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Abstract

We develop two new ideas for interpolation on S2. In this first part, we will introduce
a simple interpolation method named Spherical Interpolation of orDER n (SIDER-n) that
gives a Cn interpolant given n ≥ 2. The idea generalizes the construction of the Bézier curves
developed for R. The second part incorporates the ENO philosophy and develops a new
Spherical Essentially Non-Oscillatory (SENO) interpolation method. When the underlying
curve on S2 has kinks or sharp discontinuity in the higher derivatives, our proposed approach
can reduce spurious oscillations in the high-order reconstruction. We will give multiple
examples to demonstrate the accuracy and effectiveness of the proposed approaches.

1 Introduction

We consider the following interpolation problem on S2. Given a set of ordered data points {pi :
‖pi‖2 = 1 for i = 0, · · · , n} on the unit sphere S2, we aim to determine a parametrized curve
{p(t) ∈ S2 : 0 ≤ t ≤ n} such that p(t = i) = pi at a set of uniformly spaced t = i for i = 0, · · · , n.
This interpolation problem has many other important science and engineering applications [12].
One of the most popular applications is on computer graphics when we use a point on S2 to
represent rotations of a rigid body about an arbitrary axis. The interpolation problem can be
regarded as the in-between orientation of orientations. Another possible interpretation is an
interpolation problem in the special orthogonal group SO(3) [23], which applies to the path
planning of a rigid body. We could also find applications of this problem in the quantum
field theory from quantum mechanics [1], modeling protein structures [17], molecular dynamics
simulation [18], theory in fluid mechanics [5], fluid flow visualizations [8], computations of
flexible filaments and fibres in complex fluids [30, 20], and differential equations [11] and some
applications to dynamics of rigid-bodies [33, 34, 31].

Several methods exist to interpolate the action as the data points on the unit sphere S2.
For example, based on the quaternion representation [24, 32, 35, 14, 2] of data points on a unit
sphere, one has the spherical linear interpolation (SLERP) and the spherical quadrangle inter-
polation (SQUAD). These two are the most popular and commonly used interpolation methods
on the unit sphere. The SLERP interpolation provides the piecewise linear interpolation in
geodesic on the unit sphere, while the SQUAD gives a smooth and slightly higher-order re-
construction of the data points. To our understanding, there is no systematic construction of
interpolation schemes that provides any order higher than SQUAD.

There are multiple possible reasons for the absence of high order interpolation scheme.
One possible explanation is that data might contain noise in most real-life applications, such
as computer graphics or unmanned aerial vehicle (UAV) trajectory planning. There is no
significant reason to treat all data very precisely. Therefore, most applications rely on Bézier
curves for smooth curve constructions. In some other applications, however, when we need to
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solve some related differential equation where the numerical precision of the solution is essential,
we might worry about the continuity of the underlying unknown curve and avoid high-order
reconstruction. This consideration is common in the usual Euclidean space. If the underlying
function is not smooth enough, we could experience the so-called Gibbs phenomenon and obtain
spurious oscillations from high-order polynomial reconstructions. Instead of treating all data
points equally in the small neighborhood, the essentially non-oscillatory (ENO) scheme [9, 27,
28, 25] obtains a biased choice of grid stencil that yields the least variations in the polynomial
reconstruction. This interpolation method becomes the essential tool in the numerical methods
for solving Hamilton-Jacobi equations [10, 36, 21] in the level set applications [16, 22, 15] where
the solution might develop kinks or for approximating the hyperbolic conservation laws [27, 28]
when the solution profile might form shocks and discontinuities.

This paper has two primary purposes. We first propose a systematic approach to construct
some high-order interpolants from given data points on S2. We name our approach the Spherical
Interpolation of orDER n (SIDER-n) that produces a Cn interpolant given n ≥ 2. The idea
follows the construction of the Bézier curves based on the composition of multiple SLERPs.
Therefore, the formulation is familiar with what has been widely used in the community. How-
ever, unlike the typical Bézier curves, our proposed approach determines the control points in
Bézier curves to enforce that the reconstruction passes through all given data points. Once
we have these high-order reconstructions on S2, we follow the ENO philosophy and propose a
new Spherical Essentially Non-Oscillatory (SENO) interpolation method. This approach can
provide a smooth, high-order interpolant even when the underlying curve has kinks. This prop-
erty will be necessary when we aim to develop high-order numerical schemes for solving any
quaternion-related differential equations.

The paper is organized as follows. In Section 2, we briefly introduce the quaternion notation
and provide the typical interpolation approaches, including SLERP and SQUAD. To increase
the regularity of the interpolant, we develop the SIDER and the SENO interpolation method
in Section 3. Section 4 shows various numerical examples to demonstrate the accuracy and
effectiveness of the proposed interpolation method.

2 Quaternions and Interpolations on the Unit Sphere

This section will first introduce the quaternion notation and summarize some essential proper-
ties. Based on this quaternion representation, we will briefly introduce the SLERP and SQUAD
interpolations.

Hamilton introduced quaternions to describe rotations and scalings in mid nineteenth cen-
tury [7]. These numbers consist of four dimensions, one real part and a three-dimensional
analogy to the imaginary part of complex numbers. A quaternion can be written in many
forms:

a
real

+ bi + cj + dk
imaginary

= (a, b, c, d) = ( a
scalar

, u
vector

),

where a, b, c, d ∈ R, u = (b, c, d) ∈ R3. The notations i, j and k are extensions of the imaginary
part of complex numbers with the properties that i2 = j2 = k2= ijk = −1, ij = k with the
bicyclic permutation with respect to i that 1 → i → −1 → −i and j → −k → −j → k. Some
important properties about quaternions include

• Hamilton product

(a1,u1)(a2,u2) = (a1a2 − u1 · u2, a1u2 + a2u1 + u1 × u2) ,

where the notation · and × denotes the typical dot and cross product.
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• Inverse map
q−1 = (a,−u)/(a2 + b2 + c2 + d2)

If q = (a,u). In particular, if q is a unit quaternion, q−1 = (a,−u).

• Exponential map

exp(a,u) = exp(a)(cos‖u‖, ((sin‖u‖)/‖u‖)u) .

where the norm notation ‖·‖ denotes the 2-norm in this paper, unless otherwise specified.

• Logarithm map

ln(a,u) =

(
ln
√
a2 + ‖u‖2, 1

‖u‖
arccos

(
a√

a2 + ‖u‖2

)
u

)
.

• Power map

(a,u)f(t) = exp(f(t) ln(a,u))

= exp(f(t) ln
√
a2 + ‖u‖2, (f(t)k/‖u‖)u)

=
(

(a2 + ‖u‖2)f(t)/2 cos(f(t)k), (a2 + ‖u‖2)f(t)/2 [sin(f(t)k)/‖u‖]u
)
,

where k = arccos
(
a/
√
a2 + ‖u‖2

)
. When a quaternion has its 2-norm

√
a2 + b2 + c2 + d2

equal to one, we call them a unit quaternion. If (a,u) is a unit quaternion, then

(a,u)f(t) =

(
cos(f(t)k),

[
sin(f(t)k)

‖u‖

]
u

)
.

Because we can use these unit quaternions to define rotation, we also call these quaternions
rotation quaternions. With proper definitions, they can rotate a position vector defined in either
S2 or R3 while preserving the length of the vector. To see this, we express a unit quaternion as

(a, b, c, d) = (a,u) = (cos(θ/2), sin(θ/2)v)

where v is a unit vector representing the 3D rotation axis, and θ is the anticlockwise/counterclockwise
rotation angle around v carried by the rotation quaternion. If we want to rotate pa ∈ S2 with a
rotation quaternion rab = (cos(θab/2), sin(θab/2)aab), we can first convert pa to a unit quater-
nion given by qa = (0,pa). Then we apply the rotation operator given by

ROTATE(qa, rab) = (rab)(qa)(rab)−1 .

The final position after the rotation is given by the imaginary part of the unit quaternion
qb = (0,pb).

Introducing a parameterization t such that t = 0 and t = 1 corresponding to the initial
position qa and qb, respectively, we can interpolate these two data points by the rotation
operator ROTATE(qa, rab, t) = (rab)t(qa)(rab)−t for t ∈ [0, 1]. This expression leads to the
so-called SLERP (Spherical Linear intERPolation) formula [24, 29]:

SLERP(qa,qb, t) = (qa)((qa)−1qb)t, t ∈ [0, 1] .

In particular, if the quantity aab in the rotation quaternion is perpendicular (and this is assumed
to be true in the remaining of this article) to both pa and pb, we have pa · pb = cos θab and

pb = (cos θab)pa + (sin θab)(aab × pa); (Rodrigues’ rotation formula [19])

aab = pa ×
[
pb − (cos θab)pa

(sin θab)

]
=

pa × pb

sin θab
.
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The function SLERP has two interesting properties. One is that the interpolant runs on
the shortest path (geodesic) between both endpoints at a constant (angular) speed. If both
two data points are both pure unit quaternions (i.e. qa = (0,pa) and qb = (0,pb)), the
SLERP interpolant between qa and qb lies on the vector part of the unit quaternion sphere.
Mathematically, we can show that SLERP(qa,qb, t) = (0,p(t)) with ‖p(t)‖ = 1 for all t ∈ [0, 1]
if p(0) = pa and p(1) = pb. Another interesting property is that the inverse of a SLERP
between two pure unit quaternions negates the interpolant, i.e.

(SLERP(qa,qb, t))
±1 = SLERP(±qa,±qb, t) = ±SLERP(qa,qb, t) .

When we have more than two data points on a sphere, one might obtain a piecewise linear
interpolant by applying SLERP in a piecewise fashion. If we want to obtain a smoother inter-
polant, one can consider the SQUAD (spherical quadrangle interpolation) [3]. It constructs a
C1 interpolant passing through the data points pi and pi+1 on S2 with two extra quaternions
si and si+1 as control points

si = qi exp

[
−1

4

(
ln(qi

−1qi+1) + ln(qi
−1qi−1)

)]
si+1 = qi+1 exp

[
−1

4

(
ln(qi+1

−1qi+2) + ln(qi+1
−1qi)

)]
determined by qi−1 = (0,pi−1), qi = (0,pi), qi+1 = (0,pi+1), and qi+2 = (0,pi+2). In case
pi−1 or pi+2 is not defined (in other words, we are at the beginning or the end of the data point
sequence), they are defined as pi or pi+1 respectively for convention. One first converts each
pi to a pure unit quaternion qi = (0,pi), then the SQUAD interpolant is given by

SQUAD( qi−1
for control

, qi
data

, qi+1
data

, qi+2
for control

, t)

= SLERP(SLERP(qi,qi+1, t), SLERP(si, si+1, t), 2t(1− t))

= qi

(
qi
−1qi+1

)t [[
qi

(
qi
−1qi+1

)t]−1
si
(
si
−1si+1

)t]2t(1−t)
=
(

0,pSQUAD(t)
)

for t ∈ [0, 1]. The interpolation SLERP and SQUAD are two most widely used interpola-
tion schemes. There might be smoother explicit interpolations, but the expression could be
complicated to implement and analyze.

3 Our Approaches

In this section, we will introduce two new ideas for interpolation on S2. In this first part of the
discussion, we will introduce a simple interpolation method named Spherical Interpolation of
orDER n (SIDER-n− 1 in short) that gives a Cn−1 interpolant given n ≥ 3 points on S2. The
idea generalizes the construction of the Bézier curves developed for R. However, similar to the
standard polynomial interpolation, we would imagine that the interpolant will produce oscilla-
tions when the underlying function is not smooth enough. Therefore, instead of reconstructing
the underlying interpolant using single highly smooth curve, we propose incorporating the ENO
philosophy and developing a new Spherical Essentially Non-Oscillatory (SENO) interpolation
method. We will give the details in the second part of this section.

3.1 SIDER Interpolations

This section introduces a new class of interpolation schemes on the unit sphere, denoted by
SIDER. We will first consider the case for n = 3, i.e., three data points to obtain a C2 curves
on the unit sphere. We will then give a higher-order generalization for n = 4 data points.
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Figure 1: Setup for SIDER2.

With reference to the construction of quadratic Bézier curves, we propose the following
spherical quadratic curve (denoted by SIDER2),

SIDER2( q1
start

, q2
second data

, q3
end

, t)

= SLERP(SLERP(q1,d2a, t),SLERP(d2b,q3, t), t)

= q1

(
q1
−1d2a

)t [[
q1(q1

−1d2a)t
]−1 [

d2b(d2b
−1q3)

]t]f2(t)
=
(
0,pSIDER2(t)

)
where t ∈ [t1, t3], and f2(t) = (t− t1)/(t3 − t1). Unless specified otherwise, we might use t1 = 0
and t3 = 1. The points qi = (0,pi), d2a = (0, c2a) and d2b = (0, c2b) are the quaternion
representation of the position vectors pi, c2a and c2b, respectively. We have shown the setup
for the construction in Figure 1.

The crucial step in this expression is how we determine the control points c2a and c2b.
We construct c2b (and c2a) using the geodesic extrapolating based on the first data points p1

(and p3) and the intermediate one p2 so that the final interpolant reaches p2 when t = t2 =
0.5(t1+t3). To enforce this condition, we refer to the spatial relationships among the data points
and the (only) control point in a quadratic force interpolating Bézier curve. Mathematically,
we assign

d2a = (0, c2a) = SLERP(q3,q2, 2) and d2b = (0, c2b) = SLERP(q1,q2, 2) .

Although SIDER2 seems to directly replace the linear interpolation in the quadratic Bézier
curve in Rn by the SLERP, these two expressions are different. A typical Bézier interpolant
usually passes through only the first and the last points while treating all other points as control
points. On the other hand, our SIDER2 is an interpolation formula that requires the interpolant
to pass through all given sampling points.

Here we give several properties of SIDER2.

• The interpolant passes through all three data points. We can easily check that

SIDER2(q1,q2,q3, 0) = (0,p1) = q1 and SIDER2(q1,q2,q3, 1) = (0,p3) = q3 .

For the second data point, we have

SIDER2(q1,q2,q3, 0.5) = SLERP(SLERP(q1,d2a, 0.5),SLERP(d2b,q3, 0.5), 0.5)

= SLERP(q1|2a,q2b|3, 0.5) ,
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t g3(t) h3(t) f3(t)

t1 0 0

t2 := 1
3(2t1 + t4) 1/2 0 1/3

(t1 + t4)/2 1/2

t3 := 1
3(t1 + 2t4) 1 1/2 2/3

t4 1 1

Table 1: Conditions imposed on the functions g3(t), h3(t) and f3(t) in the construction of
SIDER3. We leave the box blank if we do not account for the function value at that timestamp.

where q1|2a = (0,p1|2a), q2b|3 = (0,p2b|3), p1|2a is the midpoint along the geodesic
between p1 and c2a, and p2b|3 is the midpoint along the geodesic between c2b and p3.
The last expression looks for the midpoint along the geodesic between p1|2a and p2b|3
which, therefore, leads to p2 according to the construction of c2a and c2b.

• Since SLERP guarantees that the interpolant stays on the sphere, we are assured that
SIDER2 also generates points with the unit length for all t ∈ [t1, t3].

• Reversing the start and end points (while keeping the midway data obtained at t2 =
0.5(t1 + t3)) would not change the curve on the sphere.

The approach can be easily extended to the case where n = 4, i.e., we construct a C3 curve
from four given data points. The construction is given by

SIDER3( q1
start

, q2
second point

, q3
third point

, q4
end

, t)

= SLERP(SIDER2(q1,q2,q3, g3(t)),SIDER2(q2,q3,q4, h3(t)), f3(t))=
(
0,pSIDER3(t)

)
where t ∈ [t1, t4]. Therefore, a SIDER3 reconstruction is a linear combination of two scaled
SIDER2, that we interpolate within {p1,p2,p3} and {p2,p3,p4} simultaneously.

Given that the timestamps are equalized, i.e. t2 = 1
3(2t1 + t4) and t3 = 1

3(t1 + 2t4), we want
the functions g3(t), h3(t) and f3(t) satisfy the conditions imposed at t1, t2, 1

2(t1 + t4), t3 and t4
as shown in Table 1. The simplest linear and quadratic functions that satisfy these constraints
are given by g3(t) = (t − t1)/(t3 − t1), h3(t) = (t − t2)/(t4 − t2) and f3(t) = (t − t1)/(t4 − t1).
For simplicity, we set the starting time t1 = 0 and the ending time t4 = 1, so that t2 = 1

3 and
t3 = 2

3 , and g3(t) = 3t/2, h3(t) = (3t− 1)/2 and f3(t) = t.
It is easy to check that the interpolant satisfies

SIDER3 (q1,q2,q3,q4, 0) = (0,p1) = q1 and SIDER3 (q1,q2,q3,q4, 1) = (0,p4) = q4 .

For the two other intermediate data points, we have

SIDER3

(
q1,q2,q3,q4,

1

3

)
= SLERP

(
SIDER2

(
q1,q2,q3, g3

(
1

3

))
, SIDER2

(
q2,q3,q4, h3

(
1

3

))
, f3

(
1

3

))
= SLERP (SIDER2 (q1,q2,q3, 1/2) , SIDER2 (q2,q3,q4, 0) , 1/3)

= SLERP

(
q2,q2,

1

3

)
= (0,p2) = q2 .



7

and

SIDER3

(
q1,q2,q3,q4,

2

3

)
= SLERP

(
SIDER2

(
q1,q2,q3, g3

(
2

3

))
, SIDER2

(
q2,q3,q4, h3

(
2

3

))
, f3

(
2

3

))
= SLERP (SIDER2 (q1,q2,q3, 1) , SIDER2 (q2,q3,q4, 1/2) , 2/3)

= SLERP

(
q3,q3,

2

3

)
= (0,p3) = q3 .

Even though it is possible to derive the time derivatives of SIDER3 analytically, the expressions
are complex, and we do not present them explicitly here. However, in the example section, we
will numerically demonstrate that the interpolant and its first few derivatives are all continuous.

It is also possible to further develop higher-order SIDER interpolants using recursions. In
general, we can construct a SIDER-n interpolant to interpolate n + 1 data points with equal
time spacing from t = 0 to t = 1. The expression consists of one SLERP of two SIDER-(n− 1)
interpolants with gn(t) = nt/(n− 1), hn(t) = gn(t)− 1/(n− 1) and fn(t) = t. For example, we
might construct a SIDER4 formula based on one SLERP and two SIDER3’s,

SIDER4(q1,q2,q3,q4,q5, t)

= SLERP (SIDER3 (q1,q2,q3,q4, g4(t)) , SIDER3 (q2,q3,q4,q5, h4(t)) , f4(t)) ,

where g4(t) = (4/3)t, h4(t) = g4(t)− 1/3, f4(t) = t with equal time spacing data.

3.2 Constraints on the Data Points

Unlike any typical Bézier construction in the Euclidean space, the above approach might not
work for some datasets. This section will discuss some constraints on the given dataset for our
SIDER reconstructions.

In the quaternion representation of points on the sphere, opposite points (i.e., p1 and −p1)
are equivalent and are treated as the same rotation operator. To avoid the non-uniqueness in
our algorithms, we need to constrain the sector angle between any two adjacent data points,
denoted by θ, to be less than π/2. This condition also implies that the geodesic distance between
adjacent data points must be smaller than π/2. Otherwise, our algorithm will move the data
points to their opposite side so that the geodesic distance becomes smaller than π/2. If the
geodesic distance between adjacent points pi and pi+1 is exactly π/2, the same is true for the
geodesic distance between −pi and pi+1. Therefore, we cannot uniquely decide whether pi or
−pi is closer to pi+1, so we cannot give a unique interpolant from pi to pi+1. This leads to the
location of the deduced control points undetermined, and the interpolant might not look like
what the users would expect.

Another constraint is that all the data points should not lie on the same great circle. Other-
wise, any high order interpolation on the sphere will be degenerated, as in the Euclidean space
where we have colinear data points.

3.3 Spherical-ENO (SENO) Interpolation Based on SIDER

One usually observes oscillations in the interpolant when reconstructing a high-order curve
with sharp changes and turns, and this behavior is undesirable in many applications. This
section follows the philosophy of Essentially Non-Oscillatory (ENO) and proposes an ENO
interpolation on the unit sphere. We name the interpolation approach the Spherical Essentially
Non-Oscillatory (SENO in short).

Given a set of 2n data points, denoted by pi−n+1, · · · ,pi, pi+1, · · ·pi+n−1, we are interested
in constructing a high-order curve between pi and pi+1. To do this, we first reconstruct a Cn
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curve from any n+ 1 consecutive data points using SIDER-n. For example, for n = 2, i.e., we
are given four data points, we first construct two C2 SIDER2 curves from any three consecutive
data on the unit sphere. When n = 3, we have in total six data points. From these, we obtain
three C3 curves obtained by SIDER3. To avoid an oscillatory interpolant, we consider these
n interpolants from SIDER-(n− 1) and determine the corresponding variation of these curves
between the data points pi and pi+1. The one with the least variation is chosen to represent
the SENO interpolant between the points pi and pi+1.

There are various ways how one can define the variation of a curve on the unit sphere.
For simplicity, we define it to be the length of the segment joining pi and pi+1. With the
minimum length achieved by the geodesic, a longer length indicates a larger variation and
more violent oscillations obtained in the high-order reconstruction. Instead of determining an
analytical expression for the variation by evaluating the exact line integral, we propose applying
the composite Trapezoidal rule to numerically approximate the distance between these data
points. Between the points pi and pi+1, we insert k intermediate points (k = 3 in all numerical
simulations we have obtained) so that we have k + 1 small segments of equal time span. Then
we approximate the total length of the curve by summing up the geodesic distance of these
k+ 1 small segments. This underestimates the total length of the interpolant from pi and pi+1

but we observe that such approximation already provides a reasonable choice of SIDER-n for a
non-oscillatory reconstruction.

We now consider the computational efficiency. Both SQUAD and SIDER2 interpolations
require three SLERP reconstructions. However, since SENO2 constructs two SIDER2 inter-
polants, the overall computational complexity for a SENO2 is double to that of a SQUAD.
Since a SIDER3 reconstruction requires one call of SLERP and two calls of SIDER2, it requires
seven SLERP calls in total. For SENO3, there are three different sets of stencils producing three
SIDER3 interpolants. Therefore, the total number of SLERP calls is 21 for a single SENO3
interpolation, implying seven times the operations of a SQUAD interpolation.

To end the discussion, we summarize several properties of both SIDER and SENO in Table
2.

SLERP SQUAD SIDER2 SENO2 SIDER3 SENO3

Data points 2 4 3 4 4 6

Order (for smooth curves) 2 3 3 3 4 4

Complexity (SLERP calls) 1 3 3 6 7 21

Table 2: Different properties of SLERP, SQUAD, SIDER2, SENO2, SIDER3 and SENO3 includ-
ing the total number of data points required, the expected convergence order if the underlying
curve is smooth enough, and the computational complexity in terms of the SLERP calls.

4 Numerical Examples

This section will consider several examples to compare our proposed SIDER and SENO interpo-
lations. We will compare our reconstructions with those from (piecewise) SLERP and SQUAD
to show that our approach can achieve a high-order reconstruction while avoiding over-shooting
when the underlying curve contains some sharp turns.

4.1 Comparison of SLERP, SQUAD, and SIDER

In this simple example, we interpolate the data points given in Table 3(a) using SLERP, SQUAD,
and SIDER2. For the SLERP reconstruction, we apply the SLERP to any adjacent data
point. This process essentially gives a piecewise SLERP reconstruction. For SQUAD, we also
interpolate the data points in a piecewise fashion. The control points of the SQUAD would follow
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(a) (b)

(c) (d)

Figure 2: (Section 4.1) Interpolation of three data points based on (a) SLERP, (b) SQUAD, (c)
SIDER2, and of four data points based on (d) SIDER3.

(a)

point location t

p1 (0.8,−0.6, 0) 0

p2 (0.8, 0.6, 0) 0.5

p3 (0,
√

0.5,
√

0.5) 1

(b)

point location t

p1 (
√

0.6144,
√

0.3456, 0.2) 0

p2 (0,
√

0.84, 0.4) 1/3

p3 (−
√

0.3564,
√

0.6336,−0.1) 2/3

p4 (−0.64, 0.48, 0.6) 1

Table 3: (Section 4.1) (a) Data points for SLERP, SQUAD and SIDER2. (b) Data points for
SIDER3.

the so-called bilinear parabolic blending [6], so most intermediate data point would appear in
four consecutive SQUAD pieces, i.e. given a sequence {p1,p2,p3, · · · ,pn}, every data point
pi, where i = 3 to n− 2 will appear in the (i− 2)th, (i− 1)th, ith and (i+ 1)th interpolants. As
for using SQUAD, we let p0 = p1 and p4 = p3 as we calculate the control points unless extra
data points are given like in the simulation performed in Section 4.4.

Figure 2(a-c) plot the interpolation results on the sphere based on SLERP, SQUAD and
SIDER2 interpolations. Figure 3 shows the corresponding angular derivatives of all interpolants
as a function of t. Since the piecewise SLERP interpolates any two adjacent data points along
the geodesics, the interpolant has sharp kinks at the data point p2. The first derivative of
the interpolant (i.e., the angular velocity) is piecewise constant, as shown in the left subplot of
Figure 3(a). The corresponding higher derivatives (i.e., the angular acceleration and others) are
zero. Even though SQUAD can determine a much smoother interpolant than the SLERP, the
reconstruction provides only a C1 curve. As shown on the right subplot in Figure 3(b), we can
see that the acceleration is not continuous at the middle data point. This property indicates
that the interpolant cannot achieve a higher regularity than C1. Our proposed SIDER2, on the
other hand, not only shows a smooth reconstruction in Figure 2(c), both the angular velocity
and the acceleration are continuous, as shown in Figure 3(c). This observation shows that our
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(a)

(b)

(c)

Figure 3: (Section 4.1) The (left) angular velocity and the (right) acceleration computed from
the interpolant given by (a) SLERP, (b) SQUAD, and (c) SIDER2. Since the derivatives are
also quaternions, we plot the norm, and the individual components of the vector part of the
corresponding quaternion separately in each subplot. Since the real part of all derivatives is
zero, they are all omitted here.

reconstruction can produce a C2 curve. The analytical expressions of the (angular) derivatives
of SQUAD and SIDER2 are tedious. We give the derivations in the appendix for reference.

With one more point on the sphere, we can interpolate the data using SIDER3. We consider
the dataset given in Table 3(b). The resulting interpolant is shown in Figure 2(d). We observe
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Figure 4: (Section 4.1) (From left to right) The first three derivatives of the interpolant com-
puted from SIDER3. Since the derivatives are also quaternions, we plot the norm, and the
individual components of the vector part of the corresponding quaternion separately in each
subplot. Since the real part of all derivatives is zero, they are all omitted here.

that the first three derivatives of the interpolant are all continuous, as shown in Figure 4.

Test case (a) (b)

p1 (
√

0.6144,
√

0.3456, 0.2)

p2 (0,
√

0.84, 0.4)

p3 (−
√

0.3564,
√

0.6336,−0.1)

p4 (−0.64, 0.48, 0.6) (−
√

0.6336,
√

0.3564, 0.1)

Table 4: (Section 4.2) Two sets of data to demonstrate the effectiveness of SENO2.

(a) (b)

Figure 5: (Section 4.2) The interpolant by SENO2 of the dataset (a) and (b) as defined in Table
4. Both candidates S123 (the dashed line) and S234 (the dashed-dotted line) are constructed
from SIDER2. The SLERP between p2 and p3 is also plotted (in solid line) for reference.

4.2 Reconstruction by SENO2

This example demonstrates the idea in SENO2 constructed based on SIDER2. Table 4 shows
the two sets of data that we consider. In both examples, we see that the last data point creates
a sharp turn at the point p3. When constructing a highly smooth reconstruction, we expect
the interpolant between p2 and p3 to oscillate and be affected by the kink at p3. In each of
the data sets, we, therefore, construct two SIDER2 interpolants S123 and S234 from four given
data points. We show the solutions from our SIDER2 in Figure 5. In both subplots, we have
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also shown the piecewise SLERP interpolant between p2 and p3 using solid lines. From these
two tests, we see that the SENO2 reconstruction from the test case (a) in Table 4 would choose
S123 while test case (b) would choose S234 because their variation is smaller than the other one
between the points in concern, i.e. p2 and p3.

4.3 Reconstruction by SENO3

p1 (−0.9462408024134863, 0.2340693569139826,−0.2232484714432692)

p2 (−0.5756591575040059, 0.7203584217199284,−0.3869112025244969)

p3 (−0.5139135508439371, 0.8072140040848369, 0.29034189134243293)

p4 (0.1733822829796129, 0.5285757390277231, 0.830991138376381)

p5 (0.8196895318805648,−0.045366259610012546, 0.571008733571053)

p6 (0.8410803457569805, 0.5409102069487302, 0)

Table 5: (Section 4.3) Data to demonstrate the effectiveness of SENO3.

Figure 6: (Section 4.3) The interpolant by SENO3. All three candidates S1234 (the dashed line),
S2345 (the dashed-dotted line) and S3456 (the dotted line) are constructed from SIDER3. The
SLERP between p3 and p4 is also plotted (in solid line) for reference.

In this example, we demonstrate the effectiveness of SENO3 constructed based on SIDER3.
Table 5 shows the dataset containing six random data points on the sphere. We apply SIDER3 to
reconstruct a C3 curve for any four consecutive data points. This step leads to three different
SIDER3 interpolants, denoted by S1234, S2345 and S3456. For this case with six data points,
SENO3 is interested in obtaining an interpolant that varies the least between p3 and p4. This
condition implies the interpolant closest to the geodesic (as obtained from SLERP) joining p3

to p4. Figure 6 shows all SIDER3 interpolants together with the SLERP from p3 to p4 (in
solid lines). As we can see from this figure, SENO3 will pick the dotted line corresponding to
the SIDER3 connecting p3 to p6, to represent the high-order interpolant between p3 and p4.

4.4 Accuracy and Convergence

This section performs some numerical tests to verify the numerical accuracy of the proposed
interpolation schemes. We will check the convergence of the methods as we insert more data
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(a)

1/∆t eSLERP ρ∆t,SLERP eSQUAD ρ∆t,SQUAD eSENO2 ρ∆t,SENO2 eSENO3 ρ∆t,SENO3

16 7.5383e-03 - 5.3563e-03 - 3.3255e-03 - 5.7331e-03 -
32 1.9053e-03 1.9842 1.1249e-03 2.2514 6.0749e-04 2.4526 2.2092e-04 4.6977
64 4.7560e-04 2.0022 2.6434e-04 2.0894 7.6428e-05 2.9907 1.2270e-05 4.1703
128 1.1909e-04 1.9977 6.4493e-05 2.0352 9.2140e-06 3.0522 6.9148e-07 4.1493
256 2.9761e-05 2.0006 1.5909e-05 2.0193 1.1237e-06 3.0356 4.1101e-08 4.0724
512 7.4348e-06 2.0011 3.9474e-06 2.0108 1.3888e-07 3.0164 2.5162e-09 4.0299
1024 1.8532e-06 2.0042 9.8288e-07 2.0058 1.7248e-08 3.0093 1.5658e-10 4.0063
2048 4.5786e-07 2.0171 2.4521e-07 2.0030 2.1491e-09 3.0047 9.7544e-12 4.0047
4096 1.0901e-07 2.0704 6.1236e-08 2.0015 2.6820e-10 3.0024 6.0906e-13 4.0014

(b)

1/∆t eSLERP ρ∆t,SLERP eSQUAD ρ∆t,SQUAD eSENO2 ρ∆t,SENO2 eSENO3 ρ∆t,SENO3

16 7.5383e-03 - 2.2475e-03 - 5.3375e-03 - 2.6273e-03 -
32 1.9053e-03 1.9842 2.0176e-04 3.4776 6.6980e-04 2.9944 1.7398e-04 3.9166
64 4.7560e-04 2.0022 2.0375e-05 3.3078 7.7677e-05 3.1082 1.0571e-05 4.0407
128 1.1909e-04 1.9977 2.3083e-06 3.1419 9.2349e-06 3.0723 6.5747e-07 4.0071
256 2.9761e-05 2.0006 2.7846e-07 3.0513 1.1240e-06 3.0384 4.0534e-08 4.0197
512 7.4348e-06 2.0011 3.4414e-08 3.0164 1.3888e-07 3.0167 2.5072e-09 4.0150
1024 1.8532e-06 2.0042 4.2869e-09 3.0050 1.7248e-08 3.0094 1.5644e-10 4.0024
2048 4.5786e-07 2.0171 5.3526e-10 3.0016 2.1491e-09 3.0047 9.7522e-12 4.0037
4096 1.0901e-07 2.0704 6.6881e-11 3.0006 2.6820e-10 3.0024 6.0903e-13 4.0012

Table 6: (Section 4.4) The error and the numerical accuracy ρ∆t for SIDER, SQUAD, SENO2
and SENO3 when the generating function is (a) non-differentiable and (b) smooth.

points for curve reconstruction. We first construct the following two curves with different
smoothness. For the smooth curve, we first construct a parametrized curve given by y(t) = t
and

z(t) = f(t) = exp

(
− t2

2σ2

)
sin(2πt)

with σ = 0.1 on the x = 1 plane. This definition gives an infinitely differentiable function on
the bounded interval. We then sample these curves using a uniform partition on t ∈ [−0.5, 0.5]
with grid size ∆t ranging from 1/16 to 1/4096 and project these data points in R3 onto S2

using the normalization yi = xi/‖xi‖ with xi = (1, y(ti), z(ti)). We denote the interpolant as
y(t) and the exact projection of the underlying curve onto the sphere as z(t) for t ∈ [−0.5, 0.5].
Then we define the error between the reconstruction and the curve generated by the underlying
function z(t) by

ey =

∫ 0.5

−0.5
‖y(t)− z(t)‖ dt .

Numerically, we approximate the integral using the triangles with vertices taken from y(t) and
z(t). Note that since both y(t) and z(t) give points on a sphere, the definition of such an error
does not provide the area of the mismatch on S2 but only certain cross-sessions in the Cartesian
space. Finally, once we have obtained the error from each set of sampling points, we determine
the numerical rate of convergence using ρ∆t = log2(e∆t/e∆t/2). For the non-differentiable case,
we repeat the above process but replace the generating function by z(t) = |f(t)|. The absolute
value will create a kink at t = 0 while maintaining the smoothness of the curve elsewhere on
t ∈ (−0.5, 0.5). Table 6 shows the error and the estimated order of SIDER, SQUAD, SENO2
and SENO3 when the underly generating function is non-differentiable and smooth, respectively.

Here are our observations about the numerical convergence for all examples using SLERP,
SQUAD, SENO2, and SENO3.

• The piecewise linear interpolation SLERP achieves second-order convergence. Both errors
and convergence orders are independent of the smoothness of the underlying curve. This
observation is expected since the reconstruction uses only adjacent data points and is not
affected by any kink in the given data.
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• The interpolation SQUAD uses 4 data points for local reconstructions. If the underlying
curve is smooth enough, we see a third-order convergence. When the underlying curve is
only C0 where there is a kink, the convergence rate drops from three to two. We have
bolded these numbers in Table 6.

• Because of the ENO idea that we locally determine a set of stencils producing the least
variations, our proposed SENO can avoid interpolation across the kink. The numerical
accuracy of SENO2 and SENO3 are consistently three and four, respectively, independent
of the smoothness of the underlying curve.

• In terms of the data required, each SQUAD interpolation takes 4 data points, while a
SIDER2 (and therefore the final SENO2) interpolation needs only 3 data points. Still,
both interpolation methods achieve the same order of convergence for a smooth enough
generating function. However, when there is a kink in the underlying curve, SENO2
performs significantly better than SQUAD in both the numerical accuracy and the con-
vergence rate, as shown in Table 6(a).

(a) (b)

Figure 7: (Section 4.5) The computational time versus the numerical error in the solution ob-
tained by SLERP, SQUAD, SENO2 and SENO3. The underlying curve is (a) non-differentiable
and (b) smooth.

4.5 Efficiency

We have provided some complexity analysis in Table 2 and have concluded that SENO might
seem computationally less efficient than SQUAD since SENO3 (for example) takes 21 calls of
SLERP while SQUAD requires only 3. Following the previous example, we are going to have
more careful studies on the efficiency. We want to investigate if the increase in the reconstruction
order is worth the computational complexity. Following the same study as in Section 4.4, we
also measure the CPU-time corresponding to each configuration. Figure 7 shows the plots of
the computational time versus the error in the reconstruction using three different interpolation
methods. The curves for both SENO2 and SENO3 are almost identical for the non-differentiable
and smooth cases.

When the generating function is smooth, we see from Figure 7(b) that SQUAD seems more
efficient for a wide range of sampling densities. To achieve an accuracy of at least O(10−10),
for example, SQUAD interpolation takes less computational time than SENO3. Even though
the convergence order of SQUAD is smaller than SENO3, it is affordable to refine the mesh
to reduce the error in the interpolation. If the required error in the interpolation is further
reduced, we might see that the blue dashed line and the red dotted line intersects, indicating
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that it is more efficient to use SENO3 than SQUAD. However, the accuracy level might be too
close to machine epsilon to observe the benefit.

However, when the underlying function is non-differentiable, we see from Figure 7(a) that
the curve corresponding to SENO3 is on the bottom compared to SQUAD and SENO2. This
property indicates that the SENO3 is the most efficient approach when we want an accurate
interpolant. To achieve a relatively small error, i.e. drawing a vertical line on the left regime,
the computational time for SENO3 (the red dotted line) is the smallest. This figure clearly
demonstrates the importance of the SENO reconstruction proposed in this work. When the
data contains sharp turns due to a possible kink in the underlying curve, SENO can avoid
interpolation across the singularity in the geometry and produce a high-order reconstruction.

(a) (b)

(c) (d)

Figure 8: (Section 4.6) The interpolation results about the data points on the unit sphere that
resemble the letter S using (a) SLERP, (b) SQUAD, (c) SENO2 and (d) SENO3. We have
highlighted the oscillations obtained by SQUAD in (b).

4.6 The Letter S on Sphere

Figure 8 demonstrates how various interpolation schemes mentioned in this paper interpolate
the data points on S2 with data points sampled from the boundary of the letter S. It is clear
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(a)

(b)

(c)

Figure 9: (Section 4.6) Zoom-in of various regions of (a) the SQUAD, (b) the SENO2 and (c)
the SENO3 interpolants in Figure 8.

that SLERP only creates geodesics between the neighboring data points, while SQUAD pro-
duces oscillations near the middle part and the cusps around the corners of the character, as
highlighted in Figure 8(b). A zoom-in of these parts are shown in Figure 9. On the other hand,
both SIDER2 and SIDER3 can control these overshoots well. We see sharp corners near these
kinks and smooth interpolants when the segment is smooth, and we have an adequate number
of sample points.

5 Conclusion

This article develops high-order interpolation schemes for data points on S2. We present the
SIDER interpolation constructed based on an approach similar to the Bézier curves. To improve
the accuracy of the reconstruction when the underlying function is not smooth enough, we
also propose a SENO reconstruction by extending the ENO idea for data points in Rn to
S2. A possible future work is to follow a similar strategy as in the weighted-ENO (WENO)
approach [13, 26, 10] to combine multiple SIDER’s and achieve a higher-order reconstruction
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with weighting determined by the smoothness of the underlying curve.
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de Mathématiques Pures et Appliquées, pages 380–440, 1840.

[20] S.F. Schoeller, A.K. Townsend, T.A. Westwood, and E.E. Keaveny. Methods for suspen-
sions of passive and active filaments. J. Comput. Phys., 424(109846), 2021.

[21] S. Serna and J. Qian. Fifth order weighted power-ENO methods for Hamilton-Jacobi
equations. J. Sci. Comput., 29:57–81, 2006.

[22] J. A. Sethian. Level set methods. Cambridge Univ. Press, second edition, 1999.

[23] T. Shingel. Interpolation in special orthogonal groups. IMAJ Num. Analy., 29(3):731–745,
2009.

[24] K. Shoemake. Animating rotation with quaternion curves. In Proceedings of the 12th
annual conference on Computer graphics and interactive techniques, pages 245–254, 1985.

[25] C. W. Shu. Numerical experiments on the accuracy of ENO and modified ENO schemes.
J. Sci. Comput., 5:127–150, 1990.

[26] C. W. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for
hyperbolic conservation laws. In B. Cockburn, C. Johnson, C.W. Shu, and E. Tadmor,
editors, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, volume
1697, pages 325–432. Springer, 1998. Lecture Notes in Mathematics.

[27] C. W. Shu and S. J. Osher. Efficient implementation of essentially non-oscillatory shock
capturing schemes. J. Comput. Phys., 77:439–471, 1988.

[28] C.W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock cap-
turing schemes 2. J. Comput. Phys., 83:32–78, 1989.
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Appendix: Derivatives of SQUAD, SIDER2 and SIDER3

Time Derivatives of the Interpolants

Assume t ∈ [0, 1], and qi = (0,pi) is the starting point. The derivatives of SLERP are given by

d

dt
(SLERP(qi,qi+1, f(t)))±1 = ±SLERP(qi,qi+1, f(t)) · ln((qi)

−1qi+1) · df(t)

dt
.

To simplify the expressions, we introduce the following notations.

Scheme SIDER2 SQUAD SIDER3
f(t) t 2t(1− t) t
g(t) t t 3t/2
h(t) t t (3t− 1)/2
p(t) SLERP(qi,d(i+1)a, t) SLERP(qi,qi+1, t) SIDER2(qi,qi+1,qi+2, t)

s(t) SLERP(d(i+1)b,qi+2, t) SLERP(si, si+1, t) SIDER2(qi+1,qi+2,qi+3, t)

Since

(0,p(g(t)))× ((0,−p(g(t)))× (0, s(h(t))))f(t)

= (0,pg(t))× ((0,−pg(t))× (0, sh(t))f(t)) = (0,pg(t))× (pg(t) · sh(t),−pg(t)× sh(t))f(t)

= (0,pg(t))× (cos(θps(t)), sin(θps(t))aps(t))
f(t) = (0,pg(t))× (cos(fθ,ps(t)), sin(fθ,ps(t))aps(t)),

the first and the second time derivatives are given by

d

dt

[
(0,p(g(t)))× ((0,p(g(t)))× (0, s(h(t))))f(t)

]
= (0, (pg)′(t))× (cos(fθ,ps(t)), sin(fθ,ps(t))aps(t))− pg(t) · sin(fθ,ps(t)) · (fθ,ps)′(t)

+(0,pg(t))× (0, cos(fθ,ps(t)) · (fθ,ps)′(t)× aps(t) + sin(fθ,ps(t))× (aps)
′(t))

and

d

dt

[
d

dt

[
(0,p(g(t)))× ((0,−p(g(t)))× (0, s(h(t))))f(t)

]]
= (0,−(θp)2(pg(t)))× (cos(fθ,ps(t)), sin(fθ,ps(t))aps(t))− 2(pg)′(t) · sin(fθ,ps(t)) · (fθ,ps)′(t)

+2 · (0, (pg)′(t))× (0, cos(fθ,ps(t)) · (fθ,ps)′(t)× aps(t) + sin(fθ,ps(t))× (aps)
′(t))

−pg(t) · (cos(fθ,ps(t)) · ((fθ,ps)′(t))2 + sin(fθ,ps(t)) · (fθ,ps)′′(t))
+(0,pg(t))× (0, (cos(fθ,ps(t)) · (fθ,ps)′′(t)− sin(fθ,ps(t)) · ((fθ,ps)′(t))2)× aps(t))

+(0,pg(t))× (0, 2 cos(fθ,ps(t)) · (fθ,ps)′(t)× (aps)
′(t) + sin(fθ,ps(t))× (aps)

′′(t))
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where

θp = arccos(pi · c(i+1)a for SIDER2 or · pi+1 for SQUAD),

ap = (−pi × c(i+1)a for SIDER2 or × pi+1 for SQUAD)/ sin(θp),

(0,pg(t)) = (0,p(g(t))) = (cos(g(t) · θp))pi + (sin(g(t) · θp))(ap × pi),

(0, sh(t)) = (0, s(h(t))),

(pg)′(t) = (θp)(ap × pg(t)), (pg)′′(t) = −(θp)2(pg(t))

θps(t) = arccos(pg(t) · sh(t)),

(θps)
′(t) = −((pg)′(t) · sh(t) + pg(t) · (sh)′(t))/ sin(θps(t)),

(θps)
′′(t) = −((pg)′′(t) · sh(t) + 2 · (pg)′(t) · (sh)′(t) + pg(t) · (sh)′′(t)

+ cos(θps(t)) · ((θps)′(t))2)/ sin(θps(t)),

aps(t) = (−pg(t)× sh(t))/ sin(θps(t)),

(aps)
′(t) = (−(pg)′(t)× sh(t) + (−pg(t))× (sh)′(t)

− cos(θps(t))× (θps)
′(t)× aps(t))/ sin(θps(t)),

(aps)
′′(t) = (−(pg)′′(t)× sh(t) + 2 · (−(pg)′(t))× (sh)′(t) + (−pg(t))× (sh)′′(t)

+ sin(θps(t))× ((θps)
′(t))2 × aps(t)− cos(θps(t))× (θps)

′′(t)× aps(t)

−2 · cos(θps(t))× (θps)
′(t)× (aps)

′(t))/ sin(θps(t)),

fθ,ps(t) = f(t) · θps(t),
dnfθ,ps(t)

dtn
=

n∑
r=0

drf(t)

dtr
· d

n−rθps(t)

dtn−r
. (product rule) .

The derivatives of sh(t) follows the same manner as pg(t), but they are not explicitly written
out because p(t), s(t), f(t), g(t) and/or h(t) of SQUAD, SIDER2 and SIDER3 are not the same.

Angular Derivatives of the Interpolants

With references to [4], if the interpolant is q(t), then we can deduce that

ω(t) = 2q′(t)× (q(t))−1,

α(t) = (2q′′(t)− ω(t)× q′(t))× (q(t))−1, and

ζ(t) = (2q′′′(t)− 2α(t)× q′(t)− ω(t)× q′′(t))× (q(t))−1.


	1 Introduction
	2 Quaternions and Interpolations on the Unit Sphere
	3 Our Approaches
	3.1 SIDER Interpolations
	3.2 Constraints on the Data Points
	3.3 Spherical-ENO (SENO) Interpolation Based on SIDER

	4 Numerical Examples
	4.1 Comparison of SLERP, SQUAD, and SIDER
	4.2 Reconstruction by SENO2
	4.3 Reconstruction by SENO3
	4.4 Accuracy and Convergence
	4.5 Efficiency
	4.6 The Letter S on Sphere

	5 Conclusion

