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DISCRETE-VELOCITY-DIRECTION MODELS OF BGK-TYPE WITH MINIMUM

ENTROPY: I. BASIC IDEA

QIAN HUANG, YIHONG CHEN, AND WEN-AN YONG*

Abstract. In this series of works, we develop a discrete-velocity-direction model (DVDM) with colli-
sions of BGK-type for simulating rarefied flows. Unlike the conventional kinetic models (both BGK and
discrete-velocity models), the new model restricts the transport to finite fixed directions but leaves the
transport speed to be a 1-D continuous variable. Analogous to the BGK equation, the discrete equilib-

riums of the model are determined by minimizing a discrete entropy. In this first paper, we introduce
the DVDM and investigate its basic properties, including the existence of the discrete equilibriums and
the H-theorem. We also show that the discrete equilibriums can be efficiently obtained by solving a
convex optimization problem. The proposed model provides a new way in choosing discrete velocities
for the computational practice of the conventional discrete-velocity methodology. It also facilitates a
convenient multidimensional extension of the extended quadrature method of moments. We validate
the model with numerical experiments for two benchmark problems at moderate computational costs.

1. Introduction

Kinetic theories and the Boltzmann equation lay the foundation for investigating non-equilibrium
many-body interacting systems. Besides the classical rarefied gas dynamics [30], kinetic theories have also
found substantial applications in multiphase flow problems [13, 19] and the emerging field of active matter
[3, 31]. However, solving the Boltzmann-like equation can be challenging. The first obstacle is due to the
collision mechanisms of gas molecules [16] or aggregation-breakage of aerosol/colloid particles [13, 23]. To
overcome this obstacle, the BGK model [5] and its improvements (for instance, Shakhov model [29] and
ES model [17]) have been proposed to simplify the collision term while keeping fundamental properties
of the original equation and hence become prevalent [16].

The second obstacle is the velocity dependence of the unknowns which makes solving the Boltzmann
equation computationally costly. Many numerical approaches have thus been developed, including the
linearization method [27, 30], the spectral method [11], the discrete-velocity method (DVM) [1, 14, 24, 25],
the semi-continuous method [20, 28], and a variety of moment methods [6, 21, 7, 23, 19]. All these methods
aim at good mathematical properties (realizability, model stability, convergence to the original equation,
etc.) and numerical performance (computational complexity, numerical stability, etc.), and have their
advantages and weaknesses [4].

Among the methods above, the Gaussian-extended quadrature method of moments (Gaussian-
EQMOM) [7, 23, 34] serves as the original motivation of this project. In 1-D case, this method assumes
the unknown or distribution to be a linear combination of N (N ≥ 1) Gaussian functions with unknown
centers and a common (unknown) variance to be inversely solved from the velocity moments of the distri-
bution [34]. The resulting moment closure system was proved to satisfy the structural stability condition
widely respected by physical systems [18, 33]. The quadrature-based method of moments stands out also
because of its potential to characterize systems far from equilibrium [22, 23]. However, a satisfactory
extension of EQMOM to 2/3-D velocity space(s) seems not available; see Refs. [7, 23].

On the other hand, we notice that a discrete-velocity-direction model (DVDM) was proposed physically
and investigated in Refs. [35, 36, 37]. As a semi-continuous model different from the existing ones [20, 28],
the DVDM constrains particle transport in finite fixed directions while keeping the speed continuous. The
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resulting model has complicated terms for collisions and therefore does not offer a convenient way to get
multidimensional EQMOM [35]. Additionally, the semi-continuous system can be numerically solved by
discretizing the transport speed in each orientation [35], and thus provides a new way in selecting discrete
velocity nodes, which is distinct from the common DVM practice in a uniform cubic lattice [24].

In this project, we propose a discrete-velocity-direction model (DVDM) with collisions of BGK-type.
For the new model, the equilibriums are determined by minimizing a discrete entropy. We investigate
the existence and uniqueness of the discrete equilibriums and establish an H-theorem characterizing the
dissipation property of the original kinetic equation. Because the DVDM is different from the discrete-
velocity BGK models [24], the analysis is quite involved in comparison with that in Ref. [24]. We also
show that the discrete equilibriums can be obtained efficiently by solving a convex optimization problem.
Moreover, the continuous transport speed can be treated with simple discretizations or combinations with
1-D Gaussian-EQMOM. The latter provides a new multidimensional extension of EQMOM and yields a
hyperbolic moment system, which seems satisfactory. The proposed methods are numerically validated
with two benchmark tests. Further numerical and analytical results will be reported in forthcoming
papers [8].

The remainder of the paper is organized as follows. Section 2 presents the discrete-velocity-direction
model (DVDM) with BGK-collisions. The existence of local equilibriums is studied in Section 3. Section
4 provides two approaches to treat the continuous velocity-modulus in DVDM, including DVD-DVM in
Section 4.1 and DVD-EQMOM in Section 4.2. Section 5 discusses numerical issues, with the space-time
discretization schemes in Section 5.1 and the computation of discrete equilibrium in Section 5.2. In
Section 6, two benchmark flows are simulated. Finally, we conclude our paper in Section 7.

2. Discrete-velocity-direction models of BGK-type

Let ξ ∈ R
D be the molecule velocity (D = 2, 3) and x ∈ R

Dx the spatial position (1 ≤ Dx ≤ D). We
consider the BGK equation [5] for the distribution f = f(t,x, ξ):











































∂tf + ξ · ∇xf =
1

τ
(E [f ]− f) , t ≥ 0,

E [f ] = exp (αeq ·m(ξ)) ,

αeq =

(

ln
ρ

(2πθ)D/2
− U2

2θ
,
U

θ
, −1

θ

)T

∈ R
D+2,

ρ (1,U , E)
T
= 〈m(ξ)f〉 ∈ R

D+2, θ =
2E − U2

D
.

(2.1)

Here τ is the relaxation time, m(ξ) =
(

1, ξ, |ξ|2
2

)T

∈ RD+2, U = |U | is the Euclidean length of the

vector U , and the bracket 〈·〉 is defined as 〈g(ξ)〉 =
∫

RD g(ξ)dξ for any measurable function g(ξ). The
local Maxwellian equilibrium E [f ] is implicitly defined by f through the macroscopic fluid density ρ,
velocity U ∈ R

D, energy E (or temperature θ) which are the velocity moments of f .

It can be easily verified that E [f ] reproduces the local macroscopic quantities [30]:

〈m(ξ)E [f ]〉 = ρ := ρ (1,U , E)
T ∈ R

D+2. (2.2)

Moreover, it was shown [24] that given any ρ with ρ > 0 and θ > 0, E [f ] is the unique solution that
minimizes the following kinetic entropy H [f ] :

H [f ] = 〈f ln f − f〉 (2.3)

subject to the constraint Eq. (2.2).

Solving the multidimensional BGK Eq. (2.1) can be computationally costly. In this work, we propose
a class of discrete-velocity-direction models (DVDM) with a minimum entropy.

In the DVDM, the particle transport is limited to N prescribed directions lm ∈ RD with |lm| = 1

(m = 1, . . . , N). Denote by lL = (lm)
N
m=1. Usually, we take N > D and choose the directions such

that the matrix LT = (l1, . . . , lN ) ∈ R
D×N has rank D. The velocity distribution f(t,x, ξ) is replaced
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by N 1-D velocity distributions fL = {fm(t,x, ξ)}Nm=1 with ξ ∈ R. The governing equation for each
fm = fm(t,x, ξ) has the following form:

∂tfm + ξlm · ∇xfm =
1

τ
(Em − fm) (2.4)

with the local equilibrium EL = {Em(t,x, ξ)}Nm=1 yet to be determined by fL.

For further references, we introduce a bracket 〈(·)L〉L for any N -tuple gL = (gm(ξ))
N
m=1 as

〈gL〉L =

N
∑

m=1

∫

R

gm(ξ)dξ. (2.5)

Define

ρ = 〈fL〉L, ρU = 〈ξlLfL〉L, ρE = 〈ξ
2

2
fL〉L,

or equivalently

ρ = 〈mLfL〉L, (2.6)

with mL = {mm}Nm=1 and mm =
(

1, ξlm, 1
2ξ

2
)T ∈ RD+2 for m = 1, . . . , N .

The local equilibrium EL is determined so that it minimizes the discrete analogue of the kinetic entropy

H [fL] = 〈fL ln fL − fL〉L. (2.7)

among all possible N -tuples fL ≥ 0 satisfying 〈mLfL〉L = ρ for a given ρ. The same idea was utilized to
develop a conservative and entropy-decreasing discrete-velocity model (DVM) of the BGK equation [24].

As to the existence and uniqueness of the minimizer, we have the following result.

Theorem 2.1. Suppose fL = {fm(ξ)}Nm=1 and ρ = 〈mLfL〉L satisfy fm ≥ 0 for all m and 0 < |ρ| <
∞. Then the discrete kinetic entropy Eq. (2.7) has a unique minimizer EL satisfying the constraint
〈mLEL〉L = ρ. Moreover, the minimizer has the exponential form

Em = exp(α ·mm) (2.8)

with a certain α ∈ RD+2.

The proof of this theorem will be completed in the next section, where we show that there exists
α = (α0, α̂

T , αD+1)
T ∈ RD+2 with α̂ ∈ RD such that

〈mL exp (α ·mL)〉L = ρ. (2.9)

This implies αD+1 < 0. Having such an α, we can show that the local equilibrium EL with Em =
exp(α ·mm) is the unique minimizer.

To do this, we use the fact that the function (x ln x−x) is strictly convex. Then, for any fL = {fm}Nm=1

satisfying 〈mLfL〉L = ρ, we have

fm ln fm − fm ≥ Em ln Em − Em + (ln Em)(fm − Em) = Em ln Em − Em + (α ·mm)(fm − Em)

for all m, and thereby,

H [fL] ≥ H [EL] + 〈(α ·mL)(fL − EL)〉L

= H [EL] + α0〈fL − EL〉L + α̂ · 〈ξlL(fL − EL)〉L + αD+1〈
ξ2

2
(fL − EL)〉L

= H [EL].
The equality holds if and only if fm = Em for all m = 1, ..., N . Thus, if there is another minimizer of the

exponential form, say, exp(α′ ·mm), then 0 = (α′−α)·mm = (α′
0−α0)+ξlm ·(α̂′−α̂)+ ξ2

2 (α
′
D+1−αD+1),

which means α′ = α by choosing different ξ and using the assumption that LT = (l1, . . . , lN ) is of full-
rank. Hence, the uniqueness of the minimizer is proved.
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With the local equilibrium EL determined as above, the DVDM Eq. (2.4) is well defined as






∂tfm + ξlm · ∇xfm =
1

τ
(exp(α ·mm)− fm), m = 1, . . . , N,

〈mL exp(α ·mL)〉L = ρ := 〈mLfL〉L.
(2.10)

The N differential equations are coupled through α determined by the last (D + 2) nonlinear algebraic
equations in terms of fL = {fm}Nm=1. Note that the local equilibrium in Eq. (2.10) can be rewritten as

Em = exp(α ·mm) =
ρm√
2πσ

exp

(

− (ξ − um)2

2σ2

)

(2.11)

for αD+1 < 0. The parameter (ρm, um, σ2) is related to α as follows:

σ2 = − 1

αD+1
, um = lm ·

(

σ2α̂
)

, ρm =
√
2πσ exp

(

α0 +
u2
m

2σ2

)

. (2.12)

Remark 2.2. While EL preserves the local fluid quantity ρ = 〈mLfL〉L, the conservation property
generally does not hold in any specific direction. That is to say, ρm 6=

∫

R
fmdξ, ρmum 6=

∫

R
ξfmdξ, and

ρm(u2
m + σ2) 6=

∫

R
ξ2fmdξ for m = 1, . . . , N . Indeed, this is the key mechanism reallocating molecules

among the prescribed directions in the DVDM-BGK model Eq. (2.10).

The DVDM-BGK model Eq. (2.10) has also the following properties including an H-theorem.

Theorem 2.3. Suppose the DVDM-BGK Eq. (2.10) with positive initial data fm(0,x, ξ) > 0 has a
solution fL = {fm(t,x, ξ)}Nm=1. Then we have

fm(t,x, ξ) > 0, ∀ m, t,x, ξ, (2.13)

∂t〈mLfL〉L + 〈mLξlL · ∇xfL〉L = 0, (2.14)

∂tH [fL] + 〈ξlL · ∇x(fL ln fL − fL)〉L ≤ 0. (2.15)

Proof. For Eq. (2.13), we define gm(t,x, ξ) = fm(t,x+ ξtlm, ξ) and deduce from Eq. (2.10) that

d

dt
gm(t,x, ξ) = ∂tfm(t,x+ ξtlm, ξ) + ξlm · ∇xfm(t,x+ ξtlm, ξ)

=
1

τ
(Em(t,x+ ξtlm, ξ)− gm(t,x, ξ)) ,

yielding

d

dt

(

e
t
τ gm(t,x, ξ)

)

=
1

τ
e

t
τ Em(t,x+ ξtlm, ξ).

Solving gm(t,x, ξ) from the above equation, we obtain

fm(t,x, ξ) =
1

τ

∫ t

0

e
s−t
τ Em(s,x+ ξ(s− t)lm, ξ)ds+ e

−t
τ fm(0,x− ξtlm, ξ).

Thus, Eq. (2.13) follows immediately from the positivity of fm(0,x, ξ) and Em = exp(α ·mm).

To derive Eq. (2.14), we just exert the operation 〈mL(·)L〉L on both sides of the differential equations
of Eq. (2.10) and notice that the RHS vanishes as 〈mL (exp(α ·mL)− fL)〉L = 0.

For Eq. (2.15), we multiply the two sides of Eq. (2.4) with ln fm to obtain

∂t(fm ln fm − fm) + ξlm · ∇x(fm ln fm − fm) =
1

τ
(Em − fm)(ln fm)

≤ 1

τ
(Em − fm)(ln Em),

where the inequality (x−y)(ln x− ln y) ≥ 0 has been used. Then, Eq. (2.15) follows by applying 〈(·)〉L to
both sides of the last inequality and noticing that 〈(EL− fL)(ln EL)〉L = 0. This completes the proof. �
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Note that Eq. (2.14) is just the classical conservation laws for the macroscopic fluid quantities:

∂tρ+∇x ·





ρU
ρU ⊗U +P

ρUE +P ·U + q



 = 0.

Here P =
〈

(ξlL −U)⊗2fL
〉

L and q = 1
2 〈(ξlL −U)|ξlL −U |2fL〉L.

Remark 2.4 (Planar flows). For real-world planar rarefied flows, we have D = 3, ξ = (ξx, ξy , ξz)
T

and Dx = 2. In DVDM, it is straightforward to select velocity orientations lm in R3 to obtain the
governing Eq. (2.4) [35]. On the other hand, before discretizing velocity directions, we can also re-
sort to the technique of reduced distribution functions to eliminate the dependence of ξz. There
are two approaches for this purpose: (i) Define (g, h)T =

∫

(1, ξ2z)
T fdξz [9]; (ii) Define (g, h)T =

1√
π

∫

(

e−ξ2z ,
(

ξ2z − 1
2

)

e−ξ2z

)T

fdξz [30]. In both cases we have g = g(t,x, ξx, ξy) and h = h(t,x, ξx, ξy).

The governing equations for g and h can be derived from the BGK equation and the orientations lm
are hence chosen on the (ξx, ξy)-plane. The discrete equilibriums can be modeled and solved out of the
minimum entropy principle in a similar manner.

We conclude this section with the following proposition for an alternative way to solve α from the
nonlinear algebraic equations Eq. (2.9).

Proposition 2.5. α solves Eq. (2.9) if and only if α minimizes

J(α) := 〈exp (α ·mL)〉L − ρ · α (2.16)

for α = (α0, α̂, αD+1) with αD+1 < 0.

Proof. If α is a minimizer, we have ∇J(α) = 0, which is just Eq. (2.9). Conversely, if α solves Eq. (2.9),
then we have ∇J(α) = 0. Thus, it suffices to show that J = J(α) is strictly convex. To do so, we
compute the Hessian

∇ααJ = 〈mL ⊗mL exp (α ·mL)〉L
and consider the quadratic form

ηT∇ααJη = 〈(mL · η)2 exp (α ·mL)〉L ≥ 0

for any η ∈ RD+2. The equality holds if and only if mm · η = 0 for all m = 1, . . . , N and thus η = 0 due
to the assumption that LT = (l1, ..., lN ) is of full-rank. This indicates that the Hessian ∇ααJ is positive
definite and therefore J is strictly convex. This completes the proof. �

Remark 2.6. This proposition does not claim the existence of the solution to Eq. (2.9). But the strict
convexity of J = J(α) implies the uniqueness.

3. Existence of α

This section is devoted to completing the proof of Theorem 2.1. Namely, we will prove that J(α)
defined in Eq. (2.16) attains its minimum in the open set D := R× RD × R−. Throughout this section,
we assume that the given fL and ρ = 〈mLfL〉L satisfy the constraints in Theorem 2.1: fm ≥ 0 for all m
and 0 < |ρ| <∞.

First of all, we give a further constraint on ρ.

Lemma 3.1. Let ρ = (ρ, ρU , ρE)T ∈ RD+2 be computed from fL = {fm}Nm=1 in terms of ρ = 〈mLfL〉L.
Then there is a constant smin ≥ 1 such that

ρ > 0, E >
1

2
U2s2min.
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Proof. Set ρ̂m =
∫

R
fmdξ ≥ 0 and ρ̂mûm =

∫

R
ξfmdξ for m = 1, . . . , N . We deduce from ρ = 〈mLfL〉L

and the Cauchy-Schwartz inequality that

ρ =

N
∑

m=1

ρ̂m > 0, ρU =

N
∑

m=1

ρ̂mûmlm, (3.1)

2ρE =

N
∑

m=1

∫

R

ξ2fmdξ >
∑

m: ρ̂m>0

(∫

R
ξfmdξ

)2

∫

R
fmdξ

=

N
∑

m=1

ρ̂mû2
m.

The inequality is strict because the equality holds only when fm = 0 for all m, which contradicts ρ > 0.
Since

N
∑

m=1

ρ̂mû2
m =

1

ρ

∑

m,n

ρ̂nρ̂mû2
m =

1

ρ

[

∑

m

(ρ̂mûm)2 +
∑

m<n

ρ̂mρ̂n(û
2
m + û2

n)

]

≥ 1

ρ

(

N
∑

m=1

|ρ̂mûm|
)2

,

we have

2ρE >
1

ρ

(

N
∑

m=1

|ρ̂mûm|
)2

. (3.2)

On the other hand, the second equation in Eq. (3.1) can be rewritten as

N
∑

m=1

(

ρ̂mûm

ρU

)

lm = e :=
U

U
.

Here we have assumed that U 6= 0, otherwise the proof is already complete. Denote by smin = smin(e)

the minimum of
∑N

m=1 |am| subject to the constraints
∑N

m=1 amlm = e ∈ RD. Obviously we have
smin(e) ≥ 1 because

N
∑

m=1

|am| =
N
∑

m=1

|amlm| ≥
∣

∣

∣

∣

∣

N
∑

m=1

amlm

∣

∣

∣

∣

∣

= |e| = 1.

Hence we see that
∑N

m=1 |ρ̂mûm| ≥ ρUsmin(e) and the proof is complete. �

Remark 3.2. Lemma 3.1 indicates the capacity of DVDM to realize macroscopic flow states. In the
Boltzmann equation, the constraint for ρ is ρ > 0 and E > 1

2U
2 (because the temperature θ = (2E −

U2)/D > 0). By contrast, Lemma 3.1 gives a bigger lower bound for E because smin ≥ 1, exhibiting the
price we pay in the DVDM approximation. Generally speaking, more states can be realized with more
discrete velocity directions (see Appendix A for the case D = 2). On the other hand, no upper bound is
required for E or θ in DVDM, which is in contrast to DVM [24].

To show the existence of a minimizer α of J(α), we take α∗ ∈ D and set BM := {α ∈ D : J(α) ≤
J(α∗)}. Thus it suffices to prove that BM is compact, namely, BM is both closed in RD+2 and bounded.

The closedness is due to the following lemma, which is similar to Proposition 2 (P2) in Ref. [26] but
its proof needs more efforts.

Lemma 3.3. If a sequence {α(p)}∞p=1 ⊂ D satisfies

lim
p→∞

α
(p)
D+1 = 0,

then there is a subsequence {α(pk)}∞k=1 such that J(α(pk)) goes to +∞.

Proof. Note that ‖b‖L =
√

∑N
m=1(lm · b)2 is a norm on RD. The reason for this is that LT = (l1, ..., lN ) ∈

R
D×N is full-rank, LTL is positive definite, and

∑N
m=1(lm · b)2 = bTLTLb. Thus there exists a constant

C > 0 such that ‖b‖2L ≥ C|b|2 for all b ∈ R
D. In what follows, we use C as a generic constant.



DISCRETE-VELOCITY-DIRECTION MODELS OF BGK-TYPE WITH MINIMUM ENTROPY: I. BASIC IDEA 7

A direct computation from Eq. (2.16) yields

J(α) =

N
∑

m=1

√

2π

−αD+1
exp

(

α0 +
(α̂ · lm)2

2(−αD+1)

)

− ρ(α0 + α̂ ·U + αD+1E). (3.3)

Since ex is a convex function, we have

N
∑

m=1

exp

(

(α̂ · lm)2

2(−αD+1)

)

≥ N exp

(

∑N
m=1(α̂ · lm)2

2N(−αD+1)

)

≥ C exp

(

C
|α̂|2
|αD+1|

)

and therefore

J(α) ≥ C
√

|αD+1|
exp

(

α0 + C
|α̂|2
|αD+1|

)

− ρ(α0 + U |α̂|). (3.4)

With this inequality, the rest of this proof is to show the right-hand side of Eq. (3.4) goes to +∞ as

α
(p)
0 → 0−, which can be found in Ref. [26] and we omit it here. �

It remains to show that BM is bounded. Otherwise, there is an unbounded sequence {α(p)}∞p=1 ⊂ BM .

Thus we only need to show that J(α(p)) has no upper bound. To do this, we formulate the following
lemma.

Lemma 3.4. Set

S
D+1
− := {w = (w0, ŵ, wD+1) ∈ R

D+2 : |w| = 1, wD+1 < 0}.
For any w ∈ S

D+1
− , there is an open neighborhood Ω(w) of w in S

D+1
− such that J(tw′)→ +∞ uniformly

on Ω(w), namely,

lim
t→+∞

inf
w′∈Ω(w)

J(tw′) = +∞.

Proof. From Eq. (3.3) we have

J(tw) =

N
∑

m=1

√

2π

t|wD+1|
exp

(

tw0 + t
(ŵ · lm)2

2|wD+1|

)

− tρ ·w. (3.5)

If there exists m such that (ŵ · lm)2 > 2w0wD+1, then w has a neighborhood Ω(w) in S
D+1
− such that

for all w′ ∈ Ω(w),

w′
0 +

(ŵ′ · lm)2

2|w′
D+1|

≥ d > 0 and ρ ·w′ ≤ C(w) < +∞.

Then it follows from Eq. (3.5) that J(tw′) ≥ C√
t
exp(td) − tC(w)→ +∞ uniformly for w′ ∈ Ω(w).

Otherwise, we have (ŵ · lm)2 ≤ 2w0wD+1 for all m. If w0 = 0, ŵ must be 0 and we have ρ · w =
ρ(w0 + U · ŵ + EwD+1) < 0. Otherwise, w0 must be negative. Due to Lemma 3.1, we can find

{am}Nm=1 ⊂ R satisfying U
∑N

m=1 amlm = U and
√
2E > U

∑N
m=1 |am|. Then we deduce that

−w0 − EwD+1 ≥ 2
√

Ew0wD+1 > U

N
∑

m=1

|am|
√

2w0wD+1

≥ U
N
∑

m=1

|am||ŵ · lm| ≥ U |
N
∑

m=1

amŵ · lm| = |ŵ ·U |.

Therefore, we also have ρ · w < 0. Now we can find a neighborhood Ω(w) of w in S
D+1
− such that

ρ ·w′ ≤ −d < 0 for all w′ ∈ Ω(w). Thus we have J(tw′) > td → +∞ uniformly for w′ ∈ Ω(w). This
completes the proof. �

Remark 3.5. Since S
D+1
− is not compact, this lemma cannot directly imply that J(tw) goes to infinity

uniformly for all directions w. In contrast, in DVM [24], the compactness of SD+1 helps to find a finite
open cover and prove the coercivity.
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Having Lemma 3.4, we first suppose {α(p)} is contained in a cone Cr defined by

Cr :=

{

α ∈ D :
√

α2
0 + |α̂|2 ≤ r|αD+1|

}

for some r > 0. Then S
D+1
r := S

D+1
− ∩ Cr is a compact set. Lemma 3.4 implies that for any w ∈ S

D+1
r ,

there exist a neighborhood Ω(w) in SD+1
r and Tw > 0, such that

J(tw′) > J(α∗) + 1 for all t > Tw, w′ ∈ Ω(w).

Since ∪
w∈S

D+1
r

Ω(w) is an open cover of SD+1
r , we can find a finite set {w(q)}Qq=1 ⊂ SD+1

r such that

S
D+1
r ⊂ ∪Qq=1Ω(w

(q)). We take T = max1≤q≤Q Twq and get J(tw) > J(α∗) + 1 for all t > T and

w ∈ SD+1
r . Therefore, {α(p)} is bounded in Cr ∩ {|α| ≤ T }, which is a contradiction.

The last argument indicates that

√

|α(p)
0 |2 + |α̂(p)|2/|α(p)

D+1| → ∞, which implies that either

|α(p)
0 |/|α

(p)
D+1| or |α̂(p)|/|α(p)

D+1| is unbounded. Note that we can assume |αD+1| ≥ δ > 0 due to Lemma 3.3.

To show that J(α(p)) is unbounded, we recall Eq. (3.4):

J(α) ≥ C
√

|αD+1|
exp

(

α0 + C
|α̂|2
|αD+1|

)

− ρ(α0 + U |α̂|).

Then we follow Ref. [26] and divide the argument into five cases, where we use M (p) to denote terms that
go to +∞ as p→∞.

(1) {α(p)
0 } is bounded. Then |α

(p)
0 |/|α

(p)
D+1| is bounded and we have

|α̂(p)|
|α(p)

D+1|
→ ∞ and |α̂(p)| ≥ δ|α̂(p)|

|α(p)
D+1|

→ ∞.

Thus it follows that

J(α(p)) ≥ C
√

|α(p)
D+1|

exp

(

C
|α̂(p)|2

|α(p)
D+1|

)

− C|α̂(p)| − C

≥ C
|α̂(p)|4

|α(p)
D+1|

5
2

− C|α̂(p)| − C → +∞.

(2) α
(p)
0 → +∞ and |α(p)

0 |/|α
(p)
D+1| → +∞. In this case, we have

J(α(p)) ≥ C
√

|α(p)
D+1|

(

1 +
|α̂(p)|2

|α(p)
D+1|

)

exp(α
(p)
0 )− Cα

(p)
0 − C|α̂(p)|

≥M (p)α
(p)
0 +M (p)|α̂(p)|2 − Cα

(p)
0 − C|α̂(p)| → +∞.

(3) α
(p)
0 → +∞ and |α(p)

0 |/|α
(p)
D+1| is bounded. As in the first case, we have

|α̂(p)|
|α(p)

D+1|
→ ∞ and |α̂(p)| ≥ δ|α̂(p)|

|α(p)
D+1|

→ ∞.

Thus it follows that

J(α(p)) ≥ C
√

|α(p)
D+1|

(1 + α
(p)
0 ) exp

(

C
|α̂(p)|2

|α(p)
D+1|

)

− Cα
(p)
0 − C|α̂(p)|

≥M (p)|α̂(p)|+M (p)α
(p)
0 − Cα

(p)
0 − C|α̂(p)| → +∞.

(4) α
(p)
0 → −∞ and α

(p)
0 + U |α̂(p)| → −∞. It is easy to see that J(α(p))→ +∞ in this case.
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(5) α
(p)
0 → −∞ and α

(p)
0 + U |α̂(p)| ≥ −ML. Then we have |α̂(p)| → +∞. Furthermore, we claim

|α̂(p)|/|α(p)
D+1| → ∞. Otherwise, |α(p)

0 |/|α
(p)
D+1| is unbounded. We can assume ML > 0 and get

α
(p)
0

|α(p)
D+1|

+
α̂(p) ·U
|α(p)

D+1|
≥ −ML

|α(p)
D+1|

≥ −ML

δ
> −∞.

Thus |α(p)
0 |/|α

(p)
D+1| → ∞ yields |α̂(p)|/|α(p)

D+1| → ∞. Now we have

J(α(p)) ≥ C
√

|α(p)
D+1|

exp

(

C
|α̂(p)|2

|α(p)
D+1|

− C|α̂(p)| −ML

)

− C|α̂(p)| − C

≥M (p) exp

(

C

2

|α̂(p)|2

|α(p)
D+1|

− C|α̂(p)|
)

− C|α̂(p)| − C → +∞.

Consequently, we have shown that J(α(p)) has no upper bound. Hence BM is bounded and the proof is
completed.

We close this section with the following remark.

Remark 3.6. Recall Eq. (2.12). At the discrete equilibrium EL, we have σ2 < Dθ. To see this, we

deduce from ρU =
∑N

m=1 ρmumlm that

ρU2 =
1

ρ
(ρU · ρU) =

1

ρ

∑

m,n

ρmρn (umlm · unln) .

Then we have
∑

m

ρmu2
m − ρU2 =

1

2ρ

∑

m,n

ρmρn
(

u2
m + u2

n − 2umlm · unln
)

=
1

2ρ

∑

m,n

ρmρn‖umlm − unln‖2 > 0.

Thus, the conclusion follows from the relation ρU2 +Dρθ =
∑

m ρmu2
m + ρσ2.

4. Spatial-time models

Besides the spatial-time variables x and t, ξ ∈ R is another continuous variable in the DVDM model
Eq. (2.10). In this section, we derive models only with x and t as continuous variables by treating ξ in
two ways.

4.1. Discretizing ξ. In this first way, the velocity variable ξ in Eq. (2.10) is replaced with a set of fixed
nodes ξmk = k∆ξ + ξ0 for k = 1, . . . , N ′

m and ∆ξ, ξ0 ∈ R. Namely, each fm(t,x, ξ) is represented by an

N ′
m-vector (fmk(t,x))

N ′

m

k=1. The resultant governing equation for each fmk = fmk(t,x) reads as

∂tfmk + ξmklm · ∇xfmk =
1

τ
(Emk − fmk) (4.1)

for 1 ≤ k ≤ N ′
m and 1 ≤ m ≤ N . Note that ∆ξ may depend on the direction m and the index k. For the

following reason, we denote this kind of models as DVD-DVM.

The DVD-DVM in Eq. (4.1) is similar to DVM [24] but allows a new way in selecting the discrete
velocities. Indeed, common DVM practices use discrete-velocity nodes in a uniform cubic lattice of RD

[14, 24]. By contrast, the proposed DVD-DVM creates discrete velocities radially distributed in RD and
centered at the origin of the velocity space.

To determine the equilibrium Emk in Eq. (4.1), we define the macroscopic fluid quantity ρ =
(ρ, ρU , ρE)T as

ρ =
∑

m,k

fmk∆ξ, ρU =
∑

m,k

ξmkfmklm∆ξ, ρE =
∑

m,k

1

2
ξ2mkfmk∆ξ. (4.2)
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For a given ρ, we follow the minimum entropy principle and determine the discrete equilibrium
{Emk ≥ 0}1≤m≤N,1≤k≤N ′

m
so that it minimizes the discrete entropy

H [{gmk}] =
∑

m,k

(gmk ln gmk − gmk)∆ξ (4.3)

among all possible {gmk ≥ 0}1≤m≤N,1≤k≤N ′

m
satisfying Eq. (4.2). For the existence of such a minimizer,

we have the following analogue of Theorem 2.1, where mmk =
(

1, ξmklm, 1
2ξ

2
mk

)T ∈ RD+2.

Theorem 4.1. If ρ ∈ RD+2 is strictly realizable, i.e., there exists a set {gmk > 0}1≤m≤N,1≤k≤N ′

m

satisfying Eq. (4.2), then the minimization problem above has a unique solution {Emk} which can be
expressed as

Emk = exp(α′ ·mmk) (4.4)

with a vector α′ ∈ RD+2. Moreover, α′ minimizes the function

J(α) :=
∑

m,k

exp(α ·mmk)∆ξ − ρ ·α. (4.5)

This theorem can be proved in a similar fashion as the conventional DVM with the minimum entropy

principle [24]. It provides a simple way to compute {Emk} ∈ RN ′

with N ′ =
∑N

m=1 N
′
m by solving the

(D + 2)-dimensional minimization problem Eq. (4.5) without constraints.

Besides, our DVDM in Eq. (2.10) offers another possibility to determine {Emk} by conforming ‘more
loosely’ to the minimum entropy principle. Recall Eq. (2.11) that the DVDM equilibrium in each direction
lm is a Gaussian distribution parameterized with (ρm, um, σ2). We may choose {Emk} so that for each
m, {Emk}1≤k≤N ′

m
minimizes the discrete entropy

Hm[{gmk}] =
N ′

m
∑

k=1

(gmk ln gmk − gmk)∆ξ (4.6)

among all possible {gmk ≥ 0}1≤k≤N ′

m
satisfying

ρm =

N ′

m
∑

k=1

gmk∆ξ, ρmum =

N ′

m
∑

k=1

ξmkgmk∆ξ, ρm(u2
m + σ2) =

N ′

m
∑

k=1

ξ2mkgmk∆ξ.

For these N minization problems, the analogue of Theorem 4.1 holds. Namely, each of them has a
unique solution {Emk}1≤k≤N ′

m
which can be expressed as

Emk = exp (α′
m ·m′

mk) (4.7)

with a vector α′
m ∈ R3 and m′

mk =
(

1, ξmk,
1
2ξ

2
mk

)T
. Moreover, α′

m minimizes the function

Jm(α) :=

N ′

m
∑

k=1

exp (α ·m′
mk)∆ξ − ρ′

m ·α

with ρ′
m = ρm

(

1, um,
u2
m+σ2

2

)T

∈ R3. We note that this approach does not necessarily find a minimum

of the ‘total’ discrete entropy Eq. (4.3).

In summary, we have derived two kinds of DVD-DVM models Eq. (4.1):

(1) (DVD-DVM-I). Emk is given with Eq. (4.4) by minimizing the discrete entropy Eq. (4.3).
(2) (DVD-DVM-II). Emk is given with Eq. (4.7) by minimizing the discrete entropy Eq. (4.6) in each

direction. This approach requires (ρm, um, σ2)Nm=1 defined in Eqs. (2.11 & 2.12) to be computed
by DVDM as a first step.
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4.2. Gaussian-EQMOM. Besides the DVD-DVM, the method of moment can be applied to the DVDM
Eq. (2.10). For this purpose, we define the kth velocity moment of fm(t,x, ξ) as

Mm,k = Mm,k(t,x) =

∫

R

ξkfm(t,x, ξ)dξ (4.8)

for k ∈ N. The evolution of Mm,k can be derived from Eq. (2.10) as

∂tMm,k + lm · ∇xMm,k+1 =
1

τ

(

ρm∆k(um, σ2)−Mm,k

)

, (4.9)

where ∆k(u, σ
2) denotes the kth moment of the normalized Gaussian function centered at u with a

variance σ2. Meanwhile, the macroscopic quantity ρ in Eq. (2.6) is computed with

ρ =

N
∑

m=1

Mm,0, ρU =

N
∑

m=1

lmMm,1, ρE =

N
∑

m=1

Mm,2

2
. (4.10)

There are infinitely many equations in Eq. (4.9). For each m, the first N ′ equations for moments
Mm,0, . . . ,Mm,N ′−1 are not closed because the Mm,N ′−1-equation contains Mm,N ′ in the convection
term. Hence a closure method is needed.

The Gaussian-EQMOM assumes that the 1-D distribution fm(ξ) is a sum of N ′
m Gaussian functions

[23]:

fm(ξ) =

N ′

m
∑

α=1

wm,α√
2πϑm

exp

(

− (ξ − vm,α)
2

2ϑm

)

. (4.11)

Note that the variance ϑm > 0 is shared among N ′
m kernels (and is thus not dependent on α). The

weights wm,α, nodes vm,α (α = 1, . . . , N ′
m) and variance ϑm are unknown parameters to be solved from

the (2N ′
m + 1) nonlinear equations

Mm,k =

N ′

m
∑

α=1

wm,α∆k(vm,α, ϑm) for k = 0, . . . , 2N ′
m. (4.12)

An algorithm to solve these equations can be found in the literature [7, 23]. Thus, any unknown moments
and/or integrals associated with the distribution can be computed by Eq. (4.11). For example, the
convection term Mm,2N ′

m+1 is reconstructed as

M̄m,2N ′

m+1 =

N ′

m
∑

α=1

wm,α∆2N ′

m+1(vm,α, ϑm). (4.13)

Consequently, we get

∂tMm +Am(Mm)lm · ∇xMm =
1

τ
(MEm −Mm),

where

Mm = (Mm,0, . . . ,Mm,2N ′

m
)T ∈ R

2N ′

m+1,

MEm = ρm
(

∆0(um, σ2), . . . ,∆2N ′

m
(um, σ2)

)T ∈ R
2N ′

m+1,

and

Am(Mm) =















0 1
0 1

. . .
. . .

0 1
am,0 am,1 · · · am,2N ′

m−1 am,2N ′

m















∈ R
(2N ′

m+1)×(2N ′

m+1) (4.14)

with am,k =
∂M̄m,2N′

m+1

∂Mm,k
for k = 0, . . . , 2N ′

m.
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Putting the last equations together, we derive the following spatial-time model

∂tM+

Dx
∑

i=1

A(i)∂xi
M =

1

τ
(ME −M). (4.15)

Here

M =
(

MT
1 , . . . ,MT

N

)T ∈ R
N ′

, ME =
(

MT
E1, . . . ,M

T
EN
)T ∈ R

N ′

with N ′ =
∑N

m=1(2N
′
m + 1) and

A(i) = diag {(l1 · ei)A1(M1), . . . , (lN · ei)AN (MN )} ∈ R
N ′×N ′

,

where ei is the i-th column of the identity matrix of order Dx.

Theorem 4.2. The moment system (4.15) is hyperbolic.

Proof. According to Ref. [18], each matrix Am(Mm) defined in Eq.(4.14) is strictly hyperbolic. Namely,
it has (2N ′

m+1) distinct real eigenvalues. Therefore, for any y = (y1, ..., yDx
)T ∈ RDx the block-diagonal

matrix
∑

i yiA
(i) is real diagonalizable. �

Remark 4.3. This approach, denoted as DVD-EQMOM, leads to a convenient multidimensional version
of quadrature-based method of moments, which seems better understood than those in Refs. [7, 23].

5. Numerical schemes

In this section, we show that the DVDM provides new numerical solvers to simulate rarefied flows.
The solvers consist of two parts: spatial-time discretization and computation of equilibrium. As the first
step of this project, we present the solvers only for spatially one-dimensional models, while the velocity
is still in RD.

5.1. Spatial-time discretization. In this part, we discretize the spatial-time models constructed in the
previous section. To do this, we denote by gni an approximation of function g(t, x) over the grid-block
]xi− 1

2
, xi+ 1

2
[×[tn, tn+1) with xi = i∆x, tn = n∆t, i = 0,±1,±2, · · · , and n = 0, 1, 2, · · · .

5.1.1. DVD-DVM. For this kind of models, the governing Eq. (4.1) is approximated by the following
implicit-explicit scheme

fn+1
mk,i = fn

mk,i −
∆t

∆x

(

Fn
mk,i+ 1

2

−Fn
mk,i− 1

2

)

+
∆t

τ

(

Enmk,i − fn+1
mk,i

)

. (5.1)

The numerical flux is taken as

Fn
mk,i+ 1

2

=
1

2

(

ξmklm · e1
(

fn
mk,i+1 + fn

mk,i

)

− |ξmklm · e1|
(

fn
mk,i+1 − fn

mk,i − Φn
mk,i+ 1

2

))

.
(5.2)

The flux limiter Φn
mk,i+ 1

2

allows to obtain a second-order scheme, and Φn
mk,i+ 1

2

= 0 reduces to a first-

order scheme. The equilibrium state Enmk,i is solved from the local fluid quantity ρn
i by either Eq. (4.4)

(DVD-DVM-I) or Eq. (4.7) (DVD-DVM-II).

Note that the source in Eq. (5.1) is semi-implicit because fn+1
mk,i is used to make the scheme stable, but

fn+1
mk,i can be explicitly obtained.
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5.1.2. DVD-EQMOM. For the momemt system, the governing Eq. (4.9) is approximated by the implicit-
explicit scheme:

Mn+1
m,k,i =Mn

m,k,i −
∆t

∆x
lm · e1

(

Fn
m,k+1,i+ 1

2

−Fn
m,k+1,i− 1

2

)

+
∆t

τ

(

Mn
Em,k,i −Mn+1

m,k,i

)

.

(5.3)

The flux is modeled by a ‘kinetic-based’ definition [7, 23]. For example,

Fn
m,k+1,i+ 1

2

=
1

2

∫

R

ξk
[

ξ
(

fn
m,i+1 + fn

m,i

)

− sgn(lm · e1)|ξ|
(

fn
m,i+1 − fn

m,i − Φn
m,i+ 1

2

) ]

dξ.

(5.4)

The limiter Φn
m,i+ 1

2

allows to obtain a second-order scheme, and Φn
m,i+ 1

2

= 0 reduces to a first-order

scheme. Then we have

Fn
m,k+1,i+ 1

2

=



















∫ ∞

0

ξk+1fn
m,idξ +

∫ 0

−∞
ξk+1fn

m,i+1dξ, if lm · e1 > 0,

∫ ∞

0

ξk+1fn
m,i+1dξ +

∫ 0

−∞
ξk+1fn

m,idξ, if lm · e1 < 0.

(5.5)

To evaluate the integrals above, we define

〈ξk+1〉±(v, ϑ) =
∫

ξ≷0

ξk+1 1√
2πϑ

exp

(

− (ξ − v)2

2ϑ

)

dξ,

which can be computed analytically with recursive relations in terms of k (Eq. (B.1) in Ref. [7]). Thus,
due to the ansatz Eq. (4.11), the integrals in Eq. (5.5) become

∫

ξ≷0

ξk+1fm,idξ =

N ′

m
∑

α=1

wm,α,i〈ξk+1〉± (vm,α,i, ϑm,i) .

The moment inversion algorithm in Refs. [7, 23] is used to solve wm,α,i, vm,α,i, and ϑm,i (α = 1, . . . , N ′
m)

from the moments Mm,0,i, . . . ,Mm,2N ′

m,i.

In the scheme Eq. (5.3), the moments correspond to the equilibrium state

Mn
Em,k,i = ρnm,i∆k

(

un
m,i, (σ

2)ni
)

.

The analytical expression of ∆k(u, σ
2) is given in Ref. [18]. The equilibrium state parameters

ρnm,i, un
m,i, (σ2)ni are solved by the local fluid quantity ρn

i , as detailed in Section 5.2.

5.2. Computation of equilibrium. This subsection presents details of computing the discrete equilib-
rium EL in Eq. (2.11) for a given macroscopic quantity ρ. It can be done by minimizing J(α) in Eq. (2.16),
which is strictly convex. In this work we use the gradient descent method [10] to solve EL. Future work
is needed to develop stable and efficient higher-order optimization algorithms for this purpose.

The algorithm to minimize J(α) is stated below.

(1) Let the initial value α(0) ∈ RD+1 ×R− be given. It is found that the simple choice of αeq of the
continuous equilibrium in Eq. (2.1), even with U = 0, works reasonably well in our test case.

(2) Repeat.
(i) Update α by

α(n+1) = α(n) − lr∇αJ(α
(n)).

The gradient ∇αJ has the explicit form as:

∇αJ =

(

N
∑

m=1

ρm,
N
∑

m=1

ρmumlm,
N
∑

m=1

ρm(u2
m + σ2)

2

)T

− ρ.

Here ρm, um, σ are defined in Eq. (2.12).
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(ii) In each iteration, the learning rate lr ∈ (0, 1) is backtracked based on the Armijo-Goldstein

condition [2] and the constraint that α
(n+1)
D+1 < 0.

(iii) The recovered fluid quantity from α, i.e., 〈mL exp (α ·mL)〉L, is slightly different from ρ

due to the round-off error. To avoid error accumulation, we re-assign the results ρ
(n+1)
m ←

ρ
(n+1)
m

(

ρ/
∑

m ρ
(n+1)
m

)

, or equivalently, α
(n+1)
0 ← α

(n+1)
0 + ln

(

ρ/
∑

m ρ
(n+1)
m

)

. Here α0 is

the first component of α.
(3) Until: ‖∇αJ(α

(n))‖2 < ǫ.

In this work we take ǫ = 10−8. The performance of the algorithm is illustrated in Fig. 1 with different
numbers of velocity direction N . It is shown that the stopping criterion can be achieved with no more
than 160 steps of iteration, almost regardless of N from 5 to 500. Thus, the computation of discrete
equilibrium in DVDM is numerically efficient.

0 20 40 60 80 100 120 140 160

-8

-6

-4

-2

0
 N = 5
 N = 80
 N = 200
 N = 500

lo
g 1

0 (
re

sid
ua

l e
rro

r)

Iteration

Figure 1. Performance of the EL-algorithm for a given ρ ∈ R4: ρ = 1, U =
(0.4, 0.8)T and θ = 1 with different numbers of velocity directions N from
5 to 500. The directions are chosen to be lm = (cos γm, sin γm) with
γm = m−1

N π for m = 1, . . . , N .

Solving the discrete equilibrium EL is necessary for both DVD-DVM-II and DVD-EQMOM. Neverthe-
less, for DVD-DVM-I, the discrete equilibrium is solved by minimizing J(α) in Eq. (4.5). The difference
between DVD-DVM-I and II is studied quantitatively in Fig. 2. We see that for a given ρ ∈ R4 and a
fixed set of directions, DVD-DVM-I generally results in smaller entropy than II, but the difference almost
disappears when the number of velocity nodes in each direction N ′

m > 10 while keeping the node distance
∆ξ unchanged (indicating that the nodes cover a greater range). Thus, both DVD-DVM methods behave
similarly in this case.

Remark 5.1 (Temperature influence). For D = 2, Eq. (A.3) specifies a lower bound for the realizable
temperature θ. It is found that temperature has a considerable influence on the number of iterations. As
revealed in Table 1, for given ρ and U , lower values of θ leads to substantially more iteration and longer
CPU time.

Table 1. CPU time for the J(α)-algorithm with ρ = 1, U = (0.8, 0.4)T and different θ

θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Time (ms) 14.7 6.32 4.31 2.41 2.15 1.91 1.59 1.82 1.45 1.33 1.14 1.20

The CPU time was recorded by running Matlab code on Intel(R) Core(TM) i7-1065G7. Here, 15

directions are chosen to be lm = (cos γm, sinγm) with γm = m−1

15
π (m = 1, . . . , 15) and, according to

Eq. (A.3), the lower bound of θ is 0.0036.
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6. Numerical experiments

Numerical results for two benchmark flow problems, the Couette flow and the 1-D Riemann problem,
are reported in this section to show the performance of the DVDM-BGK models. We assume the velocity
space to be two-dimensional, namely, D = 2, ξ = (ξx, ξy)

T and f = f(t,x, ξx, ξy). Both DVD-EQMOM
(Section 4.2) and DVD-DVM (Section 4.1) are tested, together with the first-order schemes detailed in
Section 5.

6.1. Couette flow. The first problem is the planar Couette flow between two infinite parallel walls
located at x = ±H with a distance L = 2H . The left and right walls move with constant velocities
±vwey. We set H = 0.5 and vw = 0.1. The two walls drive the fluid between them from rest to a final
steady state. This implies that the distribution f is only dependent on x. We take the wall temperature
θw = 1, and the Mach number Ma = vw√

D+2

D
θ
= 1

10
√
2
≈ 0.0707, representing a micro-Couette flow.

For the DVDM simulation, N velocity directions are chosen to be lm = (cos γm, sin γm) with γm =
m−1
N π (m = 1, ..., N). The initial temperature and velocity are taken to be 1 and 0, respectively. The

1-D computational domain −0.5 < x < 0.5 is discretized into 200 uniform cells with ∆x = 0.005. The
time step ensures that the CFL number is less than 0.5. While the boundary velocity and temperature
are kept constant, the density at the boundaries are adjusted at every moment to ensure zero mass fluxes
at the boundary.

A number of simulations for different flow regimes κ = 0.1, 1, and 10 are conducted, where κ =
(
√
π/2)Kn and the Knudsen number Kn is defined as [15]

Kn =
λ

L
=

τ

L

√

πθ

2
.

Here λ denotes the mean free path of the molecules. Thus, varying τ in the source term of BGK equation
gives the designed values of κ.

Fig. 3 shows the dimensionless velocity profiles for various κ using two-node DVD-EQMOM (namely,
N ′

m = 2 in Eq. (4.11)). Only the right side (x > 0) is plotted due to symmetry. Increasing κ from
0.1 to 10 (namely, increasing τ) shifts the flow from the hydrodynamic regime (with velocity slip) to
a free-molecular regime, and thus the flow is less efficient in following the moving boundaries. This
property is successfully captured by all involved numbers of directions N = 5, 15, and 45. For N = 5,
the DVD-EQMOM velocities for κ = 1.0 and 10 deviate from the DSMC results to a greater extent than
that for κ = 0.1. Increasing N is effective in reducing the numerical errors especially for κ = 1.0 and 10.
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Figure 2. Discrete entropies of DVD-DVM-I & II (left y-axis) and their difference (right
y-axis) for a given ρ ∈ R4: ρ = 1, U = (0.6, 1.0)T , and θ = 1.5. The number
of directions N = 8, and the directions are chosen to be lm = (cos γm, sin γm)
with γm = m−1

8 π for m = 1, . . . , 8. The number of velocity nodes in each
direction, N ′

m as abscissa, ranges from 6 to 36. The velocity nodes are
ξmk = ±(k − 0.5) for k = 1, . . . , N ′

m/2.
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Fig. 4 presents the dimensionless velocity profiles for various κ using both DVD-DVM-I and DVD-
DVM-II with 15 prescribed velocity directions. In each direction 26 discrete velocities are selected as
ξmk = ±(0.2k−0.1) for k = 1, . . . , 13. It is seen that both approaches yield very accurate velocity profiles
as compared with the DSMC results. In particular, the nonlinearity of the velocity profiles near the wall
is correctly reproduced.

Fig. 5 further shows the shear stress

τxy = 〈(ξ cos γL − u)(ξ sin γL − v)fL〉L, (u, v)T = U ,

normalized by the free-molecular stress τ∞ for a variety of Knudsen numbers. The results (dots) are
obtained with the two-node DVD-EQMOM and DVD-DVM-II with 15 prescribed velocity directions.
The shear stress increases with Kn. The two-node DVD-EQMOM seems to overestimate the shear stress
for a wide range of Kn; By contrast, the DVD-DVM-II solutions agree well with the DSMC results in
the whole flow regimes.

6.2. 1-D Riemann problems. Two 1-D Riemann problems from Refs. [7, 12] are solved in this sub-
section. The initial macroscopic data are

(1) Problem (A): ρ(0, x) = 1 and θ(0, x) = 1
6 for all x ∈ R; U(0, x < 0) = (1, 0)T and U(0, x > 0) =

(−1, 0)T .
(2) Problem (B): ρ(0, x < 0) = 3.093 and ρ(0, x > 0) = 1; U(0, x) = (0, 0)T and θ(0, x) = 1 for all

x ∈ R.
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k = 10
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x/L

a. N=5                     b. N=15                   c. N=45k = 0.1
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Figure 3. Velocity profiles of the Couette flow for various Knudsen numbers κ =
(
√
π/2)Kn obtained with the two-node DVD-EQMOM. The number of ve-

locity direction is varied as (a) N = 5, (b) N = 15, and (c) N = 45.
The directions are chosen to be lm = (cos γm, sin γm) with γm = m−1

N π for
m = 1, . . . , N . The DSMC results are extracted from Ref. [15].
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Figure 4. Velocity profiles of the Couette flow for various Knudsen numbers κ =
(
√
π/2)Kn obtained with (a) DVD-DVM-I and (b) DVD-DVM-II. The num-

ber of directions N = 15, and the directions are chosen to be lm =
(cos γm, sin γm) with γm = m−1

15 π for m = 1, . . . , 15. The velocity nodes
in each direction are ξmk = ±(0.2k − 0.1) for k = 1, . . . , 13. The DSMC
results are extracted from Ref. [15].
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The corresponding initial distribution f = f(t, x, ξx, ξy) are taken to be in equilibrium determined by the
macroscopic data above.

As for the collision term, two limiting cases are considered: (i) τ = ∞ and thus the collision term
vanishes. In this case, the distribution f is a traveling wave and its analytical expression is given in
Ref. [7]; (ii) τ = 0 corresponds to the classical Euler equation for an inviscid compressible fluid. Notice
that the specific heat ratio in the analytical expression [32] should be taken as 2 due to the 2-D velocity
space assumption.

In the DVDM simulation, 15 velocity directions are chosen to be lm = (cos γm, sin γm) with γm = m−1
15 π

for m = 1, . . . , 15. For the DVD-EQMOM, we set N ′
m = 2; for the DVD-DVM-II, the velocity nodes in

each direction are chosen as ξmk = ±(0.2k−0.1) for k = 1, . . . , 13. The computational domain is taken to
be −2 < x < 2 and is discretized into 400 uniform cells with ∆x = 0.01. The time step ensures that the
CFL number is less than 0.5. For τ = 0, the collisions reset the variables (either discretized distributions
or moments) to be solved as the equilibrium states at the end of each time step.

Figs. 6 & 7 exhibit the spatial distribution of macroscopic quantities at t = 0.2 for Problem (A) with
τ = ∞ (no collision) and τ = 0 (ultrafast collision), respectively. For τ = ∞, the DVD-DVM-II results
agree reasonably well with the analytic solution, while the two-node EQMOM is less accurate in the
region of −0.5 < x < 0.5. In particular, the density at x = 0 is underestimated, and the simulated
energy (or temperature) at x = 0 is greater than the true value. For τ = 0, both models well capture the
shock waves propagating towards both sides, but there are some inaccuracies in the central region around
x = 0 (the contact surface). The inaccuracies may be attributed to either the DVDM assumptions or
numerical schemes. It is interesting to remark that such a deviation around x = 0 was also observed in
the two-node EQMOM solutions in Refs. [7, 18].

Figs. 8 & 9 illustrate the spatial distribution of macroscopic quantities at t = 0.2 for Problem (B)
with τ =∞ (no collision) and τ = 0 (ultrafast collision), respectively. As in Problem (A), for τ =∞ the
DVD-DVM is sufficiently accurate in this free-moving situation, while the two-node EQMOM introduces
non-negligible error for the energy (or temperature) profile. By contrast, in the Euler limit τ = 0,
both models exhibit correctly the rarefaction wave, contact discontinuity and shock wave. However, the
discontinuities are less sharper than the theoretical solution, especially for ρ and u, which may be mainly
caused by the first-order schemes. In comparision with the DVD-DVM, the two-node DVD-EQMOM is
less accurate in describing the right-moving shock wave located at x ≈ 0.35.

Remark 6.1. In solving Problem (B) with τ = 0 and 15 directions (results given in Fig. 9), the CPU
times of the 2-node DVD-EQMOM and DVD-DVM-II (26 nodes in each direction) are 120 s and 500 s,
respectively. The CPU times were recorded by running Matlab codes on Intel(R) Core(TM) i7-1065G7.
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Figure 5. Normalized stress of the Couette flow at different Knudsen numbers. The
two-node DVD-EQMOM and DVD-DVM-II are both solved with 15 discrete
directions lm = (cos γm, sin γm) and γm = m−1

15 π for m = 1, . . . , 15. For the
DVD-DVM-II, the velocity nodes in each direction are ξmk = ±(0.2k − 0.1)
for k = 1, . . . , 13. The DSMC results are extracted from Ref. [15].
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7. Conclusions and Perspectives

In this paper, we present a novel discrete-velocity-direction model (DVDM) with a minimum entropy
principle. As a semi-continuous discretization model of BGK-type, it assumes that the molecule velocity
has a few prescribed directions, but the velocity modulus is still continuous. The Maxwellian equilibrium
is defined as a minimizer of a discrete entropy subject to conservation laws of density, momentum and
energy. We show that the discrete equilibrium is uniquely determined by macroscopic fluid quantities
computed with nonnegative distributions generating finite density and energy, implying that the DVDM
is well defined. Numerically, the discrete equilibrium with a given macroscopic flow state can be computed
efficiently by convex optimization algorithms. Moreover, the model ensures positivity of the solutions
and has a proper version of H-theorem.

The proposed model has several advantages. Firstly, it provides a new way in choosing discrete ve-
locities for the computational practice of the conventional discrete-velocity methodology. In this way, we
replace the continuous one-dimensional velocity moduli of DVDM with finite nodes in each direction and
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Figure 6. Macroscopic quantities at t = 0.2 for the Riemann problem (A) with τ =∞
(i.e., no collision).
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Figure 7. Macroscopic quantities at t = 0.2 for the Riemann problem (A) with τ = 0
(i.e., ultrafast collision).
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derive new discrete-velocity models (called DVD-DVM). Furthermore, the 1-D EQMOM can be imple-
mented in each prescribed discrete direction to derive multidimensional hyperbolic EQMOM conveniently.
As reported in the literature [7, 23], 1-D EQMOM is quite successful in a number of applications, and it
also has good mathematical properties [18]. However, a satisfactory multidimensional version of EQMOM
is not available for a long time. In this sense, we have offered a solution to the multidimensional extension
of the 1-D EQMOM. To show the performance of the above models, we simulate two benchmark flows,
the Couette flow and 1-D Riemann problems, with reasonable results at moderate computational costs.

Potential focuses of future work can be directed to: (i) studying the DVDM mathematically, including
the realizable condition and the structural stability condition [18, 33]; (ii) simulating real-world flows
with 3-D velocity space and more complex boundary conditions with higher-order numerical schemes.
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Figure 8. Macroscopic quantities at t = 0.2 for the Riemann problem (B) with τ =∞
(i.e., no collision).
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Figure 9. Macroscopic quantities at t = 0.2 for the Riemann problem (B) with τ = 0
(i.e., ultrafast collision).
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Appendix A. Realizabily of the DVDM

In this appendix, we show that for the two-dimensional DVDM, more macroscopic states can be realized
with more discrete-velocity directions. In this case, the discrete-velocity directions can be expressed as
lm = (cos γm, sin γm)T with γm ∈ [0, π) and therefore can be understood as the complex numbers eiγm .
Without loss of generality, we assume 0 ≤ γ1 < · · · < γN < π. The main result here is the following
lemma.

Lemma A.1. For any N -tuple (am)Nm=1 ∈ R such that

N
∑

m=1

ameiγm = 1,

we have
N
∑

m=1

|am| ≥
sin γ1 + sin γN
sin(γN − γ1)

. (A.1)

The minimum is attained when

a1 =
sin γN

sin(γN − γ1)
, aN =

− sin γ1
sin(γN − γ1)

, and a2 = · · · = aN−1 = 0.

Proof. Set zm = ameiγm . According to the assumption, we have
∑

m zm = 1 and

∑

m

|am| =
∑

m

|zm| ≥
∣

∣

∣

∣

∣

∑

m

zm

∣

∣

∣

∣

∣

= 1.

Therefore the lemma obviously holds with γ1 = 0.

For γ1 > 0, since γ1 ≤ γm < π for allm, zm is not a real number unless zm = 0. Thus, from
∑

m zm = 1
it follows that there must be some zm with positive imaginary part (denote their sum by z+) and some
zm with negative imaginary part (denote their sum by z−). Obviously, we have γ+ := arg z+ ∈ (0, π)
and γ− := arg z− ∈ (−π, 0). Note that z+ + z− = 1, meaning that the three complex numbers z+, z−

and 1 constitute a triangle (after a proper shift of z−) in the complex plane. Then the angle (γ+ − γ−)
from z− to z+ is in (0, π). We thus see from the law of sines:

1

sin(γ+ − γ−)
=

|z+|
sin(−γ−)

=
|z−|
sin γ+

that
∑

m

|am| =
∑

m

|zm| ≥ |z+|+ |z−| =
sin γ+ − sin γ−
sin(γ+ − γ−)

=: S(γ+, γ−),

which is monotonically increasing with γ+ and decreasing with γ−. This can be seen by computing the
derivatives:

∂S

∂γ+
=

cos γ+ sin(γ+ − γ−)− (sin γ+ − sin γ−) cos(γ+ − γ−)

sin2(γ+ − γ−)

=
sin γ−(cos(γ+ − γ−)− 1)

sin2(γ+ − γ−)
≥ 0,

and similarly ∂S
∂γ−

≤ 0. Geometrically we can easily see that γ+ ≥ γ1 and γ− ≤ γN − π. Thus, the

minimum of |z+| + |z−| is attained when γ+ = γ1 and γ− = γN − π. This corresponds to a2 = · · · =
aN−1 = 0 and leads exactly to the RHS of Eq. (A.1). �
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With this lemma, we can explicitly write down the constraint on temperature θ. To do this, we denote
by γU ∈ (−π, π] the argument of the flow velocity U in Eq. (3.1). Then the second equality in Eq. (3.1)
can be rewritten as

N
∑

m=1

ρ̂mûmeiγm = ρUeiγU

or
N
∑

m=1

sρ̂mûmei(γm−η) = ρU, (A.2)

where

s =

{

1, if 0 < γU ≤ π,

−1, if − π < γU ≤ 0,

and η = γU − s−1
2 π ∈ (0, π].

Let k (1 ≤ k ≤ N) be such that
γk < η ≤ γk+1.

For convenience, we define γN+1 = π + γ1. Then we set

γ̃m =

{

γm + π − η, 1 ≤ m ≤ k,

γm − η, k + 1 ≤ m ≤ N.

It is clear that 0 ≤ γ̃k+1 < · · · < γ̃N < γ̃1 < · · · < γ̃k < π. Now we apply the lemma above to Eq. (A.2)
to get

U2

(

sin γ̃k+1 + sin γ̃k
sin(γ̃k − γ̃k+1)

)2

≤ 1

ρ2

(

N
∑

m=1

|ρ̂mûm|
)2

< 2E,

where the last inequality is Eq. (3.2). The left-hand side is

U2

(

sin(γk+1 − η) + sin(η − γk)

sin(γk+1 − γk)

)2

,

which obviously goes to U2 as γk+1 − γk → 0. Moreover, the constraint for θ = (2E − U2)/2 becomes

θ > U2 sin(γk+1 − η) sin(η − γk)

1 + cos(γk+1 − γk)
. (A.3)

This lower bound approaches 0 when γk+1 − γk → 0.
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