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Abstract Many large-scale optimization problems can be expressed as com-
posite optimization models. Accelerated first-order methods such as the fast
iterative shrinkage-thresholding algorithm (FISTA) have proven effective for
numerous large composite models. In this paper, we present a new variation
of FISTA, to be called C-FISTA, which obtains global linear convergence for
a broader class of composite models than many of the latest FISTA vari-
ants. We demonstrate the versatility and effectiveness of C-FISTA through
multiple numerical experiments on group Lasso, group logistic regression and
geometric programming models. Furthermore, we utilize Fenchel duality to
show C-FISTA can solve the dual of a finite sum convex optimization model.
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1 Introduction

The following composite optimization model,

min H(B(x)) +R(x)
s.t. x ∈ X ⊆ Rn,
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where X is a closed, convex subset of Rn, H : Rm → R is a smooth, convex
function, R : Rn → R is convex but potentially non-smooth, B : Rn → Rm is
a smooth mapping, and H ◦B is a convex function over X , has received ample
attention in the literature [3,5,9,10,22,29]. A special case of (1) of immense
importance is the additive composite optimization model,

min H(x) +R(x)
s.t. x ∈ X ⊆ Rn,

(2)

which envelopes a plethora of models including: compressive sensing [7], Lasso
[28], and group Lasso and group logistic regression models [23,30] as well
as several machine learning constructs such as support vector machines. Due
to their dimensionality, many large-scale optimization models have rendered
second-order methods computationally impractical; thus, efficient and acceler-
ated first-order algorithms have become essential for tackling numerous prob-
lems. With the advent of Nesterov’s seminal work [21] much effort has been ex-
pended toward the development of accelerated first-order methods. For a com-
prehensive overview of this line of research see the monograph of d’Aspremont
et al. and the references therein [8]. As an example, utilizing Nesterov accel-
eration, Beck and Teboulle developed the influential fast iterative shrinkage-
thresholding algorithm (FISTA) [3] which obtained the optimal sublinear con-
vergence rateO(1/k2) for (2) withH andR convex andR possibly non smooth.
In recent years, under the assumption H and potentially R are strongly con-
vex, many accelerated versions of FISTA for (2) have been developed which
obtain the optimal linear convergence rate proved by Nesterov [6,7,11,12,24].

Furthermore, recent work has been done to determine conditions which
lighten the assumption of strong convexity while maintaining accelerated and
at times linear convergence [2,9,20]. In [9] the authors demonstrate local linear
convergence to a first-order stationary point for (1) without assuming any
strong convexity on H. The authors extended the work in [34] by utilizing
a specific error bound condition (Definition 3.1 in [9]) in tandem with an
assumption on the quadratic growth of the objective function.

In this paper we develop an accelerated composite version of FISTA, C-
FISTA, similar to the recent FISTA variants which extends to solving model
(1) as well as model (2). Also, in line with the recent works [9,10], we forgo any
assumption guaranteeing strong convexity of the objective function in (1) and
prove C-FISTA obtains global linear convergence under certain error bound
conditions.

1.1 Main Contributions

This paper presents three main contributions. The first contribution of this
paper is the development of an accelerated version of FISTA which obtains
global linear convergence for (1) under specific assumptions. Our algorithm,
C-FISTA, differs from the aforementioned FISTA variants because they were
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either exclusively designed for the additive composite model (2) or only ob-
tained local instead of global linear convergence for the more generalized model
(1). We demonstrate that C-FISTA is a generalization of the FISTA variant
GFISTA [6,7] when B(x) = x proving C-FISTA is an extension of recent algo-
rithmic developments. Further, we present an alternative convergence analysis
than those presented for the other accelerated FISTA variants and exclude
any reference to the strong convexity parameter of R as done in [6,11,12].

The second contribution of this paper is our utilization of Fenchel duality
to develop dual models which can be solved via C-FISTA, and our leveraging
of Fenchel duality theory [15,25,26] to enable efficient computation of the
subproblems of C-FISTA. Additionally, we outline a dual algorithmic approach
for a general convex model which can be solved by C-FISTA and generalizes
the approaches of Han and Lou [15] and Auslender [1] among others [13,
14]. Sections 4 and 5 provide the relevant background on Fenchel duality and
provide an example on how we utilize the theory in the implementation of
C-FISTA.

The third contribution of this paper is the presentation of globally linearly
convergent algorithms for solving various Lasso and logistic regression models
with C-FISTA. In our numerical experiments, we demonstrate C-FISTA out-
performs FISTA [3] and the SLEP software package [18] for solving group,
sparse-group and overlapping sparse-group Lasso models and sparse-group
logistic regression models. We also compare C-FISTA with ADMM on the
Lasso models, which has proven linear convergence for various Lasso formula-
tions [16], and demonstrate superior convergence after tuning ADMM in our
numerical experiments. Lastly, we demonstrate C-FISTA’s applicability for
solving a class of geometric programming models.

1.2 Organization of the Paper

In Section 2 we present C-FISTA and prove the global linear convergence of
the algorithm under certain assumptions. Section 3 motivates C-FISTA by
describing the Lasso, logistic regression and geometric programming models
which are solvable with C-FISTA. In Section 4 we present the necessary back-
ground on Fenchel duality and make connections to our accelerated FISTA
algorithm, and Section 5 provides an example of how Fenchel duality informs
our application of C-FISTA to solve the crucial proximal mapping step. Section
6 contains the algorithms for solving the Lasso, sparse-group logistic regres-
sion and geometric programming models with C-FISTA, and our numerical
experiments comparing C-FISTA to other efficient first-order algorithms. The
paper concludes in Section 7 with some final remarks and potential avenues
for future investigation.
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2 A Generalized Composite Optimization Algorithm

In this paper, our primary focus revolves around the composite optimization
model,

min H(B(x)) +R(x)
s.t. x ∈ X ⊆ Rn,

where X is a closed, convex subset of Rn, H : Rm → R is a smooth, convex
function, R : Rn → R is convex but potentially non-smooth, B : Rn → Rm is
smooth and defined asB(x) = (B1(x), · · · , Bm(x))

⊤
with Jacobian, JB(x), at

x ∈ Rn. For convenience in our analysis we denote F (x) := H(B(x)) +R(x).
A key assumption for feasible implementation is that the following proximal
mapping with respect to R is efficiently computable:

ProxtR(u) := arg min
x∈X

{
1

2
∥x− u∥2 + tR(x)

}
,

where t > 0. We now state the four main assumptions in our analysis:

(A0) H is strongly convex with parameter µ and gradient Lipschitz with param-
eter L, and H ◦B is convex over X .

(A1) Bi ∈ C2(X ) is Lipschitz continuous with parameter L̄i ≥ 0, and has Lips-
chitz gradient constant Li ≥ 0 for i = 1, . . . ,m.

(A2) There exists τ > 0 such that τ∥x − y∥2 ≤ ∥B(x) −B(y)∥2 for all x,y ∈
span(X ).

(A3) There exists ξ ≥ 0 such that ∀ x,y ∈ span(X ) with ȳ := B(y),∣∣∣∣∇ȳH(ȳ)⊤ (JB(x)− JB(y)) (x− y)

∣∣∣∣ ≤ ξ∥x− y∥2.

Our analysis focuses on the proposed algorithm C-FISTA (Algorithm 1).
However, before stating the algorithm and proving our convergence results, we
further frame the assumptions.

2.1 Discussion of Assumptions

In this section we further detail the assumptions and demonstrate how they
compare to standard assumptions in the literature. Before expounding upon
(A0) - (A3), we first make the essential observation that under these assump-
tions it is possible H(B(x)) is not strongly convex in x. Letting x̄ = B(x), we
do see, however, that the descent inequality and the strongly convex inequality
still hold for H with respect to x̄ and ȳ, i.e. for all x̄, ȳ ∈ Rm,

H(ȳ) ≤ H(x̄) +∇x̄H(x̄)⊤(ȳ − x̄) +
L

2
∥ȳ − x̄∥2,

H(ȳ) ≥ H(x̄) +∇x̄H(x̄)⊤(ȳ − x̄) +
µ

2
∥ȳ − x̄∥2,
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Algorithm 1 C-FISTA
Input: Constants r, L, µ, ξ and τ . (See assumptions (A2), (A3), and (8))
Step 0. Choose any (x0, z0) ∈ X × X . Let k := 0
Step 1. Let

yk :=
1

1 + θ
xk +

θ

1 + θ
zk, (3)

and

xk+1 := arg min
x∈X

H(ȳk) +∇yH(ȳk)⊤(x− yk) +
rL

2
∥x− yk∥2 +R(x), (4)

= ProxR/(rL)

(
yk −

1

rL
∇yH(ȳk)

)
,

and
zk+1 := (1− θ)zk + θyk + α(xk+1 − yk), (5)

where from (13),

θ :=

√
(τµ− ξ)(rL− ξ)

rL
and α :=

√
rL− ξ

τµ− ξ
.

Step 2. Let k := k + 1 and return to Step 1 until convergence.

where ∇x̄H(x̄) := ∇H(y)
∣∣
y=B(x)

and

∇xH(x̄) = ∇xH(B(x)) = JB(x)
⊤∇x̄H(x̄).

For the remainder of the paper, we will reserve x̄ to denote B(x), that is
x̄ := B(x).

Of the assumptions, (A0) and (A1), are the most straightforward. The first
assumption is standard in the literature, and the second ensures B is suffi-
ciently well-behaved in terms of its continuity and differentiability; however,
no convexity assumptions are made directly on the component functions Bi.

Remark 1 From assumption (A1) we obtain a few important inequalities.
First, utilizing the fact each Bi is Lipschitz continuous, it follows from the limit
definition of the directional derivative that ∥∇Bi(x)∥2 ≤ L̄2

i for all x ∈ Rn.
Therefore, letting x ∈ Rn be fixed we see that,

∥JB(x)∥ = sup
v∈Rn

{
∥JB(x)v∥

∣∣∣∣ ∥v∥ = 1

}

= sup
v∈Rn


√√√√ m∑

i=1

(∇Bi(x)⊤v)
2

∣∣∣∣ ∥v∥ = 1


≤
√
L̄2
1 + . . .+ L̄2

m.

So, defining,

r := L̄2
1 + · · ·+ L̄2

m, (6)
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we have,

∥JB(x)∥2 ≤ r, ∀x ∈ Rn. (7)

As a result of (7) we obtain a second important inequality for our analysis.
Letting x,y ∈ Rn, by the differentiability of B,

B(y)−B(x) =

∫ 1

0

JB (x+ t(y − x)) (y − x)dt,

which by the triangle inequality and (7) implies,

∥B(y)−B(x)∥ ≤
∫ 1

0

∥JB (x+ t(y − x)) ∥ · ∥y − x∥dt ≤
√
r∥y − x∥,

and so,

∥ȳ − x̄∥2 = ∥B(y)−B(x)∥2 ≤ r∥y − x∥2, ∀ x,y ∈ Rn. (8)

In regards to (A2), we note it is a condition which depends as much on the
constraint set X as it does on the function B. For example, if B(x) = Ax− b
with A ∈ Rm×n singular, then (A2) will fail to hold if span(X ) = Rn; however,
it will be satisfied if span(X ) ∩ null(A) = {0}. Additionally, this condition
is fundamentally different than growth conditions about the set of optimal
solutions such as given in [9] because it places no condition on the proximal
mapping nor relates to the set of optimal solutions of (1).

Assumption (A3) by all appearances is the most opaque; however, (A3) is
essentially equivalent to assuming H ◦B is gradient Lipschitz continuous. If it
is assumedH◦B is gradient Lipschitz with parameter L̂ > 0, then (A3) follows
with ξ = L̂+ rL. Similarly, if assumption (A3) holds, then H ◦B is gradient
Lipschitz with parameter ξ+ rL. Therefore, this assumption is fundamentally
a constraint on the gradient of H ◦B which is unlike standard error bound or
growth conditions found in the literature.

As a closing remark on the assumptions, which we will revisit following
the proof of Theorem 1, although (A2) and (A3) are stated in a global fashion
they only need to hold near the iterates generated by Algorithm 1. For the sake
of our argument, we require our assumptions to hold on span(X ); however, in
practice this is unnecessary and we demonstrate this through several numerical
experiments in Section 6.

2.1.1 Example Models

Before beginning our analysis of Algorithm 1 it makes sense to introduce a
few models which will appear frequently in the applications presented in the
forthcoming sections, and provide an exposition on their relationship to the
stated assumptions.
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– If B(x) is affine linear, i.e. B(x) = Ax − b for A ∈ Rm×n and b ∈ Rm,
then (A1) is met and the convexity of H ◦ B follows readily without the
need for any additional assumptions on H. Furthermore, (A3) is trivially
satisfied with ξ = 0 since JB(x) = A. As previously stated, (A2) will hold
provided span(X )∩null(A) = {0}. Finally, from (6) we see r in (8) can by
given as the largest eigenvalue of A⊤A. Thus, in this setting, we always
have r ≤ λmax(A

⊤A) and ξ = 0.

– In the geometric programming model discussed in Section 6.5, we have
B(x) = (ln(x1), . . . , ln(xn))

⊤
with X a closed, bounded, convex subset

of the positive orthant in Rn. Thus, (A1) holds and, as will be shown in
Section 6.5, constants r and τ can be computed which satisfy the necessary
inequalities over the constraint set. This example is significant because it
demonstrates non-linear and non-convex choices for B are admissible for
certain models.

2.2 C-FISTA Convergence Analysis

We now state the formal description of the C-FISTA algorithm, and present the
main convergence result which provides a global linear convergence guarantee.

Theorem 1 Assuming assumptions (A1) - (A3) hold with τµ−ξ > 0 and H ◦
B convex, then C-FISTA has an accelerated global linear rate of convergence
for (1); that is, for each iteration, we have,

F (xk+1)− F (x∗) +

(
τµ− ξ

2

)
∥zk+1 − x∗∥2 ≤(

1−
√
(τµ− ξ)(rL− ξ)

rL

)(
F (xk)− F (x∗) +

(
τµ− ξ

2

)
∥zk − x∗∥2

)
.

In particular, if we perform C-FISTA for k iterations, then it holds that,

F (xk)− F (x∗) ≤(
1−

√
(τµ− ξ)(rL− ξ)

rL

)k (
F (x0)− F (x∗) +

(
τµ− ξ

2

)
∥z0 − x∗∥2

)
.
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Proof By the Lipschitz inequality for H,

H (x̄k+1)

≤ H(ȳk) +∇ȳH(ȳk)⊤
(
x̄k+1 − ȳk

)
+

L

2
∥x̄k+1 − ȳk∥2,

≤ H(ȳk) +∇ȳH(ȳk)⊤
(
B(xk+1)−B(yk)

)
+

rL

2
∥xk+1 − yk∥2,

= H(ȳk) +∇ȳH(ȳk)⊤
∫ 1

0

JB

(
yk + t

(
xk+1 − yk

)) (
xk+1 − yk

)
dt

+
rL

2
∥xk+1 − yk∥2,

= H(ȳk) +∇ȳH(ȳk)⊤
∫ 1

0

[
JB

(
yk + t

(
xk+1 − yk

))
− JB

(
yk
)] (

xk+1 − yk
)
dt

+∇ȳH(ȳk)⊤JB

(
yk
) (

xk+1 − yk
)
+

rL

2
∥xk+1 − yk∥2,

where the second line follows from (8) and the last lines are a result of the
Newton-Leibniz formula. Applying assumption (A3) we obtain,

H (x̄k+1)

≤ H(ȳk) +

∫ 1

0

ξt∥xk+1 − yk∥2dt+∇yH(ȳk)⊤
(
xk+1 − yk

)
+

rL

2
∥xk+1 − yk∥2,

= H(ȳk) +∇yH(ȳk)⊤
(
xk+1 − yk

)
+

rL+ ξ

2
∥xk+1 − yk∥2.

Utilizing the strong convexity of H, for all x ∈ X we have,

H(x̄k+1) ≤ H(x̄)−∇ȳH(ȳk)⊤
(
x̄− ȳk

)
− µ

2
∥x̄− ȳk∥2

+∇yH(ȳk)⊤
(
xk+1 − yk

)
+

rL+ ξ

2
∥xk+1 − yk∥2,

≤ H(x̄)−∇ȳH(ȳk)⊤
(
x̄− ȳk

)
+∇yH(ȳk)⊤

(
xk+1 − yk

)
+
rL+ ξ

2
∥xk+1 − yk∥2 − τµ

2
∥x− yk∥2,

where the second inequality follows from (A2). Applying (A3) and utilizing a
similar argument with the Newton-Leibniz formula it follows,

H(x̄k+1) ≤ H(x̄) +
ξ

2
∥x− yk∥2 −∇yH(ȳk)⊤

(
x− yk

)
+∇yH(ȳk)⊤

(
xk+1 − yk

)
+

rL+ ξ

2
∥xk+1 − yk∥2 − τµ

2
∥x− yk∥2

≤ H(x̄) +∇yH(ȳk)⊤
(
xk+1 − x

)
+
rL+ ξ

2
∥xk+1 − yk∥2 − τµ− ξ

2
∥x− yk∥2. (9)

By the first order optimality conditions of (4) we have,(
∇yH(ȳk) + rL

(
xk+1 − yk

)
+R′(xk+1)

)⊤ (
x− xk+1

)
≥ 0, for all x ∈ X ,
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where R′(xk+1) is an element of the subgradient of R at xk+1. The optimality
conditions above along with the convexity of R and (9) give us,

F (xk+1) ≤ F (x) + rL(xk+1 − yk)⊤(x− xk+1) +
rL+ ξ

2
∥xk+1 − yk∥2

−τµ− ξ

2
∥x− yk∥2, ∀x ∈ X . (10)

Let θ ∈ (0, 1), whose exact value is to be determined later. Take x = xk in
(10) and multiply by 1− θ on both sides of the expression. Then, let x = x∗

in (10) and multiply by θ on both sides. Finally, adding up these two resultant
inequalities and applying the assumption τµ− ξ > 0 we have,

F (xk+1)− F (x∗)

≤ (1− θ)
(
F (xk)− F (x∗)

)
− θ

(
τµ− ξ

2

)
∥x∗ − yk∥2

+ rL(xk+1 − yk)⊤
[
(1− θ)xk + θx∗ − xk+1

]
+

(
rL+ ξ

2

)
∥xk+1 − yk∥2. (11)

Recall from (5) that,

zk+1 = (1− θ)zk + θyk + α(xk+1 − yk),

where the value of the parameter α will be determined later. Thus,

∥zk+1 − x∗∥2 ≤ (1− θ)∥zk − x∗∥2 + θ∥yk − x∗∥2 + α2∥xk+1 − yk∥2

+2α(xk+1 − yk)⊤((1− θ)zk + θyk − x∗). (12)

Take C > 0, whose value will be determined in a moment. Multiplying by C
on both sides of (12), and adding the resulting inequality to (11) we obtain,

F (xk+1)− F (x∗) + C∥zk+1 − x∗∥2

≤ (1− θ)
(
F (xk)− F (x∗) + C∥zk − x∗∥2

)
+

(
θC − (τµ− ξ)θ

2

)
∥x∗ − yk∥2 +

(
rL+ ξ

2
+ α2C

)
∥xk+1 − yk∥2

+ rL(xk+1 − yk)⊤
[
(1− θ)xk + θx∗ − xk+1 +

2αC

rL

(
(1− θ)zk + θyk − x∗)]

= (1− θ)
(
F (xk)− F (x∗) + C∥zk − x∗∥2

)
+ rL∥xk+1 − yk∥2

+rL(xk+1 − yk)⊤
[
(1− θ)xk − xk+1 + θ

(
(1− θ)zk + θyk

)]
= (1− θ)

(
F (xk)− F (x∗) + C∥zk − x∗∥2

)
,

if we choose the parameters to take the values

C :=
τµ− ξ

2
, α :=

√
rL− ξ

τµ− ξ
, θ :=

√
(τµ− ξ)(rL− ξ)

rL
. (13)
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Observe θ ∈ (0, 1). Since τ ≤ r, µ ≤ L and τµ− ξ > 0, it follows

0 < τµ− ξ ≤ rL− ξ < rL.

Note in the last step above, we used (3),

yk =
1

1 + θ
xk +

θ

1 + θ
zk.

Therefore, (1− θ)xk + θ
(
(1− θ)zk + θyk

)
= yk, and so

rL(xk+1−yk)⊤
[
(1− θ)xk − xk+1 + θ

(
(1− θ)zk + θyk

)]
= −rL∥xk+1−yk∥2.

Hence, we have for all k ≥ 0,

F (xk+1)− F (x∗) +

(
τµ− ξ

2

)
∥zk+1 − x∗∥2 ≤(

1−
√
(τµ− ξ)(rL− ξ)

rL

)(
F (xk)− F (x∗) +

(
τµ− ξ

2

)
∥zk − x∗∥2

)
,

and so by induction starting from the k-th iteration we obtain the result. ⊓⊔

Remark 2 If we have B(x) = x, then assumptions (A1) - (A3) hold trivially.
Also, we have ξ = 0, r = 1 and τ = 1 ensuring τµ− ξ > 0 which gives us the
convergence result,

F (xk)− F (x∗) ≤
(
1−

√
µ

L

)k (
F (x0)− F (x∗) +

µ

2
∥z0 − x∗∥2

)
.

If z0 = x0, then this is the same convergence result produced by GFISTA
[6,7] which is an accelerated variant of FISTA for (2). Therefore, C-FISTA
generalizes GFISTA into the broader problem class given by the composite
optimization model (1).

Remark 3 The condition τµ − ξ > 0 essentially requires that the product of
the first-order derivatives of H and the second-order derivative of B should
not exceed the product of their curvatures. In some cases, this condition is easy
to satisfy by variable-transformation, or scaling. For example, when B(x) is
homogeneous of degree d1 > 0, i.e. B(λx) = λd1B(x) for any x and λ > 0,
and R(x) is homogeneous with degree d2 > 0, i.e. R(λx) = λd2R(x). Then for

any λ > 0 one can scale the variable as x′ := λ
1
d1 x, and the problem is turned

equivalently into minimizing H(B(x′))+R(x′) = H(λB(x))+λ
d2
d1 R(x). After

the above change of variables, the new objective has the modified parameters
τ := λ2τ , µ := µ, and ξ := λξ. Therefore, in this situation by appropriately
choosing λ > 0 one can always satisfy the condition τµ− ξ > 0.
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As mentioned previously in Section 2.1, the global nature of assumptions
(A2) and (A3) are in many instances stronger than necessary. From the proof
of Theorem 1, we see these assumptions only need to hold locally about the
xk and yk sequences generated by C-FISTA. Enforcing the conditions to hold
on the span of the constraint set ensures global linear convergence; however,
even when the assumptions are not strictly satisfied on the span, C-FISTA
still proves to be effective in practice. In Section 6, we will demonstrate the
effectiveness of C-FISTA on group Lasso and geometric programming models
where the assumptions are not strictly met globally but asymptotic linear con-
vergence is still achieved. Ultimately, the success of C-FISTA in these regimes
demonstrates the current gap between theory and practice; further research
should shrink this separation and provide a direction for future inquiry.

3 Motivation: Lasso, Logistic Regression & Geometric
Programming

A class of motivating composite optimization models for which C-FISTA is
applicable are the various Lasso formulations. The standard Lasso model orig-
inating from Tibshirani [28],

min 1
2∥Ax− b∥2 + γ∥x∥1

s.t. x ∈ Rn,

is solvable via C-FISTA. All the assumptions for Algorithm 1 will be satisfied
when A is of full-column rank, but, as we will see in Section 6.2.2, C-FISTA
demonstrates linear convergence when A is not of full-rank and the assump-
tions are almost but not completely met. The results from Section 2 further
guarantee global linear convergence to the optimal solution even when there
exists a constraint on x. For example, Algorithm 1 can solve the following
constrained Lasso model,

min 1
2∥Ax− b∥2 + γ∥x∥1

s.t. li ≤ xi ≤ ui, i = 1, 2, ..., n.

The utility of the Lasso model is detailed extensively in the literature; see
[17,23,30,31,32]. The success of the basic model spawned the development of
several Lasso variants including: the group Lasso (GL) model [23,31],

min 1
2∥Ax− b∥2 + γ

∑
j∈G ∥x(j)∥

s.t. x ∈ Rn,

where x(j) is a subvector of x corresponding to the indices in j ∈ G where
G disjointly partitions {1, 2, . . . , n}, the sparse-group Lasso (SGL) model [27,
32],

min 1
2∥Ax− b∥2 + γ1

∑
j∈G ∥x(j)∥+ γ2∥x∥1

s.t. x ∈ Rn,
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and the overlapping group and overlapping sparse-group Lasso (OSGL) mod-
els [17,30,32] which are of identical form to the group Lasso and sparse-
group Lasso models respectively, expect G no longer is a disjoint partition of
{1, . . . , n}. As we will see in Section 5, the subproblems required in C-FISTA
for the Lasso models are solvable in closed form or by an efficient subroutine
in the case of the overlapping group/sparse-group Lasso models with global
linear convergence achieved in each variant.

Another model where C-FISTA has demonstrated linear convergence is the
sparse-group logistic regression (SGLR) model [18,19],

min 1
m

∑m
i=1 ln

(
1 + exp

(
−yi

(
a⊤
i x+ b

)))
+ γ1

∑
j∈G ∥x(j)∥+ γ2∥x∥1

s.t. x ∈ Rn, b ∈ R,

where y ∈ Rn is a vector containing only entries of ±1. The sparse-group
logistic regression model has applications in various machine learning models
especially in the area of classification, and the subproblems for the logistic
regression model are in the same format as the sparse-group Lasso model
detailed extensively in Section 5.

A final motivating model is geometric programming. Geometric program-
ming is a useful modeling paradigm which has numerous applications especially
in electrical circuit design. A full description and tutorial on these models is
provided by Boyd et al. in [4]. A regularized subclass of geometric programs
solvable via C-FISTA is,

min
∑K

k=1 ckx
ak1
1 xak2

2 . . . xakn
n +R(x),

s.t x ∈ X ,

where ck > 0, ak := (ak1, . . . , akn)
⊤ ≤ 0 for all k, and X is a closed and

bounded convex subset of Rn
++. The condition ak ≤ 0 ensures the model is

convex. In solving this model, we decompose the objective such that B(x) =

(ln(x1), . . . , ln(xn))
⊤
. Allowing non-linear and non-convex component func-

tions for B demonstrates the novelty of C-FISTA to escape strictly affine
compositions showcasing a level of extended generality.

Before discussing how to compute subproblems for the Lasso models, we
first discuss Fenchel duality in Section 4 and describe how C-FISTA can be
utilized via a dual approach to solve a general constrained composite model.

4 A Dual Formulation and Algorithmic Approach

In this section, we outline the construction of a dual algorithm using Fenchel
duality which generates an approximate primal solution from the dual solution
at every iterate. To elucidate this approach we first provide a brief overview
of standard convex analysis results regarding conjugate functions and Fenchel
duality [25,26]. Unless otherwise stated, we use the standard notation of Rock-
afellar [25]. For generality, we will consider the following constrained composite
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model:

min h0(x) + h1(x) + · · ·+ hℓ(x) (14)

s.t. x ∈ Cj ⊆ Rn, j = 1, 2, ..., r,

where the hi’s are proper convex functions on Rn and the Cj ’s are closed
convex subsets of Rn. To begin, let us introduce some basic notions in convex
analysis.

Let S ⊆ Rn be a closed convex set. The support function of S is defined
as,

fS(y) := max
x∈S

y⊤x,

and the polar set of S is,

S◦ := {y | y⊤x ≤ 1, ∀x ∈ S}.

Thus, we can succinctly write, S◦ = {y | fS(y) ≤ 1}. Let g be a convex
function whose domain is contained in S. The conjugate of g is defined as,

g∗(y) := sup
x∈S

[
y⊤x− g(x)

]
,

where the function is assumed to take value +∞ anywhere outside its domain.
In deriving the Fenchel dual of (14) we need some standard results from convex
analysis.

Lemma 1 Suppose f is a proper convex function, then

−f∗(0) = inf
x

f(x). (15)

Lemma 2 (Theorem 16.4 [25]) Suppose g1, ..., gr are proper convex functions
on Rn and the intersection of the relative interiors of the domains of the gi’s
is non-empty, then

(g1 + · · ·+ gr)
∗
(x) = inf

y1+···+yr=x

r∑
j=1

g∗j (yj). (16)

Lemma 3 For a convex set S, suppose its indicator function is defined as,

IS(x) :=

{
0, if x ∈ S;
+∞, if x ̸∈ S.

Then, the conjugate of the indicator function is simply the support function of
S;

I∗S = fS .
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The proofs of Lemmas 1 and 3 follow directly from the definitions of con-
jugate and support functions. Thus, rewriting (14) in the equivalent form,

min h0(x) + h1(x) + · · ·+ hℓ(x) + IC1
(x) + . . .+ ICr

(x)

s.t. x ∈ Rn,

and utilizing Lemmas 1, 2, and 3, the Fenchel dual of (14) is:

min h∗
0(−y1 − · · · − yℓ − yℓ+1 − · · · − yℓ+r) (17)

+h∗
1(y1) + · · ·+ h∗

ℓ (yℓ) + fC1(yℓ+1) + · · ·+ fCr (yℓ+r)

s.t. yj ∈ Rn, j = 1, 2, ..., ℓ+ r.

Note, for the sake of presentation we have written the dual problem (17) in
such a manner that the optimal solutions of (14) and (17) differ by a negative
sign. To better understand the link between the primal and dual models, we
demonstrate how the optimality conditions of (14) and (17) are linked. As-
suming the conjugate functions of the hi’s (i = 0, 1, ..., ℓ) are differentiable and
denoting y∗

j for j = 1, . . . , ℓ+ r to be optimal for (17), we have the first-order
optimality conditions,{

−∇h∗
0(−

∑ℓ+r
j=1 y

∗
j ) +∇h∗

i (y
∗
i ) = 0, i = 1, ..., ℓ

∇h∗
0(−

∑ℓ+r
j=1 y

∗
j ) ∈ ∂fCj

(y∗
ℓ+j), j = 1, ..., r.

(18)

Denoting x∗ := ∇h∗
0(−

∑ℓ+r
j=1 y

∗
j ), the optimality conditions imply x∗ =

∇h∗
i (y

∗
i ) for i = 1, . . . , ℓ, and so by Lemma 5 of [33], ∇hi(x

∗) = y∗
i , for i =

1, ..., ℓ. Similarly, because f∗
Cj

= ICj
, if x∗ ∈ ∂fCj

(y∗
ℓ+j), then y∗

ℓ+j ∈ ∂ICj
(x∗),

which means that y∗
ℓ+j is a normal direction at x∗:

(y∗
ℓ+j)

⊤(x− x∗) ≤ 0, for all x ∈ Cj .

Furthermore, by (18)

∇h0(x
∗) = −

ℓ+r∑
j=1

y∗
j = −

ℓ∑
i=1

∇hi(x
∗)−

r∑
j=1

y∗
ℓ+j . (19)

Thus, the first-order optimality conditions for the dual problem implies (19),
which is the optimality condition for the primal problem (14). To see this, note
that

∇h0(x
∗) +

ℓ∑
i=1

∇hi(x
∗) = −

r∑
j=1

y∗
ℓ+j ,

and so,(
∇h0(x

∗) +

ℓ∑
i=1

∇hi(x
∗)

)⊤

(x−x∗) = −
r∑

j=1

(
y∗
ℓ+j

)⊤
(x−x∗) ≥ 0, ∀x ∈ ∩r

j=1Cj .

We now present an important relationship between the primal solution
induced by the dual iterations which outlines a dual approach to solving (14).
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Proposition 1 Suppose that h0 is a strongly convex function with strong con-
vexity parameter µ and gradient Lipschitz constant L. Let {yk} be a sequence
converging to the dual solution y∗. For each yk in the dual sequence, we recover
a primal solution xk := ∇h∗

0(−
∑ℓ+r

j=1 y
k
j ) such that,

1

L

∥∥∥∥∥∥
ℓ+r∑
j=1

(
yk
j − y∗

j

)∥∥∥∥∥∥ ≤ ∥xk − x∗∥ ≤ 1

µ

∥∥∥∥∥∥
ℓ+r∑
j=1

(
yk
j − y∗

j

)∥∥∥∥∥∥ .
Proof By the Fenchel duality relation, we know that h∗

0 is also a strongly
convex function with strong convexity parameter 1/L and gradient Lipschitz
constant 1/µ (Theorem 1 [33]). Further, by the definition of xk and previ-

ously stated results, ∇h0(x
k) = −

∑ℓ+r
j=1 y

k
j . Therefore, ∇h0(x

k)−∇h0(x
∗) =∑ℓ+r

j=1(y
∗
j − yk

j ), and so the gradient Lipschitz condition on h yields,∥∥∥∥∥∥
ℓ+r∑
j=1

(
yk
j − y∗

j

)∥∥∥∥∥∥ = ∥∇h0(x
k)−∇h0(x

∗)∥ ≤ L∥xk − x∗∥.

On the other hand, the gradient Lipschitz condition on h∗ states,

∥xk − x∗∥ =

∥∥∥∥∥∥∇h∗
0

−
ℓ+r∑
j=1

yk
j

−∇h∗
0

−
ℓ+r∑
j=1

y∗
j

∥∥∥∥∥∥ ≤ 1

µ

∥∥∥∥∥∥
ℓ+r∑
j=1

(
yk
j − y∗

j

)∥∥∥∥∥∥ .
⊓⊔

Therefore, the above result gives us the framework to develop a general dual
approach to solving (14). Applying any algorithm to solve the dual problem
(17) we can recover a primal solution at each iteration; furthermore, the rate
of convergence on the primal side for any algorithm will only differ by a fixed
constant, 1/µ, in-comparison to the rate of convergence on the dual side.

The presented dual formulation is not novel; Han and Lou [15] and Fukushima
et al. [13] have very similar derivations of the dual and many algorithms such
as Dykstra’s projection algorithm [14] utilize Fenchel duality. The clarity pro-
vided by the previous result is that, under the assumption h0 is strongly convex
with gradient Lipschitz, any algorithm which generates a converging dual so-
lution will generate a primal solution with the same rate of convergence up to
a constant factor. This is directly relevant to our proposed algorithm because
the dual (17) is solvable via C-FISTA. Let H : Rn → R, B : Rn(ℓ+r) → Rn,
and R : Rn(ℓ+r) → R such that,

H(x) = h∗
0(x),

B(x) = [−In | . . . | − In]x,

R(x) = h∗
1(E1x) + · · ·+ h∗

ℓ (Eℓx) + fC1
(Eℓ+1x) + · · ·+ fCr

(Eℓ+rx),
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where In is the n × n identity matrix and Ek is the 1 × (ℓ + r) block matrix
with the identity matrix In in the k-th position, e.g. E2 = [0 | In | 0 | . . . | 0] ∈
Rn×n(ℓ+r), then we can rewrite (17) as,

min H(B(x)) +R(x)
s.t. x ∈ Rn(ℓ+r).

With this decomposition it is straightforward to specify the constants: µ′, L′,
τ ′, r′ and ξ′ for C-FISTA. Assuming h0 is strongly convex with parameter
µ and gradient Lipschitz with constant L, it follows µ′ = 1/L and L′ = 1/µ.
The linearity of B yields ξ′ = 0, and the simple structure of the mapping gives
r′ = ∥ [−In | . . . | − In] ∥22 = (ℓ+r). Lastly, τ ′ = 0 since the matrix definingB
is singular; however, though τ ′ = 0 does not strictly satisfy assumption (A2),
in practice C-FISTA will often converge for a range of small τ ′ values. This
is demonstrated in Section 6.2.2 through multiple numerical experiments on
an underdetermined group Lasso model and follows from our previous discus-
sion on the overly strict nature of the assumptions which ensure global linear
convergence.

A final note must be made in-regards to the proximal mapping step which
would be required to solve the dual formulation. Computing ProxR(·) in this
case would depend on the definitions of h∗

i and fCi
. This could prove difficult;

however, R presents a natural decomposition such that only the individual
proximal mappings of the functions h∗

i and fCi would be necessary. This sub-
stantially simplifies the procedure enabling tractable computations in many
instances.

Therefore, we see that (14) under the proper convexity assumptions has a
dual which in many cases is solvable via C-FISTA, and Proposition 1 demon-
strates the primal solution is recoverable from the dual solution without losing
linear convergence.

Besides using Fenchel duality to directly solve the dual model with C-
FISTA and recover the primal solution, we can also utilize Fenchel duality
theory to solve the intermediate subproblems in the primal implementation of
C-FISTA. In the next section, we describe this process using the sparse-group
Lasso model as an example.

5 Solving Subproblems with Fenchel Duality

One example of how duality can be leveraged to apply C-FISTA can be seen in
how we solve the subproblems for the group and sparse-group Lasso models. In
the sparse-group Lasso model, the main subproblem which needs to be solved
to apply C-FISTA is of the form,

(S) min 1
2∥x− d∥2 + γ1∥x∥+ γ2∥x∥1

s.t. x ∈ Rn,
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with γ1, γ2 ≥ 0. Utilizing Lemmas 1 and 2 and standard conjugate functions
[26], we see the Fenchel dual of (S) is,

(DS) min 1
2∥d+ y1 + y2∥2

s.t. ∥y1∥ ≤ γ1,
∥y2∥∞ ≤ γ2.

When y2 is fixed, consider the simple projection problem,

min
∥y1∥≤γ1

∥d+ y2 + y1∥,

whose solution is explicit:

y∗
1 =

{
−d− y2, if ∥d+ y2∥ ≤ γ1;
−γ1(d+ y2)/∥d+ y2∥, if ∥d+ y2∥ > γ1.

Therefore,

∥d+ y2 + y∗
1∥ =

{
0, if ∥d+ y2∥ ≤ γ1;
∥d+ y2∥ − γ1, if ∥d+ y2∥ > γ1.

Thus, the dual problem (DS) is equivalent to min∥y2∥∞≤γ2
(∥d+ y2∥− γ1)+,

which can be solved through the associated model,

(DS)′ min 1
2∥d+ y2∥2

s.t. ∥y2∥∞ ≤ γ2.

Since the individual components of y2 are decoupled in (DS)′, the above
problem can be reduced to solving n 1-dimensional problems,

min (di + t)2

s.t. |t| ≤ γ2,

for i = 1, 2, ..., n. Observe that the solutions for the above 1-dimensional mod-
els can be found using the following thresholding operator:

Thγ2
(t) :=

−γ2, if t < −γ2;
t, if −γ2 ≤ t ≤ γ2;

γ2, if t > γ2.

Therefore, a solution for (DS) is y∗
2 = Thγ2

(−d), where (Thγ2
(−d))i =

Thγ2
(−di) for all i, and,

y∗
1 =

{
−d−Thγ2

(−d), if ∥d+Thγ2
(−d)∥ ≤ γ1;

−γ1(d+Thγ2
(−d))/∥d+Thγ2

(−d)∥, if ∥d+Thγ2
(−d)∥ > γ1.

After solving (DS) with the optimal solution (y∗
1,y

∗
2), one recovers the optimal

solution to (S) as x∗ = d + y∗
1 + y∗

2 using the results from Section 4. In
particular,

x∗ =

{
0, if ∥d+Thγ2

(−d)∥ ≤ γ1;
(∥d+Thγ2

(−d)∥−γ1)

∥d+Thγ2 (−d)∥
(d+Thγ2

(−d)) , if ∥d+Thγ2
(−d)∥ > γ1.
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Hence, by Fenchel duality we obtain a closed form solution to (S) yielding an
exact solution to the required subproblems to apply C-FISTA to the sparse-
group Lasso model. Similar approaches can be taken to solve other potential
subproblems which arise when applying C-FISTA. In the next section, we
present the algorithms and numerical experiments for solving the models dis-
cussed in Section 3.

6 Numerical Experiments

To demonstrate the practicality and efficiency of C-FISTA, we conducted nu-
merous experimental tests on group Lasso, sparse-group Lasso, overlapping
sparse-group Lasso, sparse-group logistic regression, and regularized geomet-
ric programming models. The overall structure of this section is as follows:
Subsection 6.1 details how to apply C-FISTA to solve the Lasso formulations;
Subsection 6.2 contains the results of the numerical experiments conducted
on the Lasso models; Subsections 6.3 and 6.4 present the solution procedure
and numerical results for the sparse-group logistic regression model; Subsec-
tions 6.5 and 6.6 describe the application of C-FISTA to a set of regularized
geometric programs and presents some numerical results.

6.1 Lasso Models

In this section we state how to apply C-FISTA to solve the various Lasso mod-
els described in Section 3. In order to apply C-FISTA, the practitioner must
select a decomposition of the objective function, i.e. the user must define H
and B in (1). For the sake of exposition, in Sections 6.1.1, 6.1.2, and 6.1.3, we
decompose H(B(x)) = 1

2∥Ax − b∥2 as H(x) = 1
2∥Ax − b∥2 and B(x) = x.

By doing this we have ξ = 0, r = 1, and τ = 1. Therefore, the strong convexity
constant µ and gradient Lipschitz constant L for H are the only parameters
which must be estimated to apply C-FISTA. This was the convention cho-
sen for the algorithms presented in these sections as it enables more concise
algorithmic descriptions; however, another viable decomposition is to have
H(x) = 1

2∥x− b∥2 and B(x) = Ax. This decomposition is utilized in Section
6.2.2. Under this decomposition, one readily obtains the strong convexity and
gradient Lipschitz constants as µ = L = 1. As for the other constants, the
linearity of B yields ξ = 0 and r = λmax(A

⊤A). Hence, the only constant to
estimate is τ from assumption (A2). The ability to chose the decomposition
for a particular problem is a benefit of C-FISTA. This freedom enables the
practitioner to select the most beneficial and/or convenient decomposition for
their model of interest.

We now begin our discussion with how to apply C-FISTA to the group
Lasso formulation.
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6.1.1 C-FISTA for Group Lasso

Applying C-FISTA to solve any model hinges on computing the proximal
mapping in (4). This key subproblem in the group Lasso model is of the form,

min 1
2∥x− d∥2 + γ∥x∥

s.t. x ∈ Rn,
(20)

which by the first-order optimality conditions has the simple closed-form so-
lution,

x∗ =

{
0, if ∥d∥ ≤ γ;(

∥d∥−γ

∥d∥

)
d, if ∥d∥ > γ.

With the solution to the group Lasso subproblems (20), we write down how
to solve the group Lasso model with C-FISTA in Algorithm 2 where H(x) =
1
2∥Ax− b∥2 and B(x) = x.

Algorithm 2 C-FISTA for (GL)
Input: Constants µ and L; penalty parameter γ > 0; vector partition G.
Step 0. Choose any (x0, z0) ∈ Rn × Rn. Let k := 0.
Step 1. Let,

yk :=
1

1 + θ
xk +

θ

1 + θ
zk.

Step 2. For each j ∈ G:

x(j)k+1 :=

{
0, ∥d(j)∥ ≤ γ/L;(

∥d(j)∥−γ/L

∥d(j)∥

)
d(j), ∥d(j)∥ > γ/L;

with d := yk − 1
L
∇H(yk) = yk − 1

L
A⊤(Ayk − b) and corresponding subvectors d(j).

Step 3.

zk+1 := (1− θ)zk + θyk + α
(
xk+1 − yk

)
,

where θ =
√

µ/L and α =
√

L/µ.

Step 4. Let k := k + 1; return to Step 1 until convergence.

Practical application of Algorithm 2 requires the user to determine bounds
for the Lipschitz constant and strong convexity constant of H. For the group
Lasso models H(x) := 1

2∥Ax− b∥2 making such bounds readily available. By

the definition of strong convexity we see µ = λmin(A
⊤A). Similarly, using

the definition of the Lipschitz constant, we see that L ≤ λmax(A
⊤A) where

λmin(A
⊤A) and λmax(A

⊤A) are the smallest and largest eigenvalues of A⊤A
respectively. For other strongly convex functions H on which C-FISTA is ap-
plicable, tight bounds for L and µ might be unavailable. In these situations
conservative estimates for these bounds or a backtracking scheme such as in
[3] to estimate these parameters would be required. In this paper we do not
focus on subroutines to estimate these bounds in our algorithms; however, the
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backtracking strategies applied in [3,6,11] could similarly be implemented in
many instances of C-FISTA.

6.1.2 C-FISTA for Sparse-Group Lasso

The key subproblem in applying C-FISTA to solve the sparse-group Lasso
model was determined in Section 5; thus, we can write Algorithm 3 to solve
the sparse-group Lasso model with C-FISTA.

Algorithm 3 C-FISTA for (SGL)
Input: Constants µ and L; penalty parameters γ1, γ2 > 0; vector partition G.
Step 0. Choose any (x0, z0) ∈ Rn × Rn. Let k := 0.
Step 1. Let

yk :=
1

1 + θ
xk +

θ

1 + θ
zk.

Step 2. For each j ∈ G: define Ω(j) := ∥d(j) +Thγ2/L(−d(j))∥ and,

x(j)k+1:=


0, if Ω(j) ≤ γ1

L
;(

∥d(j)+Thγ2/L(−d(j))∥−γ1/L)

∥d(j)+Thγ2/L(−d(j))∥

)(
d(j) +Thγ2/L(−d(j))

)
, if Ω(j) > γ1

L
;

with d := yk − 1
L
A⊤(Ayk − b) and corresponding subvectors d(j).

Step 3.

zk+1 := (1− θ)zk + θyk + α
(
xk+1 − yk

)
,

where θ =
√

µ/L and α =
√

L/µ.

Step 4. Let k := k + 1; return to Step 1 until convergence.

Since H is identical in all of the Lasso models, the same bounds for the
Lipschitz and strong convexity constants in Algorithm 2 apply for each of
the Lasso models. Comparing Algorithms 2 and 3, we note only Step 2 has
been updated because the y and z-updates are independent of the objective
function. The alteration in Step 2 is solely due to the difference in the regu-
larization term in the group and sparse-group Lasso models which alters the
proximal mapping (4).

6.1.3 C-FISTA for Overlapping Sparse-Group Lasso

The key difference between the overlapping sparse-group Lasso model and
those previously discussed is the removal of the prohibition that the groups of
variables cannot intersect. Allowing overlapping groups of variables removes
the ability to decouple the minimization in (4) into subproblems over the
individual subvectors. In the sparse-group Lasso model, since the groups of
variables do not overlap, we were able to show in Section 5 there was a closed
form solution to the proximal mappings; however, with overlapping groups the
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key subproblem for implementing C-FISTA,

min
1

2
∥x− d∥2 + γ1

L

∑
j∈G

∥x(j)∥+ γ2
L
∥x∥1, (21)

is no longer decomposable and a simple closed form solution is unobtainable;
therefore, we must solve this subproblem numerically at each iteration in-order
to apply C-FISTA to the overlapping sparse-group Lasso model. In [30] the
authors apply a variation of FISTA to solve the (OSGL) model. Our approach
is distinct from their approach because we accelerate FISTA through the use
of two sequences, {yk} and {zk}, while they use a single sequence performing
a Nesterov-like acceleration. In order to apply their algorithm, the authors of
[30] developed an efficient subroutine, overlapping.c, to numerically solve (21).
Their subroutine is provided in the SLEP software package [18]. In our solving
of the (OSGL) model with C-FISTA, we apply Algorithm 3 exactly in the same
fashion as for the sparse-group Lasso model except when computing xk+1 in
Step 2 we solve (21) with overlapping.c from the SLEP software package.

6.2 Lasso Numerical Experiments

In this section, we describe the results from the numerical experiments con-
ducted on the Lasso models. In the first set of experiments, the data matrix
A has full-column rank. In this setting, all assumptions stated in Section 2
are fully met. In practice, however, it is often unrealistic to assume the data
matrix for a Lasso model is overdetermined; therefore, we conducted a second
set of experiments on the group Lasso model with underdetermined data to
demonstrate the applicability of C-FISTA in this setting.

6.2.1 Overdetermined Lasso Models Numerical Tests

For comparing C-FISTA, SLEP, ADMM and FISTA (without backtracking)
on the overdetermined Lasso models, we constructed synthetic data sets for
testing in a manner similar to the process utilized in [32]. For our tests of the
group and sparse-group Lasso models, we randomly generated a m × n data
matrix A from the standard normal distribution, and we formed three different
subvector groups, G1,G2, and G3, where the subvectors in Gi where of sizes
10, 100, and 200 respectively. Thus, in our experiments we let A ∈ R8000×5000

and had,

G1 = {(1, . . . , 10), (11, . . . , 20), . . . , (4991, . . . , 5000)},
G2 = {(1, . . . , 100), (101, . . . , 200), . . . , (4901, . . . , 5000)},
G3 = {(1, . . . , 200), (201, . . . , 400), . . . , (4801, . . . , 5000)}.

The response vectors bi for i = 1, 2, 3 were formed as,

bi = Ax+ δ · ϵ,
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where each component of ϵ was drawn from the standard norm distribution,
δ > 0 provided a scaling factor for the noise, and x(j) = (1, 2, . . . , 10, 0, . . . , 0)⊤

for j = 1, 2, . . . , 10 with x(j) = 0 for the remaining subvector groups j =
11, . . . , |Gi|. We set the positive penalty parameters γ1 and γ2 to be equal and
of a magnitude to ensure sparse but non-trivial solutions.

For the overlapping sparse-group Lasso model we constructed the data
matrix A in the same manner, and let the subvector groups be,

G1 = {(1, . . . , 10), (6, . . . , 15), . . . , (4986, . . . , 4995), (4991, . . . , 5000)},
G2 = {(1, . . . , 100), (51, . . . , 150), . . . , (4851, . . . , 4950), (4901, . . . , 5000)},
G3 = {(1, . . . , 200), (101, . . . , 300), . . . , (4701, . . . , 4900), (4801, . . . , 5000)}.

Thus, each of the adjacent subvectors in Gi for i = 1, 2, 3 overlapped with
another subvector. The response vectors were constructed as done for the
group and sparse-group Lasso models.

The overdetermined Lasso experiments were conducted in MATLAB R2021.
Implementation of C-FISTA was as detailed in Sections 6.1.1, 6.1.2, and 6.1.3.
From the SLEP software package [18] we utilized: glLeastR.m, sgLeastR.m and
overlapping LeastR.m to solve the group, sparse-group and overlapping sparse-
group Lasso models respectively. Sections 3, 7 and 9 of [18] provide details for
these first-order proximal gradient methods. FISTA, without backtracking,
was applied as described in [3]. All iterative sequences in the algorithms were
initialized at zero. For comparison, all of the Lasso models were tested with
the same data matrix A and response vectors bi. Figure 1 displays the con-
vergence results for C-FISTA, SLEP, ADMM and FISTA on the three Lasso
models. In Figure 1, the y-axis measures the absolute difference from the op-
timal objective value at each iteration of the individual algorithms. We took
the final value of the objective function of C-FISTA as the exact optimal so-
lution which agreed, as can be seen in Figure 1, to within machine tolerance
of the final iterates produced by each of the methods. Note, we fine-tuned the
augmented Lagrangian parameter ρ in the ADMM algorithm to achieve the
optimal performance for the method.

The computational results displayed in Figure 1 clearly demonstrate the
proven global linear convergence of C-FISTA.While ADMM, SLEP and FISTA
all display linear convergence properties in some of the tests, C-FISTA signifi-
cantly outperformed the other methods. Furthermore, C-FISTA maintained a
robustness between the various Lasso models. While SLEP’s convergence rate
suffered as the subvector group sizes increased in the group Lasso model, the
convergence rate of C-FISTA did not suffer in the group or sparse-group Lasso
models as the group sizes increased. Overall, the tests demonstrate C-FISTA’s
effectiveness and robustness to varying subvector group sizes throughout the
various Lasso formulations.

6.2.2 Underdetermined Group Lasso Numerical Tests

The second set of Lasso experiments focused on underdetermined data. In par-
ticular, the group Lasso model was studied with a rank deficient data matrix.
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GL Tests SGL Tests OSGL Tests

Fig. 1 The numerical results for the Lasso models (GL), (SGL) and (OSGL) with three
different subvector groupings. The y-axis is given in logarithmic scale and measures the
absolute difference in the objective value and the optimal objective value at each iteration;
γ = 5, γ1 = γ2 = 10 and γ1 = γ2 = 0.1 for the (GL), (SGL) and (OSGL) models
respectively

With underdetermined data, the assumptions for Theorem 1 are not fully real-
ized; however, as previously claimed and will be shown, in practice asymptotic
linear convergence is still possible when the global assumptions (A2) and/or
(A3) are not fully realized. To demonstrate this we conducted an extensive
numerical experiment comparing FISTA, without backtracking, to C-FISTA
on the group Lasso model with underdetermined data.

For the experiment, we let H(x) = 1
2∥x− b∥2 and B(x) = Ax. Therefore,

the strong convexity and gradient Lipschitz constants for H are µ = L = 1,
ξ = 0, and r = λmax(A

⊤A). The only remaining constant to compute is τ > 0
which by (A2) needs to satisfy,

τ∥x− y∥2 ≤ ∥A(x− y)∥2,

for all x,y ∈ Rn. Since A is not of full-column rank, this assumption cannot
hold; however, choosing a small positive value for τ ensures the inequality will
hold for a sufficient number of iterates generated by Algorithm 1. This enables
C-FISTA to maintain its convergence though assumption (A2) is not formally
satisfied.
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In our underdetermined group Lasso experiments, we generated synthetic
data matrices and response vectors as in Section 6.2.1. Randomly generated
matrices with dimensions: 2500× 5000, 1200× 5000 and 600× 5000 were con-
structed, and each of these group Lasso problem sizes were solved under the
three subvector groupings from Section 6.2.1. We generated ten instances of
these nine group Lasso settings and solved the models with FISTA and C-
FISTA under three different parameter settings for τ . Table 1 displays the
results for these ninety numerical experiments. Each entry in the table pro-
vides the average number of iterations for the respective algorithms to converge
to within 10−10 of the optimal objective value.

From Table 1 we observe C-FISTA is convergent for a range of τ values
demonstrating a robustness to miss-specification. Of the different values for τ
selected, only the selection of τ = 1 failed to converge after 20,000 iterations
and this was only for the case A ∈ R600×5000 and the group variable size was
200. Second, we note C-FISTA outperformed FISTA consistently with the best
algorithm for each setting being C-FISTA with either τ = 0.1 or τ = 1. A vi-
sual representation of the performance comparison is given in Figure 2. From
the convergence plots we see C-FISTA would often display asymptotic linear
convergence when the group sizes were 100 and 200 while FISTA would con-
verge sub-linearly. When the group size was 10, irrespective of the dimension
of the data matrix, C-FISTA and FISTA were comparable and demonstrated
asymptotic linear convergence; however, with τ = 1, C-FISTA converged be-
tween 300 and 500 iterations sooner on average then FISTA in this setting.
These experiments demonstrate that C-FISTA maintains linear convergence
properties even when some of the stated assumptions are not strictly met and
showcases the robustness of the parameter τ to miss-specification.

Table 1 This table shows the average number of iterations for C-FISTA and FISTA to
converge to within 10−10 of the optimal objective value for 10 randomized Group Lasso
problems of varying dimensions and group vector sizes. An entry of NaN means the given
algorithm did not converge to within the stated tolerance after 20,000 iterations for at least
one of the ten randomized tests

Data Dimension
Method 2500 x 5000 1200 x 5000 600 x 5000

Group Size Group Size Group Size
C-FISTA 10 100 200 10 100 200 10 100 200
τ = 0.01 2194 4069 15718 2170 13546 13288 2208 12014 11565
τ = 0.1 1129 2202 5331 1202 4686 4436 1439 4088 4140
τ = 1 624 2049 15517 833 14096 15473 1292 17327 NaN

FISTA 945 3200 NaN 1284 NaN NaN 1780 NaN NaN
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Dimension: 2500× 5000 Dimension: 1200× 5000 Dimension: 600× 5000

Fig. 2 Sample plots of the underdetermined group Lasso tests between C-FISTA and FISTA
with varying problem dimensions and subvector group sizes. C-FISTA was implemented with
three different parameter settings for τ in each test. The penalty parameter was set as γ = 5
for all of the tests

6.3 C-FISTA for Sparse-Group Logistic Regression

In this section we describe how to apply C-FISTA to solve the sparse-group
logistic regression model,

min 1
m

∑m
i=1 ln

(
1 + exp

(
−yi

(
a⊤
i x+ b

)))
+ γ1

∑
j∈G ∥x(j)∥+ γ2∥x∥1

s.t. x ∈ Rn, b ∈ R.

As in the Lasso formulations, a decomposition must be chosen to tackle the
regression model with C-FISTA. For continuity with the previous discussion,
we will utilize the decomposition B(x) = x and H(x) = 1

m

∑m
i=1 ln(1 +

exp(−yi⟨(a⊤
i , 1)

⊤,x⟩)). Under these definitions for H and B, the sparse-group
Lasso and sparse-group logistic regression models only differ with respect to
their strongly convex term, so the procedure for solving the sparse-group lo-
gistic regression model with C-FISTA is very similar to Algorithm 3. Only
two alterations to Algorithm 3 are required to solve the sparse-group logistic
regression model. One, we must update d in Algorithm 3 to be,

d = yk − 1

L
∇H(yk) = yk +

1

mL

m∑
i=1

yi exp(−yi(a
⊤
i y

k + b))

1 + exp(−yi(a⊤
i y

k + b))

(
ai

1

)
, (22)
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and second we require new estimates for the bounds of the Lipschitz and
strong convexity constants L and µ. Updating d is straightforward, but ob-
taining tight upper and lower bounds on the Lipschitz and strong convexity
constants can become a challenging task as mentioned previously. Algorithm 4
presents C-FISTA for solving the sparse-group logistic regression model. In our
implementation of Algorithm 4, we fixed the Lipschitz and strong convexity
parameters though backtracking procedures could be utilized.

Algorithm 4 C-FISTA for (SGLR)
Input: Constants µ and L; penalty parameters γ1, γ2 > 0; vector partition G.
Step 0. Choose any (x0, b0, z0) ∈ Rn × R× Rn+1. Let k := 0.
Step 1. Let

yk :=
1

1 + θ

(
xk

bk

)
+

θ

1 + θ
zk.

Step 2. For j ∈ G: define Ω(j) := ∥(.j) +Thγ2/L(−(.j))∥ and,

x(j)k+1 :=

0, if Ω(j) ≤ γ1/L;(
∥d(j)+Thγ2/L(−d(j))∥−γ1/L)

∥d(j)+Thγ2/L(−d(j))∥

)(
d(j) + Thγ2/L(−d(j))

)
, if Ω(j) > γ1/L;

where d is as defined in (22) and d(j) is the subvector of d corresponding to the subvector
x(j).
Step 3.

bk+1 = yk+1
n+1 +

1

mL

m∑
i=1

yi exp(−yi(a
⊤
i yk + b))

1 + exp(−yi(a⊤i yk + b))
.

Step 4.

zk+1 := (1− θ)zk + θyk + α

[(
xk+1

bk+1

)
− yk

]
,

where θ =
√

µ/L and α =
√

L/µ.

Step 5. Let k := k + 1; return to Step 1 until convergence.

Note, computing bk+1 at each iteration is simple relative to xk+1 because
the subprobem (4) is decomposable into a minimization over x and b respec-
tively. Since the minimization over b contains no regularization terms, the
first-order optimality conditions provide a simple update for b.

The astute observer will note H is strictly instead of strongly convex mak-
ing µ = 0 and leaving the necessary assumptions unsatisfied. Though this is
technically true, C-FISTA is undeterred. As in the underdetermined group
Lasso tests, this decomposition showcases the robustness of C-FISTA when
the assumptions are not formally met. It is clear the sparse-group logistic
regression model could be equivalently expressed as a constrained problem;
therefore, by rewriting the model as an equivalent constrained problem, H
would become strongly convex on the problem domain; however, as is seen in
Figure 3, C-FISTA outperforms both SLEP and FISTA without solving an
equivalent model where the assumptions are formally satisfied.
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Fig. 3 The numerical results for the sparse-group logistic regression model (SGLR) with
three different subvector groupings. The y-axis is given in logarithmic scale and measures the
absolute difference in the objective value and the optimal objective value at each iteration;
γ1 = γ2 were set to be 0.01

6.4 Sparse-Group Logistic Regression Numerical Experiments

In this section, we describe the results of the numerical experiments on the
sparse-group logistic regression model. The set-up for the numerical experi-
ments on the sparse-group logistic regression model were similar to the set-up
for the Lasso models in 6.2. We generated the data matrix A ∈ R500×5000 from
the standard normal distribution letting ai for i = 1, 2, . . . , 500 be the rows of
A, and set y = (−e⊤, e⊤)⊤ where e ∈ R250 is the vector of all ones. We con-
ducted three experiments from the generated data using the same subvector
groups, G1, G2 and G3, utilized in the group and sparse-group Lasso tests. We
set γ1 = γ2 = 0.01 in our tests to ensure a non-trivial solution with substantial
sparsity.

In our experiments, we compared C-FISTA, SLEP and FISTA. With re-
gards to SLEP, we utilized sgLogisticR.m, which is a first-order proximal gradi-
ent method, to solve the model. The computational results displayed in Figure
3 clearly demonstrate the proven global linear convergence of C-FISTA. In the
logistic regression tests, C-FISTA was a vast improvement over both FISTA
and SLEP converging well over a 1000 iterations sooner to within machine
precision.

6.5 C-FISTA for Geometric Programming

In this section we discuss how to solve an instance of the geometric program-
ming model described in Section 3. In particular, we focus on the group regu-
larized geometric program,

min
∑K

k=1 ckx
ak1
1 xak2

2 . . . xakn
n + γ

∑
j∈G ∥x(j)∥2,

s.t x ∈ X ,
(23)

where X = {x ∈ Rn | ∥x − x0∥2 ≤ ∆} ⊆ Rn
++ with ∆ > 0 and x0 ∈ Rn,

γ > 0, ck > 0 and ak := (ak1, . . . , akn)
⊤ ≤ 0 for k = 1, . . . ,K, and G is a
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non-overlapping partition of the vector x. Letting,

H(x) :=

K∑
k=1

cke
a⊤

k x, B(x) := (ln(x1), . . . , ln(xn))
⊤
, R(x) := γ

∑
j∈G

∥x(j)∥2,

we can rewrite (23) in the format of our standard composite optimization
model. From the characteristics of X it follows H is gradient Lipschitz on
the problem domain. Additionally, H will be strongly convex over the domain
provided the vectors {a1, . . . , aK} span Rn. Note, this is a fairly weak condition
ifK > n. Additionally, similar to our underdetermined group Lasso discussion,
although constants r and τ do not exist to satisfy the necessary constraints
over the span of the constraint set, such constants exist which satisfy the
necessary inequalities over the constraint set. By Taylor’s theorem and simple
bounding we can see,

τ∥x− y∥2 ≤ ∥B(x)−B(y)∥2 ≤ r∥x− y∥2, ∀x,y ∈ X ,

with r = 1/min1≤i≤n [(x0)i −∆]
2
and τ = 1/max1≤i≤n [(x0)i +∆]

2
. Thus,

with these values for r and τ , along with appropriate estimates for the other
parameters µ,L and ξ, C-FISTA can be employed to solve instances of this
subclass of geometric programs. The only difference in implementing C-FISTA
for this problem class is a constrained optimization model of the form given
in (20) must be solved to compute the proximal mapping. In our numerical
experiments, we apply a simple projected gradient method to solve this sub-
problem to within a specified tolerance. We now present the numerical results
from the geometric programming model.

6.6 Geometric Programming Numerical Experiments

To test the performance of C-FISTA on (23), we generated random instances
of the geometric programming model and compared Algorithm 1 to FISTA.
For our randomly generated examples we let:

G = {(1, . . . , 100), (101, . . . , 200), . . . , (901, . . . , 1000)},

K = 5000, x0 = 10e, ∆ = 9 and γ = 0.1. The values for the ck’s and ak’s were
randomly computed using the randn command in MATLAB 2021b, and then
they were transformed to ensure they held the proper sign. The ak’s were
additionally normalized so that the elements in each vector ak summed to
negative one. This normalization was done to avoid extremely ill-conditioned
problems.

Figure 4 displays an example result from our testing. For this problem,
C-FISTA and FISTA would both converge exceptional fast often within 10-30
iterations. In general, FISTA would slightly outperform C-FISTA which might
be a result of the parameter estimation. Nevertheless, C-FISTA demonstrated
rapid convergence in a setting where the formal assumptions were not com-
pletely satisfied and a non-linear decomposition of the objective function was
utilized.
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Fig. 4 Numerical results from the geometric programming tests. C-FISTA and FISTA were
both implemented with the same Lipschitz constant estimate and both demonstrated rapid
convergence to the optimal solution. The y-axis is given in logarithmic scale and measures the
absolute difference in the objective value and the optimal objective value at each iteration

7 Conclusions

In this paper we developed an accelerated composite version of FISTA, C-
FISTA, which handles the composite optimization model (1) and is a gener-
alization of GFISTA [6,7]. We proved global linear convergence for C-FISTA
without having a strongly convex objective function, and demonstrated through
Fenchel duality the breadth of convex models which are solvable via C-FISTA
in Section 4. In Section 6, we demonstrated through several numerical ex-
periments C-FISTA was able to obtain linear convergence even in settings
where the formal assumptions were not satisfied. Furthermore, C-FISTA out-
performed ADMM, the software package SLEP and the seminal FISTA algo-
rithm in both Lasso and logistic regression models.

The following lines of directions could be of interest as future research
topics. First, the conditions underlying our global linear convergence results
may be weakened. Second, one may further study possible adaptive schemes
to implement C-FISTA without requiring the exact knowledge of the problem
parameters. Finally, it is interesting to study how the new algorithm behaves
beyond the scope of convex optimization.
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