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Stability and interpolation properties for Stokes-like virtual

element spaces

J. Meng∗, L. Beirão da Veiga†‡, L. Mascotto†§‡

Abstract

We prove stability bounds for Stokes-like virtual element spaces in two and three dimensions.

Such bounds are also instrumental in deriving optimal interpolation estimates. Furthermore,

we develop some numerical tests in order to investigate the behaviour of the stability constants

also from the practical side.

AMS subject classification: 65N12; 65N30; 65N50.
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1 Introduction

In recent years, due to their flexibility in handling complex data features and adaptive mesh
refinements, Galerkin methods based on polytopal meshes received an increasing attention. The
virtual element method (VEM) [5] is one amid the most successful of such polytopal methods.

Amongst the various problems that have been tackled with the VEM, fluid static and dynamic
problems have a prominent role. The first paper coping with a lowest order VEM for the Stokes
problem is [4]. Later, its general order conforming [11] and nonconforming versions [22, 35] have
been discussed. Based on that, conforming [12] and nonconforming VEMs for the Navier-Stokes
problem [34] were also introduced. All these references are concerned with divergence free methods.

In addition to such works that represent the backbone of the VEM for fluid-type problems, other
similar topics have been studied as well, an incomplete and short list being: mixed VEMs for the
pseudo-stress-velocity formulation of the Stokes problem [19]; mixed VEMs for quasi-Newtonian
flows [21]; mixed VEMs for the Navier-Stokes problem [32]; other variants of the VEM for the
Darcy problem [20, 37, 40, 42]; the analysis of the Stokes complex in the VEM framework [9, 13];
a stabilized VEM for the unsteady incompressible Navier-Stokes problem [33]; implementation
details [29]; a pressure robust variant of the VEM for the Stokes problem [31]; the magneto-
hydrodynamic problem [8]; the hp-version of the standard VEM for the Stokes problem [25];
stationary quasi-geostrophic equations of the ocean [38]; the unsteady Navier-Stokes problem [1].

Needless to write, other polytopal methods have been used to approximate the above problems.
For instance, we recall the local discontinuous Galerkin method [26]; hybrid discontinuous Galerkin
schemes for the Stokes flow [27, 28]; hybrid discontinuous Galerkin schemes for the Navier-Stokes
problem [39]; hybrid high-order methods [2, 16, 18, 30].

The analysis of the VEM is based on showing optimal a priori error estimates, which are proved
by means of certain stability and polynomial consistency properties. Optimal convergence is then
derived based on using best polynomial and interpolation estimates.

All in all, the main difference with respect to the finite element setting resides in further
employing

• interpolation estimates in virtual element spaces;
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• stability properties on a discrete bilinear form.

Several interpolation estimates for Stokes-type virtual element spaces are available in the literature;
see, e.g., [11, Proposition 4.2] and [12, Theorem 4.1]. Such interpolation estimates are rather
technical to prove, strongly hinge upon the definition of the local virtual element spaces, and have
been proved in two dimensions only.

On the other hand, to the best of our knowledge, stability properties for Stokes-like virtual
element spaces have never been explicitly proved. We point out that several works coping with
explicit stability estimates for standard Poisson-like virtual element spaces are available; see, e.g.,
[7, 10, 17, 23, 24].

This paper aims at closing this theoretical gap. Notably, we contribute to the current state of
the art along the three following avenues:

1. We prove explicit stability properties for Stokes-like virtual element spaces in two and three
dimensions. To this aim, we employ two different stabilizations, namely one given by the
inner product of the degrees of freedom and one in integral form, which is independent of
the chosen degrees of freedom;

2. Based on such stability estimates, we prove novel interpolation estimates, which deliver the
same convergence as those already available in the literature but are much easier to prove.

3. The above achievements are proven for regular polytopal meshes. Thus, we also exhibit
numerical results investigating the stability constants for sequences of elements with degen-
erating geometry as well as with respect to the degree of accuracy of the method.

In the remainder of the introduction, we pinpoint some basic notation of the paper, discuss the
model problem we aim to approximate, introduce sequences of regular polytopal meshes, and detail
the structure of the paper.

Notation. Throughout, we employ standard notation for Lebesgue and Sobolev spaces. Notably,
given a domain D ⊂ R

d, d = 1, 2, 3, L2(D) denotes the space of measurable and integrable squared
functions and L2

0(D) its subspace consisting of functions with zero average over D. Given r ∈ N,
Hr(D) denotes the Sobolev space of order r, i.e., the subspace of L2(D) consisting of functions with
integrable squared weak derivatives Dr· up to order r (we conventionally set H0(D) = L2(D)). We
endow the above spaces with the standard bilinear forms (·, ·)r,D := (Dr·, Dr·)0,D and (semi)norms
‖·‖2r,D :=

∑r

ℓ=0(·, ·)ℓ,D and |·|2r,D := (·, ·)r,D. We also introduceH1
0 (D) as the space ofH1 functions

with zero trace over the boundary ∂D of D. Noninteger order Sobolev spaces can be constructed
by interpolation.

Given ℓ ∈ N, Pℓ(D) denotes the space of polynomials of degree at most ℓ overD and Pℓ(D)\R :=
Pℓ(D) ∩ L2

0(D). We use the convention P−1(D) = {0}.
We recall the definition of standard differential operators in two dimensions. For K ⊂ R

2, we
introduce the rot and curl operators as follows: given v : K → R and v : K → R

2,

rotv := −∂yv1 + ∂xv2, curl v := (∂yv,−∂xv)
T .

We denote the vector product between two vectors u and v in three dimensions by u∧v. In other
words, given ej ∈ R

3 the vector satisfying ej |ℓ = δj,ℓ, and given the splittings

u =
3∑

j=1

ujej , v =
3∑

j=1

vjej ,

the vector product is the “determinant” of the matrix



e1 e2 e3
u1 u2 u3

v1 v2 v3



 .

Finally, given two positive quantities a and b, we use the short-hand-notation a . b instead of
there exists a positive constant c independent of the mesh such that a ≤ c b. We further write a ≈ b
if we have a . b and b . a.
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The model problem. Let Ω ⊂ R
d, d = 2, 3, be an open domain and f ∈ [L2(Ω)]d.

As a model problem, we consider the Stokes problem





find (u, s) such that

−∆u−∇s = f in Ω

− divu = 0 in Ω

u = 0 on ∂Ω,

which in weak formulation reads as follows:





find (u, s) ∈ [H1
0 (Ω)]

d × L2
0(Ω) := V ×Q such that

(∇u,∇v)0,Ω + (div v, s)0,Ω = (f ,v)0,Ω ∀v ∈ V

(div u, t)0,Ω = 0 ∀t ∈ Q.

The well posedness of this problem is standard [15].

Regular polytopal meshes Throughout, we are given sequences {Tn} of polytopal meshes over
the domain Ω. In d = 2, Tn consists of conforming polygons; in d = 3, Tn consists of conforming
polyhedra. We denote a generic element of Tn by K; ∂K denotes the boundary of K with outward
unit vector nK . For any geometric object D ⊂ R

d, d = 1, 2, 3, we denote its barycenter, measure,
and diameter by xD, |D|, and hD, respectively.

Given an element K in three dimensions, ∂K is the union of its faces F . Given an element in
two dimensions or a face F in three dimensions, ∂F is the union of its edges e.

We demand standard regularity assumptions on Tn: there exists ρ > 0 such that

• for d = 2,

– every polygon F is star-shaped with respect to a disk of diameter greater than or equal
to ρhF ;

– every edge e satisfies he ≥ ρhF ;

• for d = 3,

– every polyhedron K is star-shaped with respect to a disk of diameter greater than or
equal to ρhF ;

– every face F of K is star-shaped with respect to a disk of diameter greater than or equal
to ρhF ;

– for every face F of K and edge e of F , we have he ≥ ρhF ≥ ρ2he.

Given x = (x1, y1), we define x⊥ := (x2,−x1). We denote the set of edges of a polytope K by EK

and the set of faces of a polyhedron K by EF .

Outline of the paper. In Sections 2 and 3, after recalling the definition of Stokes-type virtual
element spaces [9,11], we prove stability and interpolation properties in two and three dimensions,
respectively. We perform the analysis for two explicit stabilizations. In Section 4, we numerically
check the stability properties (in 2D only) on sequences of elements with degenerating geometry
and degree of accuracy. We draw some conclusions in Section 5.

2 The two dimensional case

This section is devoted at proving stability and interpolation properties in two dimensions. In
Section 2.1, we recall the definition of the Stokes-like virtual element space [11]. Stability prop-
erties are derived in Sections 2.2 and 2.3 for a projection based and a degrees of freedom based
stabilizations, respectively. In Section 2.4, we provide a novel and shorter proof of interpolation
estimates based on the previously proven stability properties.

In what follows, we fix p ∈ N, p ≥ 2, which will denote the degree of accuracy of the space. We
do not consider the case p = 1 as the corresponding method is known to be unstable [4].
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2.1 Virtual element spaces in two dimensions

Given a polygon K ∈ Tn, we introduce the space

Vn(K) := {vn ∈ [H1(K)]2 | vn satisfies (1)},

where, for some s ∈ L2
0(K),





−∆vn −∇s = x⊥qp−3 qp−3 ∈ Pp−3(K)

div vn = qp−1 qp−1 ∈ Pp−1(K)

vn|∂K ∈ [C0(∂K)]2, vn|e ∈ [Pp(e)]
2 ∀e ∈ EK ,

(1)

with all equations to be intended in a weak sense.
We endow the space Vn(K) with the following set of unisolvent degrees of freedom (DoFs) [11]:

given vn ∈ Vn(K)

• the vector values Dv1(vn) at the vertices of K;

• the vector values Dv2(vn) at the p− 1 internal Gauß-Lobatto nodes on each edge e of EK ;

• for p ≥ 3, given {qα} a basis of x⊥Pp−3(K), the “orthogonal” moments

Dv3(vn) :=
1

|K|

∫

K

vn · qα; (2)

• given {mα} a basis of Pp−1(K) \ R, the “divergence” moments

Dv4(vn) :=
hK

|K|

∫

K

div vn mα. (3)

As usual, we require that the bases {qα} and {mα} are invariant with respect to translations
and dilations; see [3, 29]. More precisely, using the standard multi-index notation, for given real
coefficients λα, such polynomials have the form

mα :=
∑

α

λα

(
x− xK

hK

)α

, qα := x⊥mα.

It is known [11] that, given vn ∈ Vn(K) with known DoFs, div vn is explicitly computable. Fur-
ther, we can compute the two orthogonal projectors Π0

p−2 : [L2(K)]2 → [Pp−2(K)]2 and Π0
⊥,p−3 :

[L2(K)]2 → x⊥Pp−3(K) defined as follows: for all vn in Vn(K),

(qp−2,vn −Π0
p−2vn)0,K = 0 ∀qp−2 ∈ [Pp−2(K)]2,

(x⊥qp−3,vn −Π0
⊥,p−3vn)0,K = 0 ∀qp−3 ∈ Pp−3(K).

(4)

We can also compute the H1 projector Π∇
p : [H1(K)]2 → [Pp(K)]2 defined as

(∇qp,∇(vn−Π∇
p vn))0,K = 0,

∫

∂K

(vn−Π∇
p vn) = 0 ∀vn ∈ Vn(K), ∀qp ∈ [Pp(K)]2. (5)

Functions in the virtual element space Vn(K), as well as their gradients, are not available in
closed form. For this reason, following the virtual element gospel [5], we discretize the bilinear
form (∇·,∇·)0,Ω as follows: for all K ∈ Tn,

aKh (un,vn) := aK(Π∇
p un,Π

∇
p vn) + SK((I−Π∇

p )un, (I−Π∇
p )vn)

:= (∇Π∇
p un,∇Π∇

p vn)0,K + SK((I−Π∇
p )un, (I−Π∇

p )vn).
(6)

The bilinear form SK(·, ·) is required to be coercive and continuous on Vn(K)∩ker(Π∇
p ) uniformly

in the mesh elements. More precisely, on this space, we require SK(·, ·) ≈ | · |21,K . Proving such an
equivalence is our goal in the forthcoming sections.

The global counterpart of the space Vn(K) is constructed by a standard H1-conforming DoFs-
coupling.
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Remark 1. Due to the mesh regularity assumptions, each K ∈ Tn can be split into the union of
shape regular simplices

K = ∪
T∈T̃ K

n

T.

This applies both in the two and the three dimensional cases.

2.2 Stability estimates for a projection based stabilization

Given K ∈ Tn, we consider the local stabilization

SK(un,vn) := h−2
K (Π0

⊥,p−3un,Π
0
⊥,p−3vn)0,K + (div un, div vn)0,K + h−1

K (un,vn)0,∂K . (7)

We show stability estimates for the bilinear form SK(·, ·).

Theorem 2.1. The following stability bounds are valid: there exist 0 < α∗ < α∗ independent

of hK such that

α∗|vn|
2
1,K ≤ SK(vn,vn) ∀vn ∈ Vn(K), (8)

SK(vn,vn) ≤ α∗|vn|
2
1,K ∀vn ∈ [H1(K)]2 such that

∫

∂K

vn = 0. (9)

Bounds (8) and (9) are valid for functions in Vn(K) ∩ ker(Π∇
p ).

Proof. We begin by proving (8) splitting its proof into four steps. Let vn ∈ Vn(K) solve (1)
and s ∈ L2

0(K) be the associated auxiliary pressure.

Preliminary fact 1. We first observe that an integration by parts yields

‖∆vn‖−1,K := sup
0 6=Φ∈H1

0
(K)

(∆vn,Φ)0,K
‖Φ‖1,K

. |vn|1,K . (10)

Preliminary fact 2. If rot(x⊥qp−3) = 0, then x⊥qp−3 = 0. To see this, we first recall the
Helmholtz-type decomposition for polynomials in two dimensions [?, Section 2]

Pℓ(K) = ∇Pℓ+1(K)⊕ x⊥Pℓ−1(K) ∀ℓ ∈ N.

Using next [?, eq. (2.10)], we have the property

{
v ∈ [Pℓ(K)]2

}
=⇒ {rotv = 0 ⇐⇒ v = ∇qℓ+1 for some qℓ+1 ∈ Pℓ+1(K)} .

This proves that x⊥qp−3 = 0.
From the regularity assumptions on the mesh, we know that there exists a ball BK inside K

with diameter comparable to hK . Thus, using [10, Lemma 6.1] and equivalence of Sobolev norms
for spaces of polynomials with finite maximum degree on a ball, we can write

‖x⊥qp−3‖0,K . ‖x⊥qp−3‖0,BK
. hK‖ rot(x⊥qp−3)‖0,BK

≤ hK‖ rot(x⊥qp−3)‖0,K . (11)

In light of this, we show an auxiliary bound on the L2 norm of the right-hand side in (1). Using (11)
and the first line in (1), we write

‖x⊥qp−3‖0,K . hK‖ rot(∆vn)‖0,K .

Next, let bK denote the piecewise cubic bubble function over the sub tessellation T̃ K
n of K intro-

duced in Remark 1 such that ‖bK‖∞,T̃
= 1 for all T̃ in T̃ K

n . Since rot(∆vn) is a polynomial, the
following polynomial inverse estimate involving bubbles holds true:

‖ rot(∆vn)‖
2
0,K . ‖bK rot(∆vn)‖

2
0,K .

5



Integrating by parts twice, observing that (bK)2 and its normal derivative are zero over the bound-

ary of each T̃ in T̃ K
n , and using the Cauchy-Schwarz inequality and a polynomial inverse inequality

twice, we arrive at

‖ rot(∆vn)‖
2
0,K .

(
rot(∆vn), (b

K)2 rot(∆vn)
)
0,K

=
(
∇vn,∇ curl((bK)2 rot(∆vn))

)
0,K

. |vn|1,K h−2
K ‖(bK)2 rot(∆vn)‖0,K ≤ |vn|1,K h−2

K ‖ rot(∆vn)‖0,K .

Combining the two above bounds yields

‖x⊥qp−3‖0,K . h−1
K |vn|1,K . (12)

Preliminary fact 3. We show an upper bound on the auxiliary pressure s in (1). To this aim,
we first observe that a scaled Poincaré inequality entails

‖v‖−1,K . hK‖v‖0,K ∀v ∈ [L2(K)]2. (13)

The standard inf-sup condition [15] for the couple [H1
0 (K)]2 × L2

0(K) states that

‖s‖0,K . sup
0 6=Φ∈[H1

0
(K)]2

(s, divΦ)0,K
|Φ|1,K

.

Integrating by parts, and using the triangle inequality, the first equation in (1), (13), (10), and (12),
we deduce

‖s‖0,K . sup
0 6=Φ∈[H1

0
(K)]2

(∇s,Φ)0,K
|Φ|1,K

= ‖∇s‖−1,K ≤ ‖x⊥qp−3‖−1,K + ‖∆vn‖−1,K

. hK‖x⊥qp−3‖0,K + |vn|1,K . |vn|1,K .

(14)

Proving the lower bound (8). We integrate by parts, use the first equation in (1), denote
the 2 × 2 identity matrix by I, integrate by parts again, use the definition of Π0

⊥,p−3 in (4), and
deduce

|vn|
2
1,K = (∇vn,∇vn)0,K = (vn, (∇vn)nK)0,∂K + (vn,x

⊥qp−3 +∇s)0,K

= (vn, (∇vn + Is)nK)0,∂K + (Π0
⊥,p−3vn,x

⊥qp−3)0,K − (div vn, s)0,K .
(15)

Introduce σ := ∇vn + Is. Due to the first equation in (1), divσ = −x⊥qp−3.
Using (12) and (14) in (15) yields

|vn|
2
1,K .

(
h−1
K ‖Π0

⊥,p−3vn‖0,K + ‖ divvn‖0,K
)
|vn|1,K + ‖vn‖ 1

2
,∂K‖(σ)nK‖− 1

2
,∂K .

Applying the divergence trace inequality [36, Section 3.5.2] and a polynomial inverse inequality
on ∂K (recall that vn is a piecewise polynomial over ∂K) gives

|vn|
2
1,K .

(
h−1
K ‖Π0

⊥,p−3vn‖0,K + ‖ divvn‖0,K
)
|vn|1,K+h

− 1

2

K ‖vn‖0,∂K (‖σ‖0,K + hK‖ divσ‖0,K)

.
(
h−1
K ‖Π0

⊥,p−3vn‖0,K+‖ divvn‖0,K
)
|vn|1,K+h

− 1

2

K ‖vn‖0,∂K
(
‖σ‖0,K+hK‖x⊥qp−3‖0,K

)
.

On the other hand, the triangle inequality and (14) entail

‖σ‖0,K ≤ |vn|1,K + ‖s‖0,K . |vn|1,K .

Combining the two above estimates and recalling (12) leads to (8).

Next, we prove the upper bound (9). Let vn ∈ [H1(K)]2 with zero average over ∂K. We have
to show an upper bound of the three terms on the right-hand side of (7) in terms of |vn|1,K .

As for h−2
K ‖Π0

⊥,p−3vn‖
2
0,K , it suffices to use the stability of the L2 projector and the scaled

Poincaré inequality; we can estimate ‖ div vn‖
2
0,K by |vn|1,K directly; we control h−1

K ‖vn‖
2
0,∂K by

using the trace and the Poincaré inequalities.
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Remark 2. Let {dofBj } denote the set of boundary DoFs in Vn(K), i.e., the DoFs of type Dv1 and
Dv2. Following, e.g., [14, eq. (2.14) with α = 0] and recalling that the edge degrees of freedom
are vector values at Gauß-Lobatto nodes, the boundary contribution h−1

K (un,vn)0,∂K in (7) can
be replaced by the equivalent term

∑

j

dofBj (un) dof
B
j (vn).

Thus, the stabilization in (7) is spectrally equivalent to

h−2
K (Π0

⊥,p−3un,Π
0
⊥,p−3vn)0,K + (divun, divvn)0,K +

∑

j

dofBj (un)dof
B
j (vn).

2.3 Stability estimates for the “dofi-dofi” stabilization

In this section, we prove stability estimates for the classical “dofi-dofi” stabilization

SK
D (un,vn) :=

dim(Vn(K))∑

j=1

dofj(un)dofj(vn), (16)

where the set {dofj} collects the sets {dofBj }, {dof
⊥
j }, and {dofdivj } of boundary (Dv1 and Dv2),

“orthogonal” (Dv3), and divergence (Dv4) DoFs, respectively.
We recall the following technical result; see, e.g., [24, Lemma 4.1].

Lemma 2.2. Let {mα} be a set of linearly independent polynomials of maximum degree p ∈ N over

a polygon K, that are invariant with respect to translation and dilation. For every polynomial qp ∈
[Pp(K)]d, d = 2, 3, consider the decomposition qp =

∑
α(

−→qp)αmα, where
−→qp denotes the coefficient

vector of qp with respect to the basis {mα}. Then, the following equivalence of norms is valid:

hK‖−→qp‖ℓ2 . ‖qp‖0,K . hK‖−→qp‖ℓ2 . (17)

Under the mesh regularity assumption in Section 1, the hidden constant in (17) are uniform
with respect to the element K.

Next, we prove the following stability result, based on the techniques developed in the proof of
Theorem 2.1.

Theorem 2.3. The following stability bounds are valid: there exist 0 < α∗ < α∗ independent

of hK such that

α∗|vn|
2
1,K ≤ SK

D (vn,vn) ∀vn ∈ Vn(K), (18)

SK
D (vn,vn) ≤ α∗|vn|

2
1,K ∀vn ∈ Vn(K) such that

∫

∂K

vn = 0. (19)

Bounds (18) and (19) are valid for functions in Vn(K) ∩ ker(Π∇
p ).

Proof. We begin by proving the lower bound (18). Throughout, we use the same notation as in
the proof of Theorem 2.1.

We have

|vn|
2
1,K

= −

∫

K

∆vn · vn +

∫

∂K

(∇vn)nK · vn =

∫

K

(∇s+ x⊥qp−3) · vn +

∫

∂K

(∇vn)nK · vn

=

∫

K

x⊥qp−3 · vn −

∫

K

s div vn +

∫

∂K

(Is+∇vn)nK · vn = A+B + C.

(20)

We estimate the three terms on the right-hand side separately.

7



Denote x⊥qp−3 by g and consider the expansion

g :=
∑

α

−→g αqα,

where {qα} is any basis of x⊥Pp−3(K) as in Lemma 2.2, and −→g is the vector of the coefficients
of g with respect to the basis {qα}.

We obtain

A =

∫

K

x⊥qp−3 · vn =
∑

α

−→gα(qα,vn)0,K =
∑

α

−→gα|K|dof⊥α(vn)

. h2
K‖−→g ‖ℓ2

(∑

α

dof⊥α(vn)
2
) 1

2
(17)

. hK‖g‖0,K

(∑

α

dof⊥α(vn)
2
) 1

2

.

Using the definition of g, bound (12) gives

hK‖g‖0,K = hK‖x⊥qp−3‖0,K . |vn|1,K .

Combining the two above bounds yields

A . |vn|1,K

(∑

α

dof⊥α(vn)
2
) 1

2

. (21)

Next, we focus on the term B. Recall that div vn ∈ Pp−1(K) \ R and set

Π0
p−1s =: g =

∑

β

−→gβmβ,

where {mβ} is any basis of Pp−1(K) \ R as in (the scalar version of) Lemma 2.2.
Using (17) and (14), we deduce

B =
∑

β

−→gβ

∫

K

mβ div vn ≈ hK

∑

β

−→gβdof
div
β (vn) ≤ hK‖−→g ‖ℓ2

(∑

β

dofdivβ (vn)
2
) 1

2

. ‖Π0
p−1s‖0,K

(∑

β

dofdivβ (vn)
2
) 1

2

. |vn|1,K

(∑

β

dofdivβ (vn)
2
) 1

2

.

(22)

The term C can be estimated as in the proof of Theorem 2.1:

C . h
− 1

2

K ‖vn‖0,∂K |vn|1,K . (23)

Inserting (21), (22), and (23) in (20), we deduce

|vn|
2
1,K .

∑

α

dof⊥α(vn)
2 +

∑

β

dofdivβ (vn)
2 + h−1

K ‖vn‖
2
0,∂K .

Finally, the boundary contribution is spectrally equivalent to the sum of the boundary degrees of
freedom squared; see Remark 2.

Next, we prove the upper bound (19). Notably, we need to estimate three types of degrees of
freedom. Lemma 2.2 easily implies ‖qα‖0,K . hK and ‖mα‖0,K . hK . Since vn has zero average
over ∂K and we consider scaled polynomial functions in the definition of the DoFs (2) and (3), a
scaled Poincaré inequality entails a bound on the DoFs of type Dv3 and Dv4:

1

|K|

∫

K

vn · qα . h−2
K ‖vn‖0,K‖qα‖0,K . |vn|1,K

and
hK

|K|

∫

K

div vnmα . h−1
K ‖ div vn‖0,K‖mα‖0,K . |vn|1,K .

As for the boundary DoFs contribution Dv1 and Dv2, we resort to Remark 2, write the sum of the
boundary DoFs equivalently as ‖vn‖0,∂K , and use a trace inequality and a Poincaré inequality.

Remark 3. Recalling the definition of the discrete bilinear form aKh (·, ·) in (6), stability bounds
involving aKh (·, ·) instead of SK(·, ·) are analogous to those shown in Theorems 2.1 and 2.3 with α∗

and α∗ replaced by min(1, α∗) and max(1, α∗).
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2.4 Interpolation estimates

Interpolation estimates for Stokes-type virtual element functions are well-known; see [11, Proposi-
tion 4.2] for the standard 2D case and [12, Theorem 4.1] for the enhanced 2D case. To the best of
our knowledge, no explicit interpolation estimates are available for 3D Stokes-type virtual element
functions.

In this section, we prove interpolation estimates undertaking a different avenue, notably using
the stability estimates in Theorem 2.1. This novel approach is interesting per se. In fact, it can be
easily generalized to derive interpolation properties for other virtual element spaces, once stability
estimates are available.

For all u ∈ H1+ε(K), ε > 0, we define uI ∈ Vn(K) as the only function satisfying

dofj(u− uI) = 0 ∀j = 1, . . . , dim(Vn(K)). (24)

We have the following interpolation estimates.

Theorem 2.4. Given u ∈ [Hs+1(K)]2, 0 < s ≤ p, and uI its DoFs interpolant as in (24), the
following bound is valid:

‖u− uI‖0,K + hK |u− uI |1,K . hs+1
K |u|s+1,K .

The hidden constant depends on the shape-regularity of the mesh and the degree of accuracy p.

Proof. Let uπ be Π∇
p u, being Π∇

p defined in (5). The triangle inequality gives

|u− uI |1,K ≤ |uπ − uI |1,K + |u− uπ|1,K .

Thanks to standard polynomial approximation results, we only need to bound the first term on
the right-hand side. Observe that uπ −uI belongs to Vn(K). Let SK(·, ·) be defined in (7). Then,
we use bound (8) and Remark 2, and write

|uπ − uI |
2
1,K . SK(uπ − uI ,uπ − uI)

. h−2
K ‖Π0

⊥,p−3(uπ − uI)‖
2
0,K + ‖ div(uπ − uI)‖

2
0,K +

∑

j

dofBj (uπ − uI)
2.

We prove that each of the three terms above can be bounded by an error term involving the
difference u−uπ. To this aim, we preliminary observe that

Π0
⊥,p−3(u− uI) = 0, divuI = Π0

p−1(divu), dofBj (u− uI) = 0, (25)

where Π0
p−1 : L2(K) → Pp−1(K) is the L2 scalar orthogonal projection onto Pp−1(K).

Thus, as for the bulk L2 term, we use (25), the stability of orthogonal projections, the fact
that u − uπ has zero average over K, and the Poincaré inequality. Next, we estimate the di-
vergence contribution by using (25) and bounding the L2 norm of the divergence by the H1

seminorm. Eventually, the boundary contribution is bounded using (25) again and the Sobolev
embedding [H1+ε(K)]2 →֒ [L∞(K)]2, ε > 0, as follows: for each boundary degree of freedom dofBj ,

dofBj (uπ − uI)
2 = dofBj (u− uπ)

2 ≤ ‖u− uπ‖
2
∞,K . h−2

K ‖u− uπ‖
2
0,K + h2ε

K |u− uπ|
2
1+ε,K .

Estimates in the H1 norm follow using standard polynomial approximation properties as in [41].
Instead, estimates in the L2 norm are a simple consequence of Poincaré-type arguments and the
estimates in the H1 seminorm.

Remark 4. The present analysis assumes that the length of each edge is comparable to the diameter
of the parent element; see the second mesh condition (d = 2) at the end of Section 1. Nevertheless,
our results could be generalized to the “small edges” case by combining the present analysis with
the ideas in [10, 17].
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3 The three dimensional case

This section is devoted at proving stability and interpolation properties in three dimensions. In
Section 3.1, we recall the definition of the three dimensional Stokes-like virtual element space [9].
Stability properties are derived in Section 3.2 for a projection based stabilization (comments on
the degrees of freedom based stabilization are discussed in Remark 5). In Section 3.3, we provide
interpolation estimates based on the previously proven stability properties.

3.1 Virtual element spaces in three dimensions

Virtual element spaces on faces. Given a polyhedron K ∈ Tn, on each of its faces F , we
define the H1 projector Π∇,F

p : [H1(F )]3 → [Pp(F )]3 as

(∇Fq
F
p ,∇F (v −Π∇,F

p v))0,F = 0,

∫

∂F

v −Π∇,F
p v = 0 ∀v ∈ [H1(F )]3, ∀qF

p ∈ [Pp(F )]3. (26)

Based on this, we define the nodal (enhanced) virtual element space

Vn(F ) := {vn ∈ [C0(F )]3 | ∆Fvn ∈ [Pp(F )]3, vn|e ∈ [Pp(e)]
3 ∀e ∈ EF , vn satisfies (28)}, (27)

where, given [Pp,p−2(K)]3 the space of homogeneous vector polynomials of degree larger than p−2
and smaller than or equal to p,

∫

F

(vn −Π∇,F
p vn)q

F
p,p−2 = 0 ∀qF

p,p−2 ∈ [Pp,p−2(K)]3. (28)

We endow the space Vn(F ) with the following set of unisolvent DoFs [3]:

• the vector values DvF
1 (vn) at the vertices of F ;

• the vector values DvF
2 (vn) at the p− 1 internal Gauß-Lobatto nodes on each edge e of EF ;

• for p ≥ 2, given {qF
α} a basis of [Pp−2(F )]3, the moments

DvF
3 (vn) :=

1

|F |

∫

F

vn · qF
α.

Such DoFs allow for the computation of the projector Π∇,F
p in (26). Thus, as discussed in [5], the

enhancing constraint (28) allows for the computation of the orthogonal projectorΠ0,F
p : [L2(F )]3 →

[Pp(F )]3 defined as

(qF
p ,vn −Π0,F

p vn)0,F = 0 ∀vn ∈ Vn(F ), ∀qF
p ∈ [Pp(F )]3.

Virtual element spaces on polyhedra. Given a polyhedron K, we define the space

Vn(K) := {vn ∈ [H1(K)]3 | vn satisfies (29)},

where, for some s ∈ L2
0(K),





−∆vn −∇s = x ∧ qp−3 qp−3 ∈ [Pp−3(K)]3

div vn = qp−1 qp−1 ∈ Pp−1(K)

vn|∂K ∈ [C0(∂K)]3,vn|F ∈ Vn(F ) ∀F ∈ EK ,

(29)

with all the equations to be understood in a weak sense.
We endow the space Vn(K) with the following set of unisolvent DoFs [9]:

• the vector values Dv1(vn) at the vertices of K;

• the vector values Dv2(vn) at the p− 1 internal Gauß-Lobatto nodes on each edge e of K;

10



• for all faces F ∈ EF , given {qF
α} a basis of [Pp(F )]3, the moments

DvF
3 (vn) :=

1

|F |

∫

F

vn · qF
α. (30)

• for p ≥ 3, given {qα} a basis of x ∧ [Pp−3(K)]3, the bulk “orthogonal” moments

Dv4(vn) :=
1

|K|

∫

K

vn · qα; (31)

• given {mα} a basis of Pp−1(K) \ R, the bulk “divergence” moments

Dv5(vn) :=
hK

|K|

∫

K

div vn mα. (32)

As for the two dimensional case, we require that the bases {qF
α}, {qα}, and {mα} are invariant

with respect to translations and dilations; see [3, 29].
The unisolvence of the above DoFs is proved, e.g., as in [9]. Thanks to the enhancement in the

definition of the virtual element spaces on faces, we can compute the three dimensional version of
the projectors in (4) and (5).

As in the two dimensional case, the global counterpart of the space Vn(K) is constructed by a
standard H1-conforming DoFs-coupling.

3.2 Stability estimates

The definition of the DoFs in Section 3.1 allows us to compute the orthogonal projector Π0
∧,p−3 :

[L2(K)]3 → x ∧ [Pp−3(K)]3 defined as

(qα,vn −Π0
∧,p−3vn)0,K = 0 ∀vn ∈ Vn(K), ∀qα ∈ x ∧ [Pp−3(K)]3.

We consider the local stabilization

SK(un,vn) := h−2
K (Π0

∧,p−3un,Π
0
∧,p−3vn)0,K + (div un, div vn)0,K

+
∑

F∈EK

[
h−1
F (Π0,F

p un,Π
0,F
p vn)0,F + (un,vn)0,∂F

]
.

(33)

We prove the following stability estimates.

Theorem 3.1. The following stability bounds are valid: there exists 0 < α∗ < α∗ independent

of hK such that, for all vn in Vn(K) such that
∫
∂K

vn = 0,

α∗|vn|
2
1,K ≤ SK(vn,vn), (34)

SK(vn,vn) ≤ α∗|vn|
2
1,K . (35)

Proof. We begin by proving the lower bound (34). As in the proof of Theorem 2.1, we can prove
the following bounds: for all vn ∈ Vn(K), with “auxiliary pressure” s and right-hand side x∧qp−3

in (29),

|∆vn|−1,K . |vn|1,K , ‖x ∧ qp−3‖0,K . h−1
K |vn|1,K , ‖s‖0,K . |vn|1,K .

With this at hand, as in the 2D case, we deduce

|vn|1,K . h−1
K ‖Π0

∧,p−3vn‖0,K + ‖ div vn‖0,K + ‖vn‖ 1

2
,∂K .

Thus, we only have to estimate the last term on the right-hand side. After recalling that vn has
zero vector average over ∂K, we observe the bound [17, eq. (2.16)]

‖vn‖
2
1

2
,∂K

. hK

∑

F∈EK

‖∇Fvn‖
2
0,F .
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We can estimate each face contribution by means of standard nodal virtual element inverse esti-
mates; see, e.g., [7, Theorem 2] and [24, Section 3]:

‖∇Fvn‖
2
0,F . h−2

F ‖Π0,F
p vn‖

2
0,F + h−1

F ‖vn‖
2
0,∂F .

The assertion follows summing over all the faces and collecting the above estimates.

Next, we focus on the upper bound (35). Notably, we estimate from above the four terms on
the right-hand side of (33). Since vn has zero average over ∂K, we readily have

h−2
K ‖Π0

∧,p−3vn‖
2
0,K + ‖ divvn‖

2
0,K . |vn|

2
1,K .

The trace and the Poincaré inequalities also yield

∑

F∈EK

h−1
F ‖Π0,F

p vn‖
2
0,F . |vn|

2
1,K .

We are left with estimating the fourth term on the right-hand side of (33). Using a trace inequality
on each face F yields

‖vn‖0,∂F . h
− 1

2

F ‖vn‖0,F + h
1

2

F |vn|1,F .

Inverse estimates for nodal virtual element functions, see, e.g., [24, Theorem 3.6], entail

‖vn‖0,∂F . h
− 1

2

F ‖vn‖0,F .

We can apply this inverse estimate as the restriction of vn on each face F belongs to a two
dimensional nodal virtual element space.

Taking the square on both sides and summing over the faces, then using another trace inequality,
and eventually a Poincaré inequality on K give the assertion.

Remark 5. Also the 3D “dofi-dofi” stabilization

SK
D (un,vn) :=

dim(Vn(K))∑

j=1

dofj(un)dofj(vn)

satisfies the bounds (34) and (35). To see this it suffices to take the steps from Theorem 3.1 and
argue similarly as in the proof of Theorem 2.3. Moreover, considerations analogous to those in
Remark 3 are valid for the 3D case.

3.3 Interpolation estimates

In this section, we prove interpolation estimates for 3D Stokes-like virtual element spaces.
For all u ∈ H

3

2
+ε(K), ε > 0, we define uI as the only function in Vn(K) satisfying

dofj(u− uI) = 0 ∀j = 1, . . . , dim(Vn(K)). (36)

We have the following interpolation estimates.

Theorem 3.2. Given u ∈ [Hs+1(K)]3, 1/2 < s ≤ p, and uI its DoFs interpolant as in (36), the
following bound is valid:

‖u− uI‖0,K + hK |u− uI |1,K . hs+1
K |u|s+1,K .

The hidden constant depends on the shape-regularity of the mesh and the degree of accuracy p.

Proof. Let uπ the best vector polynomial approximation of u in [H1(K)]3; see, e.g., [41]. As in
the proof of Theorem 2.4, we only need to estimate the energy of uπ − uI .

In addition to the three dimensional counterpart of (25), we also have

Π0,F
p (u− uI) = 0 ∀F ∈ EK . (37)
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Let SK(·, ·) be defined in (33). Using (34), we write

|uπ − uI |
2
1,K . SK(uπ − uI ,uπ − uI)

= h−2
K ‖Π0

∧,p−3(uπ − uI)‖
2
0,K + ‖ div(uπ − uI)‖

2
0,K

+
∑

F∈EK

[
h−1
F ‖Π0,F

p (uπ − uI)‖
2
0,F

]
+
∑

j

dofBj (uπ − uI)
2.

We have to bound the four terms on the right-hand side by |uπ − uI |1,K . The first, second, and
fourth are dealt with by using (25), as in the proof of Theorem 2.4. As for the “new” third term,
it suffices to resort to (37), the continuity of Π0,F

p , the trace inequality, and standard polynomial
approximation properties.

Estimates in the L2 norm are a consequence of Poincaré type estimates on u − uI and the
energy estimates.

Remark 6. So far, we derived stability and interpolation properties for standard Stokes-like spaces.
Following, e.g., [12], we may also consider the enhanced version of such spaces, in the same spirit as
we defined the nodal virtual elements spaces in (27). It is apparent that no essential modifications
take place in the proof of the stability estimates. The only difference between our setting and the
enhanced one is that in the latter we should employ polynomial inverse estimates for slightly larger
polynomial degrees.

4 Numerical validation of the stability estimates in 2D

In the foregoing sections, we proved stability bounds for fixed degree of accuracy and regular poly-
topal meshes. In this section, we numerically investigate the behaviour of the stability constants
from the practical side in two different scenarios:

• while keeping a mesh fixed, increase the degree of accuracy p;

• while keeping the degree of accuracy p fixed, consider sequences of elements with degenerating
geometry.

We focus on the two dimensional case, despite the arguments we discuss below can be generalized
to three dimensions.

Since we are interested in approximating the stability constants discussed in Remark 3, we
only need to investigate the behaviour of the minimum and maximum generalized eigenvalues of
problem

Av = λBv, (38)

where the square symmetric matrices A and B are defined as follows: for a given element K ∈ Tn
and the canonical basis {ϕj} of Vn(K), j = 1, . . . , Ndof , Ndof being the dimension of Vn(K),
associated with the degrees of freedom Dv1(·), Dv2(·), Dv3(·), and Dv4(·),

Ai,j = aKh (ϕj ,ϕi), Bi,j = (∇ϕj ,∇ϕi)0,K ∀i, j = 1, . . . , Ndof .

The bilinear form aKh (·, ·) is computable via the degrees of freedom following definition (6) and

standard VEM arguments in order to compute Π∇
p . Therefore, we only have to compute the entries

of B. This is not immediate: the canonical basis functions are not available in closed form since
are solutions to local Stokes problems with an unknown datum for the first equation. Thus, we
need to detail how to approximate them.

We split the canonical basis {ϕ} into three sets

{ϕB}, {ϕ⊥}, {ϕdiv}, (39)

which denote the basis functions associated with boundary degrees of freedom, the “orthogonal”
moments (2), and the divergence moments (3), respectively.

The elements of this basis are defined implicitly via the degrees of freedom, so we cannot directly
approximate them by means of any Galerkin methods (unless resorting to some mixed formulation
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approach). For this reason, we introduce a different basis {ψ} of the space Vn(K) and split it into
sets as those in (39):

{ψB}, {ψ⊥}, {ψdiv}.

The elements of this preliminary basis are constructed so that they solve Stokes problems with
given polynomial data, and can therefore be approximated at any precision by means, e.g., of a
finite element method on a subtriangulation of the element.

We define the three type of basis functions as follows: given {mα} a basis of Pp−3(K) and {mγ}
a basis of Pp−1(K) \ R such that each mγ has zero average over K,





−∆ψB
i −∇s = 0 in K

divψB
i = |K|−1

∫
∂K
ϕB

i · nK in K

ψB
i = ϕB

i on ∂K

∀i = 1, . . . , 2p · (#edges of K),





−∆ψ⊥
α −∇s = x⊥mα in K

divψ⊥
α = 0 in K

ψ⊥
α = 0 on ∂K

∀|α| = 0, . . . , p− 3,





−∆ψdiv
γ −∇s = 0 in K

divψdiv
γ = mγ in K

ψdiv
γ = 0 on ∂K

∀|γ| = 1, . . . , p− 1.

The span of the three above set of functions is the space Vn(K). To see this, it suffices to observe
that the number of functions is equal to the dimension of Vn(K) and that they are independent
of each other. Therefore, we can write each basis function ϕ as a linear combination of the ψ
functions. Furthermore, the ψ functions can be approximated at any precision by employing finite
elements on sufficiently fine triangulations of K. In other words, if we have at hand any finite
element approximation of the ψ basis functions, then we only have to write the ϕ functions in
terms of the ψ functions, and then compute the resulting matrix B. This is what we detail in
Sections 4.1, 4.2, and 4.3. The algorithm reads as follows:

1. approximate the ψ basis functions using a FEM triangulation on K;

2. find the ϕ basis functions as a linear combination of the ψ basis functions, described in
Sections 4.1, 4.2, and 4.3 below;

3. compute the matrices A and B;

4. solve the generalized eigenvalue problem (38).

In Section 4.4, we check the behaviour of the minimum and maximum generalized eigenvalues
of (38) on a fixed element and increasing the degree of accuracy p of the scheme; in Section 4.5,
we keep fixed the degree of accuracy, focus on two different types of elements, deform them in
different ways, and check the behaviour of the corresponding stability constants.

4.1 Expanding the boundary-type functions

For all i = 1, . . . , 2p · (#edges of K), we write

ϕB
i =

∑

j

A
(i)
j ψ

B
j +

∑

β

B
(i)
β ψ

⊥
β +

∑

δ

C
(i)
δ ψdiv

δ .

We have to determine the A, B, and C-type coefficients by imposing the DoFs definition.
First, we use the boundary DoFs. For any vertex or Gauß-Lobatto node NK on any edge e

of K, we have

δi,k = ϕB
i (Nk) =

∑

j

A
(i)
j ψ

B
j (Nk) = A

(i)
k ∀k = 1, . . . , 2p · (#edges of K).
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Therefore, we get the simplified expression

ϕB
i = ψB

i +
∑

β

B
(i)
β ψ

⊥
β +

∑

δ

C
(i)
δ ψdiv

δ .

To find the B and C-type coefficients, we impose the divergence and “orthogonal” DoFs definition.
First, we impose the “orthogonal” moments definition and write

0 =

∫

K

ϕB
i · (x⊥m

β̃
) =

∫

K

ψB
i · (x⊥m

β̃
) +

∑

β

B
(i)
β

∫

K

ψ⊥
β · (x⊥m

β̃
) +

∑

δ

C
(i)
δ

∫

K

ψdiv
δ · (x⊥m

β̃
),

whence we deduce the conditions, for all |β̃| = 0, . . . , p− 3,

∑

β

(∫

K

ψ⊥
β · (x⊥m

β̃
)

)
B

(i)
β +

∑

δ

(∫

K

ψdiv
δ · (x⊥m

β̃
)

)
C

(i)
δ = −

∫

K

ψB
i · (x⊥m

β̃
).

Next, we impose the divergence moments definition, recall that the test polynomial m
δ̃
has zero

average over K, and get

0 =

∫

K

divϕB
i mδ̃

=

∫

K

divψB
i mδ̃

+
∑

δ

C
(i)
δ

∫

K

divψdiv
δ m

δ̃

= |K|−1

∫

∂K

ψB
i · nK

∫

K

m
δ̃
+
∑

δ

C
(i)
δ

∫

K

mδ m
δ̃
=

∑

δ

C
(i)
δ

∫

K

mδ m
δ̃
,

whence we deduce the conditions, for all |δ̃| = 1, . . . , p− 1,

∑

δ

(∫

K

mδ m
δ̃

)
C

(i)
δ = 0.

Using the coercivity of any polynomial mass matrix, we deduce C
(i)
δ = 0 for all i and δ.

Thus, the B-type coefficients are obtained by solving the linear system

∑

β

(∫

K

ψ⊥
β · (x⊥m

β̃
)

)
B

(i)
β = −

∫

K

ψB
i · (x⊥m

β̃
).

4.2 Expanding the orthogonal-type functions

For all |α| = 0, . . . , p− 3, we write

ϕ⊥
α =

∑

j

A
(α)
j ψB

j +
∑

β

B
(α)
β ψ⊥

β +
∑

δ

C
(α)
δ ψdiv

δ .

We have to determine the A, B, and C-type coefficients by imposing the DoFs definition. Imposing

the boundary DoFs definition, we readily obtain that A
(α)
j = 0 for all j = 1, . . . , 2p ·(#edges of K).

Thus, we focus on the other coefficients. First, we impose the “orthogonal” moments definition
and write

δ
α,β̃

|K| =

∫

K

ϕ⊥
α · (x⊥m

β̃
) =

∑

β

B
(α)
β

∫

K

ψ⊥
β · (x⊥m

β̃
) +

∑

δ

C
(α)
δ

∫

K

ψdiv
δ · (x⊥m

β̃
),

whence we deduce the conditions, for all |β̃| = 0, . . . , p− 3,

∑

β

(∫

K

ψ⊥
β · (x⊥m

β̃
)

)
B

(α)
β +

∑

δ

(∫

K

ψdiv
δ · (x⊥m

β̃
)

)
C

(α)
δ = δ

α,β̃
|K|.

Next, we impose the divergence moments definition and get

0 =

∫

K

divϕ⊥
αmδ̃

=
∑

δ

C
(α)
δ

∫

K

divψdiv
δ m

δ̃
=

∑

δ

C
(α)
δ

∫

K

mδ m
δ̃
,
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whence we deduce the conditions, for all |δ̃| = 1, . . . , p− 1,

∑

δ

(∫

K

mδ m
δ̃

)
C

(α)
δ = 0.

Using the coercivity of any polynomial mass matrix, we deduce C
(α)
δ for all α and δ.

Thus, the B-type coefficients are obtained by solving the linear system

∑

β

(∫

K

ψ⊥
β · (x⊥m

β̃
)

)
B

(α)
β = δ

α,β̃
|K|.

4.3 Expanding the divergence-type functions

For all |γ| = 1, . . . , p− 1, we write

ϕdiv
γ =

∑

j

A
(γ)
j ψB

j +
∑

β

B
(γ)
β ψ⊥

β +
∑

δ

C
(γ)
δ ψdiv

δ .

We have to determine the A, B, and C-type coefficients by imposing the DoFs definition. Imposing

the boundary DoFs definition, we readily obtain that A
(γ)
j = 0 for all j = 1, . . . , 2p ·(#edges of K).

Thus, we focus on the other coefficients. First, we impose the “orthogonal” moments definition
and write

0 =

∫

K

ϕdiv
γ · (x⊥m

β̃
) =

∑

β

B
(γ)
β

∫

K

ψ⊥
β · (x⊥m

β̃
) +

∑

δ

C
(γ)
δ

∫

K

ψdiv
δ · (x⊥m

β̃
),

whence we deduce the conditions, for all |β̃| = 0, . . . , p− 3,

∑

β

(∫

K

ψ⊥
β · (x⊥m

β̃
)

)
B(γ)

γ +
∑

δ

(∫

K

ψdiv
δ · (x⊥m

β̃
)

)
C

(γ)
δ = 0. (40)

Next, we impose the divergence moments definition and get

|K|

hK

δ
γ,δ̃

=

∫

K

divϕdiv
α m

δ̃
=

∑

δ

C
(γ)
δ

∫

K

divψdiv
δ m

δ̃
=

∑

δ

C
(γ)
δ

∫

K

mδ m
δ̃
,

whence we deduce the conditions, for all |δ̃| = 1, . . . , p− 1,

∑

δ

(∫

K

mδ m
δ̃

)
C

(γ)
δ =

|K|

hK

δ
γ,δ̃

. (41)

The B and C-type coefficients are obtained by solving the linear system resulting from (40) and (41).

4.4 Stability constants when increasing the degree of accuracy

In light of the above approximation of the virtual element basis functions, we provide here the
minimum (nonzero) and maximum eigenvalues of the generalized eigenvalue problem (38) on a
given pentagon. Such constants clearly correspond to λmin = c∗ and λmax = c∗ in the stability
bound

c∗a
K(vn,vn) ≤ aKh (vn,vn) ≤ c∗aK(vn,vn) ∀vn ∈ Vn(K) \ R.

Notably, we analyze the eigenvalues while increasing the degree of accuracy of the scheme.
This is relevant to check as all the stability estimates are proved via inverse estimates, which

typically depend on the polynomial degree and the degree of accuracy of the scheme. This is also
interesting to check the value of the “hidden” constants in the theoretical bounds. We employ the
theoretical (7) and the dofi-dofi (16) stabilizations and show the results in Table 1.
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Table 1 Minimum and maximum eigenvalues of the generalized eigenvalue problem (38) employing
the theoretical (7) and the dofi-dofi (16) stabilizations SK(·, ·) and SK

D (·, ·). We fix a pentagonal
element and increase the degree of accuracy p.

SK(·, ·) SK
D (·, ·)

p λmin λmax λmin λmax

2 1.7265e-01 1.0037e+00 1.7098e-01 1.0037e+00
3 1.5570e-01 2.4381e+01 1.3578e-01 2.4269e+01
4 1.4606e-01 2.5338e+01 1.2649e-01 2.5206e+01
5 1.5364e-01 8.0281e+01 1.3667e-01 8.0154e+01
6 1.4909e-01 9.8691e+01 1.2966e-01 9.8519e+01
7 1.3999e-01 2.2056e+02 1.1612e-01 2.1990e+02
8 1.2007e-01 2.9917e+02 1.0388e-01 2.9877e+02
9 1.1133e-01 4.8713e+02 8.7618e-02 4.8637e+02

Table 2 Condition numbers of the virtual element matrices A and AD (computed with respect to
the theoretical (7) and dofi-dofi (16) stabilizations) and the (finite element approximation of the)
stiffness matrix B for increasing degree of accuracy p.

p 2 3 4 5 6 7 8 9
A 8.76e+01 4.92e+03 4.84e+05 3.72e+07 2.35e+09 1.41e+11 8.32e+12 4.93e+14
AD 8.78e+01 4.91e+03 4.80e+05 3.66e+07 2.30e+09 1.37e+11 8.05e+12 4.75e+14
B 9.43e+01 5.40e+03 5.75e+05 4.42e+07 2.79e+09 1.67e+11 9.80e+12 5.68e+14

From Table 1, we observe that the stability constants depend on the degree of accuracy p only
in a moderate way. This is not surprising as a similar behaviour was observed for the Poisson-type
virtual element method in [6, Table 1] and [7, Table 1].

We are further interested in checking the condition number of the matrices A and B appearing
in (38); the details are detailed in Table 2 below.

From Table 2, we see that the condition number of the (finite element approximation of the)
stiffness matrix B is always larger than that of the corresponding virtual element matrices. In a
sense, this suggests that approximating the exact stiffness matrix by a consistency and a stabi-
lization term as in (6) is not leading to larger condition numbers but rather has a slight beneficial
effect.

4.5 Stability constants on sequences of badly shaped elements

In this section, we provide the minimum (nonzero) and maximum eigenvalues of the generalized
eigenvalue problem (38) for a fixed degree of accuracy. Notably, we analyze the behaviour of the
eigenvalues on sequences of elements with degenerating geometry.

The first sequence we consider is constructed as in Figure 1: the first element is a square with a
hanging node; the other elements are obtained by moving the hanging node towards the opposite
edge. It is easy to check that the star-shapedness constant of the sequence goes to zero.

Next, we consider a sequence of elements obtained starting with a regular pentagon and halving
the height of the previous element in the sequence; see Figure 2.

Both sequences do not satisfy the regularity assumptions in Section 1. For this reason, we cannot

K1 K2 K3 K4 K5

Figure 1: First sequence of badly shaped elements. The first element is a square with a hanging node; the other
elements are obtained by moving the hanging node towards the opposite edge.
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K1

K2

K3
K4 K5

Figure 2: First sequence of anisotropic elements. The first element is a regular pentagon; the other elements are
obtained by halving the height of the previous polygon in the sequence.

Table 3 Minimum and maximum eigenvalues of the generalized eigenvalue problem (38) employing
the theoretical (7) and the dofi-dofi (16) stabilizations SK(·, ·) and SK

D (·, ·). We fix p = 3 and
consider the sequences of elements in Figures 1 and 2.

SK(·, ·) SK
D (·, ·)

p = 3 λmin λmax λmin λmax

Figure 1 1.7245e-01 2.4405e+01 1.5507e-01 2.4077e+01
2.4645e-02 2.6380e+01 2.2646e-02 2.5184e+01
2.0023e-02 5.2481e+01 1.9591e-02 5.0439e+01
1.1318e-02 8.3766e+01 1.1064e-02 8.0796e+01
6.2083e-03 1.1166e+02 6.0253e-03 1.0795e+02

Figure 2 1.1024e-01 2.9102e+01 1.0747e-01 2.9077e+01
3.5699e-02 5.7804e+01 3.5492e-02 5.7774e+01
8.6714e-03 1.7000e+02 8.6613e-03 1.6996e+02
1.9184e-03 6.1036e+02 1.9181e-03 6.1033e+02
4.9894e-04 2.3554e+03 4.9898e-04 2.3554e+03

guarantee theoretically that the stability constants are robust with respect to the deformation of
the elements.

In Table 3, we show the minimum (nonzero) and maximum generalized eigenvalues of (38)
for p = 3, the theoretical (7) and the dofi-dofi (16) stabilizations, and the sequences of elements in
Figures 1 and 2.

From Table 3, we deduce that the stability constants are indeed deteriorating together with
the shape-regularity of the elements.

As in Section 4.4, we are interested in checking the condition number of the matrices A and B

appearing in (38), i.e., the condition number of the (finite element approximation of the) stiffness
matrix B and its virtual element counterpart A; the results are given in Table 4 below.

From Table 4, the condition number of the (finite element approximation of the) stiffness
matrix B is always larger than that of the corresponding virtual element matrices. Hence, similar
comments as those for Table 2 apply.

Table 4 Condition numbers of the virtual element matrices A and AD (computed with respect to
the theoretical (7) and dofi-dofi (16) stabilizations) and the (finite element approximation of the)

stiffness matrix B for degree of accuracy p = 3 on the two sequences of elements in Figures 1

and 2.

A Fig. 1 2.9439e+03 1.3337e+04 1.8254e+04 2.1036e+04 2.2459e+04
A Fig. 2 2.2872e+04 3.1029e+05 4.6531e+06 7.2463e+07 1.1456e+09
AD Fig. 1 2.9272e+03 1.3352e+04 1.8291e+04 2.1082e+04 2.2501e+04
AD Fig. 2 2.2866e+04 3.1020e+05 4.6527e+06 7.2463e+07 1.1455e+09
B Fig. 1 3.6700e+03 3.2448e+04 1.9277e+05 3.2232e+05 4.1319e+05
B Fig. 2 2.4815e+04 3.2299e+05 9.1850e+06 4.0054e+08 1.4112e+10
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5 Conclusions

We investigated some open issues in the analysis of Stokes-like virtual element spaces. Notably,
we proved stability properties in two and three dimensions, and furthermore derived interpolation
estimates by simplifying the current state-of-the-art proofs. Numerical experiments seem to indi-
cate that the stability constants only depend moderately on p; however, they can degenerate more
rapidly for nonregular element geometries. On the other hand, such a discrepancy of the discrete
form with respect to the “exact” one may be beneficial and explain why in this degenerate mesh
conditions the VEM often performs remarkably well.
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[26] B. Cockburn, G. Kanschat, D. Schötzau, and Ch. Schwab. Local discontinuous Galerkin methods for the Stokes
system. SIAM J. Numer. Anal., 40(1):319–343, 2002.

[27] B. Cockburn and F.-J. Sayas. Divergence-conforming HDG methods for Stokes flows. Math. Comp.,
83(288):1571–1598, 2014.

[28] B. Cockburn and K. Shi. Devising HDG methods for Stokes flow: an overview. Comput. & Fluids, 98:221–229,
2014.

[29] F. Dassi and G. Vacca. Bricks for the mixed high-order virtual element method: Projectors and differential
operators. Appl. Numer. Math., 155:140–159, 2020.

[30] D. A. Di Pietro and S. Krell. A hybrid high-order method for the steady incompressible Navier–Stokes problem.
J. Sci. Comput., 74(3):1677–1705, 2018.

[31] D. Frerichs and C. Merdon. Divergence-preserving reconstructions on polygons and a really pressure-robust
virtual element method for the Stokes problem. IMA J. Numer. Anal., 42(1):597–619, 2022.

[32] G. N. Gatica, M. Munar, and F. A. Sequeira. A mixed virtual element method for the Navier-Stokes equations.
Math. Models Methods Appl. Sci, 28(14):2719–2762, 2018.

[33] D. Irisarri and G. Hauke. Stabilized virtual element methods for the unsteady incompressible Navier–Stokes
equations. Calcolo, 56(4):38, 2019.

[34] X. Liu and Z. Chen. The nonconforming virtual element method for the Navier-Stokes equations. Adv. Comput.

Math., 45(1):51–74, 2019.

[35] X. Liu, J. Li, and Z. Chen. A nonconforming virtual element method for the Stokes problem on general meshes.
Comput. Methods Appl. Mech. Engrg., 320:694–711, 2017.

[36] P. Monk. Finite Element Methods for Maxwell’s Equations. Oxford University Press, 2003.

[37] D. Mora, C. Reales, and A. Silgado. A C1 virtual element method of high order for the Brinkman
equations in stream function formulation with pressure recovery. IMA J. Numer. Anal., 2021.
https://doi.org/10.1093/imanum/drab078 .

[38] D. Mora and A. Silgado. A C1 virtual element method for the stationary quasi-geostrophic equations of the
ocean. Comput. Math. Appl., 116:212–228, 2022.

[39] W. Qiu and K. Shi. A superconvergent HDG method for the incompressible Navier–Stokes equations on general
polyhedral meshes. IMA J. Numer. Anal., 36(4):1943–1967, 2016.

[40] G. Vacca. An H1-conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl.

Sci., 28(01):159–194, 2018.

[41] R. Verfürth. A note on polynomial approximation in Sobolev spaces. Math. Model. Numer. Anal., 33(4):715–
719, 1999.

[42] G. Wang, F. Wang, L. Chen, and Y. He. A divergence free weak virtual element method for the Stokes–Darcy
problem on general meshes. Comput. Methods Appl. Mech. Engrg., 344:998–1020, 2019.

20

https://doi.org/10.1093/imanum/drab078

	1 Introduction
	2 The two dimensional case
	2.1 Virtual element spaces in two dimensions
	2.2 Stability estimates for a projection based stabilization
	2.3 Stability estimates for the ``dofi-dofi'' stabilization
	2.4 Interpolation estimates

	3 The three dimensional case
	3.1 Virtual element spaces in three dimensions
	3.2 Stability estimates
	3.3 Interpolation estimates

	4 Numerical validation of the stability estimates in 2D
	4.1 Expanding the boundary-type functions
	4.2 Expanding the orthogonal-type functions
	4.3 Expanding the divergence-type functions
	4.4 Stability constants when increasing the degree of accuracy
	4.5 Stability constants on sequences of badly shaped elements

	5 Conclusions

