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Abstract This paper applies an idea of adaptive momentum for the nonlin-

ear conjugate gradient to accelerate optimization problems in sparse recovery.
Specifically, we consider two types of minimization problems: a (single) differ-

entiable function and the sum of a non-smooth function and a differentiable

function. In the first case, we adopt a fixed step size to avoid the traditional
line search and establish the convergence analysis of the proposed algorithm
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for a quadratic problem. This acceleration is further incorporated with an op-

erator splitting technique to deal with the non-smooth function in the second

case. We use the convex ℓ1 and the nonconvex ℓ1 − ℓ2 functionals as two case
studies to demonstrate the efficiency of the proposed approaches over tradi-

tional methods.

Keywords Accelerated gradient momentum · operator splitting · fixed step
size · convergence rate
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1 Introduction

Traditional methods for reconstructing signals from measured data follow

the well-known Nyquist-Shannon sampling theorem [65], which guarantees
the exact recovery if the sampling rate is at least twice the highest frequency

of the underlying signal. Similarly, the fundamental theorem of linear alge-
bra suggests that the number of linear measurements of a discrete finite-

dimensional signal should be at least as large as its ambient dimension to

ensure a stable reconstruction. Nyquist–Shannon theorem serves as the under-
lying principle of most devices [6] such as analog-to-digital conversion, medi-

cal imaging, and video processors, but it is a sufficient condition for the exact

recovery of any signal that requires an overly large number of measurements
to be collected.

To acquire and process data more economically, the paradigm of compres-

sive sensing (CS) [16]—also known as compressed sensing, or compressive
sampling—provides a fundamentally new approach that reconstructs certain

signals from what was believed in the past to be highly incomplete measure-
ments (information). CS relies on an empirical observation that most signals

can be well approximated by a sparse expansion under a properly chosen ba-

sis, that is, by only a small number of non-zero coefficients. The number of
non-zero entries of a vector x ∈ R

N is denoted by ‖x‖0. Note that ‖ · ‖0 is

named the “ℓ0 norm” in [16], although it is not even a semi-norm. The vector

x is called s-sparse if ‖x‖0 ≤ s, and it is considered a sparse vector if s ≪ N .
Note that few practical systems are truly sparse through direct observations,

but rather compressible, i.e., only a few entries contribute significantly to its ℓ1
norm under certain transformations.

For simplicity, we assume linear measurements; otherwise one can always

linearize the data collection process. Consequently, we consider a data vector

b ∈ R
M obtained by

b = Ax+ n, (1)

https://sites.google.com/site/louyifei/Software
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where A ∈ R
M×N is called a sensing matrix, x ∈ R

N is an underlying signal

to be recovered, and n ∈ R
M is the noise term. We assume the noise follows

i.i.d. Gaussian distribution. To find a sparse vector x from (1), one formulates
an unconstrained minimization problem,

x̂0 = argmin
x

λ‖x‖0 +
1

2
‖Ax− b‖22, (2)

where λ is a positive parameter to be tuned such that ‖Ax̂0 − b‖2 ≤ ǫ for a
pre-set error tolerance ǫ that often corresponds to the standard deviation of

the random Gaussian noise. For other types of noise, e.g., Poisson noise, then
the least-squares formulation ‖Ax−b‖22 is not a good choice of the data misfit.

As the ℓ0 minimization (2) is NP-hard [44], one replaces it by the convex ℓ1
norm, i.e.,

x̂1 = argmin
x

λ‖x‖1 +
1

2
‖Ax− b‖22. (3)

In this paper, we consider a general formulation for sparse recovery

min
x

λf(x) + g(x), (4)

where f(·) is a regularization term and g(·) is a (convex and differentiable)

data fidelity term, e.g., g(x) = 1
2‖Ax− b‖22. We assume that f is a continuous

(possibly non-differentiable) function that can enhance the sparsity of x. For

instance, the non-convex metric ℓp for p ∈ (0, 1) can be viewed as a contin-

uation effort to approximate ℓ0 as p → 0 [10,34,31]. Another regularization
that achieves a continuation from ℓ0 to ℓ1 is the error function (ERF) [23]

by changing its internal parameter. Some non-convex regularizations derived

from ℓ1 include capped ℓ1 [75,61,40], transformed ℓ1 (TL1) [42,73,74,22],
and sorted ℓ1 [32]. A combination of different norms can also be served as a

sparsity promoting sparsity, e.g., ℓ1 − ℓ2 [71,39,38] and ℓ1/ℓ2 [56,67]. To the
best of our knowledge, only ℓ1 − ℓ2 and TL1 have the exact sparse recovery

guarantees based on the RIP type of conditions [72,74], which are actually

more strict compared to the one for the ℓ1 model. As these RIP conditions are
sufficient and unverifiable, many works reported the empirical advantages of

non-convex regularizations over the convex ℓ1 approach in promoting sparsity.

A major difficulty in minimizing (4) for a nonconvex regularization f(·) is that
many algorithms may be stuck at the local optimal solutions.

As f(·) is non-differentiable, gradient-based optimization methods can not
be directly applied to minimize (4), not to mention some acceleration tech-

niques by adaptive momentum [54,53,30,18]. One remedy involves a smooth

approximation of f such as using the Huber function [33,28,63] to approxi-
mate the ℓ1 norm. In general, several papers reported using smoothing to

approximate non-smooth functions to improve the performance of non-linear

conjugate algorithms [11,70,49,43]. Another alternative is based on operator
splitting to deal with the non-smooth term f(·) and the smooth function g(·)
separately, for example, forward-backward splitting (FBS) [12], the alterna-
tive direction method of multipliers (ADMM) [7], and iteratively reweighted

L1 [8,41].
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We propose to combine the operator splitting with the momentum accel-

eration. In particular, we incorporate the momentum update in the gradient

descent when minimizing the data fitting term g(·) for speed-up, while relying
on proximal operators [50] to deal with the non-differentiable function f(·).
Starting by f(·) = ∅, i.e., minimizing a single differentiable function g(·), we

promote the choice of fixed step size in the momentum-based gradient descent
algorithm and analyze its convergence rate for a quadratic problem. To deal

with the non-smooth function f(·), we further adopt a splitting technique and
consider two case studies when the proximal operator according to f(·) has

a closed-form solution. We conduct experiments on a quadratic problem, ℓ1
and ℓ1 − ℓ2 minimization problems to compare among different momentum
update formulas and showcase the speed-up of the proposed approach with

simple implementation over the traditional gradient-based approaches.

The remaining of this paper is organized as follows. Section 2 examines
the case of minimizing a single differentiable function. In particular, we advo-

cate a constant step size and prove the convergence for a quadratic problem.
The proposed marriage of FBS and momentum acceleration is discussed in

Section 3 with experiments on two case studies of ℓ1 and ℓ1 − ℓ2 regulariza-

tions, showing the faster convergence of the proposed method than existing
approaches. Finally, conclusions and future works are presented in Section 4.

2 Minimizing a single function

We review in Section 2.1 gradient-based algorithms that minimize a single
function, including gradient descent, conjugate gradient, and adaptive mo-

mentum methods. We propose to combine the Fletcher-Reeve moment and

gradient descent with a fixed step size in Section 2.2. The convergence of the
proposed scheme can be established for a quadratic problem. Lastly, experi-

mental comparison is presented in Section 2.3.

2.1 Literature review

Gradient descent is a class of first-order iterative optimization algorithms

for finding a local minimum of a differentiable function. This type of algo-
rithms involves repeated moving along the opposite direction of the gradient

of the objective function at the current point, since it is the direction where

function value decreases at the fastest rate.
Given a differentiable function g(·), a general form of gradient descent

(GD) that minimizes g(x) can be described as,

®

p(l+1) = −∇g(x(l))

x(l+1) = x(l) + α(l+1)p(l+1),
(5)

where l indexes the iteration number and α(l+1) > 0 is a step size that can

be fixed or updated iteratively. There are many variations of GD depending
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on how the step size is determined and/or the descending direction is chosen.

For example, steepest descent (SD) is perhaps one of the simplest variations,

which goes as follows,














p(l+1) = −∇g(x(l))

α(l+1) = argmin
α

g(x(l) + αp(l+1))

x(l+1) = x(l) + α(l+1)p(l+1).

(6)

In each iteration, SD performs an exact line search to achieve the maximum
descent along the gradient direction, i.e., the descent is the steepest. However,

empirically it does not work well in most cases, since such a local descend-

ing property does not necessarily coincide with the overall descending of the
original function.

Notice that the search direction in each iteration of (6) only utilizes the
information at the current step x(l) without any information from previous

iterations. Adding them back leads to momentum-based algorithms, which

are also called as heavy ball algorithms [54]. The term “momentum” is an
analogy of a heavy ball sliding on the surface of values of the function being

minimized when the update of each step is memorized in the process. To this

end, we refer the following iteration

®

p(l+1) = −∇g(x(l)) + β(l+1)p(l)

x(l+1) = x(l) + α(l+1)p(l+1),
(7)

as gradient descent with momentum (GDM). Both α(l+1) and β(l+1) in (7) can
be fixed or adaptively chosen according to a certain scheme. For instance, if

we update α(l+1) in the same way as SD (6), the corresponding algorithm


























β(l+1) = ‖∇g(x(l))‖2

‖∇g(x(l−1))‖2

p(l+1) = −∇g
(

x(l)
)

+ β(l+1)p(l)

α(l+1) = argmin
α

g(x(l) + αp(l+1))

x(l+1) = x(l) + α(l+1)p(l+1),

(8)

is identical to the classic nonlinear conjugate gradient (CG). The β update

for momentum coefficient is called Fletcher-Reeves (FR) momentum in non-

linear conjugate gradient algorithms [30,18]. In addition to FR, other popular
momentum updates include

– Polak-Ribière (PR) [53]

β
(l+1)
PR =

〈∇g(x(l)),∇g(x(l))−∇g(x(l−1))〉
‖∇g(x(l−1))‖2 ; (9)

– Hestenes-Stiefel (HS) [29]

β
(l+1)
HS =

〈∇g(x(l)),∇g(x(l))−∇g(x(l−1))〉
−〈p(l),∇g(x(l))−∇g(x(l−1))〉 ; (10)
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– Dai-Yuan (DY) [13]

β
(l+1)
DY =

‖∇g(x(l))‖2
−〈p(l),∇g(x(l))−∇g(x(l−1))〉 . (11)

Another type of momentum-based algorithms was developed by Yurii Nes-

terov [46,47]. Starting from t(0) = 1, Nesterov’s accelerated gradient (NAG)
is expressed as,























t(l+1) =
1+

√
4(t(l))2+1

2 ,

p(l+1) = −∇g
(

x(l)
)

,

y(l+1) = x(l) + α(l+1)p(l+1),

x(l+1) = y(l+1) + t(l)−1
t(l+1) (y

(l+1) − y(l)).

(12)

Similarly to other gradient-based algorithms, the step size α(l+1) in NAG can
be fixed or updated during the iteration. For convex function g(·), NAG achieves

a convergence rate of O( 1
l2
), as opposed to O(1

l
) obtained by standard gradient-

based methods. This momentum scheme can be further accelerated by a proper

restart with provable guarantees in certain circumstances [45,20,62,59].

2.2 FR momentum gradient descent

Exact line search is not necessarily optimal, as the gradient descent di-

rection may not be a good search direction. As a result, the steepest descent

algorithm (6) bounces back and forth in the valley formed by the objective
function rather than down the valley. Similar conclusion can be drawn for cer-

tain momentum based algorithms. As pointed out in [55,25], exact line search
would lead to a very small step size in such a way that two consecutive iterates

do not vary too much; this phenomenon is called jamming. To avoid jamming,

one can use a hybrid momentum scheme [14,2,48] or an inexact line search
[24,57]. Instead of exact search as used in SD, an inexact search refers to

finding a step size α that satisfies the Wolfe conditions [1,13,19,24], i.e.,
®

g(x(l) + α(l)p(l)) 6 g(x(l)) + c1〈α(l)p(l),∇g(x(l))〉,
〈−p(l),∇g(x(l) + α(l)p(l))〉 6 c2〈−p(l),∇g(x(l))〉, (13)

for two constants 0 < c1 < c2 < 1. The first equation of (13) is also called

Armijo-Goldenstein condition [3,5], which is usually used in back-tracking
step sizes. These conditions play an important role in establishing a descent

property and global convergence of conjugate descent. Instead of designing a

update scheme for α, we consider a fixed step size α in the gradient descent
that is combined with the FR moment, i.e.,











β(l+1) = ‖∇g(x(l))‖2

‖∇g(x(l−1))‖2

p(l+1) = −∇g
(

x(l)
)

+ β(l+1)p(l)

x(l+1) = x(l) + αp(l+1),

(14)
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which is referred to as FR gradient descent (FRGD). By fixing α, most prop-

erties used in the convergence analysis of conjugate gradient no longer hold.

Fortunately, we can borrow a technique used in an inexact conjugate gradient
(due to round off errors) or inexact preconditioning [21,64] to analyze the

convergence of FRGD (14). Theorem 1 characterizes the convergence analysis

of the proposed FRGD for a quadratic problem,

min
x

g(x) =
1

2
xTAx+ xTb, (15)

where A is a strictly symmetric positive definite matrix. To this end, we de-
fine the condition number of A as κ(A) = |λmax(A)/λmin(A)|, i.e., the ratio

between the largest and smallest eigenvalues.

Theorem 1 Suppose {x(l),p(l)} be generated by (14) with a fixed step size α
when minimizing (15). Let r(l) = ∇g(x(l)), ρ = max06j6i6l−1 ‖r(i)‖2/‖r(j)‖2,

z(l) = r(l)/‖r(l)‖2 and Z(l) = [z(0), z(1), · · · , z(l−1)]. If z(0), z(1), · · · , z(l) are

linearly independent, then there exists a constant

Kl 6 l(1 +
lρ

2
)‖A‖2κ(Z(l+1)), (16)

such that

‖r(l)‖2 6 2(1 +Kl)

Ç√

κ(A) − 1
√

κ(A) + 1

ål

‖r(0)‖2. (17)

Proof Denote R(l) = [r(0), · · · , r(l−1)] and D(l) = diag{‖r(0)‖2, · · · , ‖r(l−1)‖2},

then Z(l) = R(l)(D(l))−1. We further denote P (l) = [p(0), · · · ,p(l−1)]. It fol-

lows from r(l+1) = r(l) − αAp(l) that

αAP (l) = [r(0) − r(1), · · · , r(l−1) − r(l)]

= R(l)L(l) − r(l)eT(l),

= Z(l)D(l)L(l) − r(l)eT(l), (18)

where e(l) = [0, · · · , 0, 1]T is an l × 1 column vector and L(l) is the l × l lower
bidiagonal matrix with 1 on the diagonal and −1 on the subdiagonal. Similarly

using the p update of p(l) = r(l) + β(l)p(l−1), we have

Z(l) = R(l)(D(l))−1 = P (l)U (l)(D(l))−1, (19)

where U (l) is the l × l upper bidiagonal matrix with 1 on the diagonal and

−β(1), · · · , −β(l−1) on the subdiagonal. Combining (18) (19), we obtain

AZ(l) = Z(l)T (l) −
r(l)eT(l)

α̂‖r(0)‖ , (20)
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where T (l) = 1
α
D(l)L(l)U (l)(D(l))−1 and α̂ = α‖r(l−1)/‖r(0)‖. It is straightfor-

ward to verify that α̂ = eT(l)(T
(l))−1e(1). By [64, Theorem 3.5] we have

‖r(l)‖2 6 (1 +Kl) min
p∈Pl,p(0)=1

‖p(A)r(0)‖2, (21)

where Kl = ‖AZ(l)T (l)[I(l), 0]Z
(l+1)
† ‖2 6 ‖A‖2‖T (l)‖2‖Z(l)‖2‖Z(l+1)

† ‖2, Z
(l+1)
†

is the pseudo-inverse of Z(l+1), and Pl is the space of polynomials of degree l.
By definition β(l) = ‖r(l)‖22/‖r(l−1)‖22, we can rewrite

T (l) =
1

α
D(l)L(l)(D(l))−1D(l)U (l)(D(l))−1 =

1

α
L̃(l)Ũ (l), (22)

where

L̃(l) = D(l)L(l)(D(l))−1

=





















1

− ‖r(1)‖
‖r(0)‖

1

− ‖r(2)‖
‖r(1)‖

1

. . .
. . .

− ‖r(l−1)‖
‖r(l−2)‖

1





















(23)

=

















1

−
√

β(1) 1

−
√

β(2) 1
. . .

. . .

−
√

β(l−1) 1

















,

and

Ũ (l) = D(l)U (l)(D(l))−1

=





















1 −β(1) ‖r
(0)‖

‖r(1)‖

1 −β(2) ‖r
(1)

r(2)‖

. . .
. . .

1 −β(l−1) ‖r
(l−2)‖

‖r(l−1)‖

1





















=

















1 −
√

β(1)

1 −
√

β(2)

. . .
. . .

1 −
√

β(l−1)

1

















= (L̃(l))T. (24)
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We can see that (L̃(l))−1 is a lower triangular matrix with 1 on its diagonal

and (i, j)-th entry be
√

β(j)β(j+1) · · ·β(i) = ‖r(i−1)‖2/‖r(j−1)‖2 for all i > j.
Let ρ be an upper bound of ‖r(i−1)‖2/‖r(j−1)‖2, then we have ‖(L̃(l))−1‖2F 6

l + l(l− 1)ρ/2 and therefore

‖(T (l))−1‖2 = α‖(L̃(l)(L̃(l))T)−1‖2 = α‖(L̃(l))−1‖22 (25)

6 α‖(L̃(l))−1‖2F 6 αl(1 + lρ/2). (26)

Combining with the fact ‖Z(l)‖2‖Z(l+1)
† ‖2 6 ‖Z(l+1)‖2‖Z(l+1)‖2 = κ(U (l+1))

yields Kl 6 lα(1 + lρ/2)‖A‖2κ(Z(l+1)). Finally, it follows the standard conju-

gate gradient convergence bound [60] that gives

min
p∈Pl,p(0)=1

‖p(A)r(0)‖2 6 min
p∈Pl,p(0)=1

max
i

|p(λi)|‖r(0)‖2

6 2

Ç√

κ(A) − 1
√

κ(A) + 1

ål

‖r(0)‖2,

where λi are the eigenvalues of matrix A and the result follows. ⊓⊔

We see that this convergence rate (17) is similar to the one of the classic
conjugate gradient algorithm, which is given by

‖r(l)‖A−1 6 2

Ç√

κ(A)− 1
√

κ(A) + 1

ål

‖r(0)‖A−1 . (27)

The difference between (17) and (27) lies in the additional term of 1+Kl intro-

duced by the fixed step size. Similar to other accelerated gradient schemes and

Krylov subspace methods, this convergence rate of (17) and (27) is achieved
only when the current position is not in the neighborhood of a stationary

point. In other words, the convergence is only achieved at the first few iter-

ations, not when the iteration number goes to infinity. We will demonstrate
such a phenomenon later in the numerical examples. In practice, the vectors

p, Ap, · · ·Akp usually form an ill-conditioned basis for the Krylov subspace. As
k → ∞, Akp points to nearly the same direction, which is the eigenvector cor-

responding to the dominant eigenvalue of A according to the power method.

As a result, the acceleration is less effective. This is a common drawback for
all Krylov subspace based algorithms [68,36] such as Arnoldi, Lanczos, con-

jugate gradient, etc. There are methods designed to address this issue, which

falls outside our paper’s scope.

Theorem 1 is based on the structure of momentum iterations, which is

applicable to other formulations of momentum such as PR (9), HS (10), and
DY (11). The effect of these different formulations of momentum is on the

quality of the basis z(0), z(1), · · · , z(l) constructed, which is more complicated

to analyze and will be left as future work.

We observe empirically that the FR formulation of β(l+1) is most stable

among the four. Note that all four formulations are equivalent for a quadratic
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function 1
2x

TAx+ xTb and they all enforce the A-orthogonality of {p(l)} and

hence the orthogonality of {z(l)} when exact search

α(l+1) = argmin
α

g(x(l) + αp(l+1)),

is used. However, the HS and DY formulations use the search direction p(l)

in addition to the gradient. As a result, the perturbation on β(l+1) for HS and
DY is affected through both the gradient and the search direction, when using

a fixed step size α. We observe empirically that the range of the step size

required by HS and DY to converge is usually one to two orders of magnitude
smaller than the one for FR and PR. Thus, the FR version, having the simplest

formulation, has the least first-order perturbation errors and can be expected
to be more stable.

2.3 Experimental results

2.3.1 Rosenbrock function

We start with a textbook example of the Rosenbrock function defined by

f(x, y) = 100(y − x2)2 + (1− x)2,

as a test problem. This function has a long parabolic-shaped flat valley, de-

picted in Figure 1, which causes difficulty for any algorithm to converge to the

global minimum of f(x, y).
We examine the momentum-based gradient descent methods. FRGD is de-

fined in (14). We can also replace the FR momentum by PR, HS, DY, as defined

in (9)-(11), respectively. The step size α plays an important role in the perfor-
mance of these algorithms, as it is tricky to find a proper step size so that the

solution does not sway across the parabolic valley y = x2; otherwise it is al-

most impossible to converge. We carefully tune the step size of each method
so that all the algorithms converge in a few hundred steps except for HS and

PR which barely converge to the global minimum even after thousands of
iterations, as illustrated in Figure 1. We also compare these four momentum-

based methods to gradient descent (5), gradient descent with momentum (7),

and Nesterov’s gradient (12). All these algorithms start from the initial point
(1.2, 1.2) and stop when the difference of two consecutive iterates is less than

10−8 or a maximum number of iterations are achieved. Table 1 provides the

relative errors to the global optimal solution (1, 1) and the computational time
required by each method, showing that both FR and DY yield the highest ac-

curacy with a reasonable amount of computational time.

2.3.2 Quadratic problem

Following the work of [27], we consider the quadratic problem (15) with

A ∈ R
500×500 being the Laplacian matrix of a circular graph and b ∈ R

500
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Fig. 1 Iterative solutions (red circles) for minimizing the Rosenbrock function via various
momentum-based methods. The initial point is indicated by a green circle and the final solu-
tion is circled in blue. FR and DY quickly move towards the global minimum (1, 1) within a few
hundred iterations, while PR and HS can not get close to (1, 1) even after thousands of iterations.

Method Error Time

GD 3.5546e-03 2.0594e-01
GDM 2.8409e-03 7.8236e-02
NAG 1.0201e-03 1.7319e-02
FRGD 7.0804e-04 2.6686e-02
PRGD 1.8049e-02 1.5069e-01
HSGD 1.6816e-01 2.8645e-01
DYGD 9.0094e-04 4.1789e-03

Table 1 Relative errors and computational time of various methods in minimizing the Rosenbrock
function. The best results are highlighted in bold.

being a vector whose first entry is 1 and the remaining entries are 0. It is

straightforward to verify that g(x) is convex with Lipschitz constant 4. We

compare GD (5), GDM (7) with a fixed value of β = 0.9, NAG (12), and FRGD
(14) in terms of relative errors to the ground truth and objective decay. For

each competing method, we consider two ways to choose α(l+1): a fixed value

of 0.3 and an adaptive update via line search (6), indicated by “fx” and “ls”
respectively. For example, FRGD/fx refers to FRGD method with a fixed value,

and FRGD/ls refers to FRGD with updating α(l+1) by an exact line search.
Note that FRGD/ls is equivalent to the conjugate gradient for any quadratic

problem.
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Fig. 2 Comparison of gradient based methods on a quadratic problem with a fixed step size (top)
and an adaptive step size by line search (bottom).

We plot the relative errors and the objective functions with respect to it-

eration numbers of all the competing methods in Figure. 2. All the plots are
in a logarithmic scale. As expected, GDM yields slightly better performance

than SD/GD, while NAG converges significantly faster than GDM, but in an
oscillatory manner. It is worth noting in Figure. 2 (b) that the objective values

of GD/fx, GDM/fx, NAG/fx (with a fixed step size) become stagnant after 500

iterations, whereas FRGD/fx continues to decay until the machine accuracy.
When the step size is adaptive, FRGD/ls reduces to the classic conjugate gra-

dient that quickly falls into a local minimum, while all the other algorithms

require more iterations to converge. In summary, FRGD converges at a rate
much faster than regular GD and its variants.

3 Minimizing the sum of two functions

In this section, we focus on minimizing the sum of two functions defined

in (4). Specifically, we consider two different functions of f : the ℓ1 norm ‖x‖1
and the ℓ1−ℓ2 regularization ‖x‖1−‖x‖2, to promote the sparsity of the vector

x. As f is not differentiable, we adopt the regular subdifferential for a general
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(not necessary convex) function [58, Definition 8.3], defined by

∂f(x) =

®

p| lim
z→x

f(z)− f(x)− pT(z − x)

‖z− x‖ ≥ 0

´

, (28)

instead of the standard gradient ∇f. We discretize the gradient flow

d

dt
x(t) ∈ −λ∂f(x(t))−∇g(x(t)), (29)

that minimizes (4) by a semi-implicit scheme as follows,

x(l+1) − x(l)

δ
∈ −λ∂f(x(l+1))−∇g(x(l)), (30)

where δ > 0 is a step size. The iteration of (30) is often referred to as forward-

backward splitting [12], as one uses a forward solution in ∇g and a backward

one in ∂f . After rearranging (30), we obtain

x(l+1) ∈
(

I + δλ∂f
)−1(

x(l) −∇g(x(l))
)

,

which implies that x(l+1) is an optimal solution to

x(l+1) ∈ argmin
x

δλf(x) +
1

2
‖x− x(l) + δ∇g(x(l))‖22. (31)

The solution to (31) can be expressed by the corresponding proximal opera-

tor. Recall that a proximal operator [50] of a functional J(·) with a positive
parameter µ > 0 is defined by

proxJ (x;µ) = argmin
y

(

µJ(y) +
1

2
‖x− y‖22

)

. (32)

Now by relating Equation. (32) (31), we have an iterative update,

x(l+1) ∈ proxf

Ä

x(l) − δ∇g(x(l)); δλ
ä

. (33)

For f(x) = ‖x‖1, its proximal operator is given by

proxℓ1
(x;µ) = sign(x) ◦max(|x| − µ, 0), (34)

where ◦ denotes the Hadamard operator for componentwise operation. As
the proximal operator for ℓ1 is called soft shrinkage, the corresponding iter-

ation (33) is referred to as iterative soft-thresholding algorithm (ISTA) [9,
17,15,26,66,69]. One accelerated scheme of ISTA is called fast iterative soft-

thresholding algorithm (FISTA) [4]. It is a momentum based algorithm that

utilized the Nesterov’s update (12) on the step size, having the form,














t(l+1) =
1+

√
4(t(l))2+1

2

y(l+1) = x(l) + t(l)−1
t(l+1) (x

(l) − x(l−1))

x(l+1) = proxℓ1

(

y(l+1) − δ∇g(y(l+1)); δλ
)

.

(35)
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The momentum term in FISTA is proven to be efficient, but the algorithm

exhibits oscillatory patterns during the minimization process. To have a guar-

anteed descent, the accelerated proximal gradient (APG) algorithm [35] com-
pares the objective function at two proximal solutions and selects the smaller

one. In short, the APG algorithm goes as follows,







































t(l+1) =
1+

√
4(t(l))2+1

2

y(l+1) = x(l) + t(l)

t(l+1) (u
(l) − x(l)) + t(l)−1

t(l+1) (x
(l) − x(l−1))

u(l+1) = proxf

(

y(l+1) − δ∇g(y(l+1)); δλ
)

v(l+1) = proxf

(

x(l) − δ∇g(x(l)); δλ
)

x(l+1) = argmin
z∈{u(l+1),v(l+1)}

λf(z) + g(z).

(36)

We propose to combine adaptive momentum formula and FISTA for mini-
mizing the general problem of (4). In particular, we replace the FISTA momen-

tum update (35) in terms of FR, thus leading to











β(l+1) = ‖∇g(x(l))‖2

‖∇g(x(l−1))‖2 ,

y(l+1) = x(l) + β(l+1)(x(l) − x(l−1)),

x(l+1) ∈ proxf

(

y(l+1) − δ∇g(y(l+1)); δλ
)

.

(37)

Similarly we can use other momentum terms given in (9)-(11). The proximal

operator for the ℓ1 norm is given in (34), while the proximal operator for
ℓ1 − ℓ2 [38] can be defined separately into the following cases,

– If ‖y‖∞ > λ, one has proxℓ1−2
(y;λ) = z(‖z‖2+λ)

‖z‖2
, where z = proxℓ1

(y;λ).

– If ‖y‖∞ ≤ λ, then c
∗ := proxℓ1−2

(y;λ) is an optimal solution if and only
if c∗i = 0 for |yi| < ‖y‖∞, ‖c∗‖2 = ‖y‖∞, and c∗i yi ≥ 0 for all i. The

optimality condition implies infinitely many solutions of c∗, among which

we choose c∗i = sign(yi)‖y‖∞ for the smallest i satisfies |yi| = ‖y‖∞ and
the rest coefficients set to be zero.

In what follows, we present experimental results on the convex ℓ1 mini-

mization in Section. 3.1 and the non-convex ℓ1 − ℓ2 minimization in Section.

3.2, respectively.

3.1 Convex ℓ1 Minimization

We test the performance of various methods to minimize the ℓ1 norm with
the least-squares fitting term, i.e.,

x∗ = argmin
x

λ‖x‖1 +
1

2
‖Ax− b‖22. (38)

We generate the sensing matrix A from Gaussian random matrices and a

ground-truth sparse vector x of sparsity 5. Compressive sensing often involves
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an under-determined linear system, which implies that the matrix A has more

columns than rows (a fat matrix). Here we examine both under-determined

(fat) and over-determined (tall) matrices with size 256× 1024 and 1024× 256,
respectively.

We consider two ways to generate the data vector b. One is a standard

sparse recovery setting, in which b is obtained by matrix-vector multiplication

(Ax) with additive Gaussian noise of 30 dB. Another is referred to as a con-
structed case following the work of [37]. In particular, we construct a data

vector b such that a specific sparse vector x∗ is a stationary point of (38)
when given a positive parameter λ and a matrix A. Any non-zero stationary

point satisfies the following first-order optimality condition:

λp∗ +AT(Ax∗ − b) = 0, (39)

where p∗ ∈ ∂‖x∗‖1. Denote Sign(·) as the multi-valued sign, i.e.,

y ∈ Sign(x) ⇐⇒ yi







= 1, if xi > 0,
= −1, if xi < 0,
∈ [−1, 1], if xi = 0.

(40)

Given A, λ, and x∗, we want to find x ∈ Sign(x∗) and x ∈ Range(AT). If y

satisfies ATy = x and b is defined by b = λy + Ax∗, then x∗ is a stationary
point to (38). To find x ∈ R

N , we adopt the iteration

x(k+1) = PSign(x∗)

Ä

UUT
Ä

x(k)
ää

, (41)

until a stopping criterion is reached. Please refer to [37] for more details.

The constructed setting is examined in Figure. 3 that contains both fat and

tall matrices. We use a fixed value of λ for all the algorithms so that they
solve the same problem and we tune δ to achieve the fastest convergence.

Specifically we choose the best δ among the set {10−4, 10−3, · · · , 101} that
achieves the smallest objective function value when convergent. The proposed

method with the FR momentum converges the fastest among all the other

methods. FISTA initially converges faster than APG and PR/HS, while it always
oscillates no matter whether the matrix A is fat or tall.

We examine a standard sparse recovery setting where the data b is ob-

tained by matrix-vector multiplication with additive noise. Again two types of
matrices are considered, a 256× 1024 (fat) matrix and a 1024× 256 (tall) one.

We use the proposed algorithm with a small step size δ = 10−3 to find the

optimal λ value among the set {10−4, 10−3, · · · , 101} that yields the smallest
objective function value. Then we fix this optimal λ for all the competing al-

gorithms while tuning the δ parameter in the same way as in the constructed

case. The results are presented in Figure. 4. We observe that our proposed
algorithm has still some advantages over FISTA and APG. Interestingly, in Fig-

ure. 4 (a), we observe that the APG algorithm performs worse than FISTA until
about 40th iteration due to the oscillatory nature of FISTA. This phenomenon

implies that APG is less robust than FISTA in certain applications, which is
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Fig. 3 Comparison of ℓ1 minimization methods using a 256×1024 (top) and 1024×256 (bottom)
matrix A in a constructed case.

somewhat counter-intuitive. In this set of experiments, all the methods can
not reach the accuracy of 10−3 in terms of relative errors, as compared to the

constructed cases (10−8). This is because the ground-truth solution may not
be a stationary point to the corresponding minimization problem.

The CPU time required by various methods is reported in Table 2, which

includes different shapes of the sensing matrix A (a 256 × 1024 fat matrix or

a 1024 × 256 tall matrix) as well two testing scenarios (a constructed case
and a standard setting in spare recovery). The computational time of a larger

dimension of 1024× 4096 and 4096× 1024 is recorded in Table 3. Both FR and
DY are the winners in terms of computational efficiency, which is consistent

with our observation in the Rosebrock function.

3.2 Non-convex ℓ1 − ℓ2 Minimization

Lastly, we consider the non-convex ℓ1 − ℓ2 minimization problem,

F (x) = λ(‖x‖1 − ‖x‖2) +
1

2
‖Ax− b‖22, (42)
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Fig. 4 Comparison of ℓ1 minimization methods using a 256×1024 (top) and 1024×256 (bottom)
matrix A in a standard sparse recovery setting.

Method Constructed fat Standard fat constructed tall Standard tall

FISTA 1.5727e-01 2.1449e-01 2.6440e-02 1.7032e-02
APG 1.8135e-01 3.7542e-01 3.5753e-02 2.1801e-02
FR 6.7575e-02 1.2839e-01 1.9097e-02 1.7562e-02
PR 2.6586e-01 3.1863e-01 3.8764e-02 1.9722e-02
HS 1.6053e-01 3.0457e-01 2.5498e-02 1.8789e-02
DY 9.2728e-02 1.5137e-01 2.1915e-02 1.7746e-02

Table 2 CPU time for various ℓ1 minimization methods using a 256 × 1024 (fat) matrix A or a
1024 × 256 (tall) matrix under either a constructed or standard setting.

which was originally solved by the difference of convex algorithm (DCA) [51,

52]. As a baseline algorithm for comparison, we give a brief description of
DCA. After decomposing F into a difference of two convex functions, DCA

further relies on the linearization at the current step x(l) to advance to the

next one, i.e.,

x(l+1) = argmin
x∈Rn

1

2
‖Ax− b‖22 + λ‖x‖1 −

Æ

x,
λx(l)

‖x(l)‖2

∏

. (43)
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Method Constructed fat Standard fat constructed tall Standard tall

FISTA 4.6661e+00 4.6932e+00 8.7736e-01 6.7252e-01
APG 4.8702e+00 4.9007e+00 1.0459e+00 6.9235e-01
FR 1.6858e+00 2.4300e+00 5.5734e-01 6.4436e-01
PR 6.9300e+00 5.7933e+00 1.1392e+00 6.4442e-01
HS 3.7369e+00 5.9089e+00 7.2674e-01 7.0761e-01
DY 2.2746e+00 2.8957e+00 6.1895e-01 5.7265e-01

Table 3 CPU time for various ℓ1 minimization methods using a 1024 × 4096 (fat) matrix A or a
4096× 1024 (tall) matrix under either a constructed or standard setting.
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Fig. 5 Comparison of ℓ1 − ℓ2 minimization methods using a 256 × 1024 (top) and 1024 × 256
(bottom) matrix A in a constructed case.

To generate a constructed solution for the ℓ1 − ℓ2 problem, we only need

to replace the iteration (41) for constructing the ℓ1 solution by

x(k+1) = PSign(x∗)

Å

UUT

Å

x(k) − x∗

‖x∗‖2

ã

+
x∗

‖x∗‖2

ã

. (44)

Due to the non-convex nature of F (x), the iteration (44) may not converge

and x∗ may not exist. The results of ℓ1 − ℓ2 minimization methods on a con-

structed case are illustrated in Figure. 5 for matrix sizes of 256 × 1024 and
1024× 256. Note that DCA is a doule-loop algorithm and its iteration number

is counted as inner loop iterations, and yet the original DCA implementation
[72,40] is the slowest, followed by APG. Our proposed algorithm is the fastest,

having a clear advantage over all the other algorithms.
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Fig. 6 Comparison of ℓ1 − ℓ2 minimization methods using a 256 × 1024 (top) and 1024 × 256
(bottom) matrix A in a standard sparse recovery setting.

Method Constructed fat random fat Constructed tall random tall

DCA 1.2112e-02 5.4499e-02 7.3475e-02 8.5999e-02
APG 9.5120e-03 2.1489e-01 3.3662e-02 2.1801e-02
FR 6.0010e-03 1.2058e-01 2.0455e-02 6.2328e-02
PR 7.3012e-03 1.7407e-01 2.3123e-02 6.1710e-02
HS 1.0967e-02 2.4206e-01 2.9486e-02 5.4402e-02
DY 5.9523e-03 1.6031e-01 2.4117e-02 4.4513e-02

Table 4 CPU time for various ℓ1 − ℓ2 minimization methods using a 256 × 1024 (fat) matrix A
or a 1024 × 256 (tall) matrix under either a constructed or standard setting.

Figure. 6 shows the results for a sparse recovery problem. DCA is still the

slowest, while our method is the fastest. The proposed method is worse than

DCA for a tall matrix. This may attribute to the fact that the ground-truth
signal is not the optimal solution to (42), and as a result, the performance is

rather random. The CPU time for these ℓ1−ℓ2 minimization methods is listed in
Table 4. We observe that all the momentum-based methods seem comparable

in computational time, while DCA is the slowest.



20 Mengqi Hu et al.

4 Conclusion

In this paper, we leveraged adaptive momentum from nonlinear conjugate

gradient algorithms for the purpose of acceleration. Unlike the existing works

that rely on line search to establish convergence of gradient-based algorithms,
we proposed the use of a fix step size and proved the convergence of FRGD on

a quadratic problem. In addition, we combined the adaptive momentum with
FISTA to deal with non-smooth objective function. The resulting algorithm

has a relatively simple FISTA-like structure. We demonstrated the accelerated

phenomena of the proposed approach over FISTA and APG on a convex ℓ1
minimization and a nonconvex ℓ1 − ℓ2 problem for sparse recovery.
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