
Journal of Scientific Computing           (2023) 96:25 
https://doi.org/10.1007/s10915-023-02208-3

HJB-RBF Based Approach for the Control of PDEs

Alessandro Alla1 · Hugo Oliveira2 · Gabriele Santin3

Received: 26 April 2022 / Revised: 3 April 2023 / Accepted: 6 April 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Semi-Lagrangian schemes for the discretization of the dynamic programming principle are
based on a time discretization projected on a state-space grid. The use of a structured grid
makes this approach not feasible for high-dimensional problems due to the curse of dimen-
sionality. Here, we present a new approach for infinite horizon optimal control problems
where the value function is computed using radial basis functions by the Shepard moving
least squares approximationmethod on scattered grids.We propose a newmethod to generate
a scattered mesh driven by the dynamics and the selection of the shape parameter in the RBF
using an optimization routine. This mesh will help to localize the problem and approximate
the dynamic programming principle in high dimension. Error estimates for the value function
are also provided. Numerical tests for high dimensional problems will show the effectiveness
of the proposed method.

Keywords Dynamic programming · Hamilton–Jacobi–Bellman equation · Optimal control
for PDEs · Radial basis functions

Mathematics Subject Classification 49L20 · 93B52 · 65D12 · 65N06

1 Introduction

The classical Dynamic Programming (DP) approach to optimal control problems is based
on the characterization of the value function as the unique viscosity solution of a Hamilton–
Jacobi–Bellman (HJB) equation. The DP scheme for the numerical approximation of

B Alessandro Alla
alessandro.alla@unive.it

Hugo Oliveira
oliveira@mat.puc-rio.br

Gabriele Santin
gsantin@fbk.eu

1 Dipartimento di Scienze Molecolari e Nanosistemi, Univeristà Ca’ Foscari Venezia, Venice, Italy

2 Department of Mathematics, PUC-Rio, Rio de Janeiro, Brazil

3 Digital Society Center, Bruno Kessler Foundation, Trento, Italy

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-023-02208-3&domain=pdf
http://orcid.org/0000-0002-0042-8045


   25 Page 2 of 27 Journal of Scientific Computing            (2023) 96:25 

viscosity solutions of Bellman equations is typically based on a time discretization which
is projected on a fixed state-space grid. The time discretization can be performed by a
one-step scheme for the dynamics, and the projection on the grid typically uses a local
interpolation. Clearly, the use of a grid is a limitation with respect to possible applications
in high-dimensional problems due to the curse of dimensionality. We refer e.g. to [6, 22] for
theoretical results and numerical methods.

We will consider in this paper a method based on positive definite kernels and in particular
Radial Basis Functions (RBFs), which are a large class of methods that are extensively used
in numerical analysis and scientific computing, including the solution of PDEs. We mainly
mention here relevant applications to control problems. In [28], the HJB equation has been
approximated by means of Shepard moving least square approximation, providing error
estimates and convergence results.Numerical tests for a selected kernel and structuredmeshes
have been provided for the control of low dimensional problems. A Kriging’s interpolation
was introduced in [14] with Halton meshes up to dimension 6. We also mention the use of
RBFs in [12] for surface reconstruction. For a more detailed account of recent theoretical
and application advances we refer the interested reader to [23, 24, 37], and to [13, 26] for an
introduction to active research topics on RBF approaches for the solution of PDEs.

Our work is based in particular on [28], with the aim of extending the method to high
dimensional problems, e.g. control of PDEs where the discretized dimension is at least of
order 103. We have investigated this approach on scattered meshes since the use of structured
meshes is impossible for such high dimensional problems, and thus we resort to a grid driven
by the dynamics of the problem, similarly to what is done in [3], where a tree structure
has been proposed to approximate the finite horizon optimal control problem and the time
dependent HJB equation. The generation of the grid driven by the dynamics will help us
to compute an approximate value function for some region of interests, and then feedback
controls for a class of initial conditions. This is an important novelty in the field, since many
works in the literature for high dimensional problems are strictly linked to a single initial
condition, see e.g. [3, 30].

Within the RBF approximant, the determination of the kernel’s shape parameter is known
to be a crucial problem. Several techniques exist in the literature to optimize this parameter
(see e.g. Chapter 14 in [24] for a recent survey), but they are usually based on theminimization
of the approximation error. We introduce instead a novel technique based on the residual of
the HJB equation.

Specifically, even if the reconstruction of the function requires the computation of several
Shepard approximant, a unique parameter is globally optimized based on the residual of the
Value Iteration scheme. The use of the residual in HJB has been introduced in [29] and also
used in the context of RBF and HJB to obtain an adaptive grid [25]. Here, the residual is used
as quantity of interest to select the shape parameter.

We summarize the main contributions of our paper and the novelty of our approach:

1. Generation of an unstructured mesh driven by the dynamics that helps us to localize the
problem.

2. An optimized way to select the shape parameter minimizing the residual of the Value
Iteration method.

3. The possibility to compute feedback control of PDEs for a class of initial conditions.1

4. An error estimate of the reconstruction process that is valid along trajectories of the
dynamics.

1 We remark that, although it is well-known how to compute feedback controls by semi-Lagrangian schemes,
this is not trivial for high dimensional problems, as already mentioned earlier in the introduction.

123



Journal of Scientific Computing            (2023) 96:25 Page 3 of 27    25 

Let us briefly comment on related literature on the control of PDEs using a DP approach.
In the last two decades there has been a tremendous effort to mitigate the curse of dimen-
sionality with the goal to control PDEs. It is straightforward to see that the discretization of
a PDE leads to a large system of ODEs which is hard to control using a DP approach. The
first method is related to the combination of Model Order Reduction techniques and dynamic
programming. The idea is to use a projection technique, e.g. Proper Orthogonal Decomposi-
tion ([7]) to reduce the dimension of the dynamical systems. Then, we can approximate with
a standard Value Iteration algorithm the corresponding reduced HJB equation. This turns
out to be efficient if the reduction is up to dimension 4 or 5. We refer to the pioneer work
[31] and to [4] for error estimates of the method. A different way to reduce the dimension
of the dynamical system is given by pseudo-spectral methods as shown in [30]. Recently,
the solution of HJB on a tree structure has been proposed in [3] and its coupling with Model
Order Reduction in [5]. Other methods concern e.g. the use of sparse grids for time dependent
Hamilton-Jacobi equations [8] and for the control of wave equationswith aDP approach [27],
tensor train decomposition [17, 18], neural networks [15, 16], and max-plus algebra [33, 34],
and the direct approximation of the value function with kernel models trained on trajecto-
ries computed by solving many open-loop problems [19, 20, 35]. All these approaches are
important contributions on the mitigation of the curse of dimensionality.

The outline of this paper is as follows. In Sect. 2 we recall the background of the DP
approach. Section3 concerns RBF interpolation and Shepard approximation. In Sect. 4, we
propose the novel method for the coupling between RBF and DP. We will discuss and com-
ment the details of our approach. Numerical simulations for the control of two different PDEs
are shown in Sect. 5. Finally, conclusions and future works are driven in Sect. 6.

2 Dynamic Programming Equations

This section summarizes the main results for infinite horizon control problems by means of
dynamic programming equations. For a complete description we refer e.g. to the manuscripts
[6, 22].

In the paper, we will denote by � a compact subset of Rd . Moreover, we will make the
following assumptions, which are valid throughout the paper.

Assumption 1 The functions f and g are as follows.

• The function f : Rd ×R
m from (2.1) is continuous with respect to the second argument

and Lipschitz-continuous in the first argument, i.e. there exists a constant L f > 0 such
that

‖ f (y, u) − f (ȳ, u)‖2 ≤ L f ‖y − ȳ‖2 ∀y, ȳ ∈ R
d , u ∈ U .

• The function f is bounded by a constant M f such that

max ‖ f (y, u)‖∞ ≤ M f , ∀y ∈ � ⊂ R
d , u ∈ U .

• The running cost g : Rd ×R
m → R

d is continuous in the second argument and Lipschitz
continuous in the first argument, with Lipschitz constant Lg > 0.

• The function g is also bounded: ‖g(y, u)‖∞ ≤ Mg, ∀y ∈ � ⊂ R
d , u ∈ U .

Let the dynamical system be described by{
ẏ(t) = f (y(t), u(t)), t ∈ (0,∞],
y(0) = x ∈ R

d ,
(2.1)

123



   25 Page 4 of 27 Journal of Scientific Computing            (2023) 96:25 

where y : (0,∞] → R
d is the state variable, and the control is such that u ∈ U where

U := {u : (0,∞] → U , measurable} is the set of admissible controls, and U ⊂ R
m is a

compact set. Under such hypothesis, together with Assumption 1, the existence of a unique
solution to the system (2.1) holds true (see [22]).

We define the cost functional Jx : Rd × U → R as

Jx (y, u) :=
∫ ∞

0
g(yx (s), u(s))e−λsds. (2.2)

The constant λ > 0 is a discount factor, the term e−λs guarantees the convergence of the
integral for g bounded, and yx (s) denotes the solution of (2.1). We will use the subscript x
in our notations to stress the dependence on the initial condition.

With these definitions, our optimal control problem reads:

min
u∈U Jx (y, u), (2.3)

with y being a trajectory that solves (2.1) with initial point x and control u. We aim at
obtaining the control in a feedback form and, for this reason, we define the value function as

v(x) := inf
u∈U Jx (y, u). (2.4)

One can characterize this function in terms of the Dynamical Programming Principle (DPP),
i.e.,

v(x) = inf
u∈U

{ ∫ τ

0
g(yx (s), u(s)) e−λsds + e−λτ v(yx (τ ))

}
∀x ∈ R

d , τ > 0. (2.5)

From (2.5), we derive the Hamilton–Jacobi–Bellman (HJB) equations corresponding to the
infinite horizon problem, that is

λv(x) + sup
u∈U

{− f (x, u) · ∇v(x) − g(x, u)} = 0, x ∈ R
d , (2.6)

where ∇v is the gradient of v. The HJB is a further characterization of the value function
by means of a non linear PDE whose solution has to be understood in the viscous sense [6].
Typically, v is a Lipschitz continuous function. Thus, if one is able to solve (2.6), it is possible
to obtain the optimal feedback control u∗(x):

u∗(x) = argmax
u∈U

{− f (x, u) · ∇v(x) − g(x, u)}, x ∈ R
d . (2.7)

3 Radial Basis Functions and the Shepardmethod

This section presents a brief explanation of Radial Basis Functions (RBFs) and the Shepard
approximation method. Most of the following material is based on the book [23] for the
general RBF theory, and on the paper [28] for the Shepard method, to which we refer for
further details. A RBF ϕ : R≥0 → R can be used to define a radially invariant function
R
d � x 
→ ϕ(‖x‖2), which is usually required to be positive definite, meaning that the

associated matrix KX := (
ϕ(‖xi − x j‖)

)N
i, j=1 ∈ R

N×N is positive semidefinite for any set

{xi }Ni=1 of points. Several choice exist for a function ϕ with these properties (see e.g. [23]). In
this paper we will consider only radially compactly supported RBFs. A significant example

123



Journal of Scientific Computing            (2023) 96:25 Page 5 of 27    25 

Fig. 1 Wendland function with σ = 0.8 (left) and σ = 2 (right)

are the Wendland RBFs, which are a family of strictly positive definite2 RBFs of compact
support and of different smoothness, depending on a parameter (see [36]). The radial nature
of these bases can be used to tune their spread by means of a shape parameter σ > 0, i.e.,
usually one works with a basis ϕσ (r) := ϕ(σr), r ∈ R≥0. Figure1 shows the radial function
ϕσ (‖x‖2) resulting from the Wendland RBF

ϕ(r) := (max{0, 1 − r})6 (35r2 + 18r + 3), (3.1)

with σ = 0.8 on the left panel and σ = 2 on the right panel. We can see how the parameters
influence the shape of the basis functions and makes it flat (left) or spiky (right). The RBF is
scaled so that ϕσ (0) = 1.

RBFs can be used as a tool in interpolation and approximations methods in a mesh-free
environment. For this we consider a continuous function f̃ : � → R with � ⊂ R

d and
a set of pairwise distinct approximation points (or nodes) X := {x1, . . . , xn} ⊂ � and the
corresponding function evaluations. In this paper we use RBFs in a moving-least squares
mode within a Shepard approximation scheme (see e.g. Chapter 23 in [23]). In this case, the
RBF bases are used to form n weights

ψσ
i (x) := ϕσ (‖x − xi‖2)∑n

j=1 ϕσ (‖x − x j‖2) , 1 ≤ i ≤ n, (3.2)

and the Shepard approximant Sσ [ f̃ ](x) is formed as

Sσ [ f̃ ](x) :=
n∑

i=1

f̃ (xi )ψ
σ
i (x). (3.3)

We remark that Sσ [ f̃ ] is not exactly interpolating the data, unless σ is chosen such that
the functions ψσ

i have pairwise disjoint support. Observe that each ψi (x) is compactly sup-
ported in B(xi , 1/σ) ⊂ � and non negative, and the weights form a partition of unity, i.e.,∑n

i=1 ψσ
i (x) = 1 for all x ∈ �X ,σ with

�X ,σ :=
⋃
x∈X

B(x, 1/σ) ⊂ R
d . (3.4)

This implies that Sσ [ f̃ ](x) is actually a convex combination of the function values.Moreover,
the compact support of the weights leads to a computational advantage and a localization.
In particular, the Shepard weights are evaluated by constructing a distance vector D ∈ R

n

2 Strictly positive definite functions are such that the associated matrix KX is positive definite.

123



   25 Page 6 of 27 Journal of Scientific Computing            (2023) 96:25 

with Di := ‖x − xi‖2 by computing only the weights ψσ
i such that ‖x − xi‖ ≤ 1/σ . This

operation can be implemented by a range search.
An additional advantage of the Shepardmethod is that the construction of the approximant

(3.3) can be directly obtained from the function values and the evaluation of the weights,
without solving any linear system.

As RBF-based methods work with unstructured meshes, to obtain error estimates in this
context it is common to consider the fill distance and the separation distance

h := hX ,� := sup
x∈�

min
xi∈X

‖x − xi‖, q = qX := min
xi �=x j∈X

‖xi − x j‖.

The fill distance replaces the mesh size and it is the radius of the largest ball in � which
does not contain any point from X , and it gives a quantification of the well spread of the
approximation nodes in the domain. On the other hand, the separation distance quantifies the
minimal separation between different approximation points.We remark that for any sequence
of points it holds 1

2q ≤ h, but the inverse inequality h ≤ cq , c > 0, does not hold unless the
points are asymptotically uniformly distributed.

General error statements for Shepard approximation can be found in [23]. In this paper
we will work with the result of [28], that we will recall in the following.

4 The Coupling Between DP and RBF

To overcome the difficulty of solving analitically Eq. (2.6), in this section we introduce
the core approach of our work. We first recall the semi-Lagrangian discretization of (2.6)
by means of Shepard approximation, then we propose a method to generate unstructured
meshes, we define a strategy to select the shape parameter, derive error estimates of the
overall approximation method and, finally, we summarize everything in one algorithm.

We remark that for the purpose of numerical computation we consider only finite horizons
t ∈ [0, T ] with a given T > 0 large enough to simulate the infinite horizon problem. We
also assume that the dynamics evolve for each initial value and control parameter within a
compact set � ⊂ R

d (see Assumption 2 later).
Moreover, we would like to stress that the algorithmic ideas introduced in the following

may be of interest also when applied to other local approximation methods, and are not
necessarily bounded to the RBF-based Shepard method introduced in Sect. 3. In particular,
the application of a semi-Lagrangian scheme, the construction of the scattered mesh, and
the technique for parameter optimization that are discussed in the following sections can all
be applied together with any approximation method that can work on high-dimensional and
scattered meshes.

4.1 Semi-Lagrangian Scheme for (2.6)

We first choose a temporal step size �t > 0 and build a grid in time such that tk = k�t
with k ∈ N. We will discuss in the following how to define a spatial discretization, and for
now we just denote it as X = {x1, x2, . . . , xn} ⊂ �. Furthermore, the setU is discretized by
replacing u ∈ U with a piecewise constant control, i.e., for all t ∈ [tk, tk+1)we set u(t) = uk
for some uk ∈ R

m . To introduce the approximation of the value function, we represent the
Shepard approximant as an operator

Sσ : (L∞, ‖ · ‖∞) → (W, ‖ · ‖∞), (4.1)

123



Journal of Scientific Computing            (2023) 96:25 Page 7 of 27    25 

where W = span{ψσ
1 , ψσ

2 , · · · ψσ
n } as in (3.2). We remark that the Shepard method uses

as approximation nodes the same points X defined above. Moreover, we will discuss later
(Sect. 4.3) a proper choice of σ in this case. Observe that the Shepard method is known to
have potentially some diffusive behavior (see [25]), which would reduce the accuracy of the
approximation especially in the case of singular solutions. We will comment on this point
when discussing the numerical experiments.

We aim at the reconstruction of the vector {Vj }nj=1 ∈ R
n where Vj is the approximate

value for v(x j ) for each x j ∈ X . The full discretization of Eq. (2.6) is obtained starting from
a classical approach (see e.g. [22]), but replacing as in [28] the local linear interpolation
operator on a structured grid with the Shepard approximation operator. This discretization
reads

Vj = [Wσ (V )] j := min
u∈U

{
�t g(x j , u) + (1 − �tλ)Sσ [V ](x j + �t f (x j , u))

}
. (4.2)

To computeVj the setU is discretized in a finite numberM ∈ Nof pointsU := {u1, . . . , uM },
and the minimum is computed by comparison.

The full approximation schemeof the function is known as theValue Iteration (VI)method,
and it is obtained by iteration of (4.2), i.e.,

V k+1 = Wσ (V k), k = 0, 1, . . . . (4.3)

To ensure convergence of the scheme it is necessary thatWσ is a contraction. In this context,
the Shepard operator offers another striking benefit in comparison with plain RBF interpo-
lation. Indeed, Sσ in (4.1) has unit norm as an operator from (L∞, ‖ · ‖∞) to (W, ‖ · ‖∞),
and this implies that the right hand side of (4.2) is a contraction if �t ∈ (0, 1/λ] (see [28]
for the details, and especially Lemma 2). Therefore, the convergence of the value iteration
scheme is guaranteed.The stopping criteria for (4.3) is given by

‖V k+1 − V k‖ < tolV (4.4)

for a given threshold tolV > 0.
As soon as we obtain an approximation of the value function, we can compute an approx-

imation of the feedback control as

u∗
n(x) = argmin

u∈U
{�tg(x, u) + (1 − λ�t)Sσ [V ](x + �t f (x, u))}, (4.5)

with x = y(tn). Thus, we are able to perform an approximate reconstruction of an optimal
trajectory y∗ and optimal control u∗.

Under the assumption that the fill distance h decays to zero and that the shape parameter
scales as σ = θ/h, in [28] it is proven that this approximation scheme converges. More
precisely, under suitable assumptions on f and g, Theorem 3 in [28] guarantees that ‖v −
V ‖∞ ≤ (C/θ)h, where C > 0 depends on the dynamics but not on the discretization.

Despite these convincing theoretical guarantees, the requirement that h = hX ,� decays
to zero is too restrictive in our setting, since a filling of the entire � may be out of reach for
high dimensional problems. Moreover, as already mentioned in Sect. 3, the Shepard method
performs an approximation in high dimensions and unstructured grids, while in [28] the
authors focused on a given configuration for the shape parameter and an equidistant grid.
In the next paragraphs we will explain how to select the shape parameter and to generate
unstructured meshes to solve high dimensional problems. We remark that this approach can
be also used for minimum time problem as we will see in Sect. 5. We refer to e.g. [6] and [2]
for more details on the minimum time problem and its discretization scheme.

123



   25 Page 8 of 27 Journal of Scientific Computing            (2023) 96:25 

Remark 1 To ease the presentation we have used a forward Euler method to approximate
the dynamical system (2.1). However, one can use other approaches such as e.g. high order
one step methods or implicit methods. We refer e.g. to [21] for more details. Later, in the
numerical tests we will use a backward Euler scheme to approximate the PDEs studied to
guarantee the numerical stability of the method.

4.2 On the ScatteredMesh

Different possibilities are available for the definition of the discretization X of the spatial
domain. A standard choice is to use an equi-distributed grid, which covers the entire space
and usually provides accurate results for approximation problems. Unfortunately, for higher
dimensional problems it is impossible to think to work on equi-distributed grid, as their size
grows exponentially. This is a particular limitation in our case, since our goal is to control
PDEs, whose discretization leads to high dimensional problems e.g. d > 103. On the other
hand, a random set of points is computationally efficient to generate and to use, but in this
case additional care should be taken because the distribution of points can be irregular (some
regions can be more densely populated than others) and the fill distance may decrease only
very slowly when increasing the number of points.

In general terms, there is a tradeoff between keeping the grid at a reasonable size and
the need to cover the relevant part of the computational domain. In particular, it is well
known that the fill distance for any sequence of points {Xn}n∈N can at most decrease as
h ≤ c�n−1/d in R

d for a suitable constant c� > 0 depending only on the geometry of the
domain. Observe that uniform points have precisely this asymptotic decay of the fill distance.
Thus, an exponentially growing number of points is required to obtain a good covering of �

as d increases.
The key point to overcome these limitations is to observe that the evolution of the system

provides itself an indication of the regions of interest within the domain. Following this idea,
we propose a discretization method driven by the dynamics of the control problem (2.1).
Observe that a similar idea has been used in [35] to compute the value function along the
trajectories of open loop control problems. Moreover, in [3] the grid has been generated
by points of the dynamics leading to the solution of the HJB equation on a tree structure.
We stress once again that this kind of approach is an effective way to address the curse of
dimensions, since only the parts of the space that are visited by some system trajectories
are considered, without the need of filling the entire space. This of course is possible at
the price of having a local approximation, but this locality is taken in full account in the
following estimates, so that one can find a balance between the efficiency of the method and
the coverage of the domain.

To define our dynamics-dependent grid we fix a time step �t > 0, a maximum number
K ∈ N of discrete times and, for L, M > 0, some initial conditions of interest and a
discretization of the control space, i.e.,

X := {x̄1, x̄2, . . . , x̄L } ⊂ �, U := {ū1, ū2, . . . , ūM } ⊂ U .

Observe that all these parameters do not need to coincide with the ones used in the solution
of the value iteration (4.2), but are rather only used to construct the grid. Moreover, in general
we use �t > �t and M < M , i.e., the discretization used to construct the mesh is coarser
than the one use to solve the control problem.

123



Journal of Scientific Computing            (2023) 96:25 Page 9 of 27    25 

For a given pair of initial condition x̄i ∈ X and control ū j ∈ U , we solve numerically for
i = 1, . . . , L̄ and j = 1, . . . , M̄ Eq. (2.1) to obtain trajectories

xk+1
i, j = xki, j + �t f (xki, j , ū j ), k = 1, . . . , K̄ − 1,

x1i, j = x̄i , (4.6)

such that xki, j is an approximation of (2.1)with initial condition x̄i , constant controlu(t) = ū j ,

at time t = k�t . For each pair
(
x̄i , ū j

)
we obtain the set X traj

(
x̄i , ū j

) := {x1i, j , . . . , x K̄i, j }
containing the discrete trajectory, and our mesh is defined as

X := X(X ,U ,�t, K ) :=
L̄⋃

i=1

M̄⋃
j=1

X traj
(
x̄i , ū j

)
. (4.7)

This choice of the grid is particularly well suited for the problem under consideration, as it
does not aim at filling the space�, but instead it provides points along trajectories of interest.
In this view, the values of X ,U ,�t, K should be chosen so that X contains points that are
suitably close to the points of interest for the solution of the control problem. In the following
proposition we provide a quantitative version of this idea, that will be the base of our error
estimate in Theorem 2.

Proposition 1 Let X := X(X ,U ,�t, K ) be the dynamics-dependent mesh of (4.7), and
assume that f is uniformly bounded i.e., there exist M f > 0 such that

sup
x∈�,u∈U

‖ f (x, u)‖ ≤ M f .

Then for each x ∈ X, �t > 0 and u ∈ U it holds

dist(x + �t f (x, u), X) ≤M f �t . (4.8)

Assume furthermore that f is uniformly Lipschitz continuous in both variables, i.e., there
exist Lx , Lu > 0 such that

‖ f (x, u) − f (x ′, u)‖ ≤ Lx‖x − x ′‖ ∀x, x ′ ∈ �, u ∈ U ,

‖ f (x, u) − f (x, u′)‖ ≤ Lu‖u − u′‖ ∀x ∈ �, u, u′ ∈ U .

Then, if x := xk(x0, u,�t) ∈ � is a point on a discrete trajectory with initial point x0 ∈ �,
control u ∈ U, timestep �t > 0, and time instant k ∈ N, k ≤ K̄ , it holds

dist(x, X) ≤
(

|�t − �t |K̄ M f + min
x̄∈X̄

‖x̄ − x0‖ + K̄�t Lu min
ū∈Ū

‖ū − u‖
)
eK̄�t Lx . (4.9)

Proof If x ∈ X we simply have

dist(x + �t f (x, u), X) = min
x ′∈X

‖x + �t f (x, u) − x ′‖ ≤ ‖x + �t f (x, u) − x‖
= �t‖ f (x, u)‖ ≤ M f �t,

which gives the bound (4.8) using only the boundedness of f .
To prove (4.9) we need to work explicitly with the initial points and the control values.

By assumption we have

x = xk(x0, u,�t) = x0 + �t
k−1∑
p=0

f (x p(x0, u,�t), u).

123



   25 Page 10 of 27 Journal of Scientific Computing            (2023) 96:25 

Moreover, using (4.7) let x ′ ∈ X be defined as

x ′ = xk
,m = x̄
 + �t
k−1∑
p=0

f (x p

,m, ūm),

for some 
 ∈ {1, . . . , L̄}, m ∈ {1, . . . , M̄}, and with x0
,m = x0.
It follows that

xk(x0, u,�t) − x̄ k
,m =x0 − x̄


+ �t
k−1∑
p=0

f (x p(x0, u,�t), u) − �t
k−1∑
p=0

f (x p

m, ūm),

and thus adding and subtracting �t
∑k−1

p=0 f (x p(x0, u,�t), u) gives

‖xk(x0, u,�t) − xk
,m‖ ≤‖x0 − x̄
‖ + |�t − �t |
k−1∑
p=0

‖ f (x p(x0, u,�t), u)‖

+ �t
k−1∑
p=0

‖ f (x p(x0, u,�t), u) − f (x p

m, ūm)‖

≤ ‖x0 − x̄
‖ + |�t − �t |kM f

+ �t
k−1∑
p=0

‖ f (x p(x0, u,�t), u) − f (x p

m, ūm)‖.

Now adding and subtracting f (x p(x0, u,�t), ūm) in the sum, and using the Lipschitz con-
tinuity of f , we get

‖xk(x0, u,�t) − xk
,m‖ ≤‖x0 − x̄
‖ + |�t − �t |kM f

+ �t
k−1∑
p=0

(
Lu‖u − ūm‖ + Lx‖x p(x0, u,�t) − x p


,m‖
)

=‖x0 − x̄
‖ + |�t − �t |kM f + k�t Lu‖u − ūm‖

+ �t Lx

k−1∑
p=0

‖x p(x0, u,�t) − x p

,m‖.

Applying the discrete Grönwall lemma to this inequality gives

‖xk(x0, u,�t) − xk
,m‖ ≤ (‖x0 − x̄
‖ + |�t − �t |kM f + k�t Lu‖u − ūm‖) ek�t Lx ,

and since 
 and m are free, we can choose them as ūm := argminū∈Ū ‖u − ū‖ and x
 :=
argminx̄∈X̄ ‖x0 − x̄‖. Finally, bounding k by K̄ gives (4.9). ��

4.3 Selection of the Shape Parameter

The quality of Shepard approximation strongly depends on the choice of shape parameter
σ , both in general for RBF approximation [23] and in the special case of the solution of
control problems [28]. As mentioned in the introduction, several techniques exist to tune

123



Journal of Scientific Computing            (2023) 96:25 Page 11 of 27    25 

the shape parameter in the RBF literature, such as cross validation and maximum likelihood
estimation (see e.g. Chapter 14 in [24]), but they are designed to optimize the value of σ

in a fixed approximation setting. In our case, on the other hand, we need to construct an
approximant at each iteration k within the value iteration (4.2). This makes the existing
methods computationally expensive and difficult to adapt to the target of minimizing the
error in the iterative method.

For these reasons, we propose here a new method to select the shape parameter based
on the minimization of a problem-specific indicator, namely the residual R(σ ), which is
defined as follows. We will denote by Vσ the discrete value function with the choice σ in
the Shepard approximation. Assuming that the value iteration with parameter σ has been
stopped at iteration kfinal giving the solution Vσ := V kfinal , we define the residual as

R(σ ) := ‖Vσ − Wσ (Vσ )‖∞, (4.10)

and we choose the shape parameter that minimizes this quantity with respect to σ ∈ (0,∞).
To get a suitable scale for the value of σ , we parametrize it in terms of the grid X , similarly

to what is done in [28] where it is assumed that σ := θ/h�,X for a given θ > 0. Since h�,X

is difficult to compute or even to estimate in high dimensional problems, we resort to setting

σ(θ) := θ/qX , θ > 0,

and we optimize instead the value of θ > 0. Observe that the separation distance qX is an
easily computable quantity that depends only on X , and it is thus actually feasible to use this
parametrization even in high dimension.

Choosing an admissible set of parameters P := [θmin, θmax] ⊂ R
+, the parameter is thus

chosen by solving the optimization problem

θ̄ := argmin
θ∈P

R(σ (θ)) = argmin
θ∈P

‖Vθ/qX − Wθ/qX (Vθ/qX )‖∞. (4.11)

Remark 2 This problem can be solved by using a comparison method or e.g. an inexact
gradient method. The former means to discretize the set P as {θ1, . . . , θNp } ⊂ P and to
compute all the value functions for all θi , i = 1, . . . , Np. The latter considers a projected
gradient method where the parameter space P is continuous and the derivative is computed
numerically as

Rθ := R(σ (θ + ε)) − R(σ (θ))

ε
,

for some fixed ε > 0. In the numerical tests, we will compare both minimization strategies
in the low dimensional case, while we will concentrate on the comparison method in high
dimensional one.

4.4 Error Estimates

We adapt the classical convergence theory that is used to prove rates of convergence for the
value iteration when linear interpolation is used. In particular, the following argumentation
follows the discussion in [22, Section 8.4.1].

The idea is to estimate the time and space discretizations separately. Since the time dis-
cretization is independent of the approximation scheme used in the space discretization, we
just recall the following result from [22, Section 8.4.1] for a general compact subset �. We
use the notation ‖ f ‖∞,� := supx∈� | f (x)|.

123



   25 Page 12 of 27 Journal of Scientific Computing            (2023) 96:25 

Assumption 2 There exists a (bounded) polyhedron � ⊂ R
d such that discrete trajectories

x + �t f (x, u) remain in � :

∀x ∈ �,∀�t ∈ (0,
1

λ
), ∃u ∈ Us.t. x + �t f (x, u) ∈ �.

Theorem 1 Let us assume that Assumption 1 and Assumption 2 hold true. Let v be the
exact value function, and let v�t be the solution of the value iteration (4.2) without space
discretization, i.e.,

v�t (x) = min
u∈U

{
�t g(x, u) + (1 − �tλ)v�t (x + �t f (x, u))

}
. (4.12)

If v is Lipschitz continuous, for each compact subset� there exists a constantC := C(�) > 0
such that ∥∥v − v�t

∥∥∞,�
≤ C�t1/2. (4.13)

Assume additionally that the following hold:

1. f is uniformly bounded, U is convex, f (x, u) is linear in u.
2. g(·, u) is Lipschitz continuous and g(x, ·) is convex.
3. There exists an optimal control u� ∈ U .

Then there exists C ′ := C ′(�) > 0 such that∥∥v − v�t
∥∥∞,�

≤ C ′�t . (4.14)

It remains now to quantify the error that is committed by introducing a space discretization,
i.e., the error associated to the approximation scheme in (4.2). This first requires a bound on
the error of Shepard approximation, and we report in the next proposition a result obtained
in [28]. In this case, the key idea is to scale the shape parameter of the RBF basis according
to the fill distance of the mesh. According to Proposition 1, we can control the fill distance
hX ,� of the mesh X within the set �̃ obtained as the collection of the different trajectories
of the discrete dynamics. In other words, we set

� := �(X̃ , Ũ , T̃ ) :=
{
x := xk(x0, u,�t) : x0 ∈ X̃ , u ∈ Ũ ,�t ∈ T̃ , k ≤ K̄

}
(4.15)

where T̃ := (0, 1
λ
) and X̃ , Ũ , are the initial data and the set of controls chosen according to

Proposition 1 used to generate the set of trajectories of interest.
For this set, Eq. (4.9) gives

hX ,� := sup
x∈�

dist(x, X)

≤
(
sup

�t∈T̃
|�t − �t |K̄ M f + sup

x0∈X̃
min
x̄∈X̄

‖x̄ − x0‖ + K̄�t Lu sup
u∈Ũ

min
ū∈Ū

‖ū − u‖
)
eK̄�t Lx .

(4.16)

We can now recall from [28] the error estimate for the Shepard approximation.

Proposition 2 Let Lv > 0 be the Lipschitz constant of v : � → R. Let Sσ be the Shepard
approximation of v on X obtained using a kernel with support contained in B(0, 1), and let
σ := C/hX ,� for a positive constant C > 0. Then we have the bound∥∥v − Sσ [v]∥∥∞,�

≤ CLvhX ,�. (4.17)

123



Journal of Scientific Computing            (2023) 96:25 Page 13 of 27    25 

With these tools, we can finally prove our convergent theorem.

Theorem 2 Let us assume that Assumption 1 and Assumption 2 hold true. Let � be as in
(4.15), and assume that Ũ contains the two controls that are optimal for v�t and for V . Then,
under the assumptions of Proposition 2 it holds

‖V − v�t‖∞,� ≤ CLv

λ

hX ,�

�t
(4.18)

≤ CLv

λ

eK̄�t Lx

�t

(
sup

�t∈T̃
|�t−�t |K̄ M f + sup

x0∈X̃
min
x̄∈X̄

‖x̄ − x0‖+K̄�t Lu sup
u∈Ũ

min
ū∈Ū

‖ū − u‖
)

.

(4.19)

Proof The proof of the first inequality can be found in e.g. [22] and uses Proposition 2 with
v�t Lipschitz continuous (see e.g. [9, 10]). The second inequality follows from Proposition
1. ��

Finally, we can obtain a complete error estimate by triangular inequality from (4.14) and
(4.18) which reads:

‖v − V ‖∞,� ≤ C ′�t + CLv

λ

hX ,�

�t
.

4.5 Algorithm

The algorithm to approximate the value function is summarized in Algorithm 1.

Algorithm 1 Value Iteration with shape parameter selection
1: INPUT: �,�t,U ,P parameter range, tolerance, RBF and system dynamics f , ,
2: initialization
3: Generate Mesh as described in Sect. 4.2
4: if then
5: for θ ∈ P do
6: Compute Vθ solving (4.3) with (4.4)
7: R(σ (θ)) = ||Vθ/qX − Wθ/qX (Vθ/qX )||∞
8: end for
9: θ̄ = argmin

θ∈P
R(σ (θ))

10: else
11: Rθ = 1, θ = θ0, tol, ε
12: while do
13: Compute Vθ and Vθ+ε

14: Evaluate R(Vθ ) and R(Vθ+ε) and set Rθ = R(σ (θ + ε)) − R(σ (θ))

ε
15: θ = θ − Rθ

16: θ = max(min(θmax, θ), θmin) (projection into P)
17: end while
18: θ̄ = θ, Vθ̄ = Vθ

19: end if
20: OUTPUT: {θ̄ , Vθ̄ }

The computation of the value function via Algorithm 1 allows then to reconstruct the
feedback map. It is straightforward using (4.5) where the operator Sσ [V ] has σ = θ̄/qX and
V = Vθ̄ . Then, for each discrete interval of size�t , say [tn, tn+�t), the current position x has
to be updated.We refer to [22, Section 8.4.6] for more details on the feedback reconstruction.

123



   25 Page 14 of 27 Journal of Scientific Computing            (2023) 96:25 

5 Numerical Experiments

In this section we present three numerical tests to illustrate the proposed algorithm. The first
test is a two dimensional minimum time problemwith well-known analytical solution. In this
test we analyse results using regular and scattered grids. The second and third test deal with
an advection equation and a nonlinear heat equation, respectively.We discretize in space both
PDEs using finite differences. The dimension of the semi-discrete problem will be 10201
for the advection equation and 961 for the parabolic problem. For each example, we provide
examples of feedback and optimal controls reconstructed for different initial conditions that
may not belong to the grid. In the parabolic case we present the effectiveness of feedback
control under disturbances of the system.

In every experiment we define an admissible intervalP to solve the minimization problem
by comparison in Algorithm 1 as follows: we start with a large interval P1 and we coarsely
discretize it. Then, we run Algorithm 1 and obtain θ̄1. Later, we choose a set P2 ⊂ P1 such
that θ̄1 ∈ P2. Using P2 and a finer refinement, the Algorithm provides θ̄2. We iterate this
procedure, and finally we set P = Pn .

In our test we use the Wendland RBF defined in (3.1) The numerical simulations reported
in this paper are performed on a laptop with one CPU Intel Core i7−2.2 GHz and 16GB
RAM. The codes are written in MATLAB.

Test 1: Eikonal Equation in 2D

We consider a two dimensional minimum time problem in � = [−1, 1]2 with the following
dynamics and control space

f (x, u) =
(
cos(u)

sin(u)

)
, U = [0, 2π]. (5.1)

The cost functional to be minimized is Jx (y, u) = ∫ t(x,u)

0 e−sds with g = 1, λ = 1 in
(2.2)) and

t(x, u) :=
{
infs{s ∈ R+ : yx (s, u) ∈ T } if yx (s, u) ∈ T for some s

+∞ otherwise,
(5.2)

being the time of arrival to the target T = (0, 0) for each x ∈ [−1, 1]2.
The analytical solution V ∗(x) for this problem is the Kruzkov transform of the distance

to the target T (see e.g. [6]):

V ∗(x) = 1 − exp(−v∗(x)), v∗(x) = ||x ||2, ∀x ∈ [−1, 1]2.

Observe that v∗ is singular at the target point, but it is otherwise smooth.
We tested Algorithm 1 for two different cases. The first one considers an unstructured grid

generated by random points, whereas the second case studies an unstructured grid generated
by the problem dynamics as mentioned in Sect. 4. Due to the randomness of our grid we
compute an average error. In the first case we will average over 10 tests whereas on the
second one over 5. For completeness, we also show the results of the proposed method using
regular grids with both linear interpolation and Shepard approximant. Finally, in Example 3,
we show optimal trajectories discussing the results with all the technique presented.

123



Journal of Scientific Computing            (2023) 96:25 Page 15 of 27    25 

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Fig. 2 Example 1. Examples of random generated grids. Left: 200 points and fill distance 0.1618. Center: 800
points and fill distance 0.0846. Right: 3200 points and fill distance 0.0461

The relative error reads:

E(Vθ ) = ||Vθ − V ∗||∞
||V ∗||∞ (5.3)

where Vθ is the discrete value function obtained with the shape parameter σ = θ
h and V ∗

is the exact solution. We will denote by θ∗ the parameter selected in order to minimize the
relative error from (5.3):

θ∗ := argmin
θ∈P

E(Vθ )

Clearly, E(Vθ∗) will be a lower bound for E(Vθ ). In the following three cases U is dis-
cretized with 16 equidistant controls.

Example 1 RandomUnstructuredGrid Thefirst testwithEikonal equation is performedusing
an unstructured grid generated by random points. In order to obtain a grid which densely
covers our numerical domain, a set of 40,000 randomly distributed points in [−1, 1]2 is
clustered using the k-means algorithm, where k is the number of desired points in the grid.
Examples of this type of grid are shown in Fig. 2.

We found P = [1, 3] a suitable parameter space discretized with 0.1 as step size. In the
HJB equationwe set�t = h. In the left panel of Fig. 3 we see an example of residual R(σ (θ))

when the unstructured grid is formed by 3200 nodes. The residual is minimized between 1.5
and 2. Due to the random nature of each grid the optimal value of the parameter θ may vary
from case to case. We consider 10 distinct grids obtained as explained in the paragraph above
and compute the optimal θ for each grid. For instance, for 3200 points, the average value of
θ in these tests is θ̄ = 1.76 as can be seen in the fourth column and last row of Table 1. In
the middle panel of Fig. 3 we see a plot of E(Vθ ) for different number of points in the grid;
the values θ∗ are in the fifth column of Table 1. The right panel of Fig. 3 shows the behavior
of E(Vθ̄ ) and E(Vθ∗) decreasing the fill distance h. The error decays as h does.

Table 1 shows the quality of our results. The first column presents the fill distance h and the
correspondent number of points is shown in the second column. The third column presents
the average CPU time (in seconds) needed to compute Vθ̄ . The fourth column presents the
values θ̄ , outputs ofAlgorithm1 using the comparisonmethod in theminimization procedure.
The fifth column presents the values of θ∗. The sixth and seventh columns present the values
of E(Vθ̄ ) and E(Vθ∗).

We see the average decay of the fill distance h when increasing the number of nodes.
Accordingly, the average CPU time increases. The parameters θ̄ and θ∗ assume values close
to each other, with θ∗ > θ̄ . The errors E(Vθ̄ ) and E(Vθ∗) reduce according to h. We can also

123



   25 Page 16 of 27 Journal of Scientific Computing            (2023) 96:25 

1 1.5 2 2.5 3
0.033

0.0335

0.034

0.0345

0.035

0.0355

1 1.5 2 2.5 3

Parameter 

0.1

0.15

0.2

0.25

0.3

0.35

0.4
200
400
800
1600
3200

0.05 0.1 0.15

0.1

0.15

0.2

0.25

0.3

Fig. 3 Example 1. Left: Average residual for 3200 points. Middle: E(Vθ ). Right: E(Vθ̄ ) and E(Vθ∗ ) variation
with h

Table 1 Example 1. Numerical Results with random unstructured grid

h Points CPU time θ̄ θ∗ E(Vθ̄ ) rate E(Vθ∗ ) rate

0.1603 200 9.8 1.91 2.16 0.3031 0.2981

0.1177 400 14.6 1.86 2.06 0.23 0.89 0.2284 0.86

0.0861 800 31.8 1.92 2.21 0.172 0.92 0.1697 0.95

0.0641 1600 115 2.04 2.42 0.1432 0.62 0.1407 0.63

0.0464 3200 504 1.76 2.06 0.1037 0.99 0.0969 1.1

Fig. 4 Example 1. Value Functions generated in a Random Unstructured Grid formed by 3200 points. Left:
Exact solution. Center: Solution obtained by VI and Shepard approximation. Right: Absolute error of exact
solution and value function obtained by Shepard approximation Value Iteration

123



Journal of Scientific Computing            (2023) 96:25 Page 17 of 27    25 

Table 2 Example 1. Numerical
Results with structured grid and
Shepard approximation

h Points θ̄ θ∗ E(Vθ̄ ) rate E(Vθ∗ ) rate

0.1 441 0.5 0.5 0.0716 0.64 0.0.0716 0.26

0.05 1681 0.5 0.5 0.0554 0.37 0.0554 0.37

0.025 6561 0.4 0.4 0.0457 0.28 0.0457 0.28

Table 3 Example 1. Numerical
Results with structured grid and
standard interpolation

h Points E(V ) rate

0.1 441 0.0384 0.3

0.05 1681 0.0274 0.49

0.025 6561 0.0192 0.51

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Fig. 5 Example 2. Meshes generated by the dynamics. Left: 246 points, fill distance 0.1436. Middle: 909
points, fill distance 0.0882. Right: 3457 points, fill distance 0.0439. Details on the chosen initial conditions
can be found in Table 4

observe the rate of convergence with respect to the parameter h. The behavior of the rate is
similar for the choices θ̄ and θ∗.

Figure4 presents in the left panel the exact solution evaluated on the scattered grid with
3200 points and h = 0.0464. The middle picture is the solution obtained by value iteration
algorithm with Shepard approximation and the last picture is the absolute error between the
two solutions. The error has an erratic behavior always below 10−1.

For the sake of completeness we also show the results with a regular grid and Shepard
approximation in Table 2 and with linear interpolation as for e.g. [6, Appendix A] in Table
3. The comparison has been made with the same number of points in the grid and one can
see that the order of the error is similar. Clearly, in the proposed approach there are several
parameters to tune and also one could choose different kernels. Furthermore, we would like
to emphasize that our proposed method aims at working for higher dimensional problems
and we suggest to use the standard interpolation routine when dealing with low dimensional
problems. We also note that in this case the chosen shape parameter θ̄ coincide with the
optimal one θ∗. We do not report the CPU time in Tables 2 and 3 because the choice of P
influences the results and our focus is to compare the accurateness of the results.

Example 2 Grid driven by the dynamics In this example we test our novel grid proposed
in Sect. 4. We set �t = h in the HJB equation. To generate the trajectories which will be
our grid points, we set (�t, L̄, M̄) = {(0.1, 4, 16), (0.05, 8, 16), (0.025, 16, 16)} in (4.7).
Figure5 shows some examples of meshes generated in this case, with randomly selected
initial conditions. These meshes follow the pattern of problem dynamics.

123



   25 Page 18 of 27 Journal of Scientific Computing            (2023) 96:25 

Table 4 Example 1. Initial conditions X , number of points N , and fill distance h, for the three examples of
Fig. 5

N h X

246 0.1436 {(0.497, 0.499), (−0.495,−0.497), (0.502,−0.502), (−0.504, 0.499)}
909 0.0882 {(−0.022, 0.542), (0.001,−0.532), (0.666,−0.672), (−0.667, 0.668), . . .

(0.591, 0.0142), (0.653, 0.689), (−0.594,−0.017), (−0.664,−0.683)}
3457 0.0439 {(−0.794, 0.244), (0.754, 0.764), (−0.247, 0.741), (−0.181,−0.271), . . .

(−0.757,−0.750), (−0.743, 0.747), (0.704, 0.294), (0.253, 0.746), . . .

(0.319,−0.225), (−0.257,−0.760), (0.253,−0.739), (0.148, 0.249), . . .

(−0.717,−0.255), (−0.343, 0.215), (0.778,−0.197), (0.755,−0.736)}

1 1.5 2 2.5 3
0.032

0.034

0.036

0.038

0.04

0.042

1 1.5 2 2.5 3

Parameter 

0

0.2

0.4

0.6

0.8
245
915
3469

0.05 0.1 0.15
0.1

0.15

0.2

0.25

0.3

Fig. 6 Example 2. Left: Average residual to case with 3469 points. Middle: E(Vθ ). Right: E(Vθ̄ ) and E(Vθ∗ )

variation with h

Table 5 Example 2. Numerical results with a grid driven by the dynamics

h Points CPU time θ̄ θ∗ E(Vθ̄ ) Rate E(Vθ∗ ) Rate

0.1642 245 8.5 1.58 1.82 0.3182 0.2949

0.0820 915 55.6 1.66 1.76 0.1861 1.29 0.1855 1.49

0.0455 3469 654 1.7 1.82 0.1016 0.97 0.0997 0.94

We set, again, P = [1, 3]. The behavior of R(σ (θ)) is shown in Fig. 6 when the grid has
3469 points on average. The minimum value is achieved for θ̄ = 1.7. The middle panel of
Fig. 6 shows a plot of E(Vθ ) for a different number of points. The right picture shows the error
behavior in E(Vθ̄ ) and E(Vθ∗) with the reduction of h. It decreases according to Theorem 2.
We stress that all of these quantities are computed averaging 5 simulations.

Table 5 summarizes the results of Example 2 as discussed in Example 1. All the consid-
erations are very similar to the previous example but now we have a different grid which
will help us to deal with higher dimensional problems as it will be presented in the next
sections. We stress that the values of the error indicator in the sixth and eighth column of
Table 5 are very close to each other. Once again, this is very interesting since we are using
an a-posteriori criteria for the computation of the shape parameter. We can also observe that
the rate of convergence with respect to the choice of θ̄ and θ∗ is similar.

Finally, Table 6 presents the results of Algorithm 1 using a gradient descent method with
ε = 10−6 in step 11 ofAlgorithm 1. If we compare the results with Table 5we can see that this
method is computationally slower and the accuracy has the same of order of the comparison
method. Thus, we will only show the performance of our method where the minimization is

123



Journal of Scientific Computing            (2023) 96:25 Page 19 of 27    25 

Table 6 Example 2. Results
using gradient method

h Points CPU time θ̄ E(Vθ̄ )

0.1364 248 9.7 1.62 0.278

0.0865 924 152 1.72 0.1859

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Linear
RBF-Regular
Example 1
Example 2

0 0.2 0.4 0.6 0.8 1 1.2
time

0

1

2

3

4

Linear
RBF-Regular
Example 1
Example 2

Fig. 7 Example 3. Optimal trajectories (left) and optimal controls (right) for x = (0.7,−0.7)

computed by comparison. We do not provide results with smaller h in Table 6 because it is
clear that it will be way slower than the comparison method.

Example 3 On the feedback reconstruction.
The approximated value functions computed bymeans of Algorithm 1with different grids

allows us to obtain the optimal trajectories and optimal controls for any initial conditions.
In Fig. 7, we present an example of optimal controls and trajectories computed for x =
(0.7,−0.7) using value functions obtained in Examples 1 and 2. For completeness, we
also show the results considering the value function obtained by traditional value iteration
algorithm using linear interpolation and Shepard method on a regular grid. The latter comes
from [28].

All trajectories reach the target T but with different costs. The value of the cost func-
tional, for a given initial condition, is equal when dealing with a structured grid with linear
interpolation and Shepard approximation. The value of cost functional with value function
from Example 2 is always smaller or equal than the value of cost functional from Example
1, for both initial conditions.

In Table 7 we provide the evaluation of the cost functional for different initial conditions
and different methods whereas in Table 8 we provide the arrival time at the target. It is
interesting to see that linear interpolation and Shepard approximation coincide on a equidis-
tributed grid and that the use of Shepard with a grid driven by the dynamics lead to lower
cost functional values with respect to the random mesh.

123



   25 Page 20 of 27 Journal of Scientific Computing            (2023) 96:25 

Table 7 Example 3. Evaluation of the cost functional for different methods and initial conditions x

x Linear RBF-Regular Example 1 Example 2

(−0.7,−0.7) 0.6664 0.6664 0.7006 0.7006

(0.7, 0.7) 0.6664 0.6664 0.7164 0.6839

(−0.7, 0.7) 0.6664 0.6664 0.8076 0.6839

(0.7, −0.7) 0.6664 0.6664 0.7594 0.6839

Table 8 Example 3. Arrival time at the target (in seconds) for different methods and initial conditions x

x Linear RBF-Regular Example 1 Example 2

(−0.7,−0.7) 1 1 1.1 1.1

(0.7, 0.7) 1 1 1.15 1.05

(−0.7, 0.7) 1 1 1.5 1.05

(0.7, −0.7) 1 1 1.3 1.05

Test 2: Bilinear Advection Equation

The second test deals with the control of a two-dimensional advection equation with constant
velocity ζ ∈ R:⎧⎪⎨

⎪⎩
ỹt (ξ, t) + ζ∇ξ ỹ(ξ, t) = u(t)ỹ(ξ, t) (ξ, t) ∈ � × [0, T ]
ỹ(ξ, t) = 0 ξ ∈ ∂� × [0, T ]
ỹ(ξ, 0) = ỹ0(ξ) ξ ∈ �.

(5.4)

where � = [0, 5]2, ζ = 1 and T = 2.5 is chosen large enough to simulate the infinite
horizon problem. Equation (5.4) can be written in form (2.1) using finite differences spatial
discretization (see e.g. [32]) which leads to a system of ODEs:{

ẏ(t) = Ay(t) + u(t)y(t) t ∈ (0, T ],
y(0) = y0 ∈ R

d (5.5)

where A ∈ R
d×d is the discretization of the gradient term , y(t) ∈ R

d corresponds to the
approximation of ỹ(ξ, t) at the grid points, (y0)i = ȳ0(ξi ), i = 1, . . . , d with ξi ∈ � being
a node of the discretization of � and control u(t) ∈ U . Our goal is to steer the solution y(t)
of (5.5) as close as possibile to the value 0, minimizing the following cost functional:

Jx (y, u) ≡
∫ T

0
(‖y(s)‖22 + γ |u(s)|2)e−λsds (5.6)

where γ = 10−5 and y(t) solves (5.5).
In this test we select initial conditions from a class of parametrized functions:

C := {
κ sin(πx1) sin(πx2)χ[0,1]2 ; κ ∈ (0, 1]} . (5.7)

To generate the grid driven by the dynamics we have chosen κ = {0.5, 1} in (5.7), 11 controls
equidistributed inU = [−2, 0] and �̄t = 0.1. Thus, in (4.7),we set: �̄t = 0.1; M̄ = 11; L̄ =
2. Equation (5.5) is then solved for each initial condition and each control with � discretized
with d = 10201 points, and the time interval [0, 2.5]. step size �t = 0.05. After computing

123



Journal of Scientific Computing            (2023) 96:25 Page 21 of 27    25 

0.4 0.5 0.6 0.7
Parameter 

7.9

8

8.1

8.2

10-3

0 0.5 1 1.5 2 2.5
time

-2

-1.5

-1

-0.5

0

Fig. 8 Test 2. Initial condition y(x, 0) = 0.75sin(πx1)sin(πx2)χ[0,1]2 . Top: uncontrolled solution (left) and
controlled solution (right). Bottom: residual (left) and optimal control (right)

the grid generated by the dynamics, we run Algorithm 1 with P = [0.4, 0.7] discretized
with step size 0.05, fixing �t = 0.05 to discretize (5.5) by an implicit Euler method and
21 equidistributed controls. The residual R(σ (θ)) reaches its minimimum with θ̄ = 0.65 as
shown in the bottom-left panel of Fig. 8. The CPU time to run our algorithm is 583.6 s.

To obtain the feedback control and optimal trajectorieswe have enlarged the set of discrete
controlsU with 81 points (in the value function we used 21 controls). Thus, we have studied
the control problem for different initial conditions selected from the set (5.7) using the value
function already stored. In Fig. 8 we can compare in the top panels the uncontrolled solution,
i.e. u(t) = 0, with controlled solution for y(x, 0) = 0.75 sin(πx1) sin(πx2)χ[0,1]2 . The
respective optimal control is shown in the bottom-right panel of Fig. 8. Note that this initial
condition does not belong to the grid.

We have also studied the following initial conditions: κ = {0.5, 1} in (5.7). The behavior
of the solution is similar to Fig. 8. We show a plot of the cost functionals in Fig. 9, and we see
that the controlled solution has always a lower cost functional than the uncontrolled solutions.
We are able to reach the desired configuration with the three initial conditions considered
(κ = {0.5, 0.75, 1} in (5.7)).

123



   25 Page 22 of 27 Journal of Scientific Computing            (2023) 96:25 

0 0.5 1 1.5 2 2.5

time

0

0.002

0.004

0.006

0.008

0.01

0.012

uncontrolled
controlled

0 0.5 1 1.5 2 2.5

time

0

0.005

0.01

0.015

0.02

0.025

0.03
uncontrolled
controlled

0 0.5 1 1.5 2 2.5

time

0

0.01

0.02

0.03

0.04

0.05
uncontrolled
controlled

Fig. 9 Test 2. Cost functional. Left: y(x, 0) = 0.5sin(πx1)sin(πx2)χ[0,1]2 . Center: 0.75y(x, 0) =
sin(πx1)sin(πx2)χ[0,1]2 . Right: y(x, 0) = sin(πx1)sin(πx2)χ[0,1]2

Test 3: Nonlinear Heat Equation

This test deals with the control of a two-dimensional parabolic equation with polynomial
nonlinearities:⎧⎪⎨

⎪⎩
ỹt (ξ, t) = α�ỹ(ξ, t) + β(ỹ2(ξ, t) − ỹ3(ξ, t)) + u(t)ỹ0(ξ) (ξ, t) ∈ � × [0, T )

∂n ỹ(ξ, t) = 0 ξ ∈ ∂� × [0, T )

ỹ0(ξ) = ỹ(ξ, 0) ξ ∈ �

(5.8)

with � = [0, 1] × [0, 1], α = 1
100 , β = 6, T = 5. Finite differences in space for (5.8) leads

to {
ẏ(t) = Ay(t) + Bu(t) + f (y(t)) t ∈ (0, T ]
y(0) = y0 ∈ R

d (5.9)

where A ∈ R
d×d is the discretization of the laplacian , B ∈ R

d where Bi = ỹ0(ξi ) for
i = 1, . . . , d and ξi a node of the discretization of �. Here the nonlinear term f : Rd → R

d

is f (y(t)) = y(t)2 − y(t)3.
Wewant tominimize again (5.6) as in the previous test and consider the class (5.7) of initial

conditions. Here, we build an unstructured mesh using as initial condition with κ = {0.5, 1}
in (5.7). In (4.7), we set �̄t = 0.1, M̄ = 41, L̄ = 2. The state space � = [0, 1]2 was
discretized in 312 points which is the dimension of the discretized problem (5.9). The control
space U = [−2, 0] is discretized with 41 points. The time domain was discretized in 51
points. We set γ = 10−2 in (5.6) and run Algorithm 1 using P = [2, 2.4] with step size of
0.025 and �t = 0.075. The parameter that minimizes R(σ (θ)) is θ̄ = 2.225 as shown in
Fig. 10. higher values. The time needed to approximate the value function is approximately
40 minutes.

We present the controlled solutions for different initial conditions taken from C in (5.7).
First, we consider the initial condition y(x, 0) = 0.75 sin(πx1) sin(πx2) and the results are
shown in Fig. 11. As one can see in the left panel the solution reach the unstable equilibrium
y(t) = 1, whereas the controlled solution goes to 0 as desired. The optimal control, computed
as discussed in Sect. 4.5 is then shown in the right panel of Fig. 11. Note that the initial
condition does not belong to the grid where we computed the value function.

Figure12 presents the evaluation of the cost functional for the initial conditions considered.
As expected, the cost of controlled solutions is always smaller than costs of uncontrolled
solutions.

123



Journal of Scientific Computing            (2023) 96:25 Page 23 of 27    25 

1.8 1.9 2 2.1 2.2 2.3
Parameter 

100

101

1.8 1.9 2 2.1 2.2
Parameter 

0.795

0.796

0.797

0.798

Fig. 10 Test 3. Residual

0 1 2 3 4 5

time

-2

-1.5

-1

-0.5

0

Fig. 11 Test 3. Initial condition y(x, 0) = 0.75 sin(πx1) sin(πx2). Left: uncontrolled solution at time t = 5.
Middle: controlled solution at time t = 5. Right: optimal control

0 1 2 3 4 5

time

0

1

2

3

4
uncontrolled
controlled

0 1 2 3 4 5

time

0

1

2

3

4

5
uncontrolled
controlled

Fig. 12 Test 3. Cost functional. Left: y(x, 0) = 0.5sin(πx1)sin(πx2). Center: 0.75y(x, 0) =
sin(πx1)sin(πx2). Right: y(x, 0) = sin(πx1)sin(πx2)

We now check the robustness of the method adding a noise term at each time instance.
We keep using the same value function stored before and we computed the optimal tra-
jectory for a initial condition with a small perturbation. Here we consider y(x, 0) =
0.75 sin(πx1) sin(πx2) + N (0, 0.025) where N (0, 0.025) is a normally distributed random
variable with mean zero and standard deviation 0.025. With these parameters we have a
probability of 95, 45% of selecting a number in the range [−0.05, 0.05] at each iteration. At
each time iteration a new independent perturbationN (0, 0.025) has been added to the trajec-
tory. Left picture of Fig. 13 presents the uncontrolled trajectory and the solution converges
(somehow) to y(x) = 1 with a perturbation. The middle panel shows the controlled solution

123



   25 Page 24 of 27 Journal of Scientific Computing            (2023) 96:25 

0 1 2 3 4 5

time

-2

-1.5

-1

-0.5

0

0 1 2 3 4 5
time

0

1

2

3

4

5
uncontrolled
controlled

Fig. 13 Test 3. Initial condition y(x, 0) = 0.75sin(πx1)sin(πx2) + N (0, 0.025). Left: uncontrolled solu-
tion. Middle: controlled solution. Right: optimal control. Running Cost with initial condition y(x, 0) =
0.75sin(πx1)sin(πx2) + N (0, 0.025)

and how it is close to y(x) = 0, also with a perturbation. The left panel in the bottom line of
Fig. 13 presents the optimal control. A comparison of the cost functional for the perturbed
problem is show in the bottom right panel of Fig. 13.

Finally, to further show the effectiveness of our method we consider a non-smooth initial
condition that does not belong to (5.7):

y(x, 0) = max{−(2|x − 0.5| + 1)(2|y − 0.5| + 1) + 2, 0}
as shown in the top left panel of Fig. 14. Here we consider a time interval T = [0, 8]
discretized in 161 points.

Figure14 shows the uncontrolled trajectory, which converges to y(x) = 1 and the con-
trolled trajectory, which converges to the unstable equilibrium y(x) = 0 as desired. Figure15
also presents the optimal control and the evaluation of the cost functional.

6 Conclusions and FutureWorks

We have proposed a novel method to approximate stationary HJB equations using RBF and
Shepard approximation. The RBF usually presents a parameter which is here selected by
means of a-posteriori criteria. We have also shown a new way to generate the grid which
helps to deal with high dimensional problems localizing the problem along trajectories of
interest. This method has the advantage to be able to reconstruct the feedback for (a class of)

123



Journal of Scientific Computing            (2023) 96:25 Page 25 of 27    25 

Fig. 14 Test 3. Left: Initial condition y(x, 0) = max{−(2|x − 0.5| + 1)(2|y − 0.5| + 1) + 2, 0}. Middle:
uncontrolled solution. Right: controlled solution

0 2 4 6 8
time

-2

-1.5

-1

-0.5

0

0 2 4 6 8
time

0

1

2

3

4

5

6

7
uncontrolled
controlled

Fig. 15 Test 3. Left: optimal control and (right) running Cost with initial condition y(x, 0) = max{−(2|x −
0.5| + 1)(2|y − 0.5| + 1) + 2, 0}

initial conditions without the need of update the mesh or recompute the HJB approximation
as usually happens for the control of PDE with a DP approach. We have also provided an
error estimate for the value function and proved, by numerical evidence, the effectiveness
of our method. The method could be extended to the semi-Lagrangian schemes where the
approximation is needed to reconstruct the characteristic of the problem. Furthermore, it

123



   25 Page 26 of 27 Journal of Scientific Computing            (2023) 96:25 

will be our interest to couple this method with Model Order Reduction to deal with more
sophisticated PDE example, and possibly industrial applications.

Funding AA was supported by the CNPq research grant 3008414/2019-1 and by a research grant from
PUC-Rio. HO was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES).

Data Availibility Enquiries about code availability should be directed to the authors. No data has been used in
this paper.

Declarations

Conflict of interest No conflict of interest.

References

1. Alla, A., D’Elia, M., Glusa, C., Oliveria, A.H.: Control of fractional diffusion problems via
dynamic programming equations. J. Peridyn. Nonlocal. Model (2023). https://doi.org/10.1007/s42102-
023-00101-z

2. Alla, A., Falcone, M., Kalise, D.: An efficient policy iteration algorithm for dynamic programming
equations. SIAM J. Sci. Comput. 3(7), 181–200 (2015)

3. Alla, A., Falcone, M., Saluzzi, L.: An efficient DP algorithm on a tree-structure for finite horizon optimal
control problems. SIAM J. Sci. Comput. 41, A2384–A2406 (2019)

4. Alla, A., Falcone, M., Volkwein, S.: Error analysis for POD approximations of infinite horizon problems
via the dynamic programming approach. SIAM J. Control Optim. 55, 3091–3115 (2017)

5. Alla, A., Saluzzi, L.: A HJB-POD approach for the control of nonlinear PDEs on a tree structure. Appl.
Numer. Math. 155, 192–207 (2020)

6. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman
Equations. Birkhäuser, Basel (1997)

7. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for para-
metric dynamical systems. SIAM Rev. 57, 483–531 (2015)

8. Bokanowski, O., Garcke, J., Griebel, M., Klompmaker, I.: An adaptive sparse grid semi-Lagrangian
scheme for first order Hamilton–Jacobi Bellman equations. J. Sci. Comput. 55, 575–605 (2013)

9. Capuzzo Dolcetta, I., Ishii, H.: Approximate solutions of the Bellman equation of deterministic control
theory. Appl. Math. Optim. 11, 161–181 (1984)

10. Capuzzo Dolcetta, I.: On a discrete approximation of the Hamilton–Jacobi equation of dynamic program-
ming. Appl. Math. Optim. 10, 367–377 (1983)

11. Carlini, E., Falcone, M., Ferretti, R.: An efficient algorithm for Hamilton–Jacobi equations in high dimen-
sion. Comput. Vis. Sci. 7, 15–29 (2004)

12. Carlini, E., Ferretti, R.: A semi-Lagrangian scheme with radial basis approximation for surface recon-
struction. Comput. Vis. Sci. 18, 103–112 (2017)

13. Chen, W., Fu, Z.-J., Chen, C.-S.: Recent advances in radial basis function collocation methods. Briefs
Appl. Sci. Technol. (2014). https://doi.org/10.1007/978-3-642-39572-7

14. Chilan, C.M., Conway, B.A.: Optimal nonlinear control using Hamilton–Jacobi–Bellman viscosity solu-
tions on unstructured grids. J. Guid. Control Dyn. 43, 30–38 (2020)

15. Darbon, J., Osher, S.J.: Splitting enables overcoming the curse of dimensionality. In: Glowinski, R., Osher,
S., Yin, W. (eds.) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific
Computation. Springer, Cham (2016)

16. Darbon, J., Osher, S.: Algorithms for overcoming the curse of dimensionality for certain Hamilton–Jacobi
equations arising in control theory and elsewhere. Res. Math. Sci. 3, 19–26 (2016)

17. Dolgov, S., Kalise, D., Kunisch, K.: Tensor decomposition for high-dimensional Hamilton–Jacobi–
Bellman equations, submitted, 2019. https://arxiv.org/pdf/1908.01533.pdf

18. Dolgov, S., Kalise, D., Saluzzi, L.: Data-driven tensor train gradient cross approximation for Hamilton–
Jacobi–Bellman equations, submitted, 2022. arxiv:2205.05109

19. Ehring, T., Haasdonk, B.: Feedback control for a coupled soft tissue system by kernel surrogates. In:
Proceedings of COUPLED 2021 (2021)

123

https://doi.org/10.1007/s42102-023-00101-z
https://doi.org/10.1007/s42102-023-00101-z
https://doi.org/10.1007/978-3-642-39572-7
https://arxiv.org/pdf/1908.01533.pdf
http://arxiv.org/abs/2205.05109


Journal of Scientific Computing            (2023) 96:25 Page 27 of 27    25 

20. Ehring, T., Haasdonk, B.: Greedy sampling and approximation for realizing feedback control for high
dimensional nonlinear systems. IFAC-PapersOnLine 55, 325–330 (2022)

21. Falcone,M., Ferretti,M.R.: Discrete time high-order schemes for viscosity solutions ofHamilton–Jacobi–
Bellman equations. Numer. Math. 67, 315–344 (1994)

22. Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi
equations. SIAM (2013). https://doi.org/10.1137/1.9781611973051

23. Fasshauer, G.F.: Meshfree approximation methods with MATLAB (2007)
24. Fasshauer, G.F., McCourt, M.: Kernel-based approximation methods using MATLAB (2015)
25. Ferretti, G., Ferretti, R., Junge, O., Schreiber, A.: An adaptive multilevel radial basis function scheme for

the HJB equation. IFAC-PapersOnLine 50, 1643–1648 (2017)
26. Fornberg, B., Flyer, N.: Solving PDEs with radial basis functions. Acta Numer. 24, 215–258 (2015)
27. Garcke, J., Kröner, A.: Suboptimal feedback control of PDEs by solvingHJB equations on adaptive sparse

grids. J. Sci. Comput. 70, 1–28 (2017)
28. Junge, O., Schreiber, A.: Dynamic programming using radial basis functions. Discrete Contin. Dyn. Syst.-

Ser. A 35, 4439–4453 (2015)
29. Grüne, L.: An adaptive grid scheme for the discrete Hamilton–Jacobi–Bellman equation. Numerische

Mathematik 75, 319–337 (1997)
30. Kalise, D., Kunisch, K.: Polynomial approximation of high-dimensionalHamilton–Jacobi–Bellman equa-

tions and applications to feedback control of semilinear parabolic PDEs. SIAM J. Sci. Comput. 40,
A629–A652 (2018)

31. Kunisch, K., Volkwein, S., Xie, L.: HJB-POD based feedback design for the optimal control of evolution
problems. SIAM J. Appl. Dyn. Syst. 4, 701–722 (2004)

32. Leveque, R.J.: Finite difference methods for ordinary and partial differential equations: steady-state and
time-dependent problems. SIAM (2007). https://doi.org/10.1137/1.9780898717839

33. McEneaney, W.M.: Convergence rate for a curse-of-dimensionality-free method for Hamilton–Jacobi–
Bellman PDEs represented as maxima of quadratic forms. SIAM J. Control Optim. 48, 2651–2685 (2009)

34. McEneaney, W.M.: A curse-of-dimensionality-free numerical method for solution of certain HJB PDEs.
SIAM J. Control Optim. 46, 1239–1276 (2007)

35. Schmidt, A., Haasdonk, B.: Data-driven surrogates of value functions and applications to feedback control
for dynamical systems. IFAC-PapersOnLine 51, 307–312 (2018)

36. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of min-
imal degree. Adv. Comput. Math. 4, 389–396 (1995)

37. Wendland, H.: Scattered data approximation. Cambridge University Press, Cambridge (2004)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1137/1.9781611973051
https://doi.org/10.1137/1.9780898717839

	HJB-RBF Based Approach for the Control of PDEs
	Abstract
	1 Introduction
	2 Dynamic Programming Equations
	3 Radial Basis Functions and the Shepard method
	4 The Coupling Between DP and RBF
	4.1 Semi-Lagrangian Scheme for (2.6)
	4.2 On the Scattered Mesh
	4.3 Selection of the Shape Parameter
	4.4 Error Estimates
	4.5 Algorithm

	5 Numerical Experiments
	Test 1: Eikonal Equation in 2D
	Test 2: Bilinear Advection Equation
	Test 3: Nonlinear Heat Equation

	6 Conclusions and Future Works
	References


