

(|∇ · u|2∇ · u− |∇ · ũ|2∇ · ũ)∇ · φh dx

≤
∑
∆

1

LocTol∆
C2r

2
∆

(∫
∆

|∇ · (u− ũ)|4 dx
)1/4(∫

∆

|∇ · φh|4
)1/4

where r∆ = max{‖∇ · u‖L4(∆), ‖∇ · ũ‖L4(∆)} = ‖∇ · ũ‖L4(∆).

Then the error equation becomes

ν‖∇φh‖2 +
∑
∆

C1

LocTol∆
‖∇ · φh‖4L4(∆) ≤ ν(∇η,∇φh)

+
∑
∆

C2r
2
∆

LocTol∆
‖∇ · η‖L4(∆)‖∇ · φh‖L4(∆) − (p,∇ · φh).
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Apply Hölder’s and Young’s inequality (2.2) with p = 4, q = 4/3:

ν‖∇φh‖2 +
∑
∆

C1

LocTol∆
‖∇ · φh‖4L4(∆)

≤ ν

2
‖∇η‖2 +

ν

2
‖∇φh‖2 +

∑
∆

(
C

1/4
1

LocTol
1/4
∆

‖∇ · φh‖L4(∆)

)(
C2r

2
∆

C
1/4
1 LocTol

3/4
∆

‖∇ · η‖L4(∆)

)
− (p,∇ · φh)

≤ ν

2
‖∇η‖2 +

ν

2
‖∇φh‖2 − (p,∇ · φh)

+

(∑
∆

C1

LocTol∆
‖∇ · φh‖4L4(∆)

)1/4(∑
∆

C
4/3
2 r

8/3
∆

C
1/3
1 LocTol∆

‖∇ · η‖4/3L4(∆)

)3/4

≤ ν

2
‖∇η‖2 +

ν

2
‖∇φh‖2 − (p,∇ · φh)

+
δ

4

(∑
∆

C1

LocTol∆
‖∇ · φh‖4L4(∆)

)1

+
δ−1/3

4/3

(∑
∆

C
4/3
2 r

8/3
∆

C
1/3
1 LocTol∆

‖∇ · η‖4/3L4(∆)

)1

.

Letting δ = 2 and combining similar terms gives

ν

2
‖∇φh‖2 +

1

2

∑
∆

C1

LocTol∆
‖∇ · φh‖4L4(∆) ≤

ν

2
‖∇η‖2 +

3

4 3
√

2

∑
∆

C
4/3
2 r

8/3
∆

C
1/3
1 LocTol∆

‖∇ · η‖4/3L4(∆) − (p,∇ · φh).

Consider the last term of the error equation inspired by the proof of Falk [7]:

(p,∇ · φh) = (p,∇ · (uhε − ũ))

= (p,∇ · uhε ) + (p,∇ · (u− ũ))

≤
∑
∆

∫
∆

p∇ · uhε dx+
h2

2
‖p‖2 +

1

2h2
‖∇ · η‖2

≤
∑
∆

∫
∆

1

LocTol
1/4
∆

|∇ · uhε |LocTol
1/4
∆ |p| dx+

h2

2
‖p‖2 +

1

2h2
‖∇ · η‖2

≤
∑
∆

(∫
∆

1

LocTol∆
|∇ · uhε |4 dx

)1/4(∫
∆

LocTol
1/3
∆ |p|

4/3 dx

)3/4

+
h2

2
‖p‖2 +

1

2h2
‖∇ · η‖2

≤

(∑
∆

∫
∆

1

LocTol∆
|∇ · uhε |4 dx

)1/4(∑
∆

∫
∆

LocTol
1/3
∆ |p|

4/3 dx

)3/4

+
h2

2
‖p‖2 +

1

2h2
‖∇ · η‖2

≤

(∑
∆

1

LocTol∆
‖∇ · uhε ‖4L4(∆)

)1/4(∑
∆

(∫
∆

LocTol1∆

)1/3(∫
∆

|p|2
)2/3

)3/4

+
h2

2
‖p‖2 +

1

2h2
‖∇ · η‖2

≤

(∑
∆

1

LocTol∆
‖∇ · uhε ‖4L4(∆)

)1/4
(∑

∆

∫
∆

LocTol∆

)1/3(∑
∆

∫
∆

|p|2
)2/3

3/4

+
h2

2
‖p‖2 +

1

2h2
‖∇ · η‖2

=

(∑
∆

1

LocTol∆
‖∇ · uhε ‖4L4(∆)

)1/4(∑
∆

|∆|LocTol∆

)1/4

‖p‖+
h2

2
‖p‖2 +

1

2h2
‖∇ · η‖2.

By the stability bound,
ν

2
‖∇uhε ‖2 +

∑
∆

1

LocTol∆
‖∇ · uhε ‖4L4(∆) ≤

1

2ν
‖f‖2−1.
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Thus,

(p,∇ · φh) ≤ Cν−1/4‖f‖1/2−1

(∑
∆

|∆|LocTol∆

)1/4

‖p‖+
h2

2
‖p‖2 +

1

2h2
‖∇ · η‖2.

Plug back to the error equation:

ν

2
‖∇φh‖2 +

∑
∆

C1

2LocTol∆
‖∇ · φh‖4L4(∆) ≤

ν

2
‖∇η‖2 +

∑
∆

3C
4/3
2 r

8/3
∆

4 3
√

2C
1/3
1 LocTol∆

‖∇ · η‖4/3L4(∆)

+Cν−1/4‖f‖1/2−1

(∑
∆

|∆|LocTol∆

)1/4

‖p‖+
h2

2
‖p‖2 +

1

2h2
‖∇ · η‖2,

where (∑
∆

|∆|LocTol∆

)1/4

:=

(∑
∆

|∆|1
2

TOL2

|Ω|
|∆|

)1/4

=

(
TOL2

2|Ω|
∑
∆

|∆|2
)1/4

≤ TOL1/2

21/4

(
1

|Ω|
max |∆|

∑
∆

|∆|

)1/4

= TOL1/2

(
max |∆|

2

)1/4

.

Apply triangle inequality: ‖e‖ ≤ ‖η‖+ ‖φh‖

ν‖∇e‖2 +
∑
∆

C1

LocTol∆
‖∇ · e‖4L4(∆) ≤ inf

vh∈Xh

{
ν‖∇(u− vh)‖2 + h−2‖∇ · (u− vh)‖2

+C(C1, C2)
∑
∆

LocTol−1
∆

(
r

8/3
∆ ‖∇ · (u− v

h)‖4/3L4(∆) + ‖∇ · (u− vh)‖4L4(∆)

)}
+h2‖p‖2 + Cν−1/4‖f‖1/2−1 TOL

1/2(max |∆|)1/4‖p‖2,

where ∑
∆

LocTol−1
∆ r

8/3
∆ ‖∇ · (u− v

h)‖4/3L4(∆) =
∑
∆

LocTol−1
∆ ‖∇ · v

h‖8/3L4(∆)‖∇ · (u− v
h)‖4/3L4(∆)

=
∑
∆

LocTol−1
∆ ‖∇ · (u− v

h)‖4L4(∆).

The error satisfies

ν‖∇e‖2 +
∑
∆

C1

LocTol∆
‖∇ · e‖4L4(∆) ≤ inf

vh∈Xh

{
ν‖∇(u− vh)‖2 + h−2‖∇ · (u− vh)‖2

+C(C1, C2)
∑
∆

LocTol−1
∆ ‖∇ · (u− v

h)‖4L4(∆)

}
+ h2‖p‖2 + Cν−1/4‖f‖1/2−1 TOL

1/2(max |∆|)1/4‖p‖2.

As ‖∇ · (u− vh)‖ ≤ ‖∇(u− vh)‖

ν‖∇e‖2 +
∑
∆

C1

LocTol∆
‖∇ · e‖4L4(∆) ≤ inf

vh∈Xh

{
C(ν)(1 + h−2)‖∇(u− vh)‖2

+C(C1, C2)
∑
∆

LocTol−1
∆ ‖∇ · (u− v

h)‖4L4(∆)

}
+ h2‖p‖2 + Cν−1/4‖f‖1/2−1 TOL

1/2(max |∆|)1/4‖p‖2.

Using the approximation properties (2.1) of the spaces Xh

ν‖∇e‖2 +
∑
∆

C1

LocTol∆
‖∇ · e‖4L4(∆) ≤ inf

vh∈Xh
C(C1, C2)

∑
∆

LocTol−1
∆ ‖∇ · (u− v

h)‖4L4(∆)

+C(ν)h2m−2‖u‖2Hm+1(Ω) + h2‖p‖2 + +Cν−1/4‖f‖1/2−1 TOL
1/2(max |∆|)1/4‖p‖2.
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4. Algorithm. This section presents the algorithms to implement the elementwise variable ε element-
wise penalty (EP) method (1.9) introduced in Section 1. The following Algorithm 1 is for Stokes problem.

Algorithm 1: Elementwise variable ε penalty (EP) method for Stokes
Given tolerance TOL, epsilon lower bound LowerEps and mesh T , MaxIter=10
Compute on each element triangle LocTol∆ = 1

2
TOL2

|Ω| |∆|
Set ε∆ = 1
Solve for uh using penalty method: find uh ∈ Xh such that

ν(∇uhε ,∇vh) +
∑
∆

∫
∆

ε−1
∆ ∇ · u

h
ε∇ · vh dx = (f, vh) ∀vh ∈ Xh

while iteration ≤ MaxIter and retry=true do
Loop over all triangle elements ∆ ∈ T

Compute estimator for each triangle

est∆ =

∫
∆

|∇ · uhε |2 dx

if est∆ > LocTol∆ then
r = LocTol∆

est∆
;

ε∆ ← max(LowerEps, r × ε∆);
retry=true;

end
REPEAT step;

end
Recover pressure p if needed

p∆ = − 1

ε∆
∇ · uhε

Remark 4.1. We need to set a maximum number of iteration MaxIter in the loop to avoid the program
run infinitely. But this may lead to the situation that est∆ ≥ LocTol∆ local tolerance is not satisfied.
However, our ultimate goal is ‖∇ · uh‖ < TOL no matter local tolerance is satisfied or not.

We also want to test the elementwise variable ε penalty method on the unsteady Navier-Stokes equation.
For time-dependent problem (1.3), there are two options:

1. use ‖∇ · uhε ‖∆ from the previous time step, adjust ε and do not repeat the current time-step,
2. for each time-step, repeat using εnew and loop until tolerance or maximum iteration is reached.

Since this is a new algorithm, we do not know which is better. We still need to do further research, and
Algorithm 2 follows.

5. Numerical Tests. 1 In the numerical tests 5.1 and 5.2, the problems are tested using both elemen-
twise penalty algorithm (Algorithm 1) and also this following coupled system: find uh ∈ Xh, ph ∈ Qh such
that

ν(∇uh,∇vh)− (ph,∇ · vh) = (f, vh) ∀vh ∈ Xh,

(∇ · uh, qh) = 0 ∀qh ∈ Qh.
(5.1)

5.1. Test 1 taken from Burman and Hansbo [6]. This model problem is constructed to test the
convergence rate. The analytic solution is given below

u(x, y) = 20xy3, v(x, y) = 5x4 − 5y4, p(x, y) = 60x2y − 20y3 − 5. (5.2)

on Ω = (0, 1)× (0, 1). Inserting (5.2) into Stokes equations (1.5) with Re = 100 recovers the body force f .

1The datasets generated during and/or analysed during the current study are not publicly available but are available from
the corresponding author on reasonable request.

10



Algorithm 2: Elementwise variable ε penalty (EP) method for Navier Stokes

Given tolerance TOL, epsilon lower bound LowerEps and mesh T h, final time Tfinal, time-step ∆t,
initial condition u0(x)

Compute on each element triangle LocTol∆ = 1
2
TOL2

|Ω| |∆|
Set ε∆,1 = 1, t0 = 0;
while t < Tfinal do

Update tn+1 = tn + ∆t;
Given uhε,n, solve for uhε,n+1 using penalty method: find uhε,n+1 ∈ Xh such that

(
uhε,n+1 − uhε,n

∆t
, vh) + (uhε,n · ∇uhε,n+1, v

h) +
1

2

(
(∇ · uhε,n)uhε,n+1, v

h
)

+ ν(∇uhε,n+1,∇vh)

+
∑
∆

∫
∆

ε−1
∆,n+1∇ · u

h
ε,n+1∇ · vh dx = (fn+1, vh) ∀vh ∈ Xh

Loop over all triangle elements ∆ ∈ T h
Compute estimator for each triangle

est∆ =

∫
∆

|∇ · uhε,n+1|2 dx

Update ε∆:

r =
LocTol∆
est∆

,

ε∆,n+2 ← max(LowerEps, r × ε∆,n+1),

retry = false;

Recover pressure p if needed

p∆,n+1 = − 1

ε∆,n+1
∇ · uhε,n+1.

end

In this test, take ε lower bound LowerEps = 10−8, global tolerance TOL = 10−5 and LocTol∆ =
1
2
TOL2

|Ω| |∆| ≈ 1.5625 × 10−11 for the case of 40 mesh points on each side. From Table (5.4) with 40 mesh
points per side: ‖∇·uh‖2 = 5.49293×10−6 < TOL, the global tolerance condition satisfied using elementwise
penalty. However from Figure (5.3)(b): max ‖∇ · uh‖2∆ ≈ 1.15× 10−5|∆| ≈ 3.59× 10−9 > LocTol, the local
condition does not satisfy but is very close to the local tolerance.

# mesh points on each side coupled ‖u− uh‖L2 penalty ‖u− uh‖L2 rate
10 0.00520688 0.00528456 -
20 0.000327941 0.00132306 1.99790
40 2.05561e-05 0.000340571 1.95785

Table 5.1
numerical error ‖u− uh‖L2 and convergence rate of elementwise penalty (compared with coupled system (5.1))

11



(a) Coupled Stokes problem, the scale is about 10−1 (b) Elementwise penalty method (Algorithm1) for Stokes
problem, the scale is about 10−3

Fig. 5.1. |∇ · uh|2∆/|∆| with 10 mesh points on each side

(a) Coupled Stokes problem, the scale is about 10−3 (b) Elementwise penalty method (Algorithm1) for Stokes
problem, the scale is about 10−4

Fig. 5.2. |∇ · uh|2∆/|∆| with 20 mesh points on each side

# mesh points on each side coupled ‖∇(u− uh)‖L2 penalty ‖∇(u− uh)‖L2 rate
10 0.384253 0.433158 -
20 0.0494622 0.21608 1.00333
40 0.0062691 0.107975 1.00087

Table 5.2
numerical error ‖∇(u− uh)‖L2 and convergence rate of elementwise penalty (compared with coupled system (5.1))
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(a) Coupled Stokes problem, the scale is about 10−5 (b) Elementwise penalty method (Algorithm1) for Stokes
problem, the scale is about 10−6

Fig. 5.3. |∇ · uh|2∆/|∆| with 40 mesh points on each side

# mesh points on each side coupled ‖∇ · (u− uh)‖2L4 penalty ‖∇ · (u− uh)‖2L4 rate
10 0.186365 0.00049467 -
20 0.00302458 3.12998e-05 3.98224
40 4.81016e-05 1.96239e-06 3.99547

Table 5.3
numerical error ‖∇ · (u− uh)‖2

L4 and convergence rate of elementwise penalty (compared with coupled system (5.1))

Table (5.1)-(5.3) presents the numerical error of Test1 of comparison between coupled system (5.1)
and elementwise penalty method (Algorithm 1). The convergence rate of the elementwise penalty are also
presented in the fourth column.

# mesh points on each side coupled ‖∇ · uh‖2 penalty ‖∇ · uh‖2
10 0.135344 0.00140525
20 0.002331 8.78752e-05
40 4.23739e-05 5.49293e-06

Table 5.4
‖∇ · uh‖2 numerical result of Test1

5.2. Test 2 Flow between offset cylinders taken from Layton and McLaughlin [18]. This test
is to test Algorithm 1 on a more complex flow problem and also a comparison between the coupled system
and elementwise penalty scheme.

The domain is a disk with a smaller off-center disk inside. Let r1 = 1, r2 = 0.1, c1 = 0.5 and c2 = 0, the
domain is given by

Ω = {(x, y) : x2 + y2 ≤ r2
1 and (x− c1)2 + (y − c2)2 ≥ r2

2}.

We take Re=100 and the body force is given by

f(x, y) = (−4y(1− x2 − y2), 4x(1− x2 − y2)).
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In this test, ε lower bound LowerEps = 10−10 and global tolerance TOL = 10−6. There are 60 mesh
points on the outer circle and 30 mesh points on the inner circle. The mesh is denser near the inner
circle. And for this mesh the shortest edge of all triangles is minehe = 0.0220132 and the longest edge
maxehe = 0.141732. The smallest area of element triangle min∆|∆| = 0.000166354 and the largest area of
triangle max∆|∆| = 0.00528893. The local tolerance LocTol∆ = 1

2
TOL2

|Ω| |∆| ranges from 10−16 to 10−17.
In this test, from Table (5.5): ‖∇ · uh‖2 = 1.01872× 10−19 < TOL2 and from Figure (5.4)(b): max ‖∇ ·

uh‖2∆ ≈ 8.59×10−17|∆| ≈ 10−20 < LocTol∆. Here local condition and global condition are both satisfied. In

method ‖∇ · uh‖2
coupled 0.255675

elementwise penalty 1.01872e-19
Table 5.5

numerical result ‖∇ · uh‖2 of Test2 Stokes problem

the test using elementwise penalty (Algorithm 1) at final iteration, εmax = 2.92232∗10−8 and εmin = 10−10.
From Figure (5.4), the incompressibility condition is satisfied for the penalty method. For the coupled system

(a) Coupled Stokes problem (b) Elementwise penalty method (Algorithm1) for Stokes
problem

Fig. 5.4. ‖∇ · uh‖2∆/|∆| of Test2, comparison between coupled (5.1) and elementwise penalty system (Algorithm 1)
(Note the scale in two plots are different. Coupled Stokes problem max∆ ‖∇ · uh‖2∆ = O(102), elementwise penalty method
max∆ ‖∇ · uh‖2∆ = O(10−17))

max ‖∇ · uh‖2∆/|∆| ≈ 30.08 which does not satisfy the incompressibility condition. From the velocity plot
Figure (5.5), the coupled system and elementwise penalty system have similar results. But the elementwise
penalty method has far smaller ‖∇ · uh‖2 values.

5.3. Test3. Comparison test between constant penalty and elementwise penalty see Layton
and Xu [19]. In this test, we verify the adaptive elementwise penalty method (Algorithm 1) does better
than normal constant penalty method by comparison Algorithm 1 with constant ε = 10−8ν for all elements.
Here constant ε = 10−8ν is usually the approach used by engineering papers.

This comparison test problem is solved by using P1, conforming linear elements. Let the body force,

f(x, y) = (sin(x+ y), cos(x+ y))T ,

on Ω = (0, 1) × (0, 1). In this test, Re = 1, global tolerance TOL = 10−6 and there are 40 mesh points on
each side. The test results are shown in Table 5.6.

14



(a) Coupled Stokes problem (b) Elementwise penalty method (Algorithm1) for Stokes
problem

Fig. 5.5. velocity plot of Test 2, comparison between coupled (5.1) and elementwise penalty system (Algorithm 1)

constant penalty ε = 10−8 elementwise penalty (Algorithm 1)
‖∇ · uh‖2 7.20178e-17 3.7741e-19
average ε 1e-8 0.000629366

Table 5.6
comparison of ‖∇ · uh‖2 and average value of ε between constant penalty and elementwise penalty (Algorithm 1)

From Table 5.6, constant penalty ε = 10−8 is a ill conditioned linear system while elementwise penalty
with average ε = 6.3×10−4 leads to a much better condioned system. And ‖∇·uh‖2 of adaptive elementwise
penalty is smaller than constant penalty, thus adaptive elementwise penalty controls ‖∇ · u‖ better than
constant penalty method.

5.4. Test4. Flow around a cylinder see Ingram [13], John, Matthies and Rang [15]. This
section is an extension of the elementwise penalty method test on the nonlinear Navier-Stokes equation
(Algorithm 2). Even though the local condition is only partially satisfied in this test, the global condition is
satisfied and well controlled.

The domain Ω is a [0, 2.2] × [0, 0.41] rectangle. The cylinder S centered at (0.2, 0.2) with the diameter
0.1 units. The external force f = 0, the final time is T = 8 and the prescribed viscosity ν = 10−3. The flow
has boundary conditions:

u(x, 0, t) = u(x, 0.41, t) = u|∂ΩS
= (0, 0)T , 0 ≤ x ≤ 2.2,

u(0, y, t) = u(2.2, y, t) = 0.41−2 sin(πt/8)(6y(0.41− y), 0)T , 0 ≤ y ≤ 0.41.

The mean inflow velocity is U(t) = sin(πt/8) such that Umax = 1.
Let the initial condition satisfy the steady Stokes problem. The following results using P3 finite element
space for velocity. The number of degrees of freedom of velocity is 5091. The mesh is denser near cylinder S,
and for this mesh, the shortest edge of all triangles is minehe = 0.0101291 and the longest edge maxehe =
0.154404. The smallest area of element triangle min∆|∆| = 3.46846× 10−5 and the largest area of triangle
max∆|∆| = 0.00773693. In this test, ε lower bound LowerEps = 10−10 and global tolerance TOL = 10−5.
The local tolerance LocTol∆ = 1

2
TOL2

|Ω| |∆| ranges from 10−13 to 10−15. Figure (5.6) is the speed-profile at
T = 2, 4, 5, 6, 7, 8 for flow with Re=1000. We can see the vortex shedding off the back of the cylinder in
the test result. Figure (5.7) is the plot of ‖∇ · uh‖2 throughout the whole time interval. The red curve
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Fig. 5.6. magnitude of velocity field at T = 2, 4, 5, 6, 7, 8 of Test 4 Algorithm 2 for NSE, ∆t = 0.005

(Algorithm 2 with step repeated) has smaller ‖∇ · uh‖2 values than the blue curve (without repeating the
step). Both global ‖∇ · u‖ values are well controlled. In order to check the local condition, we look at the
elementwise value |∇ · uh|2∆/|∆| at the final time T=8. From Figure (5.8)(a) without repeating the step:
max ‖∇ · uh‖2∆ ≈ 3× 10−8|∆| ≈ 10−11 slightly larger than the local tolerance LocTol∆. From (5.8)(b) with
step repeated: max ‖∇ · uh‖2∆ ≈ 5 × 10−11|∆| ≈ 10−14 satisfies the local tolerance. For Algorithm 2 with
step repeated, the global and local ‖∇·uh‖ values are smaller but need more computing time compared with
Algorithm 2 without retry. For Algorithm 2 without repeating the step, the overall result is satisfying even
though the local conditions are only partially satisfied.

6. Conclusions. In this paper, we proposed a new variable ε penalty method starting from the Stokes
problem. We proved the stability and derived an error approximation of the new pointwise penalty (PP)
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Fig. 5.7. Plot of ‖∇ · uh‖2 from T=0 to T=8

(1.11) on the Stokes problem. And at the end, we test the algorithm on the Stokes problem and extend it
to test the time-dependent nonlinear Navier Stokes problem using elementwise penalty (EP) (1.9). This is
just a start of this new scheme, there are plenty of improvements possible. Picking the right global tolerance
TOL and maximum iteration MaxIter is still a problem to consider. Algorithm 2 is new, we currently do not
know if or not we need to repeat each time-step after setting the new ε. We emphasize that our target is the
3d, time-dependent NSE problem for which the method is implemented as Algorithm 2, without appreciable
complexity increase over simple, linear constant ε penalty methods.

In this paper, we focused on the velocity and did not pay attention to the accuracy of pressure. Pressure
recovery is also a big problem to consider. In Kean and Schneier [16], two different pressure recovery
methods are introduced and analyzed. As for the time-dependent problem, only constant time-step schemes
are considered in this paper. To further optimize the algorithm, adding a time filter Guzel and Layton [9,10]
and adapt the time-step is also a good research direction in the future. Both the stability and error analysis
is given based on the assumption that the grad-div term can be replaced by the variational form (1.10). The
numerical analysis based on assumption (1.8) (i.e. elementwise penalty) is also an interesting problem.

Acknowledgement. I would like to thank Professor William Layton for his brilliant idea for construct-
ing the model and his guidance during the research.
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