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Abstract. This paper focuses on new error analysis of a class of mixed FEMs for
stationary incompressible magnetohydrodynamics with the standard inf-sup stable
velocity-pressure space in cooperation with Navier-Stokes equations and the Nédélec’s
edge element for the magnetic field. The methods have been widely used in various
numerical simulations in the last several decades, while the existing analysis is not opti-
mal due to the strong coupling of system and the pollution of the lower-order Nédélec’s
edge approximation in analysis. In terms of a newly modified Maxwell projection we
establish new and optimal error estimates. In particular, we prove that the method
based on the commonly-used Taylor-Hood/lowest-order Nédélec’s edge element is effi-
cient and the method provides the second-order accuracy for numerical velocity. Two
numerical examples for the problem in both convex and nonconvex polygonal domains
are presented, which confirm our theoretical analysis.

1. Introduction

Magnetohydrodynamics (MHD) is the study of the interaction between electrically
conducting fluids and electromagnetic fields [7, 15, 33], such as liquid metals, and salt
water or electrolytes. Some more comprehensive discussion on the applications can be
found in [15, 25, 32] and references therein. In this paper, we consider the steady state
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incompressible MHD model on Ω ⊂ Rd, d = 2, 3, defined by

−R−1
e ∆u+ (u · ∇)u+∇p− S(∇× b)× b = f in Ω, (1.1a)

SR−1
m ∇× (∇× b)− S∇× (u× b)−∇r = g in Ω, (1.1b)

∇ · u = 0 in Ω, (1.1c)

∇ · b = 0 in Ω, (1.1d)

u = 0 on ∂Ω, (1.1e)

n× b = 0 on ∂Ω, (1.1f)

r = 0 on ∂Ω, (1.1g)∫
Ω

p dx = 0, (1.1h)

where Ω a simply-connected Lipschitz polygonal or polyhedral domain and n is the unit
outward normal vector on ∂Ω. The solution of the above system consists of the velocity
u, the pressure p, the magnetic field b and the Lagrange multiplier r associated with the
divergence constraint on the magnetic field b. The above equations are characterized by
three dimensionless parameters: the hydrodynamic Reynolds number Re, the magnetic
Reynolds number Rm and the coupling number S. [2, 7, 15] provide detailed discussion
of these parameters and their typical values.

Numerical methods and analysis for the MHD model have been investigated exten-
sively in the last several decades, see [3, 14, 15, 16, 17, 19, 21, 23, 24, 31, 40, 43] and
references therein. The model is described by a coupled system of electrical fluid flows
and electromagnetic fields, governed by Navier-Stokes and Maxwell type equations, re-
spectively. Therefore, numerical methods for the MHD system are based on a combina-
tion of the approximation to Navier-Stokes equations and the approximation to Maxwell
equations. Earlier works was mainly focused on the classical Lagrange type finite ele-
ment approximation to the magnetic field b. Analysis has been done by many authors
[10, 14, 17, 19, 31]. [17] firstly provides the existence, uniqueness, and optimal conver-
gent finite element approximation to the MHD system with nonhomogeneous boundary
conditions. Instead of assuming the source terms f and g are small enough, the analysis
in [17] only requires that ‖u‖

H
1
2 (∂Ω)

is small enough (see [17, (4.19)]). A more popular

approximation to Maxwell equations is the H(curl)-conforming Nédélec’s edge element
methods, which have been widely used in many engineering areas. It is well-known
that Lagrange type approximation may produce wrong numerical solutions for Maxwell
equations in a nonconvex polyhedral domain, (see [1, 5]). For the MHD system, a class
of mixed finite element methods was first presented by Schötzau [40], where the hydro-
dynamic system is discretized by standard inf-sup stable velocity-pressure space pairs
and the magnetic system by a mixed approach using Nédélec’s elements of the first kind.
Error estimates of methods were presented and the problem was considered in general
domains. Subsequently, numerous efforts have been made with the Nédélec FE approx-
imation [27, 30, 35, 37, 41, 42, 43] and the analysis has been extended to many different
models and approximations [8, 9, 12, 22, 28, 36]. For a convex polyhedral domain, the
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main result given in [40] is the following error estimate

‖u− uh‖H1(Ω) + ‖b− bh‖H(curl,Ω) ≤ C(hl + hk) (1.2)

for the method with the approximation accuracy O(hl) for hydrodynamic variables and
the approximation accuracy O(hk) for the magnetic field b. By (1.2), one has to take the
combination with k = l to achieve an optimal convergence rate. However, the method
with k < l is more popular since high-order Nédélec’s edge elements are more compli-
cated in implementation and extremely time-consuming in computation. In particular,
the method based on the combination of the Taylor-Hood element and the lowest-order
Nédélec’s edge element has been frequently used in applications and numerical simula-
tions have been done extensively [11, 39, 41, 42]. In this case, k = 1 and l = 2, the error
estimate (1.2) reduces to

‖u− uh‖H1(Ω) + ‖b− bh‖H(curl,Ω) ≤ C(h2 + h) . (1.3)

One can see from (1.3) that the accuracy of numerical velocity is only of the first-order,
which is not optimal in the traditional sense and also, not a good indication for the
commonly-used method. It was assumed that the accuracy of the velocity is polluted by
the lower-order Nédélec’s edge finite element approximation. This is a common question
in many applications when FEMs with combined approximations of different orders is
used for a strongly coupled system. The main purpose of this paper is to establish the
optimal error estimate

‖u− uh‖H1(Ω) ≤ C(hl + hk+1) (1.4)

for the standard combination, which shows that the numerical velocity is of one-order
higher accuracy than given in previous analysis for the case k < l and which implies the
second-order accuracy

‖u− uh‖H1(Ω) ≤ Ch2 (1.5)

for the combination of Taylor-Hood element and the lowest-order Nédélec’s edge element
of the first type. Our analysis is based on a new modified Maxwell projection. In terms
of the projection and the error estimate in a negative norm, a more precise analysis
is presented in this paper. The analysis shows clearly that the mixed method with
the Taylor-Hood/lowest-order Nédélec’s edge element approximations is efficient and
the method provides second-order accuracy for numerical velocity. The lower-order
approximation to the magnetic field b does not influence the accuracy of numerical
solution of Navier-Stokes equations.

The rest of the paper is organized as follows. In Section 2 we first provide the varia-
tional formulation and the mixed method for the MHD model and some existing results
and then, we present our main theorem for an optimal error estimate of the method. To
prove it, we introduce a modified Maxwell projection and establish its approximation
properties in Section 3. In terms of this projection, we present our theoretical analysis.
In section 4, we provide numerical experiments to confirm our theoretical analysis and
show the efficiency of the method.
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2. Mixed FEMs and main results

2.1. Mixed FEMs. To introduce the mixed method, we adopt the notations and norms
used in [40, 43]. We denote some standard vector and scalar function spaces by

H(curl,Ω) ={c ∈ [L2(Ω)]d : ∇× c ∈ [L2(Ω)]d},
H0(curl,Ω) ={c ∈ H(curl,Ω) : n× c|∂Ω = 0},

X ={c ∈ H0(curl,Ω) : ∇ · c = 0},
H(div,Ω) ={c ∈ [L2(Ω)]d : ∇ · c ∈ [L2(Ω)]d},

L2
0(Ω) ={q ∈ L2(Ω) :

∫
Ω

qdx = 0},

H−1(Ω) =
(
H1

0 (Ω)
)∗
.

For any (v, c) ∈ [H1
0 (Ω)]d ×H(curl,Ω), we define

‖(v, c)‖2 := ‖∇v‖2
L2(Ω) + S‖c‖2

H(curl,Ω). (2.1)

Moreover, we denote some bilinear or trilinear forms by

as(u,v) = R−1
e (∇u,∇v)Ω,

am(b, c) = SR−1
m (∇× b,∇× c)Ω,

c0(w;u,v) =
1

2
(w · ∇u,v)Ω −

1

2
(w · ∇v,u)Ω,

c1(d;v, c) = S((∇× c)× d,v)Ω = −S(v × d,∇× c)Ω,

for any u,v ∈ [H1
0 (Ω)]d and any b, c,d ∈ H0(curl,Ω) with d ∈ [L3(Ω)]d.

The exact solution (u, b, p, r) of the MHD system (1.1) satisfies the variational for-
mulation

as(u,v) + c0(u;u,v)− c1(b;v, b)− (p,∇ · v)Ω =(f ,v)Ω, (2.2a)

am(b, c) + c1(b;u, c)− (∇r, c)Ω =(g, c)Ω, (2.2b)

(∇ · u, q)Ω =0, (2.2c)

(b,∇s)Ω =0, (2.2d)

for any (v, c, q, s) ∈ [H1
0 (Ω)]d ×H0(curl,Ω)× L2

0(Ω)×H1
0 (Ω).

Let Th denote a quasi-uniform conforming triangulation of Ω. On this triangulation,
we define several finite element spaces by

V l
h := [H1

0 (Ω) ∩ Pl(Th)]d,
Ql
h := Pl−1(Th) ∩H1(Ω) ∩ L2

0(Ω),

Ck
h := {ch ∈ H0(curl,Ω) : ch|K ∈ [Pk−1(K)]d ⊕Dk

h(K),∀K ∈ Th},
Skh := H1

0 (Ω) ∩ Pk(Th)

for l ≥ 2 and k ≥ 1, where Pl(Th) = {w ∈ L2(Ω) : w|K ∈ Pl(K),∀K ∈ Th}, Dk
h(K) =

{p ∈ [P̃k(K)]d : p(x) · x = 0,∀x ∈ K} and P̃k(K) is the collection of the k-th order
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homogeneous polynomials in Pk(K). Ck
h is actually the k-th order first type of Nédélec’s

edge element space.
The mixed method in [40, 43] seeks an approximation (uh, bh, ph, rh) ∈ V l

h × Ck
h ×

Qk
h × Slh to the exact solution (u, b, p, r) satisfying the following weak formulation:

as(uh,vh) + c0(uh;uh,vh)− c1(bh;vh, bh)− (ph,∇ · vh)Ω = (f ,vh)Ω, (2.3a)

am(bh, ch) + c1(bh;uh, ch)− (∇rh, ch)Ω = (g, ch)Ω, (2.3b)

(∇ · uh, qh)Ω = 0, (2.3c)

(bh,∇sh)Ω = 0, (2.3d)

for all (vh, ch, qh, sh) ∈ V l
h ×Ck

h ×Ql
h × Skh.

The paper is focused on optimal error estimates of the mixed method defined in (2.3).
Iterative algorithms for solving the nonlinear algebraic system and their convergences
were studied by several authors [10, 37, 41, 42, 43] and numerical simulations on various
practical models can be found in literature [3, 11, 39]. Analysis presented in this paper
can be extended to many other mixed methods.

2.2. Auxiliary results. The mixed method defined in (2.3a)-(2.3d) was analyzed by
several authors. In this subsection, we provide some existing results which shall be used
in our analysis.

Mimicking the space X defined at the beginning of Section 2.1, we introduce

Xh := {ch ∈ Ck
h : (ch,∇sh)Ω = 0,∀sh ∈ Skh}. (2.4)

Lemma 2.1. (see [43, (2.2, 2.3, 2.4)]) There exist positive constants λ0, λ
∗
1, λ1 and λ2

such that

λ0‖c‖H(curl,Ω) ≤ ‖∇× c‖L2(Ω), ∀c ∈X, (2.5a)

‖v‖L3(Ω) ≤ λ∗1‖∇v‖L2(Ω), ‖v‖L6(Ω) ≤ λ1‖∇v‖L2(Ω), ∀v ∈ H1
0 (Ω), (2.5b)

‖c‖L3(Ω) ≤ λ2‖∇ × c‖L2(Ω), ∀c ∈X. (2.5c)

Lemma 2.2. ([43, Lemma 2.1]) It holds that

as(w,v) + am(d, c) ≤max{R−1
e , R−1

m }‖(w,d)‖ · ‖(v, c)‖, (2.6a)

∀(w,d), (v, c) ∈ [H1
0 (Ω)]d ×H0(curl,Ω),

as(v,v) + am(c, c) ≥min(R−1
e , R−1

m λ0)‖(v, c)‖2, (2.6b)

∀(v, c) ∈ [H1
0 (Ω)]d ×X
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and

sup
w,ṽ,v∈[H1

0 (Ω)]d

c0(w; ṽ,v)

‖∇w‖L2(Ω)‖∇ṽ‖L2(Ω)‖∇v‖L2(Ω)

=λ1λ
∗
1, (2.7a)

sup
d∈X,v∈[H1

0 (Ω)]d,c∈H0(curl,Ω)

c1(d;v, c)

‖d‖H(curl,Ω)‖∇v‖L2(Ω)‖c‖H(curl,Ω)

=Sλ1λ2, (2.7b)

sup
d∈X,c̃,c∈H0(curl,Ω),w,ṽ,v∈[H1

0 (Ω)]d

c0(w; ṽ,v)− c1(d;v, c̃) + c1(d; ṽ, c)

‖(w,d)‖ · ‖(ṽ, c̃)‖ · ‖(v, c)‖
=N̂1 (2.7c)

:=
√

2λ1 max{λ∗1, λ2}.
Here the constants λ0, λ

∗
1, λ1 and λ2 are introduced in Lemma 2.1.

For any λ > 0, we define

η(λ) :=

(
‖f‖L2(Ω) + S−1‖g‖L2(Ω)

)
(min{R−1

e , R−1
m λ})2 . (2.8)

The well-posedness of the MHD system (1.1) is given in the following lemma and the
proof can be found in [40, 43].

Lemma 2.3. Suppose that

N̂1η(λ0) < 1, (2.9)

where N̂1 is introduced in (2.7c) and and η(λ0) is defined as (2.8) with λ = λ0. Then
the MHD system (1.1) admits a unique solution (u, b, p, r) ∈ [H1

0 (Ω)]d ×H0(curl,Ω) ×
L2

0(Ω)×H1
0 (Ω) satisfying

‖(u, b)‖ ≤ η(λ0) min{R−1
e , R−1

m λ0} . (2.10)

Lemma 2.4. ([34, Lemma 7.20], [38, Lemma 5.1]) There exist positive constants λ∗0, λ
∗
2

independent of h such that

λ∗0‖ch‖H(curl,Ω) ≤ ‖∇× ch‖L2(Ω), ‖ch‖L3(Ω) ≤ λ∗2‖∇ × ch‖L2(Ω), ∀ch ∈Xh (2.11)

where the finite element space Xh is introduced in (2.4).

The well-posedness of the finite element system and error estimates of finite element
solutions were presented in [40, 43]. With the above lemma, the well-posedness with a
slightly weak condition is given in the following lemma. The proof follows those given
in [40, 43] and is omitted here.

Lemma 2.5. Supposed that

N̂2η(λ∗0) < 1, (2.12)

where N̂2 =
√

2λ1 max{λ∗1, λ∗2} and η(λ∗0) is defined as (2.8) with λ = λ∗0. Then the
mixed finite element system (2.3) admits a unique solution satisfying

‖(uh, bh)‖ ≤ η(λ∗0) min{R−1
e , R−1

m λ∗0}. (2.13)
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Here the constants λ∗0, λ
∗
2 are introduced in Lemma 2.4, while λ1, λ

∗
1 are defined in

Lemma 2.1.
In addition,

‖u− uh‖H1(Ω) + ‖b− bh‖H(curl,Ω) ≤ C(hl + hk) . (2.14)

Remark 2.1. We can see that the condition (2.12) and discrete inverse inequality implies
the condition (2.9) and from (2.14) that

‖uh‖W 1,p(Ω) ≤ C for p ≤ 6 . (2.15)

2.3. Main results. Under the assumptions of Lemma 2.3, the MHD system (1.1) is well-
posed. We further assume that the solution satisfies the following regularity condition:
there exists a positive constant K, such that

‖b‖W 1,d+ (Ω) + ‖∇ × b‖W 1,d+ (Ω) + ‖u‖Hl+1(Ω) + ‖p‖Hl(Ω) + ‖b‖Hk(Ω)

+ ‖∇ × b‖Hk(Ω) + ‖r‖Hk+1(Ω) ≤ K. (2.16)

Here d+ denotes a constant strictly bigger than d.
Our main result is the following Theorem 2.1.

Theorem 2.1. We assume that the domain Ω is a convex polygon or polyhedra in Rd

and the conditions (2.12, 2.16) hold. Then the mixed finite element system (2.3) admits
a unique solution and there exists h0 > 0 such that when h ≤ h0,

‖u− uh‖H1(Ω) + ‖b̃h − bh‖H(curl,Ω) ≤ C1

(
hl + hk+1

)
, (2.17)

‖b− bh‖H(curl,Ω) ≤ C1

(
hl + hk

)
,

where C1 is a positive constant depending upon the physical parameters S,Rm, Re, the
domain Ω and the constant K introduced in (2.16). Here b̃h ∈ Ck

h is a projection of
(b, r) defined below in (3.2).

Corollary 2.2. Under the assumptions of Theorem 2.1, it holds that

‖u− uh‖L2(Ω) + ‖b− bh‖H−1(Ω) ≤ C2

(
hl+1 + hk+1

)
, (2.18)

where C2 is a positive constant depending upon the physical parameters S,Rm, Re, the
domain Ω and the constant K introduced in (2.16).

Remarks. For the Taylor-Hood/lowest-order Nédélec’s edge element of the first
type, l = 2 and k = 1. From the above theorem, one can see that the frequently-used
mixed method provides the second-order accuracy for the numerical velocity, while only
the first-order accuracy was presented in previous analyses. For the MINI/lowest-order
Nédélec’s edge element of the first type, l = k = 1 and the optimal error estimate of the
second-order in L2-norm is shown in (2.18). For simplicity, hereafter we denote by CK
a generic positive constant which depends upon K.

3. Analysis

Before proving our main results, we present a modified Maxwell projection in the
following subsection, which plays a key role in the proof of Theorem 2.1.
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3.1. Projections. Let (ũh, p̃h) ∈ V l
h × Ql

h be the standard Stokes projection of (u, p)
defined by

as(u− ũh,vh)− (p− p̃h,∇ · vh)Ω =0, ∀vh ∈ V l
h (3.1a)

(∇ · (u− ũh), qh)Ω =0, ∀qh ∈ Ql
h. (3.1b)

Let (b̃h, r̃h) ∈ Ck
h × Skh be the modified Maxwell projection of (b, r) defined by

am(b− b̃h, ch) + c1(b− b̃h;u, ch)− (∇(r − r̃h), ch)Ω =0, ∀ch ∈ Ck
h, (3.2a)

(b− b̃h,∇sh)Ω =0, ∀sh ∈ Skh. (3.2b)

With the Stokes projection (3.1) and the modified Maxwell projection (3.2), we define
an error splitting by

u− uh =(u− ũh) + (ũh − uh) := ξu + eu, (3.3a)

b− bh =(b− b̃h) + (b̃h − bh) := ξb + eb, (3.3b)

p− ph =(p− p̃h) + (p̃h − ph) := ξp + ep, (3.3c)

r − rh =(r − r̃h) + (r̃h − rh) := ξr + er. (3.3d)

Moreover, we denote by (b̂h, r̂h) ∈ Ck
h × Skh the standard Maxwell projection defined

by

am(b− b̂h, ch)− (∇(r − r̂h), ch)Ω =0, ∀ch ∈ Ck
h, (3.4a)

(b− b̂h,∇sh)Ω =0, ∀sh ∈ Skh. (3.4b)

By classic finite element theory, we have the error estimates

‖ξu‖L2(Ω) + h(‖∇ξu‖L2(Ω) + ‖ξp‖L2(Ω)) ≤ Chl+1(‖u‖Hl+1(Ω) + ‖p‖Hl(Ω)) (3.5)

for the Stokes projection in (3.1) when Ω is convex and

‖∇ × (b̂h − b)‖L2(Ω) + ‖b̂h − b‖L2(Ω) + ‖∇(r̂h − r)‖L2(Ω)

≤ Chmin(k,s)
(
‖b‖Hs(Ω) + ‖∇ × b‖Hs(Ω) + ‖r‖Hs+1(Ω)

)
(3.6)

for the Maxwell projection in (3.4). Here s > 0.
In order to provide the error estimates for the modified Maxwell projection, we con-

sider (z, φ) ∈ H0(curl,Ω)×H1
0 (Ω) satisfying

SR−1
m ∇× (∇× z) + Su× (∇× z)−∇φ =θ, (3.7a)

∇ · z =0, (3.7b)

where θ ∈ [L2(Ω)]d. The well-posedness of the above system is presented in the following
theorem.

Theorem 3.1. Suppose that (2.9) holds. Then the system (3.7) has a unique solution.
If we further assume Ω is a convex polygon or polyhedra, u ∈ [L∞(Ω) ∩W 1,3(Ω)]d and
θ ∈ H(div,Ω), then

‖z‖H1(Ω) + ‖∇ × z‖H1(Ω) + ‖φ‖H2(Ω) ≤ C3‖θ‖H(div,Ω), (3.8)
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where C3 is a positive constant depending upon the physical parameters S,Rm, the do-
main Ω and the constant K introduced in (2.16).

Proof. To show the uniqueness of the solution of the system (3.7), we only consider the
corresponding homogeneous system with θ = 0. By standard energy argument, we have

SR−1
m ‖∇ × z‖2

L2(Ω) + S(u× (∇× z), z)Ω = 0 .

By noting (3.7b), we see that z ∈X. According to (2.5b) and (2.5c), we further have

R−1
m ‖∇ × z‖2

L2(Ω) ≤ λ1λ2‖∇u‖L2(Ω)‖∇ × z‖2
L2(Ω)

which with the condition (2.9) shows that ‖∇ × z‖L2 = 0 and by noting z ∈ X, z = 0
in Ω. By (3.7a) and the assumption θ = 0, we obtain φ = 0 in Ω. So the system (3.7)
has a unique solution.

Again by standard energy argument, we have

SR−1
m ‖∇ × z‖2

L2(Ω) + S (u× (∇× z), z)Ω = (θ, z)Ω.

By (2.5b, 2.5c, 2.9) and noting the fact that z ∈X, we see that

1

2
R−1
m ‖∇ × z‖2

L2(Ω) ≤ S−1‖θ‖L2(Ω)‖z‖L2(Ω) ≤ S−1λ−1
0 ‖θ‖L2(Ω)‖∇ × z‖L2(Ω)

where we have noted (2.5a). It follows that

‖z‖H(curl,Ω) ≤ C‖θ‖L2(Ω) (3.9)

and therefore,

‖u× (∇× z)‖L2(Ω) ≤ ‖u‖L∞(Ω)‖∇ × z‖L2(Ω) ≤ C‖θ‖L2(Ω). (3.10)

When Ω is a convex polygon (or polyhedra), we have

‖z‖H1(Ω) ≤ C(‖∇ × z‖L2(Ω) + ‖∇ · z‖L2(Ω)) .

From the system (3.7), (3.10) and the fact that φ ∈ H1
0 (Ω), we can see that

‖z‖H1(Ω) + ‖∇ × z‖H1(Ω) + ‖φ‖H1(Ω) ≤ C‖θ‖L2(Ω) (3.11)

and then,

‖∇ · (u× (∇× z)) ‖L2(Ω) ≤ C
(
‖∇u‖L3(Ω) + ‖u‖L∞(Ω)

)
‖∇ × z‖H1(Ω) ≤ C‖θ‖L2(Ω).

(3.12)

Moreover, by taking divergence on the both sides of (3.7a), we get the equation

−∆φ = ∇ · θ − S∇ · (u× (∇× z)) .

By noting (3.12) and the assumption that Ω is a convex polyhedral,

‖φ‖H2(Ω) ≤ C‖θ‖H(div,Ω). (3.13)

(3.8) follows from (3.11) and (3.13) and the proof is complete.

Now we present the error estimates of the modified Maxwell projection below.
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Theorem 3.2. We assume that u ∈ [H2(Ω)]d and the condition (2.12) holds. Then the
modified Maxwell projection (3.2) is well defined for any (b, r) ∈ X × H1

0 (Ω) and for
any s > 0,

‖ξb‖H(curl,Ω) + ‖∇ξr‖L2(Ω) ≤ C4h
min(k,s) . (3.14a)

If we further assume Ω is a convex polygon or polyhedra, then

‖ξb‖L3(Ω) ≤ C4h
min(k,s) (3.14b)

‖ξb‖H−1(Ω) + ‖∇ × ξb‖H−1(Ω) ≤ C4h
k+1. (3.14c)

Here C4 is a positive constant depending upon the physical parameters S,Rm, the domain
Ω and the constant K introduced in (2.16).

Proof. To prove the well-definedness of the modified Maxwell projection (3.2), we only
consider the corresponding homogeneous system

am(b̃h, ch) + c1(b̃h;u, ch)− (∇r̃h, ch)Ω =0,

(b̃h,∇sh)Ω =0,

for any (ch, sh) ∈ Ck
h × Skh. Taking ch = b̃h and sh = r̃h leads to

am(b̃h, b̃h) + c1(b̃h;u, b̃h) = 0.

from which, we can see that

R−1
m ‖∇ × b̃h‖2

L2(Ω) ≤ ‖b̃h‖L3(Ω)‖u‖L6(Ω)‖∇ × b̃h‖L2(Ω)

≤ λ1λ
∗
2‖∇u‖L2(Ω)‖∇ × b̃h‖2

L2(Ω) .

This further shows that

(1− N̂2η(λ∗0))‖∇ × b̃h‖2
L2(Ω) ≤ 0 .

By noting the condition (2.12), we get b̃h = 0 in Ω. It is straightforward to verify r̃h = 0
in Ω. Thus the modified Maxwell projection (3.2) is well defined when the condition
(2.12) holds.

With the standard Maxwell projection (3.4), we rewrite the system (3.27b) and (3.27d)
into

am(b̂h − b̃h, ch) + c1(b̂h − b̃h;u, ch)− (∇(r̂h − r̃h), ch)Ω

= am(b̂h − b, ch) + c1(b̂h − b;u, ch)− (∇(r̂h − r), ch)Ω,

(b̂h − b̃h,∇sh)Ω = 0,

for any (ch, sh) ∈ Ck
h×Skh. By taking (ch, sh) = (b̂h− b̃h, r̂h− r̃h) in above two equations

and applying (3.4), we have

am(b̂h − b̃h, b̂h − b̃h) + c1(b̂h − b̃h;u, b̂h − b̃h)

=am(b̂h − b, b̂h − b̃h) + c1(b̂h − b;u, b̂h − b̃h)− (∇(r̂h − r), b̂h − b̃h)Ω

=c1(b̂h − b;u, b̂h − b̃h),
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where we have noted that b̂h − b̃h ∈Xh (see (2.4)). By Lemma 2.1 and Lemma 2.2, we
further see that

‖b̂h − b̃h‖H(curl,Ω) ≤ C‖u‖L∞(Ω)‖b̂h − b‖L2(Ω)

≤Chmin(k,s)‖u‖L∞(Ω)

(
‖b‖Hs(Ω) + ‖∇ × b‖Hs(Ω) + ‖r‖Hs+1(Ω)

)
where we have used the approximation error (3.6). Therefore,

‖b− b̃h‖H(curl,Ω) (3.15)

≤Chmin(k,s)
(
‖u‖L∞(Ω) + 1

) (
‖b‖Hs(Ω) + ‖∇ × b‖Hs(Ω) + ‖r‖Hs+1(Ω)

)
.

Since ∇r̂h,∇r̃h ∈ Ck
h, taking ch = ∇r̂h −∇r̃h and noting

am(b̂h − b̃h,∇(r̂h − r̃h)) = c1(b̂h − b̃h;u,∇(r̂h − r̃h))

= c1(b̂h − b;u,∇(r̂h − r̃h)) = 0,

we get

r̂h = r̃h. (3.16)

(3.14a) follows (3.15, 3.16) and the approximation property of the standard Maxwell
projection (3.6).

Moreover, let Πcurl
h be the projection P1 onto Ck

h in [4, Section 5]. Then by [4,
Proposition 5.65], we have

‖b− Πcurl
h b‖L3(Ω) ≤Chmin(k,s)‖b‖W s,3(Ω),

‖b− Πcurl
h b‖H(curl,Ω) ≤Chmin(k,s)

(
‖b‖Hs(Ω) + ‖∇ × b‖Hs(Ω)

)
.

We define σh ∈ Skh by

(∇σh,∇sh)Ω = (Πcurl
h b,∇sh)Ω, ∀sh ∈ Skh.

Since Πcurl
h b−∇σh ∈Xh, by Lemma 2.4 and (3.14a),

‖( Πcurl
h b−∇σh)− b̃h‖L3(Ω) ≤ C‖Πcurl

h b− b̃h‖H(curl,Ω)

≤Chmin(k,s)
(
‖u‖H2(Ω) + 1

) (
‖b‖Hs(Ω) + ‖∇ × b‖Hs(Ω) + ‖r‖Hs+1(Ω)

)
.

We define by σ the solution of

∆σ = ∇ · (b− Πcurl
h b) in Ω, σ = 0 on ∂Ω.

Following [26, Theorem 0.5] (see also [6, Corollary 3.10] and [6, Remark 3.11] ),

‖σ‖W 1,3(Ω) ≤ C‖b− Πcurl
h b‖L3(Ω) ≤ Chmin(k,s)‖b‖W s,3(Ω).

By the definition of σ and noting the fact that ∇ · b = 0, we see that

(∇σh,∇sh)Ω = (Πcurl
h b− b,∇sh)Ω = (∇σ,∇sh)Ω, ∀sh ∈ Skh.

By [18, Theorem 2] with the assumption Ω being convex and standard interpolation
argument for bounded linear operator, we have

‖σh‖W 1,3(Ω) ≤ C‖σ‖W 1,3(Ω) ≤ Chmin(k,s)‖b‖W s,3(Ω),
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and

‖b− b̃h‖L3(Ω) (3.17)

≤‖b− Πcurl
h b‖L3(Ω) + ‖∇σh‖L3(Ω) + ‖(Πcurl

h b−∇σh)− b̃h‖L3(Ω)

≤Chmin(k,s)
(
‖u‖H2(Ω) + 1

) (
‖b‖Hs(Ω) + ‖∇ × b‖Hs(Ω) + ‖b‖W s,3(Ω) + ‖r‖Hs+1(Ω)

)
.

(3.14b) follows immediately.
We notice that

‖b− b̃h‖H−1(Ω) = sup
θ∈[H1

0 (Ω)]d

(b− b̃h,θ)Ω

‖θ‖H1(Ω)

.

Let (z, φ) ∈ H0(curl,Ω) × H1
0 (Ω) be the solution of the system (3.7a)-(3.7b). Since

the condition (2.12) implies the condition (2.9) and the assumption u ∈ [H2(Ω)]d , by
Theorem 3.1, the system (3.7) is well-posed and

‖z‖H1(Ω) + ‖∇ × z‖H1(Ω) + ‖φ‖H2(Ω) ≤ C3‖θ‖H1(Ω), (3.18)

where the constant C3 is introduced in Theorem 3.1. Then we have

(b− b̃h,θ)Ω (3.19)

=SR−1
m (∇× (b− b̃h),∇× z)Ω + S(u× (∇× z), b− b̃h)Ω − (b− b̃h,∇φ)Ω

=am(b− b̃h, z) + c1(b− b̃h;u, z)− (b− b̃h,∇φ)Ω

=am(b− b̃h, z − zh) + c1(b− b̃h;u, z − zh) + (∇(r − r̃h), z − zh)Ω

− (b− b̃h,∇(φ− φh))Ω,

for any (zh, φh) ∈ Ck
h × Skh. The last equality follows the definition of the modified

Maxwell projection (3.2) and the fact that ∇ · z = 0. By Lemma 2.2, we further have

(b− b̃h,θ)Ω ≤C
(
(1 + ‖u‖L∞(Ω)‖b− b̃h‖H(curl,Ω)‖∇ × (z − zh)‖L2(Ω) (3.20)

+ ‖∇(r − r̃h)‖L2(Ω)‖z − zh‖L2(Ω) + ‖b− b̃h‖L2(Ω)‖∇(φ− φh)‖L2(Ω)

)
.

We choose zh and φh to be the best approximations to z and φ in Ck
h and Skh for

H(curl)-norm and H1-norm, respectively. By (3.18),

‖b− b̃h‖H−1(Ω) ≤CC3h
(
‖b− b̃h‖H(curl,Ω) + ‖∇(r − r̃h)‖L2(Ω)

)
(3.21)

≤CC3h
k+1
(
‖b‖Hk(Ω) + ‖∇ × b‖Hk(Ω) + ‖r‖Hk+1(Ω)

)
.

On the other hand, it is easy to see

‖∇ × (b− b̃h)‖H−1(Ω) = sup
η∈[H1

0 (Ω)]d

(∇× (b− b̃h),η)Ω

‖η‖H1(Ω)

= sup
η∈[H1

0 (Ω)]d

(b− b̃h,∇× η)Ω

‖η‖H1(Ω)

.

(3.22)
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Then for any η ∈ [H1
0 (Ω)]d, the same argument obtaining (3.19) implies

(b− b̃h,∇× η)Ω =am(b− b̃h, z − zh) + c1(b− b̃h;u, z − zh) + (∇(r − r̃h), z − zh)Ω

− (b− b̃h,∇(φ− φh))Ω, ∀(zh, φh) ∈ Ck
h × Skh.

Here (z, φ) ∈ H0(curl,Ω) ×H1
0 (Ω) is the solution of the system (3.7a)-(3.7a) with θ =

∇× η. By Lemma 2.2, we have

(b− b̃h,∇× η)Ω ≤C
(
(1 + ‖u‖L∞(Ω)‖b− b̃h‖H(curl,Ω)‖∇ × (z − zh)‖L2(Ω)

+ ‖∇(r − r̃h)‖L2(Ω)‖z − zh‖L2(Ω) + ‖b− b̃h‖L2(Ω)‖∇(φ− φh)‖L2(Ω)

)
.

Notice that ‖θ‖H(div,Ω) = ‖∇ × η‖L2(Ω) ≤ ‖η‖H1(Ω). By Theorem 3.1, we have

‖z‖H1(Ω) + ‖∇ × z‖H1(Ω) + ‖φ‖H2(Ω) ≤ C3‖θ‖H(div,Ω) ≤ C3‖η‖H1(Ω), (3.23)

where the constant C3 is introduced in Theorem 3.1. We choose zh and φh to be the best
approximations to z and φ in Ck

h and Skh for H(curl)-norm and H1-norm, respectively.
By (3.23),

(b− b̃h,∇× η)Ω ≤CC3h
(
‖b− b̃h‖H(curl,Ω) + ‖∇(r − r̃h)‖L2(Ω)

)
‖η‖H1(Ω)

≤CC3h
k+1
(
‖b‖Hk(Ω) + ‖∇ × b‖Hk(Ω) + ‖r‖Hk+1(Ω)

)
‖η‖H1(Ω).

(3.22) and the last inequality implies

‖∇ × (b− b̃h)‖H−1(Ω) (3.24)

≤CC3h
(
‖b− b̃h‖H(curl,Ω) + ‖∇(r − r̃h)‖L2(Ω)

)
≤CC3h

k+1
(
‖b‖Hk(Ω) + ‖∇ × b‖Hk(Ω) + ‖r‖Hk+1(Ω)

)
by the same argument with (3.18) in last paragraph. Thus (3.14c) holds by (3.21) and
(3.24).

Now we conclude that the proof is complete.

Remark 3.1. If the condition (2.12) holds, we claim that

‖b̃h‖L∞(Ω) ≤ C. (3.25)

Here b̃h is defined in (3.2).
By (3.14b) and the condition (2.12), we have that

‖b− b̃h‖L3(Ω) ≤ Ch.

We denote by b0
h the standard L2-orthogonal projection of b onto [P0(Th)]

d. By the
condition (2.12) again, we have that

‖b0
h‖ ≤ C‖b‖L∞(Ω) ≤ C‖b‖W 1,d+ (Ω) ≤ C,

‖b− b0
h‖L3(Ω) ≤ Ch.
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Then by discrete inverse inequality, we have that

‖b̃h‖L∞(Ω) ≤ ‖b̃h − b0
h‖L∞(Ω) + ‖b0

h‖L∞(Ω)

≤Ch−1‖b̃h − b0
h‖L3(Ω) + ‖b0

h‖L∞(Ω) ≤ C.

Thus (3.25) holds.
In fact, by (3.14b,2.14) and the same argument above, we have that

‖bh‖L∞(Ω) ≤ C, (3.26)

if the condition (2.12) holds.

3.2. Proof of Theorem 2.1. By Lemma 2.5, the mixed finite element system (2.3)
admits a unique solution and the boundedness (2.15) holds.

From (1.1) and (2.3), we can see that the error functions satisfy the following equations

as(u− uh,vh) = − (c0(u;u,vh)− c0(uh;uh,vh)) + (c1(b;vh, b)− c1(bh;vh, bh))
(3.27a)

− (p− ph,∇ · vh)Ω,

am(b− bh, ch) = − (c1(b;u, ch)− c1(bh;uh, ch)) + (∇(r − rh), ch)Ω, (3.27b)

(∇ · (u− uh), qh)Ω = 0, (3.27c)

(b− bh,∇sh)Ω = 0, (3.27d)

for any (vh, ch, qh, sh) ∈ V l
h ×Ck

h ×Ql
h × Skh.

With the splitting (3.3), by taking vh = eu, ch = eb, qh = ep and sh = er, the error
equations (3.27) reduce to

as(eu, eu) + (ep,∇ · eu)Ω = − (c0(u;u, eu)− c0(uh;uh, eu)) (3.28a)

+ (c1(b; eu, b)− c1(bh; eu, bh)) ,

am(eb, eu)− (∇er, eb)Ω = − (c1(b;u, eb)− c1(bh;uh, eb)− c1(ξb;u, eb)) , (3.28b)

(∇ · eu, ep)Ω = 0, (3.28c)

(eb,∇er)Ω = 0, (3.28d)

where we have noted the definition of these two projections (3.1) and (3.2). Notice that
if we used the standard Maxwell projection (3.4), then the term c1(ξb;u, eb) would not
appear in the error equation (3.28b).

Summing up the first two equations in (3.28) leads to

as(eu, eu) + am(eb, eb)

=− (c0(u;u, eu)− c0(uh;uh, eu))

+ [(c1(b; eu, b)− c1(bh; eu, bh))− (c1(b;u, eb)− c1(bh;uh, eb)− c1(ξb;u, eb))]

:=Iu + Ib. (3.29)
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By the skew-symmetry of the operator c0, Lemma 2.2 and Theorem 2.5,

Iu =− (c0(ξu;u, eu) + c0(eu;u, eu) + c0(uh; ξu, eu)) (3.30)

≤λ1λ
∗
1‖∇u‖L2(Ω)‖∇eu‖2

L2(Ω) + C
(
‖u‖W 1,d+ (Ω) + ‖uh‖W 1,d+(Ω)

)
‖ξu‖L2(Ω)‖eu‖H1(Ω)

≤
(
λ1λ

∗
1‖∇u‖L2(Ω) + ε

)
‖∇eu‖2

L2(Ω) + Cε−1
(
‖u‖W 1,d+ (Ω) + ‖uh‖W 1,d+ (Ω)

)2

‖ξu‖2
L2(Ω)

≤
(
λ1λ

∗
1‖∇u‖L2(Ω) + ε

)
‖∇eu‖2

L2(Ω) + CKε
−1h2l+2

we have used (2.15) and noted ‖ · ‖L∞(Ω) ≤ C‖ · ‖W 1,d+ (Ω). We recall that d+ > d is a

constant introduced in (2.16).
On the other hand, by rearranging terms in Ib, we have

Ib = (c1(b; eu, b)− c1(bh; eu, bh))− (c1(b;u, eb)− c1(bh;uh, eb)− c1(ξb;u, eb))

=c1(b− bh; eu, b) + c1(bh; eu, b− bh)
− c1(b− bh;u, eb)− c1(bh;u− uh, eb) + c1(ξb;u, eb)

=c1(b− bh; eu, b) + c1(bh; eu, ξb)

− c1(b− bh;u, eb)− c1(bh; ξu, eb) + c1(ξb;u, eb). (3.31)

Notice that

− c1(b− bh;u, eb) + c1(ξb;u, eb)

=− c1(ξb;u, eb)− c1(eb;u, eb) + c1(ξb;u, eb) = −c1(eb;u, eb). (3.32)

Then by (3.31) and (3.32), we have

Ib =c1(b− bh; eu, b) + c1(bh; eu, ξb)− c1(eb;u, eb)− c1(bh; ξu, eb)

=c1(ξb; eu, b) + c1(b; eu, ξb) +
(
c1(eb; eu, b)− c1(eb; eu, ξb)− c1(ξb; eu, ξb)

− c1(eb;u, eb)
)
− c1(bh; ξu, eb). (3.33)

We estimate these terms in the right-hand side of the above equation below. By the
definition of the operator c1, the sum of the first two terms in the right-hand side above
can be rewritten by

c1(ξb; eu, b) + c1(b; eu, ξb) = S(ξb, eu × (∇× b))Ω − S(∇× ξb, eu × b)Ω
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which, by Theorem 3.2 and the fact that eu ∈ [H1
0 (Ω)]3, is bounded by

c1(ξb; eu, b) + c1(b; eu, ξb)

≤S
(
‖ξb‖H−1(Ω)‖eu × (∇× b)‖H1(Ω) + ‖∇ × ξb‖H−1(Ω)‖eu × b‖H1(Ω)

)
≤C‖ξb‖H−1(Ω)

(
‖eu‖L6(Ω)‖∇ × b‖W 1,3(Ω) + ‖∇eu‖L2(Ω)‖∇ × b‖L∞(Ω)

)
+ C‖∇ × ξb‖H−1(Ω)

(
‖eu‖L6(Ω)‖b‖W 1,3(Ω) + ‖∇eu‖L2(Ω)‖b‖L∞(Ω)

)
≤C‖ξb‖H−1(Ω)‖eu‖H1(Ω)

(
‖∇ × b‖W 1,3(Ω) + ‖∇ × b‖L∞(Ω)

)
+ C‖∇ × ξb‖H−1(Ω)‖eu‖H1(Ω)

(
‖b‖W 1,3(Ω) + ‖b‖L∞(Ω)

)
≤C

(
‖b‖W 1,d+ (Ω) + ‖∇ × b‖W 1,d+ (Ω)

)
‖eu‖H1(Ω)

(
‖ξb‖H−1(Ω) + ‖∇ × ξb‖H−1(Ω)

)
≤CKhk+1‖eu‖H1(Ω) . (3.34)

We notice eb, bh ∈Xh. By Theorem 3.2, (3.25) and the definition of c1, the last term
in (3.33) is bounded by

|c1(bh; ξu, eb)| = |c1(b̃h; ξu, eb)− c1(eb; ξu, eb)|
≤ C(‖∇ × eb‖L2(Ω)‖ξu‖L6(Ω) + ‖b̃h‖L∞(Ω)‖ξu‖L2(Ω))‖eb‖H(curl,Ω)

≤ ε‖eb‖2
H(curl,Ω) + CKh

2l+2

where we have noted ‖ξu‖L6(Ω) ≤ C‖ξu‖H1(Ω) ≤ CKh
l ≤ ε when h ≤ h0 for some h0 > 0.

Moreover, by Lemma 2.1, Lemma 2.4, the sum of the rest terms in the right-hand side
of (3.33) is bounded by

c1(eb; eu, b)− c1(eb; eu, ξb)− c1(ξb; eu, ξb)− c1(eb;u, eb)

≤ Sλ1λ
∗
2‖∇ × b‖L2(Ω)‖∇ × eb‖L2(Ω)‖∇eu‖L2(Ω)

+ C‖eb‖H(curl,Ω)‖eu‖H1(Ω)‖ξb‖H(curl,Ω)

+ C‖ξb‖L3(Ω)‖eu‖H1(Ω)‖ξb‖H(curl,Ω) + Sλ1λ
∗
2‖∇u‖L2(Ω)‖∇ × eb‖2

L2(Ω)

≤ 1

2
S1/2λ1λ

∗
2‖∇ × b‖L2(Ω)‖(eb, eu)‖2 + C‖ξb‖H(curl,Ω)‖(eb, eu)‖2

+
ε

2
‖eu‖2

H1(Ω) + Cε−1‖ξb‖2
L3(Ω)‖ξb‖2

H(curl,Ω) + Sλ1λ
∗
2‖∇u‖L2(Ω)‖∇ × eb‖2

L2(Ω)

≤
(
ε+ Ch+

1

2
S1/2λ1λ

∗
2‖∇ × b‖L2(Ω)

)
‖(eb, eu)‖2

+ Sλ1λ
∗
2‖∇u‖L2(Ω)‖∇ × eb‖2

L2(Ω) + CKε
−1h2(k+1) .

The last inequality holds since k ≥ 1. By combining the above inequalities, we get the
estimate

Ib ≤
(

2ε+ Ch+
1

2
S1/2λ1λ

∗
2‖∇ × b‖L2(Ω)

)
‖(eb, eu)‖2 + Sλ1λ

∗
2‖∇u‖L2(Ω)‖∇ × eb‖2

L2(Ω)

+ ε−1CKh
2(k+1). (3.35)
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Substituting (3.30)-(3.35) into (3.29) gives

as(eu, eu) + am(eb, eb) ≤
(
ε+ Ch+

1

2
S1/2λ1λ

∗
2‖∇ × b‖L2(Ω)

)
‖(eb, eu)‖2

+ max{λ1λ
∗
2, λ1λ

∗
1}‖∇u‖L2(Ω)‖(eb, eu)‖2 + ε−1CK(h2(k+1) + h2l+2)

≤
(
ε+ Ch+ N̂2‖(u, b)‖

)
‖(eb, eu)‖2 + ε−1CK(h2(k+1) + h2l+2)

(3.36)

for some ε > 0. Since

as(eu, eu) + am(eb, eb) ≥ min{R−1
e , R−1

m λ∗0}‖(eu, eb)‖2 ,

for ε being small enough, we get

‖(eb, eu)‖ ≤ CK(hk+1 + hl+1) (3.37)

when h ≤ h0 for some h0 > 0. The proof of Theorem 2.1 is complete.

3.3. Proof of Corollary 2.2. Since u− uh = ξu + eu, the L2-norm estimate in (2.18)
follows (3.37) and the projection error estimate (3.5). To show the H−1-norm estimate
in (2.18), we follow the approach used for Theorem 3.2. By (3.7), we have

(b− bh,θ)Ω = am(b− bh, z) + c1(b− bh;u, z)− (b− bh,∇φ)Ω

= am(b− bh, z − zh) + c1(b− bh;u, z − zh)− c1(bh,u− uh, zh)
+ (∇(r − rh), z − zh)Ω − (b− bh,∇(φ− φh))Ω,

= am(b− bh, z − zh) + c1(b− bh;u, z − zh) + c1(bh,u− uh, z − zh)
− c1(bh,u− uh, z) + (∇(r − rh), z − zh)Ω − (b− bh,∇(φ− φh))Ω,

for any (zh, φh) ∈ Ck
h × Skh, where we have used (3.27a) with vh = zh. By Lemma 2.2,

Lemma 2.4, Lemma 2.5 and Theorem 2.1 , we further have

(b− bh,θ)Ω

≤ C
(
(‖u‖L∞(Ω) + 1)‖b− bh‖H(curl,Ω)‖∇ × (z − zh)‖L2(Ω)

+ h−1‖bh‖H(curl,Ω)‖u− uh‖L2(Ω)‖∇ × (z − zh)‖L2(Ω)

+ ‖bh‖L6(Ω)‖u− uh‖L2(Ω)‖∇ × z‖H1(Ω)

+ ‖∇(r − rh)‖L2(Ω)‖z − zh‖L2(Ω) + ‖b− bh‖L2(Ω)‖∇(φ− φh)‖L2(Ω)

)
≤ CK(hk+1 + hl+1)‖θ‖H1(Ω)

which in turn shows that

‖b− bh‖H−1(Ω) ≤ CK
(
hl+1 + hk+1

)
. (3.38)

The proof is complete.
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4. Numerical results

In this section, we present two numerical examples to confirm our theoretical analysis
and show the efficiency of methods, one with a smooth solution and one with a non-
smooth solution. The discrete MHD system (2.3) is a system of nonlinear algebraic
equations. Iterative algorithms for solving such a nonlinear system have been studied by
several authors, e.g. s ee [10, 16, 41, 43] for details. Here we use the following Newton
iterative algorithm in our computation:

Newton iteration:
For given (un−1

h , bn−1), solve the system

as(u
n
h,vh) + c0(un−1

h ,unh,vh) + c0(unh,u
n−1
h ,vh)− c1(bn−1

h ,vh, b
n
h)− c1(bnh,vh, b

n−1
h )

+ bs(p
n
h,vh)− bs(qh,unh) (4.1)

= (f ,vh) + c0(un−1
h ,un−1

h ,vh)− c1(bn−1,vh, b
n−1), (vh, qh) ∈ V h ×Qh

am(bnh, ch) + c1(bn−1
h ,unh, ch) + c1(bnh,u

n+1
h , ch) + bm(rnh , ch)− bm(sh, b

n
h)

= (g, ch) + c1(bn−1
h ,un−1

h , ch), (ch, qh) ∈ Ch ×Qh (4.2)

for n = 1, 2, ...., until ‖∇(unh − un−1
h )‖L2(Ω) ≤ 1.0e− 10.

All computations are performed by using the code FreeFEM++.

Example 4.1. In the first example, we consider the MHD system (1.1) on a unit
square (0, 1)× (0, 1) with the physics parameters Re = Rm = S = 1. We let

u =

(
x2(x− 1)2y(y − 1)(2y − 1)
y2(y − 1)2x(x− 1)(2x− 1)

)
, p = (2x− 1)(2y − 1),

b =

(
sin(πx) cos(πy)
sin(πy) cos(πx)

)
, r = 0 .

be the exact solution of the MHD system and choose the source terms f , g and boundary
conditions correspondingly.

Figure 1. A uniform triangular mesh on the unit square.

We solve the nonlinear FE system (2.3) by the Newton iterative algorithm (4.1)-(4.2)
with Taylor-Hood/piecewise linear (P2 − P1) for (u, p) and the lowest-order first type
of Nédélec’s edge element and the lowest-order second type of Nédélec’s edge element,
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respectively, for the magnetic field b. To show the optimal convergence rates, a uniform
triangular partition with M + 1 nodes in each direction is used, see Figure 1 for an
illustration. We present in Table 1 numerical results with the lowest-order first type of
Nédélec’s edge element for M = 4, 8, 16, 32, 64, 128. From Table 1, we can observe clearly
the second-order convergence rate for the velocity u in H1-norm and the pressure in L2-
norm and the first-order rate for the magnetic field b in H(curl)-norm. This confirms
our theoretical analysis, while in all previous analysis, only the first-order convergence
rate for the velocity was presented. Our numerical results also show that the lower order
approximation to the magnetic field does not pollute the accuracy of numerical velocity
in H1-norm, although these two physical components are coupled strongly in the MHD
system. Moreover, we present in Table 2 numerical results with the lowest-order second
type of Nédélec’s edge element approximation to the magnetic field. The accuracy of
the lowest-order second type of Nédélec’s edge element approximation is also of the
order O(h) in H(curl)-norm. Our numerical results show the same convergence rates as
numerical results obtained by the lowest-order first type of Nédélec’s edge element.

Table 1. Errors of Taylor-Hood/lowest-order Nédélec’s edge element of
the first type for MHD system (Example 4.1).

M ‖∇(u− uh)‖L2 Rate ‖p− ph‖L2 Rate ‖b− bh‖curl Rate ‖r − rh‖H1

4 1.398e-2 2.774e-2 8.254e-1 1.232e-7
8 2.342e-3 2.58 7.369e-2 1.91 4.274e-1 0.984 5.676e-10
16 4.219e-4 2.47 1.887e-3 1.96 2.093e-1 0.996 2.349e-12
32 8.983e-5 2.23 4.750e-4 1.99 1.047e-1 0.999 3.732e-13
64 2.130e-5 2.08 1.190e-4 2.00 5.237e-2 1.00 1.553e-12
128 5.250e-6 2.02 2.976e-5 2.00 2.168e-2 1.00 6.273e-12

Table 2. Errors of Taylor-Hood/lowest-order Nédélec’s edge element of
the second type for MHD system (Example 4.1).

M ‖∇(u− uh)‖L2 Rate ‖p− ph‖L2 Rate ‖b− bh‖curl Rate ‖r − rh‖H1

4 1.137e-2 3.943e-2 8.093e-1 2.007e-4
8 1.829e-3 2.63 1.041e-2 1.92 4.095e-1 0.982 7.128e-6
16 3.669e-4 2.32 2.640e-3 1.98 2.054e-1 0.996 2.331e-7
32 8.484e-5 2.03 6.624e-4 1.99 1.028e-1 0.999 7.415e-9
64 2.075e-5 2.03 1.658e-4 2.00 5.140e-2 1.00 2.334e-10

Example 4.2. The second example is to study numerical solution of the MHD
system on a non-convex L-shape domain Ω := (−1, 1) × (−1, 1)/(0, 1] × [−1, 0). The
solution of the system may have certain singularity near the re-entrant corner and the
regularity of the solution depends upon the interior angles in general. Here we investigate
the convergence rates of the method for the problem with a nonsmooth solution. We set
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Re = Rm = 0.1, S = 1, and choose the source terms and the boundary conditions such
that the singular solutions are defined by

u =

(
ρλ ((1 + λ) sin θφ(θ) + cos θφ′(θ))
ρλ (−(1 + λ) cos θφ(θ) + sin θφ′(θ))

)
, p =

ρλ−1

1− λ
(
(1 + λ)2φ′(θ) + φ′′′(θ)

)
b = ∇

(
ρ

2
3 sin

(
2θ

3

))
, r = 0

in the polar coordinate system (ρ, θ), where

φ(θ) = sin((1 + λ)θ)
cos(λω)

1 + λ
− cos((1 + λ)θ)− sin((1− λ)θ)

cos(λω)

1− λ
+ cos((1− λ)θ)

and the parameters λ = 0.54448 and ω = 2/3. Clearly (u, p) ∈ Hλ+1−ε0(Ω)×Hλ−ε0(Ω)

and b ∈ H2/3−ε0(Ω) for any ε0 > 0. This is a benchmark problem in numerical simula-
tions, which was tested by many authors, e.g., see [3, 16, 43].

The accuracy of numerical methods usually depends upon the regularity of the exact
solution, while theoretical analysis given in this paper is based on the assumption of high
regularity. Here we use the same method as described in Table 1. For the solution of
the weak regularity as mentioned above, the interpolation error orders on quasi-uniform
meshes are

‖∇(u− uh)‖L2(Ω) = O(hλ−ε0)

‖b− bh‖H(curl,Ω) = O(h2/3−ε0) .

To test the convergence rate, a uniform triangulation is made on the L-shape domain
Ω, see Figure 2 (top left) for a sample mesh, where M + 1 nodal points locate in the
interval [0, 1]. We present in Table 3 numerical results obtained by the method with
uniform meshes. One can see clearly that the orders of numerical approximations for
u in H1-norm and for b in H(curl)-norm are 0.57 and 0.63, respectively, which are
very close to the optimal ones in the sense of interpolation. It has been noted that a
local refinement may further improve the convergence rate. Here we test the method
with locally refined meshes, although our analysis was given only for a quasi-uniform
mesh. We present three non-uniform meshes in Figure 2 with a finer mesh distribution
around the re-entrant corner. We present in Table 4 numerical results obtained by the
method with these four types of meshes in Figure 2. From Table 4, we can see the
second-order convergence rate for the numerical velocity and the first-order convergence
rate for the magnetic field approximately. This shows again that the accuracy of the
numerical method can be improved dramatically by using such locally refined meshes.
Acknowledgments The author would like to thank the anonymous referees for the
careful review and valuable suggestions and comments, which have greatly improved
this article.

References

[1] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-
smooth domains, Math. Meth. Appl. Sci., 21 (1998), pp. 823–864.



MIXED METHOD FOR INCOMPRESSIBLE MHD 21

Figure 2. Top Left: the first mesh with 65 nodes, Top Right: the second
mesh with 236 nodes, Bottom Left: the third mesh with 872 nodes, Bottom
Right: the fourth mesh with 2550 nodes.

Table 3. Errors of Taylor-Hood/lowest-order Nedelec FEM of the first
type for MHD system with the nonsmooth solution in an L-shape domain
and uniform meshes (Example 4.2).

M ‖∇(u− uh)‖L2 Rate ‖p− ph‖L2 Rate ‖b− bh‖curl Rate ‖r − rh‖H1

4 1.1281 4.775 2.933e-1 1.470e-3
8 7.284e-1 0.815 2.273 1.07 1.742e-1 0.751 2.464e-3
16 4.626e-1 0.655 1.256 0.856 1.117e-1 0.640 1.786e-3
32 3.216e-1 0.525 8.141e-1 0.814 7.279e-2 0.618 1.052e-3
64 2.162e-1 0.573 5.341e-1 0.534 4.703e-2 0.630 4.574e-4

[2] F. Armero and J.C. Simo, Long-term dissipativity of time-stepping algorithms for an abstract evo-
lution equation with applications to the incompressible MHD and Navier-Stokes equations, Comput.
Methods Appl. Mech. Engrg., 131 (1996), pp. 41–90.

[3] S. Badia, R. Codina, and R. Planas, On an unconditionally convergent stabilized finite element
approximation of resistive magnetohydrodynamics, J. Comput. Phys., 234 (2013), pp. 399–416.

[4] S.H. Christiansen, H.Z. Munthe-Kaas, and B. Owren, Topics in structure-preserving discretization,
Acta Numer., 20 (2011), pp. 1–119.



22 YUCHEN HUANG, WEIFENG QIU, AND WEIWEI SUN

Table 4. Errors of Taylor-Hood/lowest-order Nedelec FEM of the first
type for MHD system with the nonsmooth solution in an L-shape domain
and adaptive meshes (Example 4.2).

Mesh ‖∇(u− uh)‖L2 Rate ‖p− ph‖L2 Rate ‖b− bh‖curl Rate ‖r − rh‖H1

Mesh I 1.280e-1 4.667e-1 2.912e-1 1.480e-4
Mesh II 6.415e-2 1.07 1.960e-1 1.34 1.591e-1 0.94 3.951e-4
Mesh III 2.017e-2 1.77 6.236e-2 1.75 5.562e-2 1.60 2.771e-5
Mesh IV 7.521e-3 1.85 2.243e-2 1.91 2.715e-2 1.33 2.668e-5

[5] M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains, Arch.
Rational Mech. Anal., 151 (2000), pp. 221–276.

[6] M. Dauge, Neumann and mixed problems on curvilinear polyhedra, Integral Equations Oper. The-
ory, 15 (1992), pp, 227–261.

[7] P.A. Davidson, An introduction to Magnetohydrodynamics, Cambridge University Press, 2001.
[8] Q. Ding, X. Long and S. Mao, Convergence analysis of Crank-Nicolson extrapolated fully dis-

crete scheme for thermally coupled incompressible magnetohydrodynamic system, Applied Numer-
ical Mathematics, 157 (2020), pp. 522–543.

[9] Q. Ding, X. Long and S. Mao, Convergence analysis of a fully discrete finite element method for
thermally coupled incompressible MHD problems with temperature-dependent coefficients, ESAIM:
M2AN , 56(3) (2022), pp. 969–1005.

[10] X. Dong, Y. He and Y. Zhang, Convergence analysis of three finite element iterative methods for the
2D/3D stationary incompressible magnetohydrodynamics, Comput. Methods Appl. Mech. Engrg.,
276 (2014), pp. 287–311.

[11] H. Gao and W. Qiu, A semi-implicit energy conserving finite element method for the dynamical in-
compressible magnetohydrodynamics equations, Comput. Methods Appl. Mech. Engrg., 346 (2019),
pp. 982–1001.

[12] H. Gao and W. Sun, An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dy-
namical Ginzburg–Landau equations of superconductivity, Journal of Computational Physics, 294
(2015), pp. 329–345.

[13] H. Gao, B. Li and W. Sun, Stability and error estimates of fully discrete Galerkin FEMs for nonlin-
ear thermistor equations in non-convex polygons, Numerische Mathematik, 136(2017), pp.383–409.

[14] J.F. Gerbeau, A stabilized finite element method for the incompressible magnetohydrodynamic equa-
tions, Numer. Math., 87 (2000), pp. 83–111.
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