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Analysis and Hermite spectral approximation of diffusive-viscous wave equations

in unbounded domains arising in geophysics

Dan Ling1 and Zhiping Mao2

Abstract

The diffusive-viscous wave equation (DVWE) is widely used in seismic exploration since it

can explain frequency-dependent seismic reflections in a reservoir with hydrocarbons. Most of

the existing numerical approximations for the DVWE are based on domain truncation with ad

hoc boundary conditions. However, this would generate artificial reflections as well as truncation

errors. To this end, we directly consider the DVWE in unbounded domains. We first show the

existence, uniqueness, and regularity of the solution of the DVWE. We then develop a Hermite

spectral Galerkin scheme and derive the corresponding error estimate showing that the Hermite

spectral Galerkin approximation delivers a spectral rate of convergence provided sufficiently

smooth solutions. Several numerical experiments with constant and discontinuous coefficients

are provided to verify the theoretical result and to demonstrate the effectiveness of the proposed

method. In particular, We verify the error estimate for both smooth and non-smooth source

terms and initial conditions. In view of the error estimate and the regularity result, we show

the sharpness of the convergence rate in terms of the regularity of the source term. We also

show that the artificial reflection does not occur by using the present method.
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domain, Artificial reflection, error estimates.
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1 Introduction

The numerical simulation of wave propagation in media with solid and fluid layers plays an

important role in seismic exploration data analysis. It has been found that seismic reflections are

frequency-dependent [8, 3, 4]. And, the frequency-dependent reflections from a fluid-saturated

porous medium is relatively complex. For instance, it has been shown from both laboratory

analysis and field data that for the fluid-saturated layer, the resulting reflections have a higher

amplitude and delayed travel-time at low-frequencies when compared with the reflections from

a gas-saturated layer [14]. However, this important phenomenon cannot be well described by

the Biot’s theory [1, 2, 9]. Moreover, the acoustic and elastic theories are unable to effectively

characterize the subsurface in fluid-saturated rocks [14]. Therefore, to develop more accurate

theoretical models and make a wider application in practical seismic exploration, a Diffusive-

Viscous Wave Equation (DVWE) was proposed in [14] by adding a diffusive dissipation term and

a viscous term to the scalar wave equation to study the connection between fluid saturation

and frequency dependence of reflections and to characterize the attenuation property of the

seismic wave in a fluid-saturated medium.

Recently, researchers from both scientific and industrial communities have paid much at-

tention to the study on DVWEs. By means of the Biot’s theory, Quintal et al. [20] proposed

an interlayer-flow model, which was approximated by using a finite difference scheme, to study

the reflections in the low-frequency range providing a physical basis to the diffusive-viscous

theory as well as explaining the spectral anomalies observed at low frequencies in thinly lay-

ered reservoirs. To simulate the frequency-dependent seismic response of turbidite reservoirs, a

seismic data-driven geological model was first applied to produce physical parameter sections,

which were then used to numerically synthesize the frequency-dependent seismic response of

turbidite reservoirs by simulating the DVWEs [6]. Zhao et al. proposed finite difference meth-

ods to simulate wave-fields of DVWEs in [27, 29] and applied the reflectivity method for the

numerical modeling of DVWEs in layered medium in [28], the analysis of the von Neumann

stability criteria and the numerical dispersion were given in [27]. A finite volume method was
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developed in [19] to simulate the seismic wave propagation in a fluid-saturated medium driven

by the DVWE. Recently, Ling et al. proposed the local discontinuous Galerkin method and

analyzed the error estimates for the DVWEs with variable coefficients in [15]. More work can

be found in [13, 12, 30] and references therein.

However, most existing works only focus on the numerical schemes and the corresponding

results of the stability and error estimates, there is few theoretical work concerning the ex-

istence and uniqueness of the solution for DVWEs. Most recently, we noticed an important

work provided by Han et al. in [11], in which the well-posedness and stability of DVWEs were

established in bounded domains, this provided a theoretical foundation to develop numerical

methods. However, no regularity result is discussed in the work. In addition, as mentioned

in [5], another main aspect for DVWEs is the non-reflection boundary conditions. All afore-

mentioned numerical simulations were performed in bounded domains, which may generate

artificial reflections due to the truncation of the model. To resolve this issue, a non-split per-

fectly matched layer boundary condition was proposed for the DVWE to absorb the artificial

reflections [30] (see also [26, 16, 21]). However, the resulted problem is more complex in terms

of computer implementation and it is computationally more expensive.

The aim of this work is to consider the DVWE without the truncation of the domain, i.e.,

we consider the DVWE directly in unbounded domains, and then establish the existence and

uniqueness of the weak solution. We also discuss the regularity of the solutions in terms of the

initial conditions and the source term. Furthermore, we develop an efficient Hermite spectral

Galerkin scheme to approximate the solution of the DVWE. To this end, we consider in this

work the following DVWE

∂2
t u+ α∂tu− ∂tdiv(β∇u)− div(γ2∇u) = f, x ∈ R

d, t > 0 (1)

subjecting to following initial conditions

u(x, 0) = u0(x), ∂tu(x, 0) = w0(x), (2)

where d is the dimension in space, u = u(x, t) is the wave field, α = α(x) and β = β(x) are the
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diffusive and viscous attenuation parameters respectively, γ = γ(x) is the wave propagation

speed in the non-dispersive medium, f = f(x, t) is the source. In this paper, we consider the

cases of d = 1, 2 and assume that

α(x) ∈ L∞(Ω), 0 < α1 ≤ α(x) ≤ α2, β(x) ∈ L∞(Ω), 0 < β1 ≤ β(x) ≤ β2,

γ(x) ∈ L∞(Ω), 0 < γ1 ≤ γ(x) ≤ γ2.
(3)

We apply the Hermite spectral method since it has two main advantages:

• The first advantage is that the Hermite spectral method is a natural choice to deal with

unbounded domain problems, see [10, 17, 18, 24, 25].

• The second one is the Hermite spectral method enjoys high accuracy provided that the

solution is smooth enough.

We also derive the error estimate for the Hermite spectral Galerkin approximation showing that

it delivers a spectral rate of convergence provided sufficiently smooth solution. To the best of

our knowledge, this is the first attempt that DVWEs are analyzed and solved in the unbounded

domains.

The remainder of this paper is organized as follows. In Section 2, we provide some prelimi-

naries about Hermite orthogonal polynomials and functions and the corresponding approxima-

tion results. In Section 3, we give the weak form and the Hermite spectral Galerkin approxima-

tion for the problem (1), and establish the existence and uniqueness of the weak solutions and

discuss the regularity of the solution. We derive the error estimates in Section 4. In Section

5, we present several numerical examples to demonstrate the convergence and effectiveness of

the presented Hermite spectral Galerkin methods. Finally, we give some concluding remarks in

Section 6.

2 Preliminary

In this section, we first introduce the Hermite orthogonal functions and the corresponding

approximation results.
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Let x = (x1, · · · , xd) denote the multi-variable in Ω := R
d. For any function u(x) ∈ L2(Ω),

we denote its Fourier transform as û(ξ). |ξ|1, |ξ|2 and |ξ|∞ stand for the l1, l2 and l∞ norm of

ξ in R
d, respectively. Let ω(x) > 0 (x ∈ Ω) be a weight function, we denote L2

ω(Ω) the usual

weighted Hilbert space with the inner product and norm defined by

(u, v)Ω,ω =

∫

Ω

u(x)v(x)ω(x) dx, ‖u‖Ω,ω = (u, u)
1

2

Ω,ω, ∀ u, v ∈ L2
ω(Ω).

When ω ≡ 1, we will drop ω from the above notations. The Plancherel Theorem states that

‖u‖Ω = ‖û‖Ω.

We denote by Hµ(Ω) (with µ ≥ 0) the usual Hilbert spaces with semi-norm

|u|µ,Ω = ‖|ξ|µ2 û‖Ω

and norm

‖u‖µ,Ω = (‖u‖2Ω + |u|2µ,Ω)1/2 = (‖û‖2Ω + ‖|ξ|µ2 û‖2Ω)1/2.

Let c be a generic positive constant independent of any functions and of any discretization

parameters. We use the expression A . B (respectively A & B) to mean that A 6 cB

(respectively A > cB), and use the expression A ∼= B to mean that A . B . A. We will also

drop Ω or Rd from the notations if no confusion arises.

We first introduce the orthonormal Hermite polynomials {Hn(x)} in R, which are defined

by the three-term recurrence relation:

Hn+1(x) = x

√
2

n+ 1
Hn(x)−

√
n

n + 1
Hn−1(x), n ≥ 1,

H0(x) = π−1/4, H1(x) =
√
2π−1/4x.

They are mutually orthogonal with respect to the weight function ω(x) = e−x2

, i.e.,

∫ ∞

−∞

Hm(x)Hn(x)ω(x)dx = δmn, (4)

and it satisfies that

H ′
n(x) =

√
2nHn−1(x), n ≥ 1.
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Denote PN(x) the space of the polynomials of degree at most N , and we have

PN(x) = span
{
H0(x), H1(x), · · · , HN(x)

}
.

Let P d
N be the d dimension tensor of PN . We define the orthogonal projection ΠN : L2

ω(R
d) →

P d
N , ∫

Rd

(ΠNu− u)vNω(x)dx = 0, ∀ vN ∈ P d
N , (5)

where ω(x) =
∏d

j=1 ω(xj).

Let us introduce the Hermite orthogonal functions

φj(x) = e−x2/2Hj(x), j = 0, 1, . . . ,

which form an orthogonal basis in L2(R), i.e.,

∫ ∞

−∞

φm(x)φn(x)dx = δmn

according to (4). Let

PN(x) =
{
e−

x2

2 v | v ∈ PN(x)
}
= span

{
φ0(x), φ1(x), · · · , φN(x)

}
,

and denote VN the d dimension tensor product of PN . We next consider approximations by

multivariate Hermite functions. Note that for any u ∈ L2(Rd), we have uω−1/2 ∈ L2
ω(R

d).

Define

Π̂Nu := ω1/2ΠN(uω
−1/2) ∈ VN . (6)

Then for u ∈ L2(Rd), we derive immediately from (5) that

∫

Rd

(Π̂Nu− u)vNdx = 0, ∀ vN ∈ VN .

We introduce the operator ∂̂xj
= ∂xj

+ xj , which satisfies

ω−1/2(xj)∂̂xj
u(xj) = ∂xj

[
ω−1/2(xj)u(xj)

]
,

and denote ∂̂x :=
∏d

j=1 ∂̂xj
, ∂̂k

x :=
∏d

j=1 ∂̂
kj
xj . Furthermore, we define the following weighted

Sobelev space

B̂m(Rd) :=
{
u : ∂̂k

xu ∈ L2(Rd), 0 ≤ |k|1 ≤ m
}
, ∀m ∈ N,
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equipped with the norm and semi-norm

‖u‖B̂m(Rd) =
( ∑

0≤|k|1≤m

‖∂̂k
xu‖2

) 1

2

, |u|B̂m(Rd) =
( d∑

j=1

‖∂̂m
xj
u‖2

) 1

2

.

We present below the approximation result for the errors measured in the usual Hilbert space [18].

Theorem 2.1. For any u ∈ B̂m(Rd) with m ≥ 1, we have

‖Π̂Nu− u‖Hµ(Rd) . N (µ−m)/2|u|B̂m(Rd), 0 ≤ µ ≤ m. (7)

3 Well-posedness and regularity

The existence and uniqueness of the solution of the DVWE in a bounded domain with mixed

boundary conditions are given in [11]. However, there is no result regarding the well-posedness

of the diffusive-viscous wave equation in the unbounded domain. In this section we would like

to show the existence and uniqueness of the weak solution in the unbounded domain. Moreover,

we also discuss the regularity of the solution in terms of the initial conditions and the source

term f .

3.1 Existence and uniqueness of the weak solution

We first show the existence and uniqueness of the solution of the DVWE. Here We use more

or less the standard arguments in [7, Section 7.2].

Let H1(Rd) be the usual Sobolev space. By using the integration by parts, we have the weak

form of the problem (1): For a.e. t ∈ (0, T ), find u(t), ∂tu(t) ∈ H1(Rd), ∂2
t u(t) ∈ H−1(Rd),

such that

A(u, v) = (f, v), ∀v ∈ H1(Rd) (8)

with u(x, 0) = u0(x), ∂tu(x, 0) = w0(x), where H−1(Rd) is the dual space of H1(Rd), and

A(u, v) := (∂2
t u, v) + (α∂tu, v) + (β∂t∇u,∇v) + (γ2∇u,∇v). (9)

7



The Hermite spectral Galerkin approximation to (8) is to find uN(t), ∂tuN(t) ∈ VN , such

that

A(uN , v) = (f, v), ∀v ∈ VN (10)

with uN(x, 0) = Π̂Nu0, ∂tuN(x, 0) = Π̂Nw0, where Π̂N is the L2-projection defined in (6).

By using the standard arguments for ordinary differential equations (see [22, Theorem 25.3]),

we have that the Galerkin approximation (10) admits a unique solution. Before we prove the

well-posedness of the continuous problem (8), we begin by establishing two results on the

continuous dependence of the Hermite spectral Galerkin approximation, which will be used to

study the well-posedness of the weak problem (8).

Theorem 3.1. Assume u0 ∈ H1(Rd), w0 ∈ L2(Rd), f ∈ L2(0, T ;H−1(Rd)), then uN(t) satisfies

the following two estimates:

‖∂tuN‖L∞(0,T ;L2(Rd)) + ‖∂tuN‖L2(0,T ;H1(Rd)) + ‖uN‖L∞(0,T ;H1(Rd)) ≤ C̄(u0, w0, f), (11)

‖∂2
t uN‖L2(0,T ;H−1(Rd)) ≤ C̃(u0, w0, f), (12)

where C̄ and C̃ are two constants depending on ‖f‖L2(0,T ;H−1(Rd)) and ‖u0‖H1(Rd), ‖w0‖L2(Rd),

but independent of t and N .

Proof. By taking v = ∂tuN(t) in (10) and using the Cauchy-Schwarz and Young inequalities,

we have for any ε > 0,

1

2

d

dt

(
‖∂tuN(t)‖2L2(Rd) + ‖γ∇uN(t)‖2L2(Rd)

)
+ ‖α1/2∂tuN(t)‖2L2(Rd) + ‖β1/2∇(∂tuN)(t)‖2L2(Rd)

= (f, ∂tuN(t)) ≤ ‖f‖H−1(Rd) · ‖∂tuN(t)‖H1(Rd) ≤ ε‖∂tuN(t)‖2H1(Rd) +
1

4ε
‖f‖2H−1(Rd).

Let ε = min{α, β}/2, we obtain from the first two conditions in (3) that

d

dt

(
‖∂tuN(t)‖2L2(Rd) + ‖γ∇uN(t)‖2L2(Rd)

)
+ C(α, β, ε)‖∂tuN(t)‖2H1(Rd) ≤

1

4ε
‖f‖2H−1(Rd),

where C(α, β, ε) is a positive constant independent of N and t. Integrating the above inequality

from 0 to t, we have

‖∂tuN(t)‖2L2(Rd) + ‖γ∇uN(t)‖2L2(Rd) + C(α, β, ε)

∫ t

0

‖∂tuN(τ)‖2H1(Rd)dτ

≤ ‖w0‖2L2(Rd) + ‖γu0‖2H1(Rd) +
1

4ε
‖f‖2L2(0,T ;H−1(Rd)).
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Here we use the estimate

‖Π̂Nu0‖H1(Rd) ≤ ‖u0‖H1(Rd), ‖Π̂Nw0‖L2(Rd) ≤ ‖w0‖L2(Rd).

Therefore, in view of the third condition in (3), we have

‖∂tuN‖L∞(0,T ;L2(Rd)) + ‖∇uN‖L∞(0,T ;L2(Rd)) + ‖∂tuN‖L2(0,T ;H1(Rd)) ≤ C1(u0, w0, f), (13)

where C1(u0, w0, f) is a constant depending on ‖f‖L2(0,T ;H−1(Rd)) and ‖u0‖H1(Rd), ‖w0‖L2(Rd).

Here we do not have the Poincaré inequality for the space direction, so we need to further

give the estimate for ‖uN‖L∞(0,T ;L2(Rd)). By taking v = uN(t) in (10) and using the Cauchy-

Schwartz and Young inequalities, we have

1

2

d

dt

(
‖α1/2uN(t)‖2L2(Rd) + ‖β1/2∇uN(t)‖2L2(Rd)

)
+ ‖γ∇uN(t)‖2L2(Rd) =

(
f − ∂2

t uN(t), uN(t)
)

≤ ‖f‖H−1(Rd)‖uN(t)‖H1(Rd) −
(
∂2
t uN(t), uN(t)

)

≤ 1

2

(
‖uN(t)‖2H1(Rd) + ‖f‖2H−1(Rd)

)
−
(
∂2
t uN(t), uN(t)

)
.

Integrating the above inequality from 0 to t and using integral by parts with respect to τ for
∫ t

0
(∂2

τuN(τ), uN(τ)) dτ , we have

‖α1/2uN(t)‖2L2(Rd) + ‖β1/2∇uN(t)‖2L2(Rd) + 2

∫ t

0

‖γ∇uN(τ)‖2L2(Rd)dτ

≤‖uN(t)‖2L2(0,T ;H1(Rd)) + ‖f‖2L2(0,T ;H−1(Rd)) + 2‖∂tuN(t)‖2L2(0,T ;L2(Rd)) + 2

∫

Ω

(u0w0 − uN(t)∂tuN(t)) dx

≤‖uN(t)‖2L2(0,T ;H1(Rd)) + ‖f‖2L2(0,T ;H−1(Rd)) + 2‖∂tuN(t)‖2L2(0,T ;L2(Rd)) + 2‖u0‖L2(Rd)‖w0‖L2(Rd)

+ ǫ‖uN(t)‖2L2(Rd) +
1

ǫ
‖∂tuN(t)‖2L2(Rd),

where the Cauchy-Schwarz and Young inequalities are used for the last inequality. Let ǫ =

min(α)/2, then the following estimate

‖uN‖2L∞(0,T ;L2(Rd)) + ‖∇uN‖2L∞(0,T ;L2(Rd)) + ‖∇uN‖2L2(0,T ;L2(Rd)) ≤ C2(u0, w0, f) (14)

follows based on the estimate (13), where C2(u0, w0, f) is a constant depending on ‖f‖L2(0,T ;H−1(Rd))

and ‖u0‖H1(Rd), ‖w0‖L2(Rd). Therefore, the estimate (11) follows from (13) and (14). Further-

more, we have from (10) that

‖∂2
t uN(t)‖H−1(Rd) ≤‖α1/2∂tuN‖H−1(Rd) + ‖β1/2∂t∇uN‖H−1(Rd) + ‖γ∇uN‖L2(Rd) + ‖f‖H−1(Rd)

≤‖α1/2∂tuN‖L2(Rd) + ‖β1/2∂t∇uN‖L2(Rd) + ‖γ∇uN‖L2(Rd) + ‖f‖H−1(Rd).

9



Then the estimate (12) holds by integrating the above equation from 0 to t and using the

estimate (11).

We are now able to show the existence and uniqueness of the continuous problem (8). We

use more or less the standard compactness arguments similar as that used in [11] based on the

properties of the Hermite spectral Galerkin approximation.

We state the main result of this section concerning the well-posedness of the weak problem

(8) as follows:

Theorem 3.2. Assume u0 ∈ H1(Rd), w0 ∈ L2(Rd), f ∈ L2(0, T ;H−1(Rd)), then the weak

problem (8) admits a unique solution u ∈ L∞(0, T ;H1(Rd)) and ∂tu ∈ L∞(0, T ;L2(Rd)) ∩

L2(0, T ;H1(Rd)), ∂2
t u ∈ L2(0, T ;H−1(Rd)) satisfying

‖∂tu‖L∞(0,T ;L2(Rd)) + ‖∂tu‖L2(0,T ;H1(Rd)) + ‖u‖L∞(0,T ;H1(Rd)) ≤ C(u0, w0, f). (15)

Proof. We first show the existence of the weak problem (8). We have from Theorem 3.1 that

there exists a sequence of functions {uN : N ∈ N} with uN ∈ L∞(0, T ;H1(Rd)), and ∂tuN ∈

L∞(0, T ;L2(Rd)) ∩ L2(0, T ;H1(Rd)), and ∂2
t uN ∈ L2(0, T ;H−1(Rd)) for all T ≥ 0, satisfying

(10)-(12) for each N ≥ 1, and

uN(0) = Π̂Nu0, ∂tuN(0) = Π̂Nw0.

By virtue of estimates (11) and (12) and thanks to Theorem 3 of Appendix D.4 in [7],

we have that there exists a function u ∈ L∞(0, T ;H1(Rd)), and ∂tu ∈ L∞(0, T ;L2(Rd)) ∩

L2(0, T ;H1(Rd)), and ∂2
t u ∈ L2(0, T ;H−1(Rd)) such that

uN ⇀∗ u in L∞(0, T ;H1(Rd)), (16)

uN ⇀ u in L2(0, T ;H1(Rd)), (17)

∂tuN ⇀∗ ∂tu in L∞(0, T ;L2(Rd)), (18)

∂tuN ⇀ ∂tu in L2(0, T ;H1(Rd)), (19)

∂2
t uN ⇀∗ ∂2

t u in L2(0, T ;H−1(Rd)) (20)

10



for all T ≥ 0 as N → ∞.

Let v(x) ∈ H1(Rd) and η(t) ∈ C([0, T ]), we take Π̂Nv as the test function in (10) and

multiply both sides of the resulting identity by η(t) and integrate over t ∈ [0, T ] to get

∫ T

0

(
∂2
t uN(t), η(t)Π̂Nv

)
dt+

∫ T

0

(α∂tuN(t), η(t)Π̂Nv)dt+

∫ T

0

(β∂t∇uN(t), η(t)∇Π̂Nv)dt

+

∫ T

0

(γ2∇uN(t), η(t)∇Π̂Nv)dt =

∫ T

0

(f, η(t)Π̂Nv)dt.

(21)

By taking the limit N → ∞ and applying the convergence results (16)-(20), we obtain

∫ T

0

(
∂2
t uN(t), η(t)Π̂Nv

)
dt →

∫ T

0

(
∂2
t u(t), η(t)v

)
dt,

∫ T

0

(α∂tuN(t), η(t)Π̂Nv)dt →
∫ T

0

(α∂tu(t), η(t)v)dt,

∫ T

0

(β∂t∇uN(t), η(t)∇Π̂Nv)dt →
∫ T

0

(β∂t∇u(t), η(t)∇v)dt,

∫ T

0

(γ2∇uN(t), η(t)∇Π̂Nv)dt →
∫ T

0

(γ2∇u(t), η(t)∇v)dt,

and

∫ T

0

(f, η(t)Π̂Nv)dt →
∫ T

0

(f, η(t)v)dt.

Consequently, we get by letting N → ∞ in (21) that

∫ T

0

(
∂2
t u(t), η(t)v

)
dt +

∫ T

0

(α∂tu(t), η(t)v)dt+

∫ T

0

(β∂t∇u(t), η(t)∇v)dt

+

∫ T

0

(γ2∇u(t), η(t)∇v)dt =

∫ T

0

(f, η(t)v)dt, ∀v ∈ H1(Rd).

(22)

Since η(t) ∈ C([0, T ]) is arbitrary, we deduce that u(t) satisfies (8) for all T > 0.

We now show that u(0) = u0 and ∂tu(0) = w0 to complete the proof of the existence of the

weak solution of (8). It follows from (17) and (19) that

u(0) = lim
N→∞

Π̂Nu0 = u0.

Note that ∂tu(t) ∈ L2(0, T ;H1(Rd)) and ∂2
t u(t) ∈ L2(0, T ;H−1(Rd)), then we have

‖∂tu(t)‖2L2(Rd) = 2

∫ t

0

(∂2
τu(τ), ∂τu(τ))dτ + ‖∂tu(0)‖2L2(Rd),

11



which implies that ∂tu(t) ∈ C([0, T ];L2(Rd)). Therefore, by replacing η(t) with ηT (t) = 1− t/T

and integrating by parts against t for the first term of (22), we obtain

∫ T

0

1

T
(∂tu(t), v) dt+

∫ T

0

(α∂tu(t), ηT (t)v)dt+

∫ T

0

(β∂t∇u(t), ηT (t)∇v)dt

+

∫ T

0

(γ2∇u(t), ηT (t)∇v)dt =

∫ T

0

(f, ηT (t)v)dt+ (∂tu(0), v).

(23)

Then, by applying the same argument for (21) with ∂tuN(t) = Π̂Nw0, we obtain

∫ T

0

1

T

(
∂tuN(t), Π̂Nv

)
dt+

∫ T

0

(α∂tuN(t), ηT (t)Π̂Nv)dt+

∫ T

0

(β∂t∇uN(t), ηT (t)∇Π̂Nv)dt

+

∫ T

0

(γ2∇uN(t), ηT (t)∇Π̂Nv)dt =

∫ T

0

(f, ηT (t)Π̂Nv) + (Π̂Nw0, Π̂Nv).

Taking N → ∞ gives

∫ T

0

1

T
(∂tu(t), v) dt+

∫ T

0

(α∂tu(t), ηT (t)v)dt+

∫ T

0

(β∂t∇u(t), ηT (t)∇v)dt

+

∫ T

0

(γ2∇u(t), ηT (t)∇v)dt =

∫ T

0

(f, ηT (t)v)dt+ (w0, v).

Comparing the above equation with (23), we have ∂tu(0) = w0. The estimate (15) follows by

letting N → ∞ in (11).

We now show the uniqueness of the weak solution. Let u and ū be two solutions of the weak

problem (8) with u(0) = ū(0) = u0 and ∂tu(0) = ∂tū(0) = w0. Denote e = u− ū. Then for a.e.

t ∈ (0, T ), e satisfies

(
∂2
t e(t), v

)
+ (α∂te(t), v) + (β∂t∇e(t),∇v) + (γ2∇e(t),∇v) = 0, ∀v ∈ H1(Rd)

with e(0) = ∂te(0) = 0. Taking v = ∂te(t) in the above equation, we obtain

1

2

d

dt

(
‖∂te(t)‖2L2(Rd) + ‖γ∇e(t)‖2L2(Rd)

)
+ ‖α1/2∂te(t)‖2L2(Rd) + ‖β1/2∂t∇e(t)‖2L2(Rd) = 0.

This yields

1

2

d

dt

(
‖∂te(t)‖2L2(Rd) + ‖γ∇e(t)‖2L2(Rd)

)
≤ 0.

Integrating the above equation from 0 to t, and noting that e(0) = ∂te(0) = 0, we have

‖∂te(t)‖2L2(Rd) + ‖γ∇e(t)‖2L2(Rd) ≤ 0.
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Hence, ∂te(t) = 0. Using the initial condition e(0) = 0 again, we have e(t) = 0 for all t ∈ [0, T ],

i.e., the weak problem (8) has a unique solution.

Remark 3.1. By using the same argument for the uniqueness, we can readily show the stability

of the solution in terms of the initial conditions u0, w0 and the source term f .

3.2 Regularity

We now discuss how the regularity of the solution of the DVWE depends on the initial

conditions and the source term f with sufficiently smooth coefficients α, β, γ. For the sake of

simplicity, we assume that α, β, γ are constants.

Let ũN := ∂tuN , and ũ0 = w0, w̃0 = w̃1
0 + w̃2

0 with w̃1
0 = f(·, 0) − div(γ2∇u0), w̃2

0 =

αw0 − div(β∇w0), then we have

A(ũN , v) = (ft, v), ∀v ∈ VN (24)

with ũN(x, 0) = Π̂N ũ0, ∂tũN(x, 0) = Π̂N w̃0. By using the similar arguments in the last section,

we obtain the following energy estimate:

‖∂tũN‖L∞(0,T ;L2(Rd)) + ‖∂tũN‖L2(0,T ;H1(Rd)) + ‖ũN‖L∞(0,T ;H1(Rd))

≤C(‖ft‖L2(0,T ;H−1(Rd)) + ‖ũ0‖H1(Rd) + ‖w̃1
0‖L2(Rd) + ‖w̃2

0‖L2(Rd))

≤C(‖ft‖L2(0,T ;H−1(Rd)) + ‖f(·, 0)‖L2(Rd) + ‖u0‖H2(Rd) + ‖w0‖H2(Rd)).

This gives

‖∂2
t uN‖L∞(0,T ;L2(Rd)) + ‖∂2

t uN‖L2(0,T ;H1(Rd)) + ‖∂tuN‖L∞(0,T ;H1(Rd))

≤C(‖ft‖L2(0,T ;H−1(Rd)) + ‖f(·, 0)‖L2(Rd) + ‖u0‖H2(Rd) + ‖w0‖H2(Rd)).
(25)

Take v = −∆uN in (10), we obtain

1

2

d

dt

(
‖β1/2∆uN‖2L2(Rd) + ‖α1/2∇uN‖2L2(Rd)

)
+ ‖γ∆uN‖2L2(Rd) = (f − ∂2

t uN ,−∆uN)

≤ 1

4γ2
‖f − ∂2

t uN‖2L2(Rd) + ‖γ∆uN‖2L2(Rd).

Integrating the above equation from 0 to t and using the estimate (25), we obtain

‖∆uN‖2L2(Rd) + ‖∇uN‖2L2(Rd) ≤ C(‖f‖2H1(0,T ;L2(Rd)) + ‖u0‖2H2(Rd) + ‖w0‖2H2(Rd)).
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By letting N → ∞, we obtain from the above estimate and (25) that

‖∂2
t u‖L∞(0,T ;L2(Rd)) + ‖∂tu‖L∞(0,T ;H1(Rd)) + ‖u‖L∞(0,T ;H2(Rd)) + ‖∂2

t u‖L2(0,T ;H1(Rd))

≤C(‖f‖H1(0,T ;L2(Rd)) + ‖u0‖H2(Rd) + ‖w0‖H2(Rd)).
(26)

We next show the higher regularity result. In particular, we have the following result:

Theorem 3.3. Assume α, β, γ are sufficiently smooth, let u be the solution of (8), if u0 ∈

Hk+2(Rd), w0 ∈ Hk+2(Rd), f ∈ H1(0, T ;Hk(Rd)), k ≥ 0, then

‖∂2
t u‖L∞(0,T ;Hk(Rd)) + ‖∂tu‖L∞(0,T ;Hk+1(Rd)) + ‖u‖L∞(0,T ;Hk+2(Rd)) + ‖∂2

t u‖L2(0,T ;Hk+1(Rd))

+ ‖∂tu‖L2(0,T ;Hk+2(Rd)) ≤ C
(
‖f‖H1(0,T ;Hk(Rd)) + ‖w0‖Hk+2(Rd) + ‖u0‖Hk+2(Rd)

)
.

(27)

Proof. Taking v = (−1)k∂t∇2kũN , k ≥ 1 in (24), we obtain

1

2

d

dt

(
‖∂t∇kũN‖2L2(Rd) + ‖γ∇k+1ũN‖2L2(Rd)

)
+ α‖∂t∇kũN‖2L2(Rd) + β‖∂t∇k+1ũN‖2L2(Rd)

= (ft, ∂t∇2kuN) ≤ C(β)‖ft‖2Hk−1(Rd) +
β

2
‖∂t∇k+1uN‖2L2(Rd).

Integrating the above equation from 0 to T , we have

‖∂t∇kũN‖2L∞(0,T ;L2(Rd)) + ‖γ∇k+1ũN‖2L∞(0,T ;L2(Rd)) + 2α‖∂t∇kũN‖2L2(0,T ;L2(Rd))

+ β‖∂t∇k+1ũN‖2L2(0,T ;L2(Rd)) ≤ C
(
‖ft‖2L2(0,T ;Hk−1(Rd)) + ‖∇k+1ũ0‖2L2(Rd) + ‖∇kw̃0‖2L2(Rd)

)
,

which leads to

‖∂2
t∇kuN‖2L∞(0,T ;L2(Rd)) + ‖∂t∇k+1uN‖2L∞(0,T ;L2(Rd)) + ‖∂2

t∇k+1uN‖2L2(0,T ;L2(Rd))

≤ C
(
‖ft‖2L2(0,T ;Hk−1(Rd)) + ‖f(·, 0)‖2Hk(Rd) + ‖∇k+2w0‖2L2(Rd) + ‖∇k+2u0‖2L2(Rd)

)
.

(28)

Using the same argument for ũN to uN , we obtain the following estimate

‖∂t∇kuN‖2L∞(0,T ;L2(Rd)) + ‖∇k+1uN‖2L∞(0,T ;L2(Rd)) + ‖∂t∇k+1uN‖2L2(0,T ;L2(Rd))

≤ C
(
‖f‖2L2(0,T ;Hk−1(Rd)) + ‖∇k+1u0‖2L2(Rd) + ‖∇kw0‖2L2(Rd)

)
.

(29)

We put the above two estimates together as follow:

‖∂2
t uN‖L∞(0,T ;Hk(Rd)) + ‖∂tuN‖L∞(0,T ;Hk+1(Rd)) + ‖uN‖L∞(0,T ;Hk+2(Rd)) + ‖∂2

t uN‖L2(0,T ;Hk+1(Rd))

+ ‖∂tuN‖L2(0,T ;Hk+2(Rd)) ≤ C
(
‖f‖H1(0,T ;Hk(Rd)) + ‖w0‖Hk+2(Rd) + ‖u0‖Hk+2(Rd)

)
.

The estimate (27) follows by letting N → ∞.
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4 Error estimates

We show in this section the convergence of the Hermite spectral Galerkin approximation.

Let us denote the errors as follows:

eN = u− uN = ξN + ηN , ξN = Π̂Nu− uN , ηN = u− Π̂Nu.

We have the following error estimate for the Hermite spectral Galerkin approximation.

Theorem 4.1. Let u and uN be the solutions of the weak problem (8) and the Hermite

spectral Galerkin problem (10), respectively. Assume u0 ∈ B̂µ(R
d), w0 ∈ B̂ν(R

d), u(t) ∈

L2(0, T ; B̂r(R
d)) ∩ L∞(0, T ; B̂s(R

d)), ∂tu(t) ∈ L2(0, T ; B̂q(R
d)) ∩ L∞(0, T ; B̂τ(R

d)), ∂2
t u(t) ∈

L2(0, T ; B̂p(R
d)), t ≥ 0, q, s > 1, p, µ, ν, τ > 0, then there holds the following error estimate:

‖∂teN‖+ ‖eN‖H1(Rd) . N− p

2 |∂2
t u|L2(0,T ;B̂p(Rd)) +N

1−q

2 |∂tu|L2(0,T ;B̂q(Rd)) +N− τ
2 |∂tu|L∞(0,T ;B̂τ (Rd))

+N
1−r
2 |u|L2(0,T ;B̂r(Rd)) +N

1−s
2 |u|L∞(0,T ;B̂s(Rd)) +N−µ

2 |u0|B̂µ(Rd) +N− ν
2 |w0|B̂ν(Rd)

(30)

for all t > 0. Here and below ‖ · ‖ denotes for the standard L2 norm.

Proof. We derive from (8) and (10) that

A(u− uN , v) = 0, ∀v ∈ VN ,

where A(·, ·) is defined in (9). Consequently, we have

A(ξN , v) = −A(ηN , v), ∀v ∈ VN . (31)

By taking v = ∂tξN in (31), we get

A
(
ξN , ∂tξN

)
=

1

2

d

dt
‖∂tξN‖2 + ‖α 1

2∂tξN‖2 + ‖β 1

2∂t∇ξN‖2 +
1

2

d

dt
‖γ∇ξN‖2, (32)

and

A
(
ηN , ∂tξN

)
=

(
∂2
t ηN , ∂tξN

)
+
(
α∂tηN , ∂tξN

)
+
(
β∂t∇ηN , ∂t∇ξN

)
+
(
γ2∇ηN , ∂t∇ξN

)

≤ ǫ1‖∂tξN‖2 + C(ǫ1)‖∂2
t ηN‖2 + ǫ2‖∂tξN‖2 + C(ǫ2)‖∂tηN‖2 + ǫ3‖∂t∇ξN‖2

+ C(ǫ3)‖∂t∇ηN‖2 + ǫ4‖∂t∇ξN‖2 + C(ǫ4)‖∇ηN‖2.

(33)
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Set ǫ1 + ǫ2 = α, ǫ3 + ǫ4 = β, then by combining the above two equations, and using estimate

(7), we obtain

d

dt

(
‖∂tξN‖2 + ‖γ∇ξN‖2

)
≤C(‖∂2

t ηN‖2 + ‖∂tηN‖2 + ‖∂t∇ηN‖2 + ‖∇ηN‖2)

≤C(N−p|∂2
t u|2B̂p(Rd)

+N1−q|∂tu|2B̂q(Rd)
+N1−r|u|2

B̂r(Rd)
),

where C is a constant independent of N . Integrating the above equation from 0 to t, we obtain

‖∂tξN‖2 + ‖γ∇ξN‖2 .N−p|∂2
t u|2L2(0,T ;B̂p(Rd))

+N1−q|∂tu|2L2(0,T ;B̂q(Rd))
+N1−r|u|2

L2(0,T ;B̂r(Rd))

+N−µ‖u0‖2B̂µ(Rd)
+N−ν‖w0‖2B̂ν(Rd)

.

Therefore, the following estimate

‖∂teN‖2 + ‖∇eN‖2 . N−p|∂2
t u|2L2(0,T ;B̂p(Rd))

+N1−q|∂tu|2L2(0,T ;B̂q(Rd))
+N1−r|u|2

L2(0,T ;B̂r(Rd))

+N−µ|u0|2B̂µ(Rd)
+N−ν |w0|2B̂ν(Rd)

+N−τ |∂tu|2L∞(0,T ;B̂τ (Rd))
+N1−s|u|2

L∞(0,T ;B̂s(Rd))
.

(34)

follows by using the triangle inequality and the projection property. To obtain the estimate

(30), we are left to estimate ‖eN(t)‖. Note that

d

dt
‖eN(t)‖2 ≤ 2‖eN(t)‖‖∂teN (t)‖ ≤ ‖eN (t)‖2 + ‖∂teN (t)‖2.

Then using the Gronwall’s inequality, we obtain

‖eN(t)‖ ≤ C‖∂teN(t)‖.

Consequently, the estimate (30) follows by the estimate (34).

Remark 4.1. If a function v decays sufficiently fast at infinity, then ‖v‖Hk(Rd) ≈ ‖v‖B̂k(Rd), k ≥

0. Therefore, if u, ∂tu, ∂
2
t u decay sufficiently fast at infinity, α, β, γ are sufficiently smooth, and

f ∈ H1(0, T ;Hk(Rd)), u0 ∈ Hk+2(Rd), w0 ∈ Hk+2(Rd), in view of the estimates (27), we

observe that the estimate (30) is reduced as

‖∂teN‖+ ‖eN‖H1(Rd) . N− k+1

2

(
‖f‖H1(0,T ;Hk(Rd)) + ‖w0‖Hk+2(Rd) + ‖u0‖Hk+2(Rd)

)
. (35)

5 Implementation and numerical examples

In this section, we shall briefly give the implementation details, and then present several

numerical examples to demonstrate the proposed algorithm.
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5.1 Implementation

Now let us give the details of the implementation. We first consider the space discretization.

Let

Φ|j|1(x) =

d∏

k=1

φjk(xk),

where |j|1 = j1 + . . .+ jd. Then {Φj(x)}Nb

j=1 are the basis functions of VN . We can express the

numerical approximation uN as

uN(x, t) =

Nb∑

j=1

ûj(t)Φj(x), (36)

where Nb is the total number of basis functions.

By setting v = Φi(x) (i = 1, · · · , Nb) and using the formulation (36), we can rewrite (10)

into the following linear system

M
d2

dt2
Û(t) +Mα

d

dt
Û(t) + Sβ

d

dt
Û(t) + SγÛ(t) = F (t), (37)

where the mass matrix M and weighted mass matrix Mα are given by

Mij = (Φj ,Φi), Mα,ij = (αΦj ,Φi),

and the weighted stiffness matrices Sβ and Sγ are given by

Sβ,ij = (β∇Φj ,∇Φi), Sγ,ij = (γ2∇Φj ,∇Φi),

and

F (t) = [(f,Φ1), . . . , (f,ΦNb
)]T , Û(t) = [û1(t), . . . , ûNb

(t)]T .

For the computation of the mass and stiff matrices, the explicit forms can be found in [23,

Section 7.2] if α, β, γ are all constants. Otherwise, if α, β, γ are variable coefficients, to obtain

the matricesMα, Sβ and Sγ , we use the Gauss-Hermite quadrature. The n-point Gauss-Hermite

rule in R reads as ∫

R

e−x2

f(x)dx ≈
n∑

k=1

ωkf(xk),
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where xk, ωk (k = 1, 2, · · · , n) are the Hermite Gauss quadrature points and weights, respec-

tively.

Now we introduce the time discretization for solving the resulting linear system (37). To

get a globally high-order accurate scheme in time, here we would like to employ the third-stage

strong stability preserving (SSP) Runge-Kutta (RK) method for the ordinary differential system

(37). To this end, an auxiliary variable V̂ (t) is first introduced for (37) to get the following

first-order system: 



d

dt
Û(t) = V̂ (t),

d

dt
V̂ (t) = AÛ(t) +BV̂ (t) + F̃ (t),

where A = −M−1Sγ, B = −M−1
(
Mα + Sβ

)
and F̃ = M−1F .

Assume that the time interval is discretized as: tn+1 = tn +∆tn, n = 0, 1, 2, · · · , where ∆tn

is the time step size at t = tn. Let u
n and vn be the approximations to u(·, tn) and v(·, tn), then

the third-stage SSP-RK method is used for the time discretization as follows:

Stage 1:

Û (1) = Ûn +∆tnV̂
n,

V̂ (1) = V̂ n +∆tn

(
AÛn +BV̂ n + F̃ n

)
.

Stage 2:

Û (2) =
3

4
Ûn +

1

4

(
Û (1) +∆tnV̂

(1)
)
,

V̂ (2) =
3

4
V̂ n +

1

4

(
V̂ (1) +∆tn

(
AÛ (1) +BV̂ (1) + F̃ (1)

))
.

Stage 3:

Ûn+1 =
1

3
Ûn +

2

3

(
Û (2) +∆tnV̂

(2)
)
,

V̂ n+1 =
1

3
V̂ n +

2

3

(
V̂ (2) +∆tn

(
AÛ (2) +BV̂ (2)

)
+ F̃ (2)

)
.

5.2 Numerical examples

In the following, we present several numerical examples to test the accuracy of the Hermite

spectral Galerkin method and to illustrate the behavior of the solutions to problem (1).

Example 1. Accuracy tests with smooth initial conditions and source term in the one-

dimensional case. We consider the 1D diffusive-viscous wave equation with α = β = γ = 1 and
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different initial conditions and source functions:

(i) f = 0, u(x, 0) = e−x2

, ut(x, 0) = −e−x2

.

(ii) f = e−x2

[(1− 4x2) sin t+ (3− 4x2) cos t], u(x, 0) = 0, ut(x, 0) = e−x2

.

These two problems have exact solutions u(x, t) = e−x2−t and u(x, t) = e−x2

sin t respectively.

We compute the numerical solutions with the spectral method and the third-stage SSP Runge-

Kutta method (∆tn = 10−4) until the final time T = 1. The degree of the space approximation

is N . The numerical errors measured by three different norms (L2 and L∞) and orders of

accuracy are listed in Table 5.1 for case (i) and case (ii), respectively. We also show the

errors in semi-log scale in Figure 5.1 for the cases (i) and (ii). We observe that the expected

exponential convergence rates are obtained.

Table 5.1: Example 1: Errors and convergence rates for the 1D cases.

case (i) case (ii)

N L2 error L2 order L∞ error L∞ order L2 error L2 order L∞ error L∞ order

10 2.751E-04 — 1.316E-04 — 7.467E-04 — 4.783E-04 —

15 2.855E-05 5.588 1.302E-05 5.705 8.033E-05 5.499 5.244E-05 5.452

20 9.792E-07 11.723 4.143E-07 11.983 2.879E-06 11.570 1.928E-06 11.483

25 1.045E-07 10.028 4.254E-08 10.201 3.149E-07 9.918 2.143E-07 9.844

30 3.679E-09 18.355 1.378E-09 18.810 1.145E-08 18.179 7.944E-09 18.072

35 3.971E-10 14.441 1.501E-10 14.384 1.259E-09 14.318 8.845E-10 14.240

40 1.417E-11 24.964 5.056E-12 25.392 4.607E-11 24.774 3.281E-11 24.670

45 1.566E-12 18.700 7.497E-13 16.205 5.106E-12 18.678 3.656E-12 18.632

50 2.934E-13 15.891 2.746E-13 9.533 5.078E-13 21.906 4.288E-13 20.341
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Figure 5.1: Example 1: Convergence of the L2 and L∞ errors for the solutions.

Example 2. Accuracy tests with smooth initial conditions and source term in the two-

dimensional case. We compute the 2D diffusive-viscous wave equation with α = β = γ = 1 and

consider the following two cases:

(i) f = 0, u(x, y, 0) = e−(x2+y2), ut(x, y, 0) = −e−(x2+y2).

(ii) f = e−x2

[(3−4x2−4y2) sin t+(5−4x2−4y2) cos t], u(x, y, 0) = 0, ut(x, y, 0) = e−(x2+y2).

For these two problems, the exact solutions are given by u(x, y, t) = e−(x2+y2)−t and u(x, y, t) =

e−(x2+y2) sin t, respectively. The degrees of the space approximation is N ×N . Set ∆tn = 10−4,

we compute the numerical approximations until T = 0.5. The errors are also measured by three

different norms (L2 and L∞). We present the errors as well as the convergence rates in Table

5.2 for the case (i) and the case (ii), respectively. We also plot the convergence of the errors

in semilog scale in Figure 5.2 showing again that the spectral accuracy with respect to N is

obtained.
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Table 5.2: Example 2: Errors and convergence rates for the 2D cases.

case (i) case (ii)

N L2 error L2 order L∞ error L∞ order L2 error L2 order L∞ error L∞ order

10 7.181E-04 — 4.293E-04 — 6.347E-04 — 2.620E-04 —

15 7.452E-05 3.269 4.141E-05 3.374 6.781E-05 3.226 2.563E-05 3.354

20 2.556E-06 8.318 1.302E-06 8.532 2.413E-06 8.227 9.349E-07 8.166

25 2.728E-07 7.779 1.324E-07 7.947 2.630E-07 7.705 1.032E-07 7.660

30 9.603E-09 14.997 4.373E-09 15.282 9.520E-09 14.872 3.808E-09 14.786

35 1.037E-09 12.209 4.547E-10 12.415 1.045E-09 12.119 4.228E-10 12.056

40 3.697E-11 21.626 1.562E-11 21.869 3.811E-11 21.480 1.575E-11 21.344

45 4.028E-12 16.602 1.852E-12 15.969 4.202E-12 16.512 1.743E-12 16.483

50 3.287E-13 21.275 2.891E-13 15.766 2.438E-13 24.173 1.822E-13 19.174
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Figure 5.2: Example 2: Convergence of the L2 and L∞ errors for the solutions.

Example 3. Accuracy tests with non-smooth source term in the one-dimensional case.

Here we consider the 1D problem with α = β = γ = 1 and the initial conditions and source
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function are taken as:

u(x, 0) = ut(x, 0) = 0, f(x, t) = xµe−x2

cos(t).

For the above problem, we set µ = 1
3
and µ = 4

3
, respectively. The expected convergence rates

of ‖e‖H1(R) are almost 11
12

and 17
12
, respectively according to the estimate (35). The numerical

simulation is implemented with the present Hermite spectral method and the third-stage SSP

Runge-Kutta method (∆tn = 10−4) until the final time T = 0.5. Since we don’t have the exact

solution, we take the numerical solutions obtained with N = 500 as the “reference solution” to

compute the numerical errors and consequent the convergence rates. The result concerning the

convergence of the H2-error is shown in Figure 5.3. We observe that the convergence rates are

coincide with the theoretical results.
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Figure 5.3: Example 3: Convergence of the H1 errors for the solutions.

Example 4. Wave propagation within homogeneous medium. In this test, we present the

problem describing the wave propagation with the homogeneous medium. For the diffusive-

viscous wave equation (1), we set the parameters as α = 1, β = 0.01 and γ = 20. A Ricker

wavelet with dominant frequency of 15Hz located at (x0, y0) = (10, 10) is used to generate the
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vibration. The source function is taken as follows

f(x, y, t) = g(x, y)h(t), (38)

where

g(x, y) = e−[(x−x0)2+(y−y0)2], h(t) =
[
1− 2(πf0(t− t0))

2
]
e−(πf0(t−t0))2 (39)

with the dominant frequency f0 = 15 and the time delay t0 = 0.05.

We use the present algorithm to numerically solve this model. The time step size is taken as

∆t = 10−4 and degrees of the space approximation is N×N . We show the time evolution of the

diffusive-viscous wave in Figure 5.4. Observe that the wave propagates outward isotropically

from the source center (x0, y0). We further compare the cross sections of the numerical solutions

at the line y = x for T = 0.005, 0.1, 0.3, 0.5 with N = 100 and N = 200 in Figure 5.5 to verify

the convergence of our numerical method. It can be seen that the one-dimensional profiles

match very well. Moreover, we notice that the wave front has propagated out of the fixed

domain [0, 20]2 (here only for showing the solution) at the time T = 0.5. This means that we

cannot obtain accurate solutions for a long time within a fixed bounded domain, e.g. [0, 20]2,

if homogeneous boundary conditions are used.

23



x

y

0 5 10 15 20
0

5

10

15

20

(a) T = 0.005

x

y

0 5 10 15 20
0

5

10

15

20

(b) T = 0.1

x

y

0 5 10 15 20
0

5

10

15

20

(c) T = 0.3

x

y

0 5 10 15 20
0

5

10

15

20

(d) T = 0.5

Figure 5.4: Example 4: Contours of the numerical approximations at time T =

0.005, 0.1, 0.3, 0.5 with N = 200.
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Figure 5.5: Example 4: Comparison of the cross sections of the numerical solutions at y = x,

at T = 0.005, 0.1, 0.3, 0.5. The results corresponding to red solid lines are obtained by using

N = 200 while the results corresponding to blue dash-dotted lines with the circle symbol are

obtained by using N = 100.

Example 5. Wave propagation within heterogeneous media. Now we consider the wave

propagation within two different media. The parameters are set as

(α, β, γ) =





(1.0, 0.02, 15.6), if y ≤ 16.5,

(2.5, 0.05, 20.4), if y > 16.5.
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The source function is defined as that in (38) and (39) with (x0, y0) = (15, 15), f0 = 20 and

t0 = 0.05.

The time step size is again taken as ∆t = 10−4 and degrees of the space approximation

is N × N . We present the time evolution of the diffusive-viscous wave in Figure 5.6. We

observe that initially the wave propagates isotropically from the source center (x0, y0) until it

reaches the interface of these different two media (around T = 0.05 to 0.15). Then at a later

time the wave fronts propagate at different speeds within these two media. We also present

the cross sections of the numerical solutions at the line x = 17 for T = 0.05, 0.15, 0.25, 0.4

with N = 150 and N = 300 in Figure 5.7 to verify the convergence of our numerical method.

It can be seen that the one-dimensional profiles match very well. Again, it can be observed

that the wave fronts have propagated out of the given domain [0, 30]2 at the time T = 0.8.

For this case, suitable boundary conditions must be applied when the problem is simulated

in a bounded domain, otherwise truncation errors or boundary reflections may destroy the

numerical solutions. However, this issue is resolved by using the proposed method since we

directly simulate the model in natural unbounded domains.
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Figure 5.6: Example 5: Contours of the numerical approximations at time T =

0.05, 0.15, 0.25, 0.4, 0.6, 0.8 with N = 300.
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Figure 5.7: Example 5: Comparison of the cross sections of the numerical solutions with x = 17,

at T = 0.05, 0.15, 0.25, 0.4, 0.6, 0.8. The results corresponding to red solid lines are obtained by

using N = 300 while the results corresponding to blue dash-dotted lines with the circle symbol

are obtained by using N = 150. 28



6 Concluding remarks

Diffusive-viscous wave equations arising in geophysics are naturally developed in unbounded

domains. A truncated domain is usually needed to numerically solve the diffusive-viscous wave

equations. However, this introduces nonphysical reflections or truncation errors. To resolve

this issue, we directly consider diffusive-viscous wave equations in unbounded domains in this

paper. In particular, we analyzed the existence and uniqueness of the weak solution and show

the regularity in terms of the initial conditions and the source term. We further developed

a high accuracy Hermite spectral Galerkin scheme for diffusive-viscous wave equations, and

then derived the error estimate for the Hermite spectral Galerkin method. We demonstrated

the theoretical result and verified the sharpness of the error estimate using both smooth and

non-smooth functions f . We further provided several numerical examples with constant as well

as discontinuous coefficients to demonstrate the present algorithm showing that the present

method can resolve the boundary truncation and artificial reflection issues.
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