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GENERALIZED TRUNCATED MOMENT PROBLEMS WITH

UNBOUNDED SETS

LEI HUANG, JIAWANG NIE, AND YA-XIANG YUAN

Abstract. This paper studies generalized truncated moment problems with
unbounded sets. First, we study geometric properties of the truncated mo-
ment cone and its dual cone of nonnegative polynomials. By the technique of
homogenization, we give a convergent hierarchy of Moment-SOS relaxations
for approximating these cones. With them, we give a Moment-SOS method for
solving generalized truncated moment problems with unbounded sets. Finitely
atomic representing measures, or certificates for their nonexistence, can be ob-
tained by the proposed method. Numerical experiments and applications are
also given.

1. Introduction

The generalized truncated moment problem (GTMP) concerns whether or not
there exists a positive Borel measure which is supported in a prescribed set and
whose moments satisfy some linear equations or inequalities. For a Borel measure
µ on R

n, its support is the smallest closed set T ⊆ R
n such that µ(Rn\T ) = 0.

The support of µ is denoted as supp(µ). For a power α := (α1, . . . , αn), the αth
moment of µ is the integral

∫
xα1
1 · · ·xαn

n dµ

if it exists. For convenience, we denote that

x := (x1, . . . , xn), xα := xα1
1 · · ·xαn

n , |α| := α1 + · · ·+ αn.

The sum |α| is called the order of the moment
∫
xα

dµ. In applications, the support
of µ is often required to be contained in a set K ⊆ R

n such that

(1.1) K :=

{
x ∈ R

n

∣∣∣∣
ci(x) = 0 (i ∈ E),
cj(x) ≥ 0 (j ∈ I)

}
,

where all ci, cj are polynomials in x. The E and I are label sets for the constraints.
Let A ⊂ N

n be a finite set of powers. The generalized truncated moment problem
is often given as: Does there exists a Borel measure µ such that

supp(µ) ⊆ K, yα =

∫
xα

dµ
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for every α ∈ A and the moments yα(α ∈ A) satisfy

(1.2)





∑
α∈A

ai,αyα = bi (i = 1, . . . ,m1),
∑
α∈A

ai,αyα ≥ bi (i = m1 + 1, . . . ,m)?

In the above, ai,α, bi are given constants. For each i, let

ai(x) =
∑

α∈A
ai,αx

α.

Then (1.2) is equivalent to the existence of a Borel measure µ supported in K such
that

(1.3)

{ ∫
ai(x)dµ = bi (i = 1, . . . ,m1),∫
ai(x)dµ ≥ bi (i = m1 + 1, . . . ,m).

How do we determine the existence of a Borel measure µ supported in K and
satisfying (1.3)? The GTMP is a fundamental question in optimization [8, 9, 23, 24].
It has broad applications (see [28, 30, 37]). The generalized truncated moment
optimization problem is studied in [22, 30]. In applications, we are often interested
in finitely atomic measures. The measure µ is called finitely atomic if the support
supp(µ) is a finite set. It is called r-atomic if supp(µ) consists of r distinct points,
i.e., the cardinality |supp(µ)| = r.

1.1. The A-truncated K-moment problem. A special case of the GTMP is the
A-truncated K-moment problem (A-TKMP). For a finite power set A ⊆ N

n, we
denote by R

A the set of all real vectors y labelled as

y = (yα)α∈A.

A vector y ∈ R
A is called an A-truncated multi-sequence (A-tms). The A-tms y is

said to admit a Borel measure µ on R
n if it holds that

(1.4) yα =

∫
xα

dµ for all α ∈ A.

If it satisfies (1.4), the measure µ is called a representing measure for y and y is called
an A-truncated moment sequence. The A-truncated moment problem concerns the
existence and computation of a representing measure µ. If supp(µ) ⊆ K, the
measure µ satisfying (1.4) is called a K-representing measure for y. Denote by
meas(y,K) the set of allK-representing measures for y. This gives the A-truncated
moment cone

(1.5) RA(K) :=
{
y ∈ R

A : meas(y,K) 6= ∅
}
.

For the case y = 0, its representing measure is the identically zero measure and
the support is the empty set. Let R[x]A be the subspace spanned by monomials
xα (α ∈ A). The dual cone of RA(K) is the cone of polynomials in R[x]A that are
nonnegative on K, i.e.,

PA(K) = {p ∈ R[x]A : p(x) ≥ 0, ∀x ∈ K}.
When the polynomials ai are the monomials xα (α ∈ A), the GTMP is reduced to
the A-TKMP (see [28]). When A is the power set (for a degree d)

N
n
d := {α ∈ N

n : |α| ≤ d},
the GTMP is reduced to the classical truncated K-moment problem (see [5]).
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1.2. PSOP and SCP tensors. Truncated moment problems have broad applica-
tions in tensor computation (see [31, 32, 33]). For positive integersm,n, let Tm (Rn)
denote the space of all order-m tensors over the space Rn. A tensor B ∈ Tm (Rn) is
represented by an m-way array B = (Bi1...im)1≤i1,...,im≤n, with real entries Bi1...im .
The tensor B is said to be symmetric if the entry Bi1...im is invariant under all
permutations of (i1, . . . , im). Let Sm (Rn) be the subspace of symmetric tensors in
Tm (Rn). For u ∈ R

n, the outer product u⊗m denotes the tensor in Sm (Rn) such
that for every (i1, . . . , im),

(
u⊗m

)
i1...im

= ui1 · · ·uim .

Definition 1.1. A symmetric tensor B ∈ Sm(Rn+1) is said to be a positive sum of
powers (PSOP) tensor if there exist vectors v1, . . . , vr ∈ R

n and scalars λ1, . . . , λr ≥
0 such that

(1.6) B =

r∑

k=1

λk

[
1
vk

]⊗m

.

If all v1, . . . vr are nonnegative vectors (i.e., all their entries are nonnegative), then
the tensor B as in (1.6) is said to be strongly completely positive (SCP).

Denote by PSn+1
m the set of all PSOP tensors in Sm(Rn+1). Similarly, the set

of all SCP tensors in Sm(Rn+1) is denoted as SCPn+1
m . Every symmetric tensor in

Sm(Rn+1) is uniquely determined by an A-tms with A = N
n
m. More specifically,

each symmetric tensor B = (Bi1...im)0≤i1,...,im≤n is uniquely determined by b =

(bα) ∈ R
A such that

(1.7) bα = Bi1i2...im

for every α ∈ N
n
m with x

m−|α|
0 · xα = xi1 · · ·xim . Then, one can see that the

decomposition (1.6) is equivalent to

(1.8) bα =

∫
xαdµ (∀α ∈ N

n
m),

where µ =
∑r

k=1 λkδvk and δvk denotes the unit Dirac measure supported at vk.
This shows that the tensor B is PSOP if and only if b admits a representing measure
on R

n. Similarly, the tensor B is SCP if and only if b admits a representing measure
supported in the nonnegative orthant Rn

+.
When the order m is even, the tensor B as in (1.6) is a sum of even powers

(SOEP) tensor (see [31]). When every vk is nonnegative, B is a completely positive
(CP) tensor. For nonzero PSOP and SCP tensors, the first entry of each decom-
posing vector is required to be strictly positive. Detecting SOEP and CP tensors
is equivalent to a homogeneous truncated moment problem with the set K being
the unit sphere [28]. However, this is not the case for PSOP and SCP tenors. We
remark that every SCP tensor is a CP tensor, but not every CP tensor is SCP. We
refer to [34] for introductions to CP tensors.

1.3. Existing work. To solve truncated moment problems, a typical method is to
use flat extension (see Section 2.1 for the introduction). We refer to [3, 4, 7, 12]
for related work. However, this approach has difficulty for general cases, especially
when the moment matrix is positive definite. When the set K is compact, Moment-
SOS relaxations can be used to solve truncated moment problems (see [22, 28, 30]).
When a tms y admits a K-representing measure, it can be obtained by finding a
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flat extension. When it admits no K-representing measures, a certificate for the
nonexistence can also be obtained by solving Moment-SOS relaxations. There are
other alternate approaches for studying GTMP. For instance, the core variety can
be used to characterize existence of representing measures (see [2, 14]).

When K = R
n, the homogenization trick is proposed in [15] to solve the trun-

cated moment problem for the case A = N
n
d . Homogenization is a useful trick

for solving optimization with unbounded sets [20, 25]. When K is an unbounded
semialgebraic set, there exists little work for solving truncated moment problems.

Contributions. In this paper, we use homogenization to solve the GTMP when
K is an unbounded set. The main approach is lifting K to a compact semialgebraic
set in R

n+1 via homogenization. Then a hierarchy of Moment-SOS relaxations is
proposed to solve the GTMP. Throughout the paper, we assume the feasible set K
is closed at ∞ (see Definition 3.2). Our major contributions are:

I. We study geometric properties of the truncated moment cone RA(K) and
its dual cone PA(K) of nonnegative polynomials. A convergent hierarchy
of Moment-SOS approximations is given for PA(K) and RA(K). The
convergence is shown under some general assumptions.

II. We propose a hierarchy of Moment-SOS relaxations to solve the GTMP
when K is an unbounded semialgebraic set. When the closure of the mo-
ment system (see (4.2)) admits no K-representing measures, we show that
the moment relaxations must be infeasible for all high enough relaxation
orders. When the closure of the moment system is feasible, the method
can obtain a finitely atomic representing measure. Depending whether or
not the first entries of points in the support are zero, we can either obtain
a finitely atomic K-representing measure for the original GTMP or obtain
arbitrarily accurate approximations.

This paper is organized as follows. Section 2 gives some preliminaries. In Sec-
tion 3, we give geometric properties of the cones PA(K) and RA(K). Moment-SOS
relaxations are also given for them. In Section 4, a Moment-SOS algorithm is given
to solve the GTMP. Its convergence is also shown. Some numerical experiments and
applications are presented in Section 5. Some conclusions are given in Section 6.

2. Preliminaries

Notation. Let N (resp., R) denote the set of nonnegative integers (resp., real
numbers). For t ∈ R, ⌈t⌉ denotes the smallest integer greater than or equal to t.
For a positive integer m, denote [m] := {1, . . . ,m}. Denote by R[x] the ring of real
polynomials in x. Let R[x]d be the set of all polynomials with degrees ≤ d. For
a set S ⊆ R

n, cl(S) and int(S) denote its closure and interior in the Euclidean
topology. The dual cone of S is the set

S∗ := {y ∈ R
n | 〈x, y〉 ≥ 0, ∀x ∈ S}.

When S is a convex set, ri(S) denotes its relative interior. For a set V of vectors,
SpanV stands for the subspace spanned by V and ConeV stands for the conic hull
generated by vectors in V . The notation dimV denotes the dimension of affine hull
of V . We refer to [1] for these notions.
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For a polynomial p ∈ R[x], deg(p) denotes its total degree in x and phom denotes
the homogeneous part of the highest degree terms of p. Denote by p̃ the homog-

enization of p, i.e., p̃ := x
deg(p)
0 p( x

x0
). For a finite power set A of Nn, the degree

of A, denoted by deg(A), is max{|α| : α ∈ A}. Let [x]A be the column vector of
monomials (xα)α∈A. For a set K ⊆ R

n, denote by I(K)A the set of all polynomials
in R[x]A which identically vanish on K, i.e.,

(2.1) I(K)A = {p ∈ R[x]A : p |K ≡ 0}.
Clearly, I(K)A is a subspace of R[x]A. When A = N

n
d , we denote that

Pd(K) := PA(K), Rd(K) := RA(K).

2.1. Riesz functionals and moment matrices. An A-tms y ∈ R
A determines

the Riesz functional Ly acting on R[x]A as

Ly(
∑

α∈A
pαx

α) :=
∑

α∈A
pαyα.

For convenience of notation, we also write that

〈
∑

α∈A
pαx

α, y〉 =
∑

α∈A
pαyα.

The functional Ly is said to be K-positive if

Ly(p) ≥ 0, ∀ p ∈ PA(K).

Furthermore, Ly is said to be strictly K-positive if

Ly(p) > 0, ∀ p ∈ PA(K), p |K 6≡ 0.

Clearly, if y admits a K-representing measure µ, then Ly must be K-positive, since
Ly(p) =

∫
p(x)dµ ≥ 0 for all p ∈ PA(K). When K is compact and A = N

n
t , it

is known that y ∈ R
N

n
t admits a K-representing measure if and only if the Riesz

functional Ly is K-positive (see [24, 38]). This conclusion can be generalized to
any finite-dimensional subspace of R[x].

Theorem 2.1 ([15]). Let K ⊆ R
n be a compact set and let H be a finite dimensional

subspace of R[x]. Suppose there exists f ∈ H such that f > 0 on K. For a linear
functional L : H → R, if L is K-positive, i.e.,

p ∈ H, p|K > 0 ⇒ L (p) > 0,

then there exist m 6 dimH, u1, . . . , um ∈ K, and λ1, . . . , λm > 0, such that

(2.2) L (p) =

m∑

i=1

λip (ui) (∀ p ∈ H).

In Theorem 2.1, the equation (2.2) is equivalent to that L admits a finitely
atomic measure supported in K. When K is compact and H = R[x]A, solving
A-TKMP essentially requires to check whether Ly is K-positive or not. However,
checking the K-positivity is typically a hard question [13].

To solve truncated moment problems, we review moment and localizing matrices.
For y ∈ R

N
n
2k and q ∈ R[x]2k, the kth order localizing matrix of y generated by q is

the symmetric matrix L
(k)
q such that

Ly

(
qp2

)
= vec(p)T

(
L(k)
q [y]

)
vec(p),
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for all p ∈ R[x] with deg
(
qp2

)
≤ 2k. Here, vec(p) denotes the coefficient vector

of p. In particular, when q = 1, Mk[y] := L
(k)
q [y] is called the kth order moment

matrix of y, which satisfies

Ly

(
p2
)
= vec(p)TMk[y]vec(p)

for all p ∈ R[x]k. Let K be as in (1.1). Denote the degree

(2.3) dK := max
i∈E∪I

{1, ⌈deg (ci) /2⌉} .

If y admits a K-representing measure µ, then Ly(qp
2) =

∫
qp2dµ for all p, q with

the degree deg(qp2) ≤ 2k. This implies that

(2.4) Mk[y] � 0, L(k)
ci [y] = 0 (i ∈ E), L(k)

cj [y] � 0 (j ∈ I).
The condition (2.4) is necessary for y to admit a K-representing measure, but it
may not be sufficient. In computational practice, a convenient condition is the flat
extension. The tms y ∈ R

N
n
2k is said to be flat if it satisfies the rank condition

(2.5) rankMk−dK
[y] = rankMk[y].

The following is the classical result about flat extension by Curto and Fialkow [5].

Theorem 2.2 ([5]). Let K be as in (1.1). If y ∈ R
N

n
2k satisfies (2.4) and it is flat,

then y admits a unique K-representing measure, which is rankMk[y]-atomic.

For the case y ∈ R
A, z ∈ R

N
n
2k and 2k ≥ deg(A), the z is said to be an extension

of y if y is the subvector of z consisting of entries labelled by α ∈ A. For such
a case, we write that y = z|A. Indeed, it is shown in [5] that y ∈ R

N
n
t admits a

K-representing measure if and only if it has a flat extension z ∈ R
N

n
2k that satisfies

(2.4) for some 2k ≥ t.

2.2. Positive polynomials. A set I ⊆ R[x] is called an ideal if I ·R[x] ⊆ R[x] and
I + I ⊆ I. For a polynomial tuple h = (h1, . . . , ht), its real variety is the set

VR(h) := {x ∈ R
n | h1(x) = · · · = ht(x) = 0}.

The ideal generated by h is denoted by Ideal[h], i.e.,

Ideal[h] := h1 · R[x] + · · ·+ ht · R[x].
For a degree k, the kth truncated ideal of Ideal[h] is

(2.6) Ideal[h]k := h1 · R[x]k−deg(h1) + · · ·+ ht · R[x]k−deg(ht).

A polynomial is said to be SOS if p = p21 + · · ·+ p2r for p1, . . . , pr ∈ R[x]. Denote
the set of all SOS polynomials by Σ[x]. For an even degree k ∈ N, denote the
truncation

Σ[x]k := Σ[x] ∩R[x]k.

We refer to [19, 21, 26, 27] for SOS polynomials and matrices. For a polynomial
tuple g = (g1, . . . , gℓ), the quadratic module generated by g is

(2.7) QM[g] := Σ[x] + g1 · Σ[x] + · · ·+ gℓ · Σ[x].
For an even degree k, its kth truncated quadratic module is defined as

(2.8) QM[g]k := Σ[x]k + g1 · Σ[x]k−2⌈deg(g1)/2⌉ + · · ·+ gℓ · Σ[x]k−2⌈deg(gℓ)/2⌉.
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The sum Ideal[h] + QM[g] is said to be archimedean if there exists N > 0 such
that N − ‖x‖2 ∈ Ideal[h] + QM[g]. Let

S = {x ∈ R
n : h(x) = 0, g(x) ≥ 0}.

Clearly, if Ideal[h] + QM[g] is archimedean, then S is a compact set. Note that if
p ∈ Ideal[h] +QM[g], then p ≥ 0 on S. However, the inverse may not be true. The
following conclusion is usually referenced as Putinar’s Positivstellensatz.

Theorem 2.3 ([35]). Suppose Ideal[h] +QM[g] is archimedean. If p is positive on
S, then p ∈ Ideal[h] +QM[g].

We refer to [21, 23, 24, 29] for more introductions to moment and polynomial
optimization.

3. Geometric properties of RA(K) and PA(K)

This section gives geometric properties of the moment cone RA(K) and the
nonnegative polynomial cone PA(K). These properties include relative interiors,
closedness and duality. Moreover, we give convergent Moment-SOS relaxations for
RA(K) and PA(K). The set K is not assumed to be compact.

The followings are basic properties of the cones PA(K) and RA(K). Recall that
I(K)A denotes the vanishing ideal as in (2.1).

Theorem 3.1. Let A ⊆ N
n be a finite power set, d = deg(A) and let K be the

semialgebraic set as in (1.1). Then, we have

(i) It holds the duality relation

(3.1) RA(K)∗ = PA(K), PA(K)∗ = cl(RA(K)).

If K is compact and there exists q ∈ R[x]A such that q > 0 on K, then

int(PA(K)) = {p ∈ R[x]A : p |K > 0},
and the moment cone RA(K) is closed.

(ii) The subspace spanned by the cone RA(K) is

(3.2) SpanRA(K) = {y ∈ R
A | 〈p, y〉 = 0, ∀ p ∈ I(K)A},

or equivalently, SpanRA(K) = I(K)⊥A. This implies that

dimRA(K) = |A| − dim I(K)A.

Furthermore, the relative interior of RA(K) is given as

(3.3) ri (RA(K)) = {y ∈ R
A | Ly is strictly K-positive}.

In particular, if I(K)A = {0}, the moment cone RA(K) has nonempty
interior.

Proof. (i) By the definition, one can directly check that RA(K)∗ = PA(K). Note
that RA(K) is a convex cone. Clearly, its closure is a closed convex cone. By the
bi-duality theorem (see [1]), it holds that

cl(RA(K)) =
(
cl(RA(K))∗

)∗
= (RA(K)∗)∗ = PA(K)∗.

Therefore, the duality relation (3.1) holds.
When K is compact and there exists q ∈ R[x]A such that q > 0 on K, the

closedness of RA(K) follows from Theorem 2.1. For each p > 0 on K, we have
p + h > 0 on K for every h ∈ R[x]A with sufficiently small coefficients. This
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means that p ∈ int (PA(K)). Conversely, for each p ∈ int (PA(K)), we have
p− ǫq ∈ PA(K) for some ǫ > 0. Then p ≥ ǫq > 0 on K.

(ii) First, we prove (3.2). Note that SpanRA(K) is the subspace spanned by all
vectors [u]A, with u ∈ K. For every u ∈ K and for every p ∈ I(K)A, it is clear
that 〈[u]A, p〉 = 0, so

SpanRA(K) ⊆ {y ∈ R
A | 〈p, y〉 = 0, ∀ p ∈ I(K)A}.

We prove the reverse containment “⊇” also holds. For each ξ ∈ R
A such that

ξ 6∈ SpanRA(K), there must exist a polynomial q ∈ R[x]A such that

〈q, ξ〉 = 1, 〈q, [u]A〉 = 0, ∀ u ∈ K.

This implies that

SpanRA(K) ⊇ {y ∈ R
A | 〈p, y〉 = 0, ∀ p ∈ I(K)A}.

So, the equality (3.2) holds and hence

dimRA(K) = |A| − dim I(K)A.

Second, we prove (3.3). Since K is closed, there exists a positive Borel measure µ
whose support is exactly equal to K. Let z be the A-tms such that zα =

∫
K
xαdµ

for every α ∈ A. Clearly, Lz is strictly K-positive and z ∈ SpanRA(K). The
equality (3.3) is implied by the following two facts.

1) For each y ∈ ri (RA(K)), there exists ǫ > 0 such that y − ǫz ∈ RA(K), so

Ly(p) = Ly−ǫz(p) + ǫLz(p) ≥ ǫLz(p) > 0

for every p ∈ PA(K), p |K 6≡ 0. This means that Ly is strictly K-positive.
2) Consider y ∈ R

A such that Ly is strictly K-positive. Let P := R[x]A/I(K)A
be the quotient space. The equivalent class of p ∈ R[x]A in P is denoted as [p]. Its
quotient norm is

‖[p]‖P = inf
a∈I(K)A

‖p− a‖2.

Define the Riesz functional L̃y on P such that

L̃y([p]) := Ly(p).

For q ∈ I(K)A, we have Ly(q) ≥ 0 and Ly(−q) ≥ 0, so Ly(q) = 0. This means

that L̃y is well-defined. Denote the set

T := {[p] ∈ PA(K)/I(K)A : ‖[p]‖P = 1}.
Clearly, T is a compact subset of P . Denote the constants

δ1 := min
{

L̃y([p]) : [p] ∈ T
}
,

δ2 := max

{
L̃w([p])

∣∣∣∣
w ∈ SpanRA(K),
‖w‖ = 1, [p] ∈ T

}
.

Note that Ly is strictly K-positive if and only if δ1 > 0. For every w ∈ SpanRA(K)

with ‖w‖ = 1 and for every 0 ≤ ǫ ≤ δ1
2δ2

, it holds that

L̃y+ǫw([p]) = L̃y([p]) + ǫL̃w([p]) ≥ δ1 −
δ1
2

> 0

for all [p] ∈ T . Thus, Ly+ǫw is K-positive and y + ǫw ∈ cl(RA(K)). Note that
ri(cl(RA(K))) = ri(RA(K)). This means that y ∈ ri (RA(K)) .

Last, if I(K)A = {0}, then dimRA(K) = |A|, i.e., RA(K) is full-dimensional
and it must have nonempty interior. �
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As an exposition, consider the PSOP tensor cone PSn+1
m (see Definition 1.1).

Observe that PSn+1
m = Rm(K) with K = R

n. Since I(Rn)Nn
m

= {0}, we know the

cone PSn+1
m is full-dimensional and has nonempty interior, by Theorem 3.1. When

K is unbounded, the moment cone RA(K) is generally not closed, while PA(K)
is always closed. For instance, when K = R and A = N

1
4, for y = (1, 1, 1, 1, 2), the

Riesz functional Ly is K-positive but y admits no K-representing measures (see
[6]). In [11], Easwaran and Fialkow exhibited a family of positive linear functionals
that admit no representing measures. However, if K is compact and there exists
q ∈ R[x]A such that q > 0 on K, the cone RA(K) is closed (see item (i) of Theorem
3.1). When K is compact, convergent semidefinite relaxations for PA(K) and
RA(K) are given in [30]. When K is unbounded, these relaxations typically do
not converge. In the following, we use the trick of homogenization to construct
convergent semidefinite relaxations for PA(K) and RA(K) when K is unbounded.

3.1. Homogenization. Let K be the set as in (1.1) and let x̃ := (x0, x). For

a polynomial p, recall that p̃ = x
deg(p)
0 p(x/x0) denotes the homogenization of p.

Define the sets

(3.4)

K̃h :=

{
x̃ ∈ R

n+1

∣∣∣∣
c̃i(x̃) = 0 (i ∈ E),
c̃j(x̃) ≥ 0 (j ∈ I), x0 ≥ 0

}
,

K̃c := K̃h ∩ {x̃ ∈ R
n+1 : x0 > 0},

K̃ := K̃h ∩ {x̃ ∈ R
n+1 : x2

0 + xTx = 1}
.

Definition 3.2 ([25]). The set K is said to be closed at ∞ if cl(K̃c) = K̃h.

We remark that the above definition of closedness at∞ depends on the describing
polynomials for K. Throughout the paper, when the closedness at ∞ is mentioned,
the describing polynomials as in (1.1) are clear in the context. It is interesting to
note that the closedness at ∞ is a genericity property (see [17]). The following
conclusion is obvious.

Lemma 3.3 ([25]). A polynomial p > 0 (resp., p ≥ 0) on K if and only if p̃ > 0

(resp., p̃ ≥ 0) on K̃c. Moreover, if K is closed at ∞, then p ≥ 0 on K if and only

if p̃ ≥ 0 on K̃.

Recall that phom denotes the homogeneous part of the highest degree terms of
p. Denote

(3.5) Ke :=



x ∈ R

n

∣∣∣∣∣∣

chomi (x) = 0 (i ∈ E),
chomj (x) ≥ 0 (j ∈ I),
‖x‖2 − 1 = 0



 .

When K is compact, the interior of Pd(K) is precisely the set of polynomials
in R[x]d that are positive on K. When K is unbounded, the interior of Pd(K) is
more tricky. The interiors of Pd(K) and PA(K) can be characterized as follows.

Theorem 3.4. Let K be as in (1.1). Suppose K is closed at ∞. Then, we have
that

(i) For a degree d > 0, the interior of Pd(K) can be given as

(3.6) int(Pd(K)) =
{
p ∈ R[x]d

∣∣ p |K > 0, p(d)|Ke > 0
}
,

where p(d) denotes homogeneous part of degree-d terms of p.
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(ii) For a finite set A ⊆ N
n, let d = deg(A). If R[x]A ∩ int(Pd(K)) 6= ∅, then

(3.7) int(PA(K)) =
{
p ∈ R[x]A

∣∣ p |K > 0, p(d)|Ke > 0
}
.

Proof. WhenK is bounded, the conclusions follow directly from item (i) of Theorem
3.1 and the fact that Ke = ∅. We only consider that K is unbounded in the follow-
ing. Note that for the unbounded K, the positivity conditions p |K > 0, p(d)|Ke > 0
are equivalent to that p |K > 0, deg(p) = d, phom |Ke > 0.

(i) First, consider an arbitrary p ∈ int(Pd(K)). Then p−ǫ ·1 ∈ Pd(K) for some
ǫ > 0, so p |K > 0. For every power α with |α| = d, we have p± ǫxα ∈ Pd(K) for
some ǫ > 0, which is impossible if deg(p) < d. Hence, deg(p) = d. Next, we show
that phom |Ke > 0. For every point u ∈ Ke, since ‖u‖ = 1, we must have ui 6= 0 for
some i = 1, . . . , n. There exists ǫ > 0 such that p − ǫ · sign(ui)

dxd
i ∈ Pd(K). By

Lemma 3.3, we can get

(p− ǫ · sign(ui)
dxd

i )
hom = phom − ǫ · sign(ui)

dxd
i ≥ 0 on Ke.

Hence, phom(u) ≥ ǫ · |ui|d > 0. Since u is arbitrary in Ke, we have phom |Ke > 0 .
Second, consider p ∈ R[x]d such that p |K > 0, p(d) |Ke > 0 . Note that p ∈

Pd(K). Suppose otherwise that p /∈ int(Pd(K)). Then there exists a supporting
hyperplaneH for Pd(K) through the point p. Let q ∈ R[x]d be the normal direction
for H. Then p− 1

k q 6∈ Pd(K) for all k ∈ N. For each k, there exists x(k) ∈ K such
that

p
(
x(k)

)
− 1

k
q
(
x(k)

)
< 0.

The sequence {x(k)}∞k=1 must be unbounded. If otherwise it is bounded, then

{x(k)} has an accumulation point and one can assume x(k) → x∗ ∈ K, without loss
of generality. Hence, we get

p(x∗) = lim
k→∞

p
(
x(k)

)
− lim

k→∞

1

k
q
(
x(k)

)
≤ 0,

which contradicts that p |K > 0. Let y(k) = x(k)

‖x(k)‖ , then the sequence {y(k)}∞k=1 is

bounded. Similarly, we can assume that y(k) → y∗. Clearly, ‖y∗‖ = 1. Note that

chomi (y∗) = lim
k→∞

ci(x
(k))

‖x(k)‖deg(ci)
for every i. Therefore,

chomi (y∗) = 0 (i ∈ E), chomj (y∗) ≥ 0 (j ∈ I).
This means that y∗ ∈ Ke. Furthermore, we have

p(d)(y∗) = lim
k→∞

p(x(k))− 1
kq(x

(k))

‖x(k)‖d ≤ 0.

It contracts that p(d) |Ke > 0. Hence, we have p ∈ int(Pd(K)).
(ii) Suppose p |K > 0, p(d)|Ke > 0. By the item (i), we have p ∈ int(Pd(K)),

and hence p ∈ int(PA(K)).
On the another hand, suppose p ∈ int(PA(K)). Let q be a polynomial in

PA(K)∩ int(Pd(K)). For ǫ > 0 small enough, we have p− ǫq ∈ PA(K). Clearly,
for x ∈ K, p(x) ≥ ǫq(x) > 0. Moreover, the polynomial phom − ǫqhom ≥ 0 on
Ke, which implies phom |Ke > 0. If deg(p) < d, let x(k) ∈ K be a sequence such
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that ‖x(k)‖ → ∞. Denote y(k) = x(k)

‖x(k)‖ . Without loss of generality, assume that

y(k) → y∗. Then we have y∗ ∈ Ke and the following holds

−ǫq(d)(y∗) = lim
k→∞

p(x(k))− ǫq(x(k))

‖x(k)‖d ≥ 0,

which contradicts that q(d) |Ke > 0. Thus, we have deg(p) = d and p(d)|Ke > 0. �

Remark 3.5. It is possible that Pd(K) has empty interior. For instance, this is
the case for K = R

n and d = 2k+1. For such cases, we should consider the relative
interior of Pd(K). Clearly, the relative interior of P2k+1(R

n) is the interior of
P2k(R

n). When K is a general set, it is typically difficult to character the relative
interior of Pd(K). Moreover, when R[x]A∩int(Pd(K)) = ∅, the conclusion of The-
orem 3.4 may not hold. For instance, when K = R

2 and A = {(2, 0), (0, 2), (2, 2)},
the polynomial p = x2

1 + x2
2 + x2

1x
2
2 ∈ int(PA(K)) but phom(x) = x2

1x
2
2 is not

positive on Ke.

For the power set A ⊆ N
n, let d = deg(A). Its homogenization is the set

Ã := {β ∈ N
n+1 | β = (d− |α|, α), α ∈ A}.

Proposition 3.6. Suppose K is closed at ∞ and R[x]A ∩ int(Pd(K)) 6= ∅. Then,
we have p ∈ int(PA(K)) if and only if p̂

∣∣
K̃ > 0, where p̂ denotes the degree-d

homogenization of p.

Proof. By the assumptions, p ∈ int(PA(K)) is equivalent to that p |K > 0, p(d) |Ke >
0 (see Theorem 3.4). This holds if and only if p̂

∣∣
K̃ > 0. �

3.2. Semidefinite relaxations of RA(K) and PA(K). Each A-tms y ∈ R
A is

uniquely determined by its homogenization ỹ ∈ R
Ã such that

ỹ(d−|α|,α) = yα (α ∈ A),

where d = deg(A). We define the Riesz functional Lỹ acting on R[x̃]Ã as

Lỹ(
∑

α∈A
pαx

d−|α|
0 xα) =

∑

α∈A
pαyα.

Theorem 3.7. Suppose K is closed at ∞ and R[x]A ∩ int(Pd(K)) 6= ∅. Then, we

have y ∈ cl(RA(K)) if and only if ỹ ∈ RÃ(K̃).

Proof. Suppose y ∈ cl(RA(K)), then the Reisz functional Ly is K-positive (see

Theorem 3.1). If ℓ ∈ PÃ(K̃), then ℓ(1, x) ≥ 0 for x ∈ K. Hence, we have

Lỹ(ℓ(x̃)) = Ly(ℓ(1, x)) ≥ 0,

which implies Lỹ is K̃-positive. Note that K̃ is compact and there exists a poly-
nomial η ∈ R[x̃]Ã such that η

∣∣
K̃ > 0 (see Proposition 3.6), thus conditions of

Theorem 2.1 are satisfied and ỹ ∈ RÃ(K̃). On the another hand, if ỹ ∈ RÃ(K̃),

then Lỹ is K̃-positive. For p ∈ PA(K), the following holds
∑

α∈A
pαx

d−|α|
0 xα = x

d−deg(p)
0 p̃ ≥ 0, ∀x̃ ∈ K̃.

Hence, we have

Ly(p) = Lỹ(
∑

α∈A
pαx

d−|α|
0 xα) ≥ 0.
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By Theorem 3.1, it implies that y ∈ cl(RA(K)). �

Remark 3.8. It is possible that y ∈ cl(RA(K)) while y admits no K-representing
measures. In such case, y is the limit of a sequence of A-truncated multi-sequences
that admit finitely atomic K-representing measures. When y ∈ cl(RA(K)), we

have ỹ ∈ RÃ(K̃). Suppose the measure ν = λ̃1δ(τ1,v1) + · · ·+ λ̃rδ(τr,vr) is a finitely

atomic K̃-representing measure of ỹ, where (τi, vi) ∈ K̃, λ̃i > 0. If y /∈ RA(K),
then there exist 1 ≤ i1, . . . , it ≤ r such that τi1 = · · · = τit = 0. When K is closed
at ∞, we have ũ(i1,k) → (0, vi1), . . . , ũ

(it,k) → (0, vit) for

ũ(i1,k) = (u
(i1,k)
0 , u(i1,k)), . . . , ũ(it,k) = (u

(it,k)
0 , u(it,k)) ∈ K̃c.

Let µ(k) := λ
(k)
1 δ

u
(k)
1

+ · · ·+ λ
(k)
r δ

u
(k)
r

, where

λ
(k)
i =

{
λ̃iτ

d
i if i 6= i1, . . . , it,

λ̃i(u
(i,k)
0 )d if i = i1, . . . , it,

u
(k)
i =

{ νi
τi

if i 6= i1, . . . , it,
u(i,k)

u
(i,k)
0

if i = i1, . . . , it.

Let z(k) =
∫
K
[x]A dµ(k) for each k, then z(k) ∈ RA(K) and z(k) → y as k → ∞.

For the semialgebraic setK as in (1.1), denote the constraining polynomial tuples

(3.8)
c̃eq := (c̃i(x̃))i∈E ∪

{
‖x̃‖2 − 1

}
,

c̃in := (c̃j(x̃))j∈I ∪ {x0} .

In the following, we give a certificate about nonexistence of K-representing mea-
sures.

Lemma 3.9. Suppose K is closed at ∞ and R[x]A ∩ int(Pd(K)) 6= ∅. Then
y /∈ cl(RA(K)) if and only if there exists q ∈ R[x̃]Ã such that

(3.9) Lỹ(q) < 0, q ∈ Ideal[c̃eq] +QM[c̃in].

Proof. If y /∈ cl(RA(K)), then ỹ /∈ RÃ(K̃) and there exists a polynomial q1 ∈
PÃ(K̃) such that Lỹ(q1) < 0 (cf. Theorem 3.7). By Proposition 3.6, there exists

a polynomial η ∈ R[x̃]Ã such that η
∣∣
K̃ > 0. For ǫ > 0 small enough, we have

q1 + ǫη|K̃ > 0, Lỹ(q1 + ǫη) < 0.

Note that K̃ is archimedean. By Theorem 2.3, the following holds

q1 + ǫη ∈ Ideal[c̃eq] + QM[c̃in].

Hence, the polynomial q := q1 + ǫη satisfies (3.9). For the contrary, suppose oth-

erwise y ∈ cl(Rn,d(K)). Clearly, if q ∈ Ideal[c̃eq] + QM[c̃in], then q ≥ 0 on K̃. It
implies that Lỹ(q) ≥ 0, which is a contradiction. �

In the following, we give convergent semidefinite relaxations for RA(K) and
PA(K). For each k ∈ N, we consider the following kth order relaxation for the
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cone RA(K)

(3.10) R
(k)(K) :=





y ∈ R
A

∣∣∣∣∣∣∣∣∣∣∣∣

ỹ = w|Ã, w ∈ R
N

n+1
2k ,

L
(k)
c̃i

[w] = 0 (i ∈ E),
L
(k)
‖x̃‖2−1[w] = 0,

L
(k)
c̃j

[w] � 0 (j ∈ I),
L
(k)
x0 [w] � 0, Mk[w] � 0





.

Recall that the homogenization of a polynomial p(x) is p̃ := x
deg(p)
0 p(x/x0). The

kth order SOS approximation for the cone PA(K) is

(3.11) P
(k)(K) :=

{
p ∈ R[x]A : p̃ ∈ Ideal[c̃eq]2k +QM[c̃in]2k

}
.

Theorem 3.10. Suppose K is closed at ∞ and R[x]A ∩ int(Pd(K)) 6= ∅. Then,
we have that

(3.12)
∞⋂

k=1

R
(k)(K) = cl(RA(K)),

(3.13) int (PA(K)) ⊆
∞⋃

k=1

P
(k)(K) ⊆ PA(K).

Proof. In (3.12), the containment “⊇” follows from

cl(RA(K)) = RÃ(K̃) ⊆
∞⋂

k=1

R
(k)(K).

To prove the reverse containment “⊆”, it is enough to show that if y /∈ cl(RA(K)),
then y /∈ R(k)(K) for some k big enough. Suppose y /∈ cl(RA(K)), then there
exists q ∈ R[x̃]Ã satisfying

〈q, ỹ〉 < 0, q ∈ Ideal[c̃eq]2k1 +QM[c̃in]2k1 ,

for some integer k1 (see Lemma 3.9). If y ∈ R(k1)(K), then ỹ = w|Ã for some w
satisfying (3.10). Since w belongs to the dual cone of Ideal[c̃eq]2k1 +QM[c̃in]2k1 , we
get the contradiction

0 > 〈q, ỹ〉 = 〈q, w〉 ≥ 0.

Thus, y /∈ R(k)(K) for all k ≥ k1. So, the relation (3.12) holds.

Now, we prove (3.13). If p ∈ P(k)(K), we have p̃ ≥ 0 on K̃. Then for x ∈ K,
p(x) = p̃(1, x) ≥ 0, which implies p ∈ PA(K). If p ∈ int (PA(K)), then p̃

∣∣
K̃ > 0.

By Theorem 2.3, we have p̃ ∈ Ideal[c̃eq] + QM[c̃in], i.e., p ∈ ⋃∞
k=1 P(k)(K). �

4. Solving GTMPs

In this section, we give a Moment-SOS approach for solving generalized truncated
moment problems with unbounded sets, based on homogenization. Let K be the
semialgebraic set as in (1.1). Let A ⊆ N

n be a finite power set. We have seen that
the truncated moment system (1.2) is equivalent to the existence of an A-tms y
satisfying

(4.1)
〈ai, y〉 = bi (1 ≤ i ≤ m1),
〈ai, y〉 ≥ bi (m1 < i ≤ m),

y ∈ RA(K)
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for some given polynomials a1, . . . , am ∈ R[x]A.
When K is unbounded, a difficulty for solving (4.1) is that the cone RA(K) is

typically not closed. In computational practice, it is usually more convenient for
considering its closure moment system

(4.2)
〈ai, y〉 = bi (1 ≤ i ≤ m1),
〈ai, y〉 ≥ bi (m1 < i ≤ m),

y ∈ cl(RA(K))
.

It is important to observe the following: if the moment system (4.1) is feasible, then
the closure system (4.2) must also be feasible; if (4.2) is infeasible, then (4.1) must
also be infeasible. There may exist boundary cases that (4.1) is infeasible while
(4.2) is feasible, which is a difficult case in computational practice.

Let d = deg(A). Recall that each y ∈ R
A can be viewed as a homogeneous tms

ỹ ∈ R
Ã labelled such that

ỹ(d−|α|,α) = yα for every α ∈ A.

For each i = 1, . . . ,m, let

âi := xd
0ai(x/x0)

be the degree-d homogenization of ai. Note that d > deg(ai) is possible. For a
degree d1 > d, select a generic polynomial f ∈ R[x̃]d1 and consider the following
linear conic optimization problem

(4.3)





min 〈f, w〉
s .t . 〈âi, w〉 = bi (1 ≤ i ≤ m1),

〈âi, w〉 ≥ bi (m1 < i ≤ m),

w ∈ Rd1(K̃).

The dual optimization problem of (4.1) is

(4.4)





max
m∑
i=1

biθi

s .t . f −
m∑
i=1

θiâi ∈ Pd1(K̃),

θi ≥ 0 (m1 < i ≤ m).

For convenience, denote the set

(4.5) H0 = Span{a1, . . . , am1} − Cone{am1+1, . . . , am}.
The following are some properties of the pair (4.3)-(4.4).

Proposition 4.1. Let d1 > d be even. Suppose the system (4.1) is feasible.

(i) If f ∈ int(Σ[x̃]d1), then strong duality holds and the minimum value of
(4.3) is achievable.

(ii) Suppose f is generic in Σ[x̃]d1 , then the optimization problem (4.3) has a

unique minimizer w∗. Moreover, every K̃-representing measure µ of w∗ is
r-atomic with r ≤ m.

Proof. (i) Since K̃ is compact, the cone Rd1(K̃) is closed (see Theorem 3.1). The
feasible set of (4.3) is nonempty, since (4.1) is feasible. When f ∈ int(Σ[x̃]d1), the
dual optimization (4.4) has an interior point. Hence the strong duality holds and
the optimization (4.3) must achieve its minimum value (see [1]).
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(ii) If f is generic in Σ[x̃]d1 , the objective 〈f, w〉 is a generic linear functional.

Note that K̃ is compact, the uniqueness can be implied by Proposition 5.2 of [28].
Since the minimizer w∗ is unique, it must be an extreme point of the convex set

(4.6) E =

{
w ∈ Rd1(K̃)

∣∣∣∣
〈âi, w〉 = bi (1 ≤ i ≤ m1),
〈âi, w〉 ≥ bi (m1 < i ≤ m)

}
.

Suppose µ is a K̃-representing measure of w∗. Let J ⊆ {m1 + 1, . . . ,m} be the
index set of active inequality constraints for w∗. In the following, we prove that µ
is r-atomic with r ≤ m.

First, we consider the case that µ is finitely atomic, say, µ = λ1δu1 + · · ·+λrδur
,

where ui ∈ R
n+1 are distinct and λi > 0. We need to show that r ≤ m. Suppose

otherwise that r > m. We claim that there exist λ∗
1, . . . , λ

∗
r ∈ R and p∗ ∈ R[x̃]d1 \

Span{â1, . . . , âm} such that

(4.7)

r∑
k=1

λ∗
kâi(uk) = 0 (i ∈ [m1] ∪ J),

r∑
k=1

λ∗
kp

∗(uk) 6= 0
.

If such p∗ and λ∗
k do not exist, then for every p ∈ R[x̃]d1 \ Span{â1, . . . , âm}, the

vector (p(u1), . . . , p(ur)) is a linear combination of the vectors

(âi(u1), . . . , âi(ur)), i ∈ [m1] ∪ J.

We can extend {âi : i ∈ [m1] ∪ J} to a basis of R[x̃]d1 by choosing

p1, . . . , pt ∈ R[x̃]d1 \ Span{â1, . . . , âm}.
For j = 1, . . . , t and k = 1, . . . , r, there exist scalars sj,i such that

∑

i∈[m1]∪J

sj,iâi(uk) = pj(uk).

Let qj := pj −
∑

i∈[m1]∪J

sj,iâi for each j = 1, . . . , t. Let I∗ be the ideal generated by

q1, . . . , qt. We show that the vectors [âi], with i ∈ [m1]∪J , span the quotient space
R[x̃]/I∗. For each p ∈ R[x̃]d1 , we write that

p =
∑

i∈[m1]∪J

ciâi +

t∑

j=1

djpj,

for some scalars ci, di ∈ R. Note that

p ≡
∑

i∈[m1]∪J

ciâi +

t∑

j=1

djpj ≡
∑

i∈[m1]∪J

ciâi +

t∑

j=1

dj

( ∑

i∈[m1]∪J

sj,iâi

)
mod I∗.

Thus, the equivalent class [p] of p can be spanned by vectors [âi] (i ∈ [m1] ∪ J).
For |β| = d1 + 1, we have xβ = xjx

α for some j ∈ [n] and |α| = d1. Since d1 > d
and deg(xj âi) ≤ d1, it follows that [x

β ] can be spanned by [âi] (i ∈ [m1] ∪ J). By
induction, we know that the vectors [âi] (i ∈ [m1] ∪ J) span R[x̃]/I∗. By Theorem
2.6 of [24], we have dimR[x̃]/I∗ ≤ m1 + |J |, and the number of common zeros of
polynomials qj is no more than m1 + |J |. However, for k = 1, . . . , r, we have

qj(uk) = pj(uk)−
∑

i∈[m1]∪J

sj,i(uk)âi(uk) = 0,
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which contradicts with r > m ≥ m1 + |J |. Hence, the equation (4.7) holds. Let
ǫ > 0 be small enough such that λk ± ǫλ∗

k > 0 (k = 1, . . . , r), and denote

µ1 = (λ1 + ǫλ∗
1)δu1 + · · ·+ (λr + ǫλ∗

r)δur
,

µ2 = (λ1 − ǫλ∗
1)δu1 + · · ·+ (λr − ǫλ∗

r)δur
.

Let

w1 =

∫

K̃

[x̃]d1 dµ1, w2 =

∫

K̃

[x̃]d1 dµ2.

Note that for j ∈ {m1 + 1, . . . ,m}\J , we have 〈âj , w〉 > bj. Thus if ǫ is small
enough, we can easily check w1, w2 ∈ E, w∗ = 1

2 (w1 + w2), and w1 6= w∗, w2 6= w∗,
which contradicts that z is an extreme point of E.

Second, consider the case that µ is not finitely atomic. It can be reduced to
the case of finitely atomic measures. We refer to [28, Lemma 3.5]. Thus, every

K̃-representing measure µ of w∗ must be r-atomic with r ≤ m. �

For an order k ≥ ⌈d1/2⌉, the kth order moment relaxation of (4.3) is

(4.8)





min 〈f, w〉
s .t . 〈âi, w〉 = bi (1 ≤ i ≤ m1),

〈âi, w〉 ≥ bi (m1 < i ≤ m),

L
(k)
c̃i

[w] = 0 (i ∈ E),
L
(k)
‖x̃‖2−1[w] = 0,

L
(k)
c̃j

[w] � 0 (j ∈ I),
L
(k)
x0 [w] � 0,

Mk[w] � 0, w ∈ R
N

n+1
2k .

The dual optimization problem of (4.8) is

(4.9)






max b1θ1 + · · ·+ bmθm

s .t . f −
m∑
i=1

θiâi ∈ Ideal[c̃eq ]2k +QM[c̃in]2k,

θm1+1 ≥ 0, . . . , θm ≥ 0.

In the above, c̃eq and c̃in are from (3.8). The following are some properties of the
relaxations (4.8)-(4.9).

Theorem 4.2. Let d1 > d be even. Then we have:

(i) If the moment relaxation (4.8) is infeasible for some order k, then the
truncated moment system (4.1) is infeasible.

(ii) Suppose K is closed at ∞ and H0 ∩ int(Pd(K)) 6= ∅. Then, the closure
moment system (4.2) is infeasible if and only if the moment relaxation (4.8)
is infeasible for some order k.

(iii) Suppose K is closed at ∞ and w∗ is a minimizer of (4.8) such that the
truncation w∗|2t (2t ≥ d) is flat. Then, the closure moment system (4.2)

is feasible. Moreover, if ν is the K̃-representing measure for w∗|2t and
(4.10) supp(ν) ⊆ {x0 > 0},

then the moment system (4.1) is also feasible.
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Proof. (i) This conclusion is obvious, because (4.8) is a relaxation of (4.3). If (4.1)
is feasible, then (4.3) and (4.8) are also feasible.

(ii) The “if” part follows from Theorem 3.7, so we only need to show the “only
if” part. Suppose the system (4.2) is infeasible, i.e., the following optimization

(4.11)





max 0
s .t . 〈âi, w〉 = bi (1 ≤ i ≤ m1),

〈âi, w〉 ≥ bi (m1 < i ≤ m),

w ∈ RA(K̃)

is infeasible. The dual problem of (4.11) is

(4.12)





min
∑

i∈[m1]

biti −
∑

m1<j≤m

bjtj

s .t .
∑

i∈[m1]

tiâi −
∑

m1<j≤m

tj âj ∈ PA(K̃),

tm1+1 ≥ 0, . . . , tm ≥ 0.

Since H0∩int(Pd(K)) 6= ∅, we know (4.12) has an interior point. By the strong du-
ality, the optimization (4.12) must be unbounded below, i.e., there exists λ∗

1, · · · , λ∗
m1

,
λ∗
m1+1 ≥ 0, . . . , λ∗

m ≥ 0 such that

b(λ∗) :=
∑

i∈[m1]

biλ
∗
i −

∑

m1<j≤m

bjλ
∗
j < 0,

â(λ∗) :=
∑

i∈[m1]

λ∗
i âi −

∑

m1<j≤m

λ∗
j âj ∈ PA(K̃).

Since H0∩ int(Pd(K)) 6= ∅, let λ̄ be such that â(λ̄) > 0 on K̃. Then for ǫ > 0 small

enough, â(ǫλ̄ + λ∗) > 0 on K̃. By Putinar’s Positivstellensatz (see Theorem 2.3),
the following holds

â(ǫλ̄+ λ∗) ∈ Ideal[c̃eq]2k1 +QM[c̃in]2k1 , b(ǫλ̄+ λ∗) < 0,

for some k1 and ǫ > 0 small enough. This means that (4.9) has an improving ray,
so (4.8) must be infeasible.

(iii) Since the truncation w∗|2t is flat, it admits a unique K̃-representing measure
ν. Moreover, the measure ν is finitely atomic (see Theorem 2.2), say,

ν = λ̃1δ(τ1,v1) + · · ·+ λ̃rδ(τr,vr),

with each point (τi, vi) ∈ K̃. Hence, the dehomogenized tms of w∗|Ã is a feasible
solution of the closure moment system (4.2). Moreover, when the assumption (4.10)
holds, we have τi > 0 for every i. Let ui = vi/τi, then ui ∈ K. So the measure

µ = λ1δu1 + · · ·+ λrδur
,

where λi = λ̃1τ
d
i , is a K-representing measure for the dehomogenized tms of w∗|2t.

This implies that the system (4.1) is feasible. �

In view of the above properties, we get the following algorithm.

Algorithm 4.3. (A Moment-SOS algorithm for solving the GTMP) For the semi-

algebraic set K as in (1.1), let K̃ be as in (3.4) and let dK be as in (2.3).

Input: The polynomials a1, . . . , am1 , . . . , am and constants b1, . . . , bm1 , . . . , bm, and
a finite power set A ⊆ N

n.
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Step 0 Let d = deg(A) and let âi = xd
0ai(x/x0). Choose an even integer d1 > d

and a generic f ∈ Σ[x̃]d1 . Let k := d1

2 .
Step 2 Solve the Moment-SOS relaxation (4.8)−(4.9). If (4.8) is infeasible, output

that (4.1) is infeasible. If (4.8) is feasible, solve it for a minimizer w∗. Let
t = max{dK , ⌈d/2⌉}.

Step 3 Check whether the rank condition

(4.13) rankMt−dK
[w∗|2t] = rankMt[w

∗|2t].
is satisfied or not. If yes, compute the finitely atomic measure ν for w∗|2t:

ν = ρ1δũ1 + · · ·+ ρrδũr
,

where r = rankMt (w
∗|2t) , ũi = (τi, vi) ∈ K̃ and ρi > 0. If all τi > 0,

let µ := λ1δu1 + · · · + λrδur
, where each λi = ρiτ

d
i , ui = vi/τi, and stop.

Otherwise, go to Step 4.
Step 4 If t < k, let t := t + 1 and go to Step 3. Otherwise, let k := k + 1 and go

to Step 2.
Output The finitely atomic K-representing measure µ for y satisfying (4.1), or a

detection that (4.1) is infeasible.

Remark 4.4. There are the cases that w∗|2t is flat while its representing measure
ν has an atom ũl = (τl, vl) with the x0-coordinate τl = 0. For such a case, we
cannot obtain a K-representing measure satisfying (4.1), although (4.2) is feasible.
When this happens, it is possible that (4.3) has other feasible points that have a

finitely atomic K̃-representing measure whose support has positive x0-coordinates.
There are two ways to get a feasible point for (4.1):

(i) Choose a different generic f to get a new feasible point of (4.3).

(ii) Strength the constraint x0 ≥ 0 in K̃ to x0 ≥ ǫ for some ǫ > 0 small.

However, no matter if a finitely atomic K̃-representing measure whose support has
positive x0-coordinates can be obtained, we can always approximately get a feasible
point of (4.1) by a sequence of finitely atomic K-representing measures. We refer
to Remark 3.8 for how to do this.

The following is the convergence result for Algorithm 4.3.

Theorem 4.5. Let d1 > d be even. Suppose the moment system (4.1) is feasible
and f is generic in Σ[x̃]d1 . Then, the moment relaxation (4.8) has an optimizer
wk for every order k. Moreover, we also have:

(i) For all t big enough, the sequence
{
wk|2t

}
is bounded and all its accumu-

lation points are flat. Moreover, each of its accumulation points admits a
r-atomic K-representing measure with r ≤ m.

(ii) Assume that (4.4) has a maximizer θ∗ such that

(4.14) f −
m∑

i=1

θ∗i âi ∈ Ideal[c̃eq ]2k1 +QM[c̃in]2k1

and the optimization problem

(4.15)





min f(x̃)−
m∑
i=1

θ∗i âi(x̃)

s .t . x̃ ∈ K̃
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has finitely many KKT points. Then, there exists t > 0 such that the
truncation wk

∣∣
2t

is flat for all k big enough.

Proof. Since f is generic in Σ[x̃]d1 , we can assume f ∈ int(Σ[x̃]d1). Hence, we know
(4.9) has an interior point, so the optimal values of (4.8) and (4.9) are equal, and
(4.8) has an optimal minimizer wk, by the strong duality theorem (see [1]).

(i) First, we show the sequence
{
wk|2t

}∞
k=t

is bounded. Note that f ∈ int(Σ[x̃]d1)

and Mk[w
k] � 0. We have that f − ǫ ∈ Σ[x̃]d1 for ǫ > 0 small enough and

〈f − ǫ, wk〉 ≥ 0. Let OPT (f) be the optimal value of (4.3). Since (4.8) is a
relaxation of (4.3), we have

(4.16) (wk)0 ≤ 〈f, wk〉/ǫ ≤ OPT (f)/ǫ.

Hence, the sequence {(wk)0} is bounded. Moreover, the constraint L
(k)
‖x̃‖2−1[w

k] = 0

gives that

〈‖x̃‖2t, wk〉 = 〈‖x̃‖2(t−1), wk〉 = · · · = 〈1, wk〉 = (wk)0,

which implies that the diagonal elements of Mt[w
k|2t] are all bounded by (wk)0.

Combining with (4.16), it implies that
{
wk|2t

}∞
k=t

is bounded. Suppose w∗ is

an accumulation point of
{
wk|2t

}∞
k=t

for t ≥ d1

2 . It is easy to see that w∗ is a

minimizer of (4.3). When t is sufficiently big, the flatness of w∗ can be proved
as in [28, Theorem 5.3]. We omit it for cleanness. Note that for generic f , the
optimization problem (4.3) has a unique minimizer. Hence, the truncation of each
accumulation point at degree d must be an extreme point of (4.6). Combining with
Proposition 4.1, we have that each of its accumulation points admits a r-atomic
K-representing measure with r ≤ m.

(ii) Since f is generic in Σ[x̃]d1 , the optimal values of (4.3) and (4.4) are equal.
The condition (4.14) implies that the relaxation (4.8)− (4.9) is tight for all k ≥ k1.
For k ≥ k1, the following holds

〈f −
m∑

i=1

θ∗i âi, w
k〉 = 〈f, wk〉 −

m∑

i=1

θ∗i 〈âi, wk〉 ≤ 〈f, wk〉 −
m∑

i=1

biθ
∗
i = 0.

Note that f −
m∑
i=1

θ∗i âi ∈ Pd1(K̃). It implies that the optimal value of (4.15) is

zero. The ℓth order SOS relaxation for (4.15) is

(4.17)






max γ

s .t . f −
m∑
i=1

θ∗i âi − γ ∈ Ideal[c̃eq]2ℓ +QM[c̃in]2ℓ.

The above implies that the relaxation (4.17) is tight for all ℓ ≥ k1. Hence, the
assumptions in [30] for the problem (4.15) are satisfied and the truncation wk

∣∣
2t

is
flat for all t, k big enough. �

5. Numerical Experiments

In this section, we give examples to solve truncated moment problems with
unbounded sets by Algorithm 4.3. In our computation, we set

d0 =
⌈d+ 1

2

⌉
, f = [x]Td0

RTR[x]d0 ,
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where R is a random square matrix obeying standard Gaussian distribution. Algo-
rithm 4.3 is implemented in the software GloptiPoly 3 [18] by calling the semidefi-
nite program package Sedumi [36]. The computation is implemented in MATLAB
R2019a on a Lenovo Laptop with CPU@1.10GHz and RAM 16.0G. For cleanness
of the paper, only four digits are displayed for computational results.

Recall that a symmetric tensor B = (Bi1...im)0≤i1,...,im≤n is uniquely determined

by the tms b := (bα)α∈Nn
m

such that

bα = Bi1i2...im

for every α ∈ N
n
m with x

m−|α|
0 xα = xi1 · · ·xim .

First, we give some examples of PSOP tensor decompositions.

Example 5.1. (i) Let B ∈ S3
(
R

5
)
be the symmetric tensor such that

Bijk =

{
1 if ijk = 0,
3 otherwise.

We can see that B ∈ cl(PS53)\PS53, i.e., the tms b ∈ cl(R3(R
4))\R3(R

4). For each
ǫ > 0, let

bǫ := 2ǫ3[(
1

ǫ
,
1

ǫ
,
1

ǫ
,
1

ǫ
)]N4

3
+ [(1, 1, 1, 1)]N4

3
.

The membership b ∈ cl(R3(R
4)) follows from bǫ → b as ǫ → 0. To see b /∈ R3(R

4),
suppose otherwise that b admits a representing measure µ. Then,

∫
(1− x1)

2dµ = b(0,0,0,0) − 2b(1,0,0,0) + b(2,0,0,0) = 0.

This implies that supp(µ) ⊆ {x1 = 1}, so

0 =

∫
x1(1− x1)

2dµ = b(1,0,0,0) − 2b(2,0,0,0) + b(3,0,0,0) = 2,

which is a contradiction. We apply the Algorithm 4.3 to check b ∈ cl(R3(R
4)).

For each random instance of f , we get rankM1(w
k) = rankM2(w

k) = 2 at the
relaxation order k = 2 and obtain a 2-atomic representing measure whose support
consists of the points

(0,
1

2
,
1

2
,
1

2
,
1

2
), (

1√
5
,
1√
5
,
1√
5
,
1√
5
,
1√
5
).

Note that x0-coordinate of the atom (0, 1
2 ,

1
2 ,

1
2 ,

1
2 ) is zero. This implies that B ∈

cl(PS53) by Remark 3.8. The computation took about 0.48 second.
(ii) Let B ∈ S4

(
R

6
)
be the symmetric tensor such that

Bijks = i+ k + j + s.

By applying Algorithm 4.3, the relaxation (4.8) is infeasible at the order k = 3.
Therefore, we get B /∈ cl(PS64) and B is not PSOP. The computation took about
48.12 seconds.
(iii) Let B ∈ S3

(
R

n+1
)
be the symmetric tensor such that

Bijk = n−max{i, j, k}.
For the case n = 1, 2, . . . , 9, Algorithm 4.3 always produces a PSOP decomposition
for B at the order k = 2. For instance, when n = 5, Algorithm 4.3 produces the
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Table 5.1. Example 5.1 (iii)

n time n time n time
1 0.08 2 0.11 3 0.21
4 0.43 5 0.85 6 1.93
7 4.48 8 10.81 9 25.95

following PSOP decomposition

B =




1
0
0
0
0
0




⊗3

+




1
1
0
0
0
0




⊗3

+




1
1
1
0
0
0




⊗3

+




1
1
1
1
0
0




⊗3

+




1
1
1
1
1
0




⊗3

.

The computing time is presented in Table 5.1. Time consumption in the table is
measured in seconds. The computational time increases as the dimension increases.
This is because the matrix size of the relaxation (4.8) for the order k is around
O(nk).
(iv) Consider the tensor B ∈ S6

(
R

3
)
such that b := (bβ)β≤N2

6
is (listed in degree-

lexicographic order)
(
1, 1, 0, 1, 0, 1, 1, 0, 1, c, 1, 0, 1, c, 1+ c2, 1, 0, 1, c, 1 + c2, 2c+ c3,

1, 0, 1, c, 1 + c2, 2c+ c3, 1 + 3c2 + c4 + t
)
,

for two parameters c, t ∈ R. This example is a variation of Example 5.2 of [16]. As
pointed in [16], the tms b is flat and admits a representing measure when t = 0
and b ∈ cl(R6(R

2))\R6(R
2) when t > 0. For the case t = c = 0, Algorithm 4.3

produces the PSOP decomposition

B =
1

2




1
1

−1



⊗6

+
1

2




1
1
1



⊗6

at the relaxation order k = 4. It took around 0.97 second. Next we consider the case
t = 1, c = 0. For each random instance of f , we get rankM1(w

k) = rankM2(w
k) =

3 at the order k = 4 and it produces a 3-atomic measure µ for the homogenization

b̃. For some random instances of f , the support supp(µ) consists of the points

(
1√
3
,
1√
3
,− 1√

3
), (

1√
3
,
1√
3
,
1√
3
), (0, 0,−1).

For other instances of f , the support supp(µ) consists of the points

(
1√
3
,
1√
3
,− 1√

3
), (

1√
3
,
1√
3
,
1√
3
), (0, 0, 1).

Since x0-coordinates of (0, 0, 1) and (0, 0,−1) are zero, we get B ∈ cl(PS36). The
computation took about 0.96 second.

In the following, we give some examples of SCP tensor decompositions. Recall
that the tensor B is SCP if and only if b admits a representing measure supported
in the nonnegative orthant.
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Example 5.2. Consider the symmetric tensor B(t) ∈ S3
(
R

6
)
such that

B(t) =




1
1
0
0
0
0




⊗3

+




1
0
1
0
0
0




⊗3

+




1
0
0
1
0
0




⊗3

+




1
0
0
0
1
0




⊗3

+




t
0
0
0
0
1




⊗3

for a parameter t ∈ R. For t > 0, we clearly have B(t) ∈ SCP6
3. However, for t = 0,

we have B(0) ∈ cl(SCP6
3)\SCP6

3. To see this, note that

B(t)555 = 1, B(t)055 = t.

If B(0) was otherwise SCP, then there would exist a Borel measure µ such that
supp(µ) ⊆ R

6 and
∫

x3
5dµ = B(0)555 = 1,

∫
x2
5dµ = B(0)055 = 0.

But such a Borel measure µ cannot exist, so we get B(0) 6∈ SCP6
3. Moreover, since

B(t) → B(0) as t → 0 and t > 0, we get B(0) ∈ cl(SCP6
3). Similarly, we can show

that B(t) /∈ SCP6
3 for t < 0. The following is the performance of Algorithm 4.3 for

checking SCP tensors.
(i) Consider the case t = 1. By applying Algorithm 4.3, it produces the decom-

position B(1) = ∑5
k=1 ρkũ

⊗3
k at the relaxation order k = 2, where

ũ1 = 1√
2
(1, 1, 0, 0, 0, 0), ρ1 = 2

√
2;

ũ2 = 1√
2
(1, 0, 1, 0, 0, 0), ρ2 = 2

√
2;

ũ3 = 1√
2
(1, 0, 0, 1, 0, 0), ρ3 = 2

√
2;

ũ4 = 1√
2
(1, 0, 0, 0, 1, 0), ρ4 = 2

√
2;

ũ5 = 1√
2
(1, 0, 0, 0, 0, 1), ρ5 = 2

√
2.

It took about 0.97 second. Since all the x0-coordinates of ũk are positive, we know
that B(1) is an SCP tensor.

(ii) Consider the case t = 0. By applying Algorithm 4.3, it produces the decom-

position B(0) = ∑5
k=1 ρkũ

⊗3
k at the order k = 2, where

ũ1 = (0, 0, 0, 0, 0, 1), ρ1 = 1;

ũ2 = 1√
2
(1, 1, 0, 0, 0, 0), ρ2 = 2

√
2;

ũ3 = 1√
2
(1, 0, 1, 0, 0, 0), ρ3 = 2

√
2;

ũ4 = 1√
2
(1, 0, 0, 1, 0, 0), ρ4 = 2

√
2;

ũ5 = 1√
2
(1, 0, 0, 0, 1, 0), ρ5 = 2

√
2.

Since x0-coordinate of ũ1 is zero, we get B(0) ∈ cl(SCP6
3). The computation took

about 1.09 seconds.
(iii) Consider the case t = −1. By applying Algorithm 4.3, the relaxation (4.8) is

infeasible at the relaxation order k = 2, so we get B(−1) /∈ SCP6
3. The computation

took about 0.82 second.

In the following, we present some examples on the generalized truncated moment
problems with unbounded sets.



GENERALIZED TRUNCATED MOMENT PROBLEMS WITH UNBOUNDED SETS 23

Example 5.3. (i) Consider K = {x ∈ R
6 : ‖x‖2 ≥ 1}, y ∈ R

A is listed as follows

y(0,0,0,0,0,0) = t, y(2,0,0,0,0,0) = · · · = y(0,0,0,0,0,2) = 1.

When t > 6, y admits no K-representing measures. This is because if µ is such a
measure, we have

6 =

∫

K

x2
1 + · · ·+ x2

6 dµ ≥
∫

K

1 dµ = t,

which is a contradiction. And if t = 6, the measure ν = 6δ( 1√
6
,··· , 1√

6
) is a K-

representing measure for y. Hence, y ∈ RA(K) when t = 6.
Consider t = 6, and we apply the Algorithm 4.3. At the order k = 2, we

have that rankM1(w
k) = rankM2(w

k) = 1 and obtain a K-representing measure
6δ( 1√

6
,··· , 1√

6
) of y. The computation took about 5.93 seconds. Next, we consider

t = 7. At the order k = 2, the relaxation (4.8) is infeasible, which gives a certificate
that y admits no K-representing measures when t = 7. It took about 4.23 seconds.
(ii) Consider K = {x ∈ R

3 | x1x2x3(x1 + x2 + x3 − 6) = 0, xi ≥ 0, i = 1, 2, 3}, the
index set A and y ∈ R

A are listed as follows

α yα α yα α yα
(1, 0, 0) 9 (0, 1, 0) 15 (0, 0, 1) 18
(2, 0, 0) 9 (1, 1, 0) 14 (0, 2, 0) 29
(1, 1, 1) 24 (1, 2, 0) 28 (1, 0, 2) 44

By applying Algorithm 4.3, we get rankM1(w
k) = rankM3(w

k) = 5 at the order

k = 3. We get a 5-atomic K-representing measure µ =
5∑

i=1

λiδui
of y as follows

u1 = (4.8367, 0.0000,−8.6952), λ1 = 0.0535;
u2 = (0.0000,−0.4954, 0.6272), λ2 = 4.4833;
u3 = (0.0898, 0.0000, 0.7193), λ3 = 11.5641;
u4 = (1.4278, 2.2915, 2.2807), λ4 = 3.2163;
u5 = (0.3530, 1.1177, 0.0000), λ5 = 8.8139.

The computation took about 0.24 second.
(iii) Consider K = {x ∈ R

6 | x2
i − xixi+1 + 1 = 0, i = 1, . . . , 5}, the index set A

and y ∈ R
A are listed as follows

α yα α yα
(4, 0, 0, 0, 0, 0) 1 (0, 4, 0, 0, 0, 0) 3
(0, 0, 4, 0, 0, 0) 6 (0, 0, 0, 4, 0, 0) 10
(0, 0, 0, 0, 4, 0) 15 (0, 0, 0, 0, 0, 4) 21

Note that y admits no K-representing measures. Suppose otherwise µ is a K-
representing measure of y, then we have

3 =

∫

K

x4
2 dµ =

∫

K

(x1 +
1

x1
)4 dµ ≥

∫

K

x4
1 + 6 dµ = 7,

which is a contradiction. By applying Algorithm 4.3, we have rankM2(w
k) =

rankM3(w
k) = 6 at the order k = 3. The atoms of the finitely atomic measure ν
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for w∗|6 are
1√
6
(0, 1, 1, 1, 1, 1, 1), 1√

5
(0, 0, 1, 1, 1, 1, 1),

1
2 (0, 0, 0, 1, 1, 1, 1),

1√
3
(0, 0, 0, 0, 1, 1, 1),

1√
2
(0, 0, 0, 0, 0, 1, 1), (0, 0, 0, 0, 0, 0, 1).

Thus, we know that y ∈ cl(RA(K)). The computation took about 13.88 seconds.
(iv) Let K = R

6. One wonders whether there exists a measure µ supported in K
such that

∫
x2
idµ = i (i = 1, . . . , 6),

∫
xixi+1dµ = i2 (i = 1, . . . , 5),

∫
x1x6dµ = 1.

By applying Algorithm 4.3, the relaxation (4.8) is infeasible at the order k = 2,
which gives a certificate that the system above is infeasible. The computation took
about 1.56 seconds.
(v) Let K = {x ∈ R

4 | ‖x‖2 ≥ 1}. We want to know whether there exists a measure
µ supported in K such that

∫
x3
1x

3
2dµ =

∫
x3
2x

3
3dµ =

∫
x3
3x

3
4dµ =

∫
x3
4x

3
1dµ,

∫ (
x4
1x

2
2 + x4

2x
2
3 + x4

3x
2
4 + x4

4x
2
1

)
dµ ≥ 4,

∫ (
x6
1 + x6

2 + x6
3 + x6

4

)
dµ ≥ 4,

∫
(x2

1x
2
2x

2
3 + x2

2x
2
3x

2
4 + x2

3x
2
4x

2
1 + x2

4x
2
1x

2
2)dµ ≤ 4.

By applying Algorithm 4.3, we have that rankM1(w
k) = rankM2(w

k) = 4 at the
order k = 4, and the x0-coordinates of all atoms are nonzero. Thus, we get a

4-atomic K-representing measure µ =
4∑

i=1

λiδui
of y as follows

u1 = (−0.1401,−1.8084,−1.3964,−0.1014), λ1 = 0.0460;
u2 = (−1.8723,−1.3077,−0.1776, 0.0536), λ2 = 0.0504;
u3 = (−1.4048,−0.0263,−0.0682,−1.8086), λ3 = 0.0452;
u4 = (−0.0154,−0.0324, 1.8546, 1.3451), λ4 = 0.0477.

The computation took about 320.71 seconds.

We would like to point out that Algorithm 4.3 can be directly applied to solve
moment optimization problems with unbounded sets of type (4.3). This is discussed
in the work [22, 30]. We give such an example of rational polynomial optimization.
Consider the rational polynomial optimization

(5.1)

{
min f(x)

g(x)

s .t . x ∈ K,

where f , g are polynomials. Here K is as in (1.1) and g(x) is assumed to be
nonnegative on K. It can be shown that (5.1) is equivalent to

(5.2)





min 〈f, y〉
s .t . 〈g, y〉 = 1,

y ∈ Rd(K),
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where d = max{deg(f), deg(g)}. Note that (5.2) is a generalized problem of mo-

ments. Let f̂ , ĝ be the degree-d homogenization of f , g respectively. When K is
closed at ∞, one can see that (5.2) is equivalent to

(5.3)





min 〈f̂ , w〉
s .t . 〈ĝ, w〉 = 1,

w ∈ Rd(K̃).

Algorithm 4.3 can be similarly applied to solve it. The following is such an example.

Example 5.4. Consider the problem

min
x1,x2≥0

x3
1 + x3

2 + 3x1x2 + 1

x1 (x2
2 + 1) + x2 (x2

1 + 1) + (x2
1 + x2

2)
.

In this example,

f = x3
1 + x3

2 + 3x1x2 + 1, g = x1

(
x2
2 + 1

)
+ x2

(
x2
1 + 1

)
+
(
x2
1 + x2

2

)
.

The optimal value is 1. We apply the Moment-SOS relaxation (4.8)-(4.9) to solve
(5.3). At the order k = 2, the flat truncation (4.13) is satisfied, and the computed
optimal value is 1.

6. Conclusions and discussions

In this paper, we study the geometric properties of the moment cone and the
cone of nonnegative polynomials. Semidefinite relaxations are constructed to ap-
proximate RA(K) and PA(K), and the convergence is guaranteed under the as-
sumptions that K is closed at ∞ and R[x]A ∩ int(Pd(K)) 6= ∅. Based on these
relaxations, efficient algorithms are given for solving the generalized truncated mo-
ment problem. Note that we do not need K to be compact as the previous work,
while asymptotic and finite convergence is guaranteed. There are broad applications
of generalized moment optimization problems (see [9, 20, 22, 30]).

There is still much interesting future work to do. How can one certificate whether
or not a multi-sequence y ∈ R

A admits aK-representing measure for the case that y
lies on the boundary of RA(K)? When PA(K)∩ int(Pd(K)) = ∅, do we still have
the same properties for the Moment-SOS relaxations? How can we characterize the
relative interior of PA(K) when it lies on the boundary of Pd(K)? These questions
are mostly open for us. Last, if y ∈ R

A admits a K-representing measure, how can
we get a finitely atomic measure with minimum length? This problem is quite
important for detecting different ranks of matrices and tensors.
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