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Abstract

A new scheme for communication between overset grids using subcells and Weighted Essentially
Non Oscillatory (WENO) reconstruction for two-dimensional problems has been proposed. The
effectiveness of this procedure is demonstrated using the discontinuous Galerkin method (DGM).
This scheme uses WENO reconstruction using cell averages by dividing the immediate neighbors into
subcells to find the degrees of freedom in cells near the overset interface. This also has the added
advantage that it also works as a limiter if a discontinuity passes through the overset interface.
Accuracy tests to demonstrate the maintenance of higher order are provided. Results containing
shocks are also provided to demonstrate the limiter aspect of the data communication procedure.
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1 Introduction

We propose a scheme for communication between overset grids using subcells and Weighted Essentially
Non Oscillatory (WENO) reconstruction for two-dimensional problems. We demonstrate the effectiveness
of this procedure using discontinuous Galerkin method (DGM). This scheme uses WENO reconstruction
using cell averages by dividing the immediate neighbors into subcells as proposed in [1] to find the degrees
of freedom in cells near the overset interface.

Overset meshes have been used to handle complex geometries for a long time and were first applied
to solving the Euler equations by Benek et al. [2]. A major advantage of overset meshes over a single
mesh is their effectiveness for moving body problems. Overset grids communicate through exchange of
boundary data (called artificial boundaries) in overlapping regions. The arbitrary overlapping of grids
allows the mesh generator to focus on resolving individual components of the geometry independently.

Typically Cartesian meshes are used for overset grids along with an unstructured grid in the appli-
cation of high order schemes to complex geometries. In using higher order schemes, flow parameters on
the artificial boundaries need to be determined so as to maintain the order of accuracy of the scheme.
However, schemes like WENO [3] require large stencils which causes problems in using artificial bound-
aries [4]. Discontinuous Galerkin method [5] is well suited for overset grids as the DG discretization
depends only on the current cell and its immediate neighbors. Availability of the solution polynomial
in all cells is also another advantage of the DGM. DGM has been used in an overset framework for the
solution of many problems in [6], [7], [8], [9].

When using DGM on overset grids, there are two possible approaches to handle data communication.
One is a face based communication approach developed in [6], where solutions at an overset interface
are obtained from the donor element, and then the boundary condition is applied weakly by imposing a
numerical flux at the flux interpolation points. The other is an element based communication approach
developed in [10], where the internal degrees of freedom of cells near the overset interface are obtained
from the donor element.

In this paper, we describe a new scheme for higher order data interpolation between overset grids using
the element based approach. For reconstructing the degrees of freedom in a given cell at the overset
interface, we use an appropriate higher order WENO reconstruction using cell averages after dividing the
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immediate neighbors into subcells as proposed in [1]. This procedure has the added advantage that it
also works as a limiter if a discontinuity passes through the overset interface. We can use this procedure
for data communication between overset grids with any other higher order method which uses cells for
their solution (eg., finite volume WENO method [3]). We demonstrate the scheme using discontinuous
Galerkin method.

The paper is organized as follows. We describe the formulation of the discontinuous Galerkin method
used for all our results in section 2, the proposed scheme for data communication between overset grids
is described in section 3, and the accuracy tests and results obtained using the overset grid solver are
described in section 4 and we conclude the paper in section 5.

2 Formulation of discontinuous Galerkin Method

Consider the Euler equations in conservative form as given by

∂Q

∂t
+
∂F(Q)

∂x
+
∂G(Q)

∂y
= 0 in the domain Ω (1)

where Q = (ρ, ρu, ρv, E)T , F(Q) = uQ + (0, p, 0, pu)T and G(Q) = vQ + (0, 0, p, pv)T with p =
(γ − 1)(E − 1

2ρ(u2 + v2)) and γ = 1.4. Here, ρ is the density, (u, v) is the velocity, E is the total energy
and p is the pressure. We approximate the domain Ω by K non overlapping elements given by Ωk.

We look at solving (1) using the discontinuous Galerkin method. We approximate the local solution
as a polynomial of order N which is given by:

Qkh(r, s) =

Np−1∑
i=0

Qki ψi(r, s) (2)

where Np = (N+1)(N+1) and r and s are the local coordinates. The polynomial basis used (ψi(r, s)) is
the tensor product orthonormalized Legendre polynomials of order N . The number of degrees of freedom
are given by Np = (N+1)(N+1). Now, using ψj(r, s) as the test function, the weak form of the equation
(1) is obtained as

Np−1∑
i=0

∂Qki
∂t

∫
Ωk

ψiψjdΩ +

∫
∂Ωk

F̂ψjds−
∫

Ωk

~F .∇ψjdΩ = 0 (3)

where ∂Ωk is the boundary of Ωk, ~F = (F(Q),G(Q)) and F̂ = F̄ ∗.n̂ where F̄ ∗ is the monotone numer-
ical flux at the interface which is calculated using an exact or approximate Riemann solver and n̂ is the
unit outward normal. This is termed to be PN based discontinuous Galerkin method.

Equation (3) is integrated using an appropriate Gauss Legendre quadrature and is discretized in time
by using the fourth order Runge-Kutta time discretization given in [11] unless otherwise specified. To
control spurious oscillations which occur near discontinuities, a limiter is used with a troubled cell indica-
tor. We have used the KXRCF troubled cell indicator [12] and the compact subcell WENO (CSWENO)
limiter proposed in [1] for all our calculations.

3 New scheme for data communication between overset grids

As the name suggests, overset grids consist of multiple grids which overlap each other. Boundaries of
two overlapping grids named Grid 1 (black) and Grid 2 (red) are shown in Figure 1. These boundaries
and boundary cells have an adjective artificial attached to them. For example, Ωk, Ωk+P , Ωk−P are ar-
tificial boundary cells as shown in Figure 1. For element based data communication approach, inter-grid
communication happens through the artificial boundary cells.

For the artificial boundary cells, we have to reconstruct the values of the degrees of freedom (Qki in
equation (2). In a given cell Ωk in Grid 2, we keep the cell average Qk0 constant and obtain the other
degrees of freedom by WENO reconstruction. To do this, we need all the immediate neighbors of Ωk.
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Figure 1: Two overlapping grids (Grid 1 in black and Grid 2 in Red) with the element Ωk where we are
applying the artificial boundary conditions; Ωk contains the Gauss quadrature points (points 1, 2, 3 and
4) where we reconstruct the solution for P1 based DGM; Figure also contains the ghost cell constructed
for the application of artificial boundary condition (the cell Ωk−1) and the immediate neighbors of Ωk in
Grid 2 (Ωk+1, Ωk+P , Ωk−P ) and the Gauss quadrature points in those cells used for WENO reconstruction
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Across artificial boundary face of Ωk, we construct a ghost cell Ωk−1 as shown in Figure 1 to ensure the
requisite neighbors of Ωk for WENO reconstruction. The ghost cell is constructed by extending the mesh
line beyond the artificial boundary with the same dimension as the boundary face. This procedure for
reconstruction of degrees of freedom is different from the standard element based data communication
approach as it uses just the cell Ωk for the reconstruction of the degrees of freedom Qki .

To obtain the degrees of freedom Qki (i=1,2,. . .,Np − 1), we use the compact subcell WENO recon-
struction proposed in [1]. For P1 based DGM, we reconstruct the values of Q at points 1, 2, 3, 4 shown
in Figure 1. These points correspond to the tensor product of the two Gauss quadrature points. We
first calculate Qk−1

h and Qk+1
h at coordinates (r = 0, s = ±1/

√
3) and Qk−Ph and Qk+P

h at coordinates

(r = ±1/
√

3, s = 0) corresponding to the points shown in Figure 1.

In this example, all the required values in cells Ωk+1, Ωk+P , and Ωk−P are calculated using the cell
local DG polynomial in Grid 2 using equation (2). We explain how to find the values of Q in the ghost
cell Ωk−1 now. Assume that the points where we need the values of Q (the points r = 0, s = ±1/

√
3) are

represented in Cartesian coordinates as (x1(r1, s1), y1(r1, s1)) and (x2(r2, s2), y2(r2, s2)), where (r1, s1)
and r2, s2) are the point locations in local coordinate system. These are used to find the Cartesian
coordinates X̄k for k = 1, 2. These Cartesian coordinates are used to obtain the cell local coordinates in
Grid 1 which are (rk(X̄k), sk(X̄k)) for k = 1, 2. A search algorithm (K-d tree) [13] is used to determine
which cell of Grid 1 contains the given GQ points. Then, we can find the cell local coordinates in a given
cell Ωi using Newton’s method as given below:[

∂rxi(r
n, sn) ∂sxi(r

n, sn)
∂ryi(r

n, sn) ∂syi(r
n, sn)

] [
∆r
∆s

]
=

[
−(xi(r

n, sn)− xb(1, sk))
−(yi(r

n, sn)− yb(1, sk))

]
for k = 1, 2 (4)

where r0 = 0, s0 = 0, rn+1 = rn + ∆r, sn+1 = sn + ∆s, ∂r = ∂/∂r, and ∂s = ∂/∂s. We iterate
using (4) until the Euclidean distance between the terms on the right hand side of (4) drops below a
tolerance of 1e− 10 or the Newton method reaches a maximum number of 20 iterations. The cell Ωi is
a donor cell for the coordinate X̄k if the Euclidean distance drops below the tolerance of 1e− 10. If the
Euclidean distance is above the required tolerance after 20 iterations, the coordinate X̄k is deemed to
reside outside of the cell Ωi. In this way, we obtain the cell local coordinates in Grid 1 corresponding to
(x1(r1, s1), y1(r1, s1)) and (x2(r2, s2), y2(r2, s2)).

If the mesh changes to adapt to the solution or the changing geometry, these coordinates have to be
calculated at every time step. Otherwise, they are calculated and stored before hand so as not to
calculate them at every time step for stationary overset grids. Using these cell local coordinates and
the DG polynomial in that cell, we can find the Q values at each of the required points using equation (2).

For our reconstruction, we need the values of Q at locations (r = 0, s = ±1/
√

3) in cells Ωk−1 and Ωk+1

and at (r = ±1/
√

3, s = 0) in cells Ωk−P and Ωk+P . After finding the values of Q at these points which
are shown in Figure 1 in each cell, we use Qk−1

h (r = 0, s = −1/
√

3), Qk0 and Qk+1
h (r = 0, s = −1/

√
3)

to find Qx1 and Qx2 with a WENO3 reconstruction. Similarly, Qk−1
h (r = 0, s = 1/

√
3), Qk0 and

Qk+1
h (r = 0, s = 1/

√
3) are used to find Qx3 and Qx4. Here, Qx1, Qx2, Qx3 and Qx4 are the one-

dimensional WENO reconstructed values at the Gauss quadrature points 1, 2, 3 and 4 shown in Figure
1 in the x direction. In the same manner, we use Qk−Ph (r = ±1/

√
3, s = 0), Qk+P

h (r = ±1/
√

3, s = 0),
and Qk0 to find Qy1, Qy2, Qy3 and Qy4. Again, Qy1, Qy2, Qy3 and Qy4 are the one-dimensional WENO
reconstructed values at the Gauss quadrature points 1, 2, 3 and 4 in the y direction.

We now describe the procedure to obtain Qx1, Qx2, Qx3, Qx4, Qy1, Qy2, Qy3 and Qy4 using one-
dimensional WENO3 reconstruction briefly. This is described in detail in [1]. We describe the procedure
to find the third order WENO reconstruction to obtain the values of Q in cell Ωk at the Gauss quadrature
points Qx1 and Qx2, given three cells Ωk−1, Ωk, and Ωk+1, and the corresponding cell averages Qk−1

0 ,
Qk0 and Qk+1

0 . We identify 2 small stencils Si, i = 0, 1 such that Ωk belongs to each of them. We set

Si =
⋃1
l=0 Ωk+i−l. We also have the larger stencil T =

⋃1
i=0 Si which contains all the cells from the

smaller stencils Si.

Now, we have a polynomial of degree 1, pi(x) corresponding to the stencil Si such that it’s cell av-
erage in each of the cells of the stencil Si agrees with the given cell average of Q. We also have a
polynomial of degree 2N reconstruction denoted by M(x) associated with the larger stencil T, such that
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the cell average of M(x) in each of the cells of the stencil T agrees with the cell average of Q for that
cell. The details of the construction of pi(x) and M(x) are given in [3].

Next, we find the linear weights denoted by γ0, γ1, which satisfy

M(xG) =

1∑
i=0

γipi(xG) (5)

where xG is a Gauss or Gauss-Lobatto quadrature point. A set of linear weights for each of the quadrature
points is obtained. The value of the functions M(x) and pi(x) for each i can be written as a function
of the cell average of each cell in the stencil. This is used in WENO reconstruction. For the P 1 based
DGM, with the Gauss quadrature point r = −1/

√
3, we have:[

L1
i

]
=
[
T 1
ij

] [
C1
j

]
(6)

where [
L1
i

]
=
[
p0(xG) p1(xG) M(xG)

]T
[
C1
j

]
=
[
Qk−1

0 Qk0 Qk+1
0

]T
and

[
T 1
ij

]
=


√

3
6

6−
√

3
6 0

0 6+
√

3
6 −

√
3

6√
3

12 1 −
√

3
12


The linear weights are given by

γ0 =
1

2
, γ1 =

1

2
(7)

For the Gauss quadrature point r = 1/
√

3, we have:[
L1
i

]
=
[
T 2
ij

] [
C1
j

]
(8)

where

[
T 2
ij

]
=

−
√

3
6

6+
√

3
6 0

0 6−
√

3
6

√
3

6

−
√

3
12 1

√
3

12


The linear weights remain the same.

Now, as given by [14], we compute the smoothness indicator for each stencil Si:

βi =

N∑
l=1

∫
Ωj

∆x2l−1
j

(
∂l

∂xl
pi(x)

)2

dx (9)

For P 1 based DGM, the smoothness indicators are given as:

β0 = (Qk0 −Qk−1
0 )2 (10)

β1 = (Qk+1
0 −Qk0)2 (11)

Now, we compute the nonlinear weights as given below:

ωi =
ω̄i∑
i ω̄i

, ω̄i =
γi∑

i(ε+ βi)2
(12)
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Here ε is a small number which is usually taken to be 10−6. The final WENO approximation is given by

QG =

N∑
i=0

ωipi(xG) (13)

Finally, we obtain the reconstructed degrees of freedom based on the reconstructed point values Q(xG)
at the Gauss quadrature points xG and a numerical integration as

Qkj = ∆xk
∑
G

wGQ(xG)ψj(xG) j = 1, . . . , N (14)

where wG’s are the Gaussian quadrature weights for the points xG. This procedure allows us to find all
the values Qx1, Qx2, Qx3, Qx4, Qy1, Qy2, Qy3 and Qy4 while maintaining the order of the scheme as
described in [1].

Using Qx1, Qx2, Qx3 and Qx4, we get the degrees of freedom Qkxn corresponding to a polynomial in
the x direction ∀n = 1 . . . Np − 1. Similarly, we get the degrees of freedom Qkyn corresponding to a
polynomial in the y direction ∀n = 1 . . . Np − 1. Now, we use the scheme

Np−1∑
i=0

∂QkNewi

∂t

∫
Ωk

ψiψjdΩ +

∫
∂Ωk

F̂ (Qkxi, Q
k
yi)ψjds−

∫
Ωk

~F (Qkxi, Q
k
yi).∇ψjdΩ = 0 (15)

where the fluxes ~F and F̂ are calculated using the appropriate values of Qkxn and Qkyn. We also use

(Qkhx + Qkhy)/2 as QkNewh for time integration. For solving a system of equations, we use this with a
local characteristic field decomposition with the corresponding Jacobians in the x and y directions as
explained in [15]. This completes the procedure for data communication between overset grids in a given
artificial boundary cell. We repeat this procedure for all boundary cells in both Grid 1 and Grid 2.

For P2 based DGM, we follow the same procedure after dividing the immediate neighbors Ωk−1, Ωk+1,
Ωk−P and Ωk+P in half as shown in Figure 2 and assigning appropriate values to the new cells as given
in [1]. For reconstruction of degrees of freedom with P2 based DGM, we have to use the four point
Gauss-Lobatto quadrature as the corresponding Gauss quadrature rule requires the point r = 0, where
the reconstruction of the solution loses it’s accuracy. The Gauss-Lobatto quadrature points used in the
ghost cell are shown in Figure 2. Now, we follow the procedure for WENO5 reconstruction as given in [1]
and [3]. For P3 based DGM, we follow the same procedure of constructing ghost cells and subcells using
four point Gauss quadrature.

We described a scheme for data communication using WENO reconstruction and subcells for overset
grids. This procedure also works as a limiter for artificial boundary cells if a discontinuity passes through
the overlapping region while maintaining the order of accuracy of the solution. This makes this scheme
quite effective as limiting in an artificial boundary cell is quite difficult as most of the current limiting
procedures are difficult to apply on a boundary.

4 Results

In this section, we look at some of the results obtained to demonstrate the performance of the scheme for
data communication described above. All the results are obtained using DG method and an appropriate
Runge-Kutta scheme for time integration [11].

4.1 Accuracy Tests

Example 1: We solve the two dimensional Euler equations as given in equation (1) in the domain
[0, 2] × [0, 2]. The initial conditions are given by ρ(x, y, 0) = 1 + 0.2 sin(π(x + y)), u(x, y, 0) = 0.7,
v(x, y, 0) = 0.3 and p(x, y, 0) = 1.0 and we use periodic boundary conditions in both directions. The
exact solution is given by ρ(x, y, 0) = 1 + 0.2 sin(π(x + y − t)), u(x, y, 0) = 0.7, v(x, y, 0) = 0.3 and
p(x, y, 0) = 1.0. We run the solver with the same grid size for a normal grid and an overset grid for

6
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Grid 1

Grid 2

Ωk

Figure 2: Two overlapping grids (Grid 1 in black and Grid 2 in Red) with the element Ωk where we
are applying the artificial boundary conditions; The immediate neighbors divided in half for WENO5
reconstruction (used for P2 based DGM) are shown and the Gauss quadrature points in the ghost cell
used for WENO reconstruction is also shown
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grid sizes of 1/20, 1/40, 1/80, and 1/160 for various orders. We have used two different overset grids
as shown in Figures 3 (labeled as Type 1) and 4 (labeled as Type 2 which is obtained by rotating the
Type 1 overset grid by 450) for our calculations to demonstrate the effectiveness of our procedure. Both
example grids shown in Figures 3 and 4 contain 40 by 40 elements. The errors in density and numerical
orders of accuracy are calculated at t = 2.0 for the original grid as well as both the overset grids and are
presented in Table 1. While calculating the solution, we have made sure that the temporal and spatial
orders of accuracy are the same by using a corresponding Runge-Kutta time integration [11]. We can
see that the solution obtained using the overset grid is as accurate as the solution obtained without any
overset.

Figure 3: Overset Grid of Type 1 for Entropy Wave Problem in the domain [0, 2]× [0, 2] with 40 by 40
elements used for the validation of the overset grid solver.

Example 2: We solve the two dimensional Euler equations as given in equation (1) in the domain
[0, 10]× [−5, 5] for the Isentropic Euler Vortex problem. The analytical solution is given by:

ρ =
(

1−
(
γ−1

16γπ2

)
β2e2(1−r2)

) 1
γ−1

, u = 1 − βe(1−r2) y−y0
2π , v = βe(1−r2) x−x0−t

2π , and p = ργ , where r is

given by
√

(x− x0 − t)2 + (y − y0)2, x0 = 5, y0 = 0, β = 5 and γ = 1.4. We initialize with the analytical
solution at t = 0 and use periodic boundary conditions at the edges of the domain. We run the solver
with the same grid size for the baseline grid and an overset grid for grid sizes of 1/20, 1/40, 1/80, and
1/160 for various orders. We have used two different overset grids as shown in Figures 5 (labeled as
Type 1) and 6 (labeled as Type 2 which is obtained by rotating the Type 1 overset grid by 450) for our
calculations to demonstrate the effectiveness of our procedure. Both example grids shown in Figures 5
and 6 contain 40 by 40 elements. The errors in density and numerical orders of accuracy are calculated
at t = 10.0 (one period) for the original grid as well as both the overset grids and are presented in Table
2. While calculating the solution, we have made sure that the temporal and spatial orders of accuracy
are the same by using a corresponding Runge-Kutta time integration [11]. We can see that the solution
obtained using the overset grid is as accurate as the solution obtained without any overset.

4.2 Test Cases with discontinuities

We now test the data communication scheme for problems with solutions having discontinuities, some of
them passing through the artificial boundary. We have used the compact subcell WENO limiter proposed

8



Figure 4: Overset Grid of Type 2 (which is obtained by rotating the Type 1 overset grid by 450) for
Entropy Wave Problem in the domain [0, 2]× [0, 2] with 40 by 40 elements used for the validation of the
overset grid solver.

DG w/o overset DG with overset (Type 1) DG with overset (Type 2)
Grid size L2 error Order L2 error Order L2 error Order

P1

1/20 1.384E-03 9.976E-04 1.174E-03
1/40 2.850E-04 2.28 2.026E-04 2.30 2.401E-04 2.29
1/80 6.289E-05 2.18 4.349E-05 2.22 5.262E-05 2.19
1/160 1.437E-05 2.13 9.867E-06 2.14 1.202E-05 2.13

P2

1/20 1.087E-05 9.876E-06 1.021E-05
1/40 1.127E-06 3.27 9.889E-07 3.32 1.051E-06 3.28
1/80 1.185E-07 3.25 1.018E-07 3.28 1.097E-07 3.26
1/160 1.272E-08 3.22 1.085E-08 3.23 1.177E-08 3.22

P3

1/20 1.004E-07 9.157E-08 9.938E-08
1/40 4.690E-09 4.42 4.337E-09 4.40 4.675E-09 4.41
1/80 2.252E-10 4.38 2.069E-10 4.39 2.245E-10 4.38
1/160 1.135E-11 4.31 1.029E-11 4.33 1.124E-11 4.32

Table 1: Validation of overset grid solver using 2D Euler equations for the Entropy Wave problem with
periodic boundary conditions, t = 2.0, Uniform mesh with and without overset for two different overset
grids as shown in Figures 3 and 4, L2 error for density with P1, P2 and P3 based DGM
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Figure 5: Overset Grid of Type 1 for Isentropic Vortex Problem in the domain [0, 10] × [−5, 5] with 40
by 40 elements used for the validation of the overset grid solver.

Figure 6: Overset Grid of Type 2 (which is obtained by rotating the Type 1 overset grid by 450) for
Isentropic Vortex Problem in the domain [0, 10]× [−5, 5] with 40 by 40 elements used for the validation
of the overset grid solver.

10



DG w/o overset DG with overset (Type 1) DG with overset (Type 2)
Grid size L2 error Order L2 error Order L2 error Order

P1

1/20 3.215E-03 1.252E-03 2.786E-03
1/40 7.294E-04 2.14 2.801E-04 2.16 6.277E-04 2.15
1/80 1.725E-04 2.08 6.534E-05 2.10 1.485E-04 2.08
1/160 4.137E-05 2.06 1.535E-05 2.09 3.561E-05 2.06

P2

1/20 2.232E-05 1.493E-05 1.876E-05
1/40 2.512E-06 3.15 1.647E-06 3.18 2.099E-06 3.16
1/80 2.829E-07 3.15 1.830E-07 3.17 2.365E-07 3.15
1/160 3.187E-08 3.15 2.047E-08 3.16 2.664E-08 3.15

P3

1/20 2.768E-07 1.842E-07 2.274E-07
1/40 1.376E-08 4.33 8.847E-09 4.38 1.123E-08 4.34
1/80 6.747E-10 4.35 4.279E-10 4.37 5.545E-10 4.34
1/160 3.378E-11 4.32 2.128E-11 4.33 2.796E-11 4.31

Table 2: Validation of overset grid solver using 2D Euler equations for the Isentropic Vortex problem
with periodic boundary conditions, t = 10.0,Uniform mesh with and without overset for two different
overset grids as shown in Figures 5 and 6, L2 error for density with P1, P2 and P3 based DGM

in [1] along with the KXRCF troubled cell indicator [12] for all our calculations.

Example 3: We solve the Sod’s shock tube problem as proposed in [16] in the two-dimensional do-
main. We solve the 2D Euler equations in the domain [0, 1] × [0, 1] with the initial conditions given as
(ρ, u, v, p) = (1.0, 0.0, 0.0, 1.0) for x < 0.5 and (ρ, u, v, p) = (0.125, 0.0, 0.0, 0.1) otherwise. Non reflecting
boundary condition is applied at x = 0 and x = 1 and periodic boundary conditions are applied at the
other two boundaries. We use a refined overset grid of size h = 1/200 between x = 0.59 and x = 0.91
(where the solution contains a discontinuity) on a baseline grid of size h = 1/100 as shown in Figure 7.
The computed solution for density obtained at t = 0.2 using the h = 1/200 overset grid on h = 1/100
baseline grid at the y = 0.5 line for P 1, P 2 and P 3 based DGM is compared and plotted against the
exact solution in Figure 8. We also plot the solution difference (|ρwithOverset−ρwithOutOverset|) obtained
for P 1, P 2 and P 3 based DGM in Figure 9 between the solution obtained using a grid of size h = 1/200
without any overset and using a refined overset grid of size h = 1/200 between x = 0.59 and x = 0.91
(where the solution contains a discontinuity) on a baseline grid of size h = 1/100. From looking at Figure
9, we can see the solution obtained with a refined overset grid of size h = 1/200 between x = 0.59 and
x = 0.91 on a baseline grid of size h = 1/100 is as good as the solution obtained with single grid of size
h = 1/200 especially on the overset grid.

Example 4: We solve the Lax problem as proposed in [17] in the two-dimensional domain. We solve
the 2D Euler equations in the domain [0, 1] × [0, 1] with the initial conditions given as (ρ, u, v, p) =
(0.445, 0.698, 0.0, 3.528) for x < 0.5 and (ρ, u, v, p) = (0.5, 0.0, 0.0, 0.571) otherwise. Non reflecting
boundary condition is applied at x = 0 and x = 1 and periodic boundary conditions are applied at
the other two boundaries. We use a refined overset grid of size h = 1/200 between x = 0.59 and x = 0.81
(where the solution contains a discontinuity) on a baseline grid of size h = 1/100 as shown in Figure 10.
The computed solution for density obtained at t = 0.1 using the h = 1/200 overset grid on h = 1/100
baseline grid at the y = 0.5 line for P 1, P 2 and P 3 based DGM is compared and plotted against the exact
solution in Figure 11. We also plot the solution difference (|ρwithOverset − ρwithOutOverset|) obtained for
P 1, P 2 and P 3 based DGM in Figure 12 between the solution obtained using a grid of size h = 1/200
without any overset and using a refined overset grid of size h = 1/200 between x = 0.59 and x = 0.81
(where the solution contains a discontinuity) on a baseline grid of size h = 1/100. From looking at Figure
12, we can see the solution obtained with a refined overset grid of size h = 1/200 between x = 0.59 and
x = 0.81 on a baseline grid of size h = 1/100 is as good as the solution obtained with single grid of size
h = 1/200 especially on the overset grid.

Example 5: As another test case, we look at the 2D Riemann problem of gas dynamics which is one of
the most extensively studied problem which also contains a lot of intricate flow structures. We solve the
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Figure 7: Overset Grid used for the solution of Sod’s shock tube problem in the domain [0, 1] × [0, 1]
with a refined overset grid of size h = 1/200 between x = 0.59 and x = 0.91 (where the solution contains
a discontinuity) on a baseline grid of size h = 1/100.

Figure 8: Comparison of density solutions on y = 0.5 line of Sod’s shock tube problem at t = 0.2 in
the domain [0, 1] × [0, 1] with a refined overset grid of size h = 1/200 between x = 0.59 and x = 0.91
(where the solution contains a discontinuity) on a baseline grid of size h = 1/100 obtained with the P 1,
P 2 and P 3 based DGM using the proposed data communication scheme and the exact solution. Figure
also includes a zoomed in portion of the solution for better comparison
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Figure 9: Solution difference for density (|ρwithOverset − ρwithOutOverset|) obtained on y = 0.5 line of
Sod’s shock tube problem at t = 0.2 in the domain [0, 1]× [0, 1] for P 1, P 2 and P 3 based DGM between
a refined overset grid of size h = 1/200 between x = 0.59 and x = 0.91 (where the solution contains a
discontinuity) on a baseline grid of size h = 1/100 and a single grid of size h = 1/200.

Figure 10: Overset Grid used for the solution of Lax problem in the domain [0, 1]× [0, 1] with a refined
overset grid of size h = 1/200 between x = 0.59 and x = 0.81 (where the solution contains a discontinuity)
on a baseline grid of size h = 1/100.
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Figure 11: Comparison of density solutions on y = 0.5 line of Lax problem at t = 0.1 in the domain
[0, 1] × [0, 1] with a refined overset grid of size h = 1/200 between x = 0.59 and x = 0.81 (where the
solution contains a discontinuity) on a baseline grid of size h = 1/100 obtained with the P 1, P 2 and P 3

based DGM using the proposed data communication scheme and the exact solution. Figure also includes
a zoomed in portion of the solution for better comparison

Figure 12: Solution difference for density (|ρwithOverset−ρwithOutOverset|) obtained on y = 0.5 line of Lax
problem at t = 0.1 in the domain [0, 1]× [0, 1] for P 1, P 2 and P 3 based DGM between a refined overset
grid of size h = 1/200 between x = 0.59 and x = 0.81 (where the solution contains a discontinuity) on a
baseline grid of size h = 1/100 and a single grid of size h = 1/200.
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two-dimensional Euler equations (1) in the domain [0, 1]× [0, 1] for 2D Riemann problem configurations
(10), (12) and (16) as given by the nomenclature in [18]. The initial conditions for configurations (10),
(12) and (16) are given respectively as

(ρ, u, v, p)(x, y, 0) =


(1, 0, 0.4297, 1) if x ≥ 0.5 and y ≥ 0.5

(0.5, 0, 0.6076, 1) if x < 0.5 and y ≥ 0.5

(0.2281, 0,−0.6076, 0.3333) if x < 0.5 and y < 0.5

(0.4562, 0,−0.4297, 0.3333) otherwise

(16)

(ρ, u, v, p)(x, y, 0) =


(0.5313, 0, 0, 0.4) if x ≥ 0.5 and y ≥ 0.5

(1, 0.7276, 0, 1) if x < 0.5 and y ≥ 0.5

(0.8, 0, 0, 1) if x < 0.5 and y < 0.5

(1, 0, 0.7276, 1) otherwise

(17)

(ρ, u, v, p)(x, y, 0) =


(0.5313, 0.1, 0.1, 0.4) if x ≥ 0.5 and y ≥ 0.5

(1.0222,−0.6179, 0.1, 1) if x < 0.5 and y ≥ 0.5

(0.8, 0.1, 0.1, 1) if x < 0.5 and y < 0.5

(1, 0.1, 0.8276, 1) otherwise

(18)

For configurations (10) and (12), we use a refined overset grid of size h = 1/400 between x = 0.395
and x = 0.605 (which is our region of interest) on a baseline grid of size h = 1/400 as shown in Figure 13.
For configuration (16), we use a refined overset grid of size h = 1/400 between x = 0.295 and x = 0.705
(which is our region of interest) on a baseline grid of size h = 1/400 as shown in Figure 14. We compute
the solution upto time t = 0.15 for configuration (10), t = 0.25 for configuration (12) and till t = 0.2 for
configuration (16). Configuration (10) contains contact discontinuities and rarefaction waves initially.
Configuration (12) and (16) contain both shocks and rarefaction waves along a contact discontinuities.
We have selected the overset mesh for configurations (12) and (16) such that a shock passes through
the overset grid. This will demonstrate that our data communication method also works as a limiter.
We solved all three configurations for P1, P2 and P3 based DGM. The density contours for the solution
obtained using the our procedure for P3 based DGM are shown in Figures 15, 16 and 17 respectively for
configurations (10), (12) and (16). We also calculated the L2 error for density for each of the solutions
obtained for P1, P2 and P3 based DGM for all three configurations by taking a solution obtained on a
single grid of size h = 1/400 using P4 based DGM as the exact solution and this error is tabulated in
Table 3. From the solution obtained, we can see that data communication scheme works quite well even
when a shock passes through the artificial boundary of the overset grid (configurations (12) and (16)).

L2 error for the three different Riemann problem configurations
configuration (10) configuration (12) configuration (16)

P1 based DGM 5.16E-05 7.49E-04 2.42E-04
P2 based DGM 6.63E-07 5.34E-06 9.94E-07
P3 based DGM 8.83E-10 9.27E-09 2.76E-09

Table 3: L2 error for density obtained for 2D Riemann problem configurations (10), (12) and (16) using
P1, P2 and P3 based DGM on the overset grids shown in Figures 13 and 14 by using a solution obtained
on a single grid of size h = 1/400 using P4 based DGM as the exact solution.

5 Conclusion:

We have developed a new scheme for data communication using subcells and WENO reconstruction
for two-dimensional problems using overset grids. We use element based data communication approach
between overset grids and reconstruct the degrees of freedom in cells near the overset interface using
WENO reconstruction. This is done by dividing the immediate neighbors into subcells as proposed in [1]
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Figure 13: Overset Grid used for the solution of 2D Riemann problem configurations (10) and (12) in
the domain [0, 1]× [0, 1] with a refined overset grid of size h = 1/400 between x = 0.395 and x = 0.605
(which is our region of interest) on a baseline grid of size h = 1/200.

Figure 14: Overset Grid used for the solution of 2D Riemann problem configuration (16) in the domain
[0, 1]× [0, 1] with a refined overset grid of size h = 1/400 between x = 0.295 and x = 0.705 (which is our
region of interest) on a baseline grid of size h = 1/200.
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Figure 15: 50 equally spaced density contours for solution at t = 0.15 for 2D Riemann problem con-
figuration 10 with a refined overset grid of size h = 1/400 between x = 0.395 and x = 0.605 (which is
our region of interest) on a baseline grid of size h = 1/200 obtained with the P 3 based DGM using the
proposed data communication scheme
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Figure 16: 50 equally spaced density contours for solution at t = 0.25 for 2D Riemann problem con-
figuration 12 with a refined overset grid of size h = 1/400 between x = 0.395 and x = 0.605 (which is
our region of interest) on a baseline grid of size h = 1/200 obtained with the P 3 based DGM using the
proposed data communication scheme

18



Figure 17: 50 equally spaced density contours for solution at t = 0.2 for 2D Riemann problem config-
uration 16 with a refined overset grid of size h = 1/400 between x = 0.395 and x = 0.605 (which is
our region of interest) on a baseline grid of size h = 1/200 obtained with the P 3 based DGM using the
proposed data communication scheme
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and also by constructing a ghost cell near the artificial boundary of the element. This procedure has the
added advantage that it also works as a limiter if a discontinuity passes through the overset interface.
We can use this procedure for data communication between overset grids with any other higher order
method which uses cells for their solution. We have demonstrated the scheme using discontinuous
Galerkin method. We have provided accuracy tests to show that this procedure maintains the order of
accuracy of the scheme on the overset grids. We have also provided results with solutions containing
shocks to demonstrate the limiter aspect of this scheme.
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