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Abstract Parallel-in-time methods for partial differential equations (PDEs) have been
the subject of intense development over recent decades, particularly for diffusion-
dominated problems. It has been widely reported in the literature, however, that many
of these methods perform quite poorly for advection-dominated problems. Here we
analyze the particular iterative parallel-in-time algorithm of multigrid reduction-in-
time (MGRIT) for discretizations of constant-wave-speed linear advection problems.
We focus on common method-of-lines discretizations that employ upwind finite dif-
ferences in space and Runge-Kutta methods in time. Using a convergence framework
we developed in previous work, we prove for a subclass of these discretizations that,
if using the standard approach of rediscretizing the fine-grid problem on the coarse
grid, robust MGRIT convergence with respect to CFL number and coarsening fac-
tor is not possible. This poor convergence and non-robustness is caused, at least in
part, by an inadequate coarse-grid correction for smooth Fourier modes in space-time
known as characteristic components. We propose an alternative coarse-grid operator

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-839789). This work was sup-
ported in part by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Com-
puting Research, Applied Mathematics program, and by NSERC of Canada.

H. De Sterck
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
E-mail: hans.desterck@uwaterloo.ca

R. D. Falgout
Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, Califor-
nia, USA
E-mail: falgout2@llnl.gov

O. A. Krzysik
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
E-mail: okrzysik@uwaterloo.ca

J. B. Schroder
Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, USA
E-mail: jbschroder@unm.edu

ar
X

iv
:2

20
9.

06
91

6v
2 

 [
m

at
h.

N
A

] 
 2

0 
M

ar
 2

02
3



2 H. De Sterck et al.

that provides a better correction of these modes. This coarse-grid operator is related
to previous work and uses a semi-Lagrangian discretization combined with an im-
plicitly treated truncation error correction. Theory and numerical experiments show
the proposed coarse-grid operator yields fast MGRIT convergence for many of the
method-of-lines discretizations considered, including for both implicit and explicit
discretizations of high order. Parallel results demonstrate substantial speed-up over
sequential time-stepping.

Keywords parallel-in-time · MGRIT · Parareal · hyperbolic PDE · advection
equation · multigrid

Mathematics Subject Classification (2020) 65F10 · 65M22 · 65M55 · 35L03

1 Introduction

Research efforts in the field of parallel-in-time integration over recent decades have
led to the development of methods that can solve discretized time-dependent partial
differential equations (PDEs) in faster wall-clock times than the classical technique
of sequential time-stepping. This has been achieved for highly non-trivial problems
and application areas including nonlinear PDEs [2,18], PDE-constrained optimiza-
tion [24,25], time-fractional PDEs [23], powergrid simulation [43], machine learning
[26], and option pricing [1].

An area for which relatively little advancement has been made is the solution of
hyperbolic PDEs, and that of advection-dominated problems more broadly. In this
paper, we focus specifically on the multilevel parallel-in-time method of multigrid
reduction-in-time (MGRIT) [17], with most of our results also applying to the closely
related two-level method of Parareal [35]. It has been widely reported in the literature
that these two popular iterative parallel-in-time methods exhibit poor convergence
when applied to advection-dominated problems [6,7,10,14,22,20,21,27,31,30,34,
36,40,39,41,42,46].

Recently in [13], we showed heuristically that, in general, when using the stan-
dard approach of directly discretizing the PDE on the coarse grid, poor convergence
for advection-dominated problems is due, at least in part, to an inadequate coarse-grid
correction of certain smooth Fourier modes known as characteristic components.1 It
has long been known that the same issue plagues the spatial multigrid solution of
steady state advection-dominated problems [3,4,48]. In [11], inspired by ideas from
[48] to address this issue in the spatial context, we developed MGRIT coarse-grid op-
erators that were used to solve (fine-grid) semi-Lagrangian discretizations of variable-
wave-speed linear advection problems. Specifically, these coarse-grid operators are
of modified type, consisting of a semi-Lagrangian step followed by a carefully cho-
sen, and implicitly treated, truncation-error-based correction that takes into account
the fine-grid discretization.

1 In this paper, we define a direct coarse-grid operator as one that discretizes the underlying PDE
without any further considerations; this contrasts with the modified coarse-grid operators we also consider,
which are a modification of a direct discretization aiming to match the so-called ideal coarse-grid operator
with increased accuracy. We define a rediscretized coarse-grid operator as the direct coarse-grid operator
using the same discretization as employed on the fine-grid.
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The primary contribution of this paper is the extension of the modified semi-
Lagrangian coarse-grid operators from [11] to enable the solution of (fine-grid) method-
of-lines discretizations with MGRIT instead of the (fine-grid) semi-Lagrangian dis-
cretizations considered in [11]. This extension is important because method-of-lines
schemes are much more widely used than semi-Lagrangian schemes. More specifi-
cally, we target the solution of constant-wave-speed linear advection problems dis-
cretized (on the fine grid) with explicit or implicit Runge-Kutta methods in time and
finite differences in space. In earlier work [10], we developed coarse operators for
the same model problems as considered here that yielded fast and scalable MGRIT
convergence. However, the approach from [10] used a heuristically motivated op-
timization problem to generate the stencil of the coarse-grid operator such that its
eigenvalues would match closely (in a specific and important sense) those of the
ideal coarse-grid operator. Furthermore, the approach used non-practical calculations
to determine the sparsity pattern of the coarse operator, which, along with the spe-
cific optimization approach, was only possible due to the simple nature of the PDE.
The limitations of [10] motivate the coarse-grid operator framework we develop in
this paper, which has much stronger theoretical justifications, and, can, at least in
principle, be used for more complicated PDEs (even though we do not consider them
in this paper). Besides those in [10], the coarse-grid operators we develop here are
the first that lead to fast and scalable MGRIT convergence for method-of-lines dis-
cretizations of advection problems, and they are the first to do so in a cost-effective
and generalizable way.

The idea of using a coarse-grid semi-Lagrangian discretization (without the mod-
ification we propose in this paper) with a fine-grid method-of-lines discretization was
first proposed in [41] for a nonlinear advection-diffusion PDE. However, [41] re-
ported substantial deterioration in convergence in the hyperbolic limit of their prob-
lem, and performance was not reported with respect to several important discretiza-
tion and solver parameters. Importantly, a consequence of [13, Thm. 6.4] is that the
combination of direct fine- and coarse-grid discretizations in [41] (i.e., without mod-
ification) cannot produce robust convergence in general, because even for the simple
case of an explicit first-order discretization of the constant-wave-speed linear advec-
tion problem, it can result in poor convergence.2

The remainder of this paper is organized as follows. Preliminaries are given in
Section 2, including a description of the model problem and an overview of MGRIT.
In Section 3, a description of semi-Lagrangian methods is provided followed by fur-
ther details about the modified coarse-grid operators from [11] that are relevant to
this work. Section 4 considers the method-of-lines discretizations that are the focus of
this paper and their discretization errors. Section 5 analyzes MGRIT convergence for
method-of-lines discretizations when using direct coarse-grid operators. New mod-
ified coarse-grid operators and associated numerical results are given in Section 6.
Concluding remarks are given in Section 7.

2 It can be shown that the convergence factor of the method exceeds unity for almost all CFL numbers.
Note [13, Thm. 6.4] assesses MGRIT convergence when using semi-Lagrangian discretizations on both
grids; however, for CFL numbers less than unity, the first-order semi-Lagrangian discretization is equiv-
alent to using first-order upwind finite differences in space and explicit Euler in time (see, e.g., [15, p.
359]).



4 H. De Sterck et al.

2 Preliminaries

2.1 Model problem

We consider the one-dimensional, constant-wave-speed linear advection problem,

∂u
∂ t

+α
∂u
∂x

= 0, (x, t) ∈ (−1,1)× (0,T ], u(x,0) = u0(x), α > 0, (1)

with u subject to periodic boundary conditions in space. We consider both semi-
Lagrangian and method-of-lines discretizations for this problem, which are described
in more detail in Sections 3 and 4, respectively. Both discretizations use the same
underlying space-time mesh. Specifically, the spatial domain is discretized with nx
points equally separated by a distance of h:

{
xi = −1+(i− 1)h : i = 1, . . . ,nx

}
. We

also use the notation xxx =
(
x1, . . . ,xnx

)> ∈ Rnx . The time domain is discretized using
nt +1 points equally separated by a distance of δ t:

{
tn = nδ t : n = 0, . . . ,nt

}
. On this

space-time mesh, both of the aforementioned discretizations result in a fully discrete
system of equations that takes the form

uuun+1 = Φuuun, n = 0, . . . ,nt −1, uuu0 = u0(xxx), (2)

in which (uuun)i ≈ u(xi, tn), and the matrix Φ ∈ Rnx×nx is the time-stepping operator
responsible for propagating the spatial approximation forwards in time by an amount
δ t.

2.2 Algorithmic description of MGRIT

MGRIT [17] is an iterative multigrid method for solving systems of equations of
the form of (2) in parallel over n. A two-level MGRIT iteration combines fine-grid
relaxation with a coarse-grid correction.

The fine grid is taken to be the set of time points underlying (2),
{

tn = nδ t : n =
0, . . . ,nt − 1

}
. A coarse grid is then induced from a coarsening factor m ∈ N \ {1}

by taking every mth time point from the fine grid,
{

tn = nmδ t : n = 0, . . . , nt
m − 1

}
,

supposing for simplicity that nt is divisible by m. The set of points appearing ex-
clusively on the fine grid are denoted as “F-points,” and those shared between the
fine and coarse grids are “C-points.” We dub the set of points consisting of a C-
point and the m−1 F-points that follow it as a “CF-interval.” The fine-grid relaxation
scheme acts in a block fashion, making use of so-called F- and C-relaxations, which
set the algebraic residual to be zero at F- and C-points, respectively. Specifically, the
post-relaxation occurring after the coarse-grid correction is just an F-relaxation. We
write the pre-relaxation occurring before the coarse-grid correction as F(CF)ν with
ν ∈ N0, indicating that it consists of a single F-relaxation, followed by ν sweeps of
CF-relaxation—a C-relaxation followed immediately by an F-relaxation.

The coarse-grid correction consists of solving the following system with a factor
of m fewer equations than the fine-grid problem (2),

eee(∆)
n+1 =Ψeee(∆)

n + rrr(∆)
n+1, n = 0, . . . ,

nt

m
−1, eee(∆)

0 = 000, (3)
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where (∆) superscripts denote coarse-grid variables. In the two-grid setting, problem
(3) is solved via sequential time-stepping, but in the multilevel context it is solved by
recursively applying MGRIT, noting that it has the same structure as (2). The system
(3) is an approximation to the C-point Schur complement of the residual equation
of (2), with the approximation being characterized by the coarse-grid time-stepping
operator Ψ ≈Φm [14,45,13]. In (3), rrr(∆)

n is the residual at the nth C-point, and eee(∆)
n

is an approximation to the associated algebraic error. If the so-called ideal coarse-
grid operator is used Ψ = Φm =: Ψideal, then eee(∆)

n is exactly the C-point error, and
MGRIT converges to the exact solution of (2) in a single iteration. However, the
ability to obtain parallel speed-up with MGRIT over sequential time-stepping hinges
on the solution of (3) being cheaper to obtain than that of the fine-grid problem (2).
In particular, if Ψ =Ψideal then (in general) no speed-up can occur since solving the
coarse-grid correction problem is just as expensive as solving the original fine-grid
problem. On the other hand, the convergence speed of MGRIT is characterized by
the accuracy of the approximation Ψ ≈Ψideal [14,45,13]. The goal, therefore, is to
strike a balance between the cost of applying Ψ and the quality of the approximation
it provides to Ψideal.

Most often in the PDE context, Ψ is derived by rediscretizing the fine-grid prob-
lem; that is, using the same discretization with the enlarged coarse-grid time-step size
mδ t. For diffusive problems, this tends to result in a quickly converging solver, but
for advection-dominated problems, it does not. The main objective of this paper is
to develop an alternative to naive rediscretization, and, more generally, to any direct
discretization (see Footnote 1), by carefully modifying the direct discretization, when
the fine-grid operator Φ is a method-of-lines discretization of (1).

3 Semi-Lagrangian discretizations and the modified coarse-grid operators
from [11]

Here we provide a brief description of semi-Lagrangian methods for (1) because the
modified coarse-grid operators we propose require an understanding of these dis-
cretizations. Following this, we give a simplified overview of the modified semi-
Lagrangian coarse-grid coarse operators from [11].

We denote the time-stepping operator of a semi-Lagrangian discretization of (1)
as Φ =S

(δ t)
p ∈Rnx×nx , indicating that it uses a time-step size of δ t and has a (global)

order of accuracy of p. To advance uuun to uuun+1, the semi-Lagrangian method uses
the fact that the solution of (1) along characteristics is constant. We define a local
characteristic of (1) that arrives at the mesh point (x, t) = (xi, tn + δ t), and departs
from time t = tn, as the curve (x, t) =

(
ξ
(δ t)
i (t), t

)
; see Fig. 1.

For every such local characteristic, we locate the departure point (x, t)=
(
ξ
(δ t)
i (tn), tn

)
,

which is easily computed as ξ
(δ t)
i (tn) = xi − αδ t ≡ x(δ t)

i − hε(δ t). Here, x(δ t)
i de-

notes the mesh point immediately to the east of ξ
(δ t)
i (tn), and ε(δ t) ∈ [0,1) is the

mesh-normalized distance between ξ
(δ t)
i (tn) and x(δ t)

i . In general, ξ
(δ t)
i (tn) does not

coincide with a mesh point, so the solution at this point is approximated by fitting
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ξ
(δt)
i (tn) x

(δt)
i

xi

tn

tn + δt

ξ
(δt)
i (t)hε(δt)

αδt

x

t

Fig. 1 A local characteristic ξ
(δ t)
i (t) for t ∈ [tn, tn+1] of the advection problem (1). By definition, the char-

acteristic passes through the arrival point (x, t) = (xi, tn+1). The departure point (or foot) of the character-
istic is its location at time t = tn. The departure point is decomposed into the sum of its east-neighboring
mesh point x(δ t)

i and its distance hε(δ t) from this point.

an interpolating polynomial of degree at most p through the known solution uuun at
the mesh points nearest to the departure point. The ith component of uuun+1 is then
given by this interpolant of uuun. Unlike its explicit method-of-lines counterparts (de-
scribed in the next section), this discretization is unconditionally stable with respect
to δ t, i.e.,

∥∥S (δ t)
p
∥∥

2 ≤ 1. See the textbooks [15,16] for a more detailed description
of semi-Lagrangian methods.

In [11] we used MGRIT to solve advection problems discretized (on the fine grid)
with semi-Lagrangian methods. We showed numerically that rediscretizing a semi-
Lagrangian method on a coarse grid results in extremely poor MGRIT convergence.
To overcome this, we proposed instead to use a modified coarse-grid operator that
consists of a rediscretized semi-Lagrangian step, followed by a correction step. The
correction was carefully designed so that the dominant term in the truncation error of
the modified operator matches that of the ideal coarse-grid operator.3 This solution
was based on the idea of matching truncation errors originally proposed in [48] for
spatial multigrid methods, and is motivated further by our analysis in [13, Sec. 6].

We now provide some further details on the construction of the modified coarse-
grid operator from [11] to help contextualize and motivate the coarse-grid operators
for method-of-lines schemes that we develop later in Section 6. In order to carry
out the above described truncation error matching, one requires error estimates of
both the ideal coarse-grid operator, which, in the case of [11], is m steps of the fine-
grid semi-Lagrangian discretization S

(δ t)
p , and the coarse-grid semi-Lagrangian dis-

cretization S
(mδ t)
p . Both of these estimates can be derived from the following error

estimate for S
(δ t)
p , which is a simplified version of [11, Lem. 3.1].

3 For constant-wave-speed advection problems, dominant truncation errors are matched exactly, while
for variable-wave-speed problems they are matched in an approximate way.
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Lemma 1 (Semi-Lagrangian truncation error) Define uuu(t) ∈ Rnx as the vector
composed of the exact solution to PDE (1) sampled on the spatial mesh at time t. Let
the difference matrix D

(p+1)
s ∈ Rnx×nx be as described below. Then, for sufficiently

smooth solutions of the PDE (1), the local truncation error of the above described
semi-Lagrangian discretization can be expressed as

uuu(tn+1)−S
(δ t)
p uuu(tn) = (−h)p+1 fp+1

(
ε
(δ t))D (p+1)

s

hp+1 uuu(tn+1)+O(hp+2), (4)

where the function fp+1 is the following degree p+1 polynomial:

fp+1(z) :=
1

(p+1)!

r(p)

∏
j=−`(p)

( j+ z). (5)

In (5), `(p),r(p) ∈ N0 are such that, for a given p, the p+ 1 mesh points
{

x(δ t)
i +

jh
}r(p)

j=−`(p) in the interpolation stencil are those closest to the departure point ξ
(δ t)
i (tn).

Furthermore, the matrix D
(p+1)
s ∈ Rnx×nx in (4) is defined such that h−(p+1)D

(p+1)
s

represents an order s ∈ N accurate finite-difference approximation of the p + 1st
derivative of a periodic grid function. Let vvv =

(
v(x1), . . . ,v(xnx)

)> ∈ Rnx denote a
vector representing a periodic function v(x) evaluated on the spatial mesh. Then, if v
is at least p+1+ s times continuously differentiable,(

D
(p+1)
s

hp+1 vvv

)
i

=
dp+1v
dxp+1

∣∣∣∣
xi

+O(hs), i ∈ {1, . . . ,nx}. (6)

Since the mesh points are equispaced, the matrix D
(p+1)
s is circulant. Finally, note that

while the entries of D
(p+1)
s are independent of h, its action is not: D

(p+1)
s vvv=O(hp+1)

if vvv is independent of h.
With error estimates of the ideal coarse-grid operator and the coarse-grid semi-

Lagrangian discretization S
(mδ t)
p , one can develop the following coarse-grid operator

[11, (3.20)]

Ψ =
(

I− γ
(trunc)
p+1 D

(p+1)
s

)−1
S

(mδ t)
p ≈Ψideal =

m−1

∏
k=0

S
(δ t)
p , (7)

which has the property that the dominant term in its truncation error matches that of
the ideal coarse-grid operator. Specifically, the γ

(trunc)
p+1 term captures the difference

between the constants in the leading-order truncation errors of S
(mδ t)
p and Ψideal.

Note that the correction in (7) is done implicitly, i.e., it requires the inversion of a
sparse matrix, for numerical stability reasons.

The primary contribution of this paper is the generalization of the modified coarse-
grid operator Ψ in (7) so that it can be used in conjunction with fine-grid method-
of-lines discretizations and not only the fine-grid semi-Lagrangian discretizations of
[11]. The generalized coarse-grid operators developed here have the same structure
as (7), in that they consist of a semi-Lagrangian step followed by a correction; how-
ever, the correction is different than in (7) because it takes into account the truncation
error of the underlying fine-grid method-of-lines scheme.
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4 Method-of-lines discretization

In this section, we outline the method-of-lines discretizations that we consider for the
model problem in Section 2.1. The (fine-grid) discretizations we consider in this work
are the same as those we considered previously in [10], and the reader can find in [10]
specific details of these discretizations that are omitted here, such as finite-difference
formulae and Butcher tableaux.4 This section also develops truncation error estimates
for the discretizations, which are used in our MGRIT convergence analysis later in
the paper, and for developing our new coarse-grid operators. While developing such
error estimates for constant-coefficient PDEs is in some sense a textbook exercise,
we are unaware of any references that provide exactly the estimates we require. We
do remark, however, that our analysis has similarities with the Fourier-based error
analysis in [21].

4.1 Finite-difference spatial discretization

We define the circulant matrix Lp ∈ Rnx×nx such that Lp
h represents a pth-order

accurate finite-difference approximation to the first derivative on a periodic grid.
The finite-difference rule that Lp encodes is given by differentiating a degree p
interpolating polynomial that is fit through p+ 1 contiguous mesh points [19,44].
The mesh points involved in the finite-difference stencil to approximate d

dx |xi are

{xi+ jh}r(p)
j=−`(p) (with `(p) and r(p) not necessarily the same functions as those used

in the semi-Lagrangian interpolation stencil from Section 3). We consider upwind-
finite-difference rules which means the stencils have a bias to the left of xi since α > 0
in (1).5 For odd p≥ 1 the stencils have a one-point bias, `(p) = p+1

2 , r(p) = `(p)−1;
for even p≥ 2 the stencils have a two-point bias, `(p) = p

2 +1, r(p) = `(p)−2. We
abbreviate “pth-order upwind discretization” as “Up.”

The below lemma is a slight variation of a well-known error estimate for Lp.

Lemma 2 (Finite-difference error) Let D
(p+1)
s ∈ Rnx×nx be an sth-order approx-

imation to the p + 1st derivative of a periodic grid function, as in (6). Let v(x)
be a periodic function that is at least p + 1 + s times differentiable, and let vvv =(
v(x1), . . . ,v(xnx)

)> ∈ Rnx denote the vector composed of v evaluated on the spatial
mesh. Then, the error of the above described finite-difference spatial discretization
Lp
h satisfies

dv
dx

∣∣∣∣
xi

−
(

Lp

h
vvv
)∣∣∣∣

i
= hpêFD

(
D

(p+1)
s

hp+1 vvv

)
i

+O(hp+1), i ∈ {1, . . . ,nx}, (8)

4 With the exception of the fifth-order singly diagonally implicit Runge-Kutta method we consider here
but did not in [10]. The Butcher tableau for this method can be found in [33, Tab. 24].

5 For even p, central stencils are typically more accurate than upwind stencils (see, e.g., [21]). However,
we use upwind stencils since they possess better stability properties when paired with explicit Runge-Kutta
time integrators, and because we find that the resulting space-time discretizations are more favourable from
an MGRIT convergence standpoint.
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with constant

êFD := (−1)r(p) `(p)!r(p)!
(p+1)!

. (9)

Proof Consider interpolating v(x) at the p+ 1 mesh points {xi + jh}r(p)
j=−`(p) using

a polynomial of degree at most p. Since v is sufficiently smooth, the standard error
estimate from polynomial interpolation theory (see, e.g., [8, Thm. 3.1.1]) can be used
to quantify the difference between v and this polynomial for x ∈ (xi− `h,xi + rh). It
is not difficult to show (see, e.g., [29, pp. 165–166]) that differentiating this estimate
and evaluating the result at x = xi gives

dv
dx

∣∣∣∣
xi

−
(

Lp

h
vvv
)∣∣∣∣

i
= hpêFD

dp+1v
dxp+1

∣∣∣∣
ξi

, (10)

with the point ξi ∈ (xi−`h,xi + rh) not known. Since ξi and xi are a distance of O(h)

apart, by Taylor expansion, we have dp+1v
dxp+1

∣∣∣
ξi
= dp+1v

dxp+1

∣∣∣
xi
+O(h). Plugging this into

(10) and replacing the p+ 1st derivative of v with an approximation using D
(p+1)
s

from (6) gives the claim (8). ut

Results later in the paper require the error constants (9), so, for reference purposes
they can be found in Table 1 for the discretizations considered here.

4.2 Runge-Kutta temporal discretization

We consider both explicit Runge-Kutta (ERK) and singly diagonally implicit Runge-
Kutta (SDIRK) methods with global order of accuracy q∈N, with the resulting meth-
ods being denoted by ERKq and SDIRKq, respectively. Note that ERK1 and SDIRK1
correspond to the explicit and implicit Euler methods, respectively. The stability func-
tion for such Runge-Kutta methods is the rational function Rq(z) =

P(z)
Q(z) , in which P

and Q are polynomials deriving from the Butcher tableau of a given method, with Q

Table 1 Left: Error constants êFD defined in (9) for order p upwind spatial discretizations, Up. Right:
Error constants êRK defined in (12) for order q Runge-Kutta methods, ERKq and SDIRKq.

p êFD: Up

1 5×10−1

2 3.3333 . . .×10−1

3 −8.3333 . . .×10−2

4 −5×10−2

5 1.6667 . . .×10−2

q êRK: ERKq êRK: SDIRKq

1 −5×10−1 5×10−1

2 −1.6667 . . .×10−1 4.0440 . . .×10−2

3 −4.1667 . . .×10−2 −2.5897 . . .×10−2

4 −8.3333 . . .×10−3 −8.4635 . . .×10−4

5 −6.0764 . . .×10−4 5.3005 . . .×10−4
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being the identity in the case of an ERK method. The first q+ 1 terms in the Taylor
expansion of Rq(z) match that of exp(z) (see, e.g., [5]),

Rq(z) =
q

∑
j=0

z j

j!
+

∞

∑
j=q+1

β jz j, βq+1 6=
1

(1+q)!
, (11)

= exp(z)+ êRKzq+1 +O(zq+2), êRK := βq+1−
1

(q+1)!
. (12)

That is, βq+1 is the first coefficient in the Taylor expansion of Rq(z) that differs from
the coefficients in the Taylor expansion of the exponential. The constant êRK is de-
fined to capture the dominant error in the Runge-Kutta approximation. Values of the
error constants êRK for the Runge-Kutta methods we consider in this work are re-
quired later, and they can be found in Table 1.

4.3 Method-of-lines discretization and its truncation error

We now combine the spatial and temporal discretizations from Section 4.1 and Sec-
tion 4.2. Discretizing the advection problem (1) in space using the finite-difference
method from Section 4.1, we arrive at the system of ODEs

dvvv
dt

=−α
Lp

h
vvv, t ∈ (0,T ], vvv(0) = uuu0, (13)

in which vi(t) ≈ u(xi, t) is the approximation to the solution of PDE (1) at the ith
spatial grid point. Next these ODEs are discretized using the Runge-Kutta method
from Section 4.2, writing the fully discrete approximation as uuun ≈ vvv(tn); that is,
(uuun)i ≈ u(xi, tn). Since Lp is diagonalizable, the fully discrete scheme may be written
in the one-step form6 (see, e.g., the derivation in [10, Lem. 1])

uuun+1 = Rq

(
−αδ t

Lp

h

)
uuun ≡M

(δ t)
p,q uuun, n = 0,1, . . . ,nt −1, (14)

where we have defined the time-stepping operator for the scheme as M
(δ t)
p,q ∈Rnx×nx .

In an attempt to balance spatial and temporal discretization errors we consider only
space-time discretizations with q = p (with the exception of the theoretical result
in Lemma 3). We denote the explicit and implicit discretizations by ERKp+Up and
SDIRKp+Up, respectively.

The ERKp+Up methods have a CFL limit, meaning that a necessary condition for
stable time integration is that δ t ≤ cmaxh, with c := αδ t

h ∈ (0,cmax] the CFL number.
For reference purposes, values of cmax for the discretizations we consider in this paper
can be found in Table 2. All SDIRKp+Up schemes we consider are unconditionally
stable since the SDIRK methods are A-stable and the eigenvalues of the −Lp lie in
the negative half-plane.

6 Writing M
(δ t)
p,q in terms of the rational function Rq is for theoretical purposes only. In practice, a time-

step with M
(δ t)
p,q is carried out in the standard way for a Runge-Kutta method: By a sequence of matrix-

vector products with Lp in the case of an ERK method, and for an SDIRK method through a sequence
of linear solves with matrices of the form I− aLp, for constant a, which we perform with SuiteSparse’s
UMFPACK [9].
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Table 2 CFL limits cmax for ERKp+Up discretizations of the advection problem (1).

Scheme ERK1+U1 ERK2+U2 ERK3+U3 ERK4+U4 ERK5+U5

cmax 1 1
2 1.62589. . . 1.04449. . . 1.96583. . .

We conclude this section with Lemma 3 below estimating the local truncation
error of a method-of-lines discretization, followed by Definition 1 classifying the
discretizations in terms of their numerical error.

Lemma 3 (Method-of-lines truncation error) Define uuu(t)∈Rnx as the vector com-
posed of the exact solution to PDE (1) sampled on the spatial mesh at time t. Let
c = αδ t

h be the CFL number of the discretization. Then, if the solution to (1) is suf-
ficiently smooth, the local truncation error of the above described method-of-lines
discretization can be expressed as

uuu(tn+1)−M
(δ t)
p,q uuu(tn) = O

(
hp+1

δ t,hδ tq+1,δ tq+2
)

−

[
cêFDhp+1 D

(p+1)
s

hp+1 +(−c)q+1êRKhq+1 D
(q+1)
s

hq+1

]
uuu(tn+1),

(15)

where the constants êFD and êRK are defined in (9) and (12), respectively.

Proof See Appendix A. ut

Based on the largest term on right-hand side of (15) in Lemma 3, we use the
following (standard) classification for the numerical error of a method-of-lines dis-
cretization.

Definition 1 (Dissipation versus dispersion) Suppose the dominant term in the trun-
cation error (15) of a stable method-of-lines discretization contains the matrix D

(ξ+1)
s

with ξ ∈N. Then, if ξ is odd, the discretization is called dissipative, and if ξ is even,
the discretization is called dispersive.

5 On the inadequacy of direct coarse-grid operators

In this section we analyze MGRIT convergence for method-of-lines discretizations
when using direct coarse-grid operators (i.e., discretizations without corrections to
match the truncation error of the ideal coarse-grid operator). The framework used
to analyze MGRIT convergence is described in Section 5.1, theoretical results are
presented in Section 5.2, and numerical results are given in Section 5.3.

When Φ = ERKp+Up we do not consider rediscretized coarse-grid operators,
since for realistic fine-grid CFL numbers c (i.e., c not much smaller than cmax) and
MGRIT coarsening factors m, such a coarse-grid operator is unstable, with mc�
cmax. That is, in practice, CFL-limited method-of-lines discretizations are typically
used with CFL numbers close to their limits; for example, any choice from around
c = 0.3cmax, up to c = 0.95cmax would be typical. Additionally, to ensure the MGRIT
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coarse-grid problem is sufficiently inexpensive compared to the fine-grid problem,
one would typically need to use a coarsening factor m � 1 (or in the multilevel
setting, the cumulative coarsening factor on the coarsest levels would need to be
� 1). We do consider, however, combining an explicit fine-grid discretization with
an implicit coarse-grid discretization or a semi-Lagrangian discretization since both
of these coarse-grid operators are stable.

5.1 Convergence framework

Let λ (ω) and µ(ω) denote the Fourier symbols/eigenvalues of Φ and Ψ , respec-
tively, associated with a spatial Fourier mode with frequency ω . For a problem with
nx spatial degrees-of-freedom, ω discretely samples the interval [−π,π) with nx
points equally spaced by a distance h; the smoothest modes on a given spatial mesh
have frequency ω = O(h), and we dub them as asymptotically smooth. Let θ be
a continuous temporal Fourier frequency spanning an interval of length 2π , and let
Θ low :=

[
− π

m ,
π

m

)
be the space of low frequencies. Then, let Ê (ω,θ) be the two-level

MGRIT error propagator for a space-time Fourier mode with frequency (ω,θ), and
consider the following two-level MGRIT convergence estimate for this mode:

ρ
(
Ê (ω,θ)

)
=
∣∣λ (ω)

∣∣mν

∣∣λ m(ω)−µ(ω)
∣∣∣∣1− e−imθ µ(ω)
∣∣ , (ω,θ) ∈ [−π,π)×Θ

low. (16)

Recall from Section 2.2 that ν ∈N0 is the number of fine-grid CF relaxation sweeps.
For a given mode (ω,θ), (16) is the infinite grid (nt → ∞) asymptotic convergence
factor of two-level MGRIT as predicted by local Fourier analysis (LFA) [13]. Note
that it is not necessary to consider ρ

(
Ê (ω,θ)

)
for θ /∈Θ low, since such modes alias

with low-frequency modes on the coarse grid.
In addition to (16), we are interested in the (overall) two-level convergence factor,

which is the worst-case convergence factor over all space-time Fourier modes,

ρ(E ) := max
(ω,θ)∈[−π,π)×Θ low

ρ
(
Ê (ω,θ)

)
= max

ω∈[−π,π)

∣∣λ (ω)
∣∣mν

∣∣λ m(ω)−µ(ω)
∣∣

1−
∣∣µ(ω)

∣∣ . (17)

In (17), the maximum over θ has been computed analytically, and for a given pair
of discretizations Φ and Ψ , we will estimate the maximum over ω by discretely
sampling [−π,π) with 211 points.7 Note that (17) also bounds the coarse-grid er-
ror reduction on the first MGRIT iteration [14]. Finally, note that while (17) is an
infinite-grid convergence estimate, it provides accurate information about the effec-
tive MGRIT convergence factor on finite-length time intervals [14,13], which is why
we consider it here.

7 Note that ω = 0 is omitted from these calculations since the associated eigenvalue is unity for the
discretizations we consider. In addition, we often omit a small number (no more than 10) of discrete
frequencies closest to ω = 0, since the numerical proximity of the corresponding eigenvalues to the unit
circle causes catastrophic cancellation and rounding issues in the evaluation of the estimate, particularly
for higher-order discretizations.
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5.2 Theoretical results for asymptotically smooth characteristic components

In Theorem 1 below, we bound the convergence factor (17) from below by analyz-
ing (16) for asymptotically smooth characteristic components, which are space-time
modes satisfying θ ≈−ωαδ t

h , with ω = O(h) and θ = O(δ t). The lower bound will
imply that two-grid convergence is poor due, at least in part, to the poor convergence
of asymptotically smooth characteristic components. In [13] we showed heuristically
that MGRIT convergence is not robust (with respect to problem and algorithmic pa-
rameters) when using a direct coarse-grid operator for an advection-dominated prob-
lem because asymptotically smooth characteristic components receive a poor coarse-
grid correction, especially relative to all other asymptotically smooth modes.

The novel contribution of Theorem 1 is quantifying this heuristic rigorously for
a subclass of method-of-lines discretizations. Specifically, Theorem 1 is analogous
to [13, Thms. 6.1 & 6.2], which used the same arguments when semi-Lagrangian
discretizations are used on both the fine and coarse grids.

Theorem 1 Suppose Φ = M
(δ t,fine)
p,p and Ψ = M

(mδ t,coarse)
p,p , with Runge-Kutta error

constants (12) denoted by ê(fine)
RK and ê(coarse)

RK , respectively. Suppose Φ and Ψ use
the same finite-difference spatial discretization, but possibly different Runge-Kutta
methods—hence the addition of “fine” and “coarse” superscripts. Finally, suppose
that p is odd.8 Let c = αδ t

h be the fine-grid CFL number, and m the coarsening fac-
tor. Then, the two-level MGRIT convergence factor (17) satisfies the following lower
bound independent of the number of CF-relaxations ν

ρ(E )≥ ρ

(
Ê

(
ω,θ =−ωαδ t

h

))∣∣∣∣
ω=O(h)

(18)

= qρp(c)

(
1+O

(
h,δ t,δ t

(
δ t
h

)p

,δ t
(

δ t
h

)p+1
))

, (19)

where the function qρp(c) is

qρp(c) := cp

∣∣∣∣∣ ê(fine)
RK −mp ê(coarse)

RK

êFD +(mc)p ê(coarse)
RK

∣∣∣∣∣ . (20)

In addition, asymptotically in the coarse-grid CFL number mc, qρp(c) satisfies

qρp(c) =


∣∣∣∣∣1− 1

mp
ê(fine)

RK

ê(coarse)
RK

∣∣∣∣∣+O

(
1

(mc)p

)
, mc� 1,

O
(
(mc)p

)
, mc� 1.

(21)

8 The distinction between even and odd p in the analysis in this theorem is whether the dominant trunca-
tion error term in Fourier space is real or imaginary (see also Definition 1). For simplicity we only consider
odd p, but note that analogous results can be derived for even p, although they have some additional sub-
tleties (see [13, Rem. 6.3]). Numerical results later in the paper will consider both even and odd p, with a
focus on odd p.
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Proof From (17), it is clear that the inequality (18) holds, since the asymptotically
smooth characteristic components θ =−ωαδ t

h with ω =O(h) represent only a subset
of all modes over which the maximum is taken.

The next part of this proof establishes (19) by developing eigenvalue estimates for
the fine- and coarse-grid discretizations, and then evaluating ρ

(
Ê (ω,θ)

)
at the afore-

mentioned asymptotically smooth characteristic components. In some ways, these
steps mimic those used in [13, Thms. 6.1 & 6.2] for semi-Lagrangian discretizations.

To estimate the eigenvalues of Φ and Ψ , we transform their truncation error esti-
mates from Lemma 3 into Fourier space where they can be interpreted as eigenvalue
estimates. Further detail about how to do this, albeit in the context of semi-Lagrangian
discretizations, can be found in the proof of [13, Thm. B.3]. For the fine-grid dis-
cretization Φ = M

(δ t,fine)
p,p , the truncation error statement (15) gives the following

eigenvalue estimate for asymptotically smooth modes ω = O(h) when p is odd:

λ (ω) = exp
(
− iωαδ t

h

)[
1+(−1)

p+1
2 c
(

êFD + cp ê(fine)
RK

)
ω

p+1

+O
(
ω

p+2,ω p+1
δ t,ωδ t p+1,δ t p+2)]. (22)

Raising λ (ω) to the power m and applying the binomial expansion gives

λ
m(ω) = exp

(
− iωαmδ t

h

)[
1+(−1)

p+1
2 mc

(
êFD + cp ê(fine)

RK

)
ω

p+1

+O
(
ω

p+2,ω p+1
δ t,ωδ t p+1,δ t p+2)]. (23)

Now consider the eigenvalue estimate for the coarse-grid operator Ψ =M
(mδ t,coarse)
p,p .

This estimate takes the same form as that of (22) except the CFL number is mc rather
than c:

µ(ω) = exp
(
− iωαmδ t

h

)[
1+(−1)

p+1
2 mc

(
êFD +(mc)p ê(coarse)

RK

)
ω

p+1

+O
(
ω

p+2,ω p+1
δ t,ωδ t p+1,δ t p+2)]. (24)

Using (23) and (24) we can now estimate the convergence factor (16) for asymp-
totically smooth modes, ω = O(h). Considering the pre-relaxation factor |λ (ω)|mν

in (16), we have from (23) that

∣∣λ (ω)
∣∣mν

=

∣∣∣∣exp
(
− iωαmδ t

h

)∣∣∣∣ν ∣∣1+O(ω p+1)
∣∣ν = 1+O(hp+1). (25)

(Note that the interpretation of this result is that relaxation has essentially no impact
on the convergence of asymptotically smooth modes; see also [13, Sec. 6.1].) Next,
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from (23) and (24), we have the following estimate for the numerator of the fraction
in (16):∣∣λ m(ω)−µ(ω)

∣∣= ∣∣∣∣exp
(
− iωαmδ t

h

)[
(−1)

p+1
2 mcp+1

(
ê(fine)

RK −mpê(coarse)
RK

)
ω

p+1

(26)

+O
(
ω

p+2,ω p+1
δ t,ωδ t p+1,δ t p+2)]∣∣∣∣,

= mcp+1
∣∣∣ê(fine)

RK −mpê(coarse)
RK

∣∣∣ω p+1
[
1+O

(
ω,δ t,δ t

(
δ t
ω

)p
,δ t
(

δ t
ω

)p+1)]
.

(27)

Finally, consider the denominator of the fraction in (16) for the characteristic modes
θ =−ωαδ t

h , ω = O(h):∣∣∣1− e−imθ
µ(ω)

∣∣∣
θ=−ωαδ t

h

=
∣∣∣− (−1)

p+1
2 mc

(
êFD +(mc)pê(coarse)

RK

)
ω

p+1 (28)

+O
(
ω

p+2,ω p+1
δ t,ωδ t p+1,δ t p+2)∣∣∣,

= mc
∣∣∣êFD +(mc)pê(coarse)

RK

∣∣∣ω p+1
[
1+O

(
ω,δ t,δ t

(
δ t
ω

)p
,δ t
(

δ t
ω

)p+1)]
. (29)

Plugging (25), (27) and (29) into (16) gives the estimate

ρ

(
Ê

(
ω,θ =−ωαδ t

h

))∣∣∣∣
ω=O(h)

=

[
1+O

(
ω,δ t,δ t

(
δ t
ω

)p
,δ t
(

δ t
ω

)p+1)]
[
1+O

(
ω,δ t,δ t

(
δ t
ω

)p
,δ t
(

δ t
ω

)p+1)]×
cp

∣∣∣∣∣ ê(fine)
RK −mpê(coarse)

RK

êFD +(mc)pê(coarse)
RK

∣∣∣∣∣= qρp(c)
[
1+O

(
ω,δ t,δ t

(
δ t
ω

)p
,δ t
(

δ t
ω

)p+1)]
, (30)

where the final equality follows from the geometric expansion [1+O(ε)]−1 = [1+
O(ε)]. The claimed result (19) follows by substituting ω = O(h) into the final equa-
tion above.

Now we show that the asymptotic relations in (21) hold. Rearranging (20),

qρp(c) := cp
∣∣∣∣ η−mp

ξ +(mc)p

∣∣∣∣ , η :=
ê(fine)

RK

ê(coarse)
RK

, ξ :=
êFD

ê(coarse)
RK

. (31)

Now consider the denominator of the above fraction in the two asymptotic regimes:

1
ξ +(mc)p =


1
ξ

[
1+O

(
(mc)p

)]
, mc� 1,

(mc)−p
[
1+O

(
(mc)−p

)]
, mc� 1.

(32)

First consider the mc� 1 case; plugging (32) into (31) gives

cp
∣∣∣∣ η−mp

ξ +(mc)p

∣∣∣∣= cp

|ξ |

∣∣∣(η−mp)[1+O
(
(mc)p)]∣∣∣= O

(
cp,(mc)p)= O

(
(mc)p).

(33)
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Next, consider the mc� 1 case; plugging (32) into (31) gives

cp
∣∣∣∣ η−mp

ξ +(mc)p

∣∣∣∣= cp

cp

∣∣∣∣∣
(
η−mp

)
mp

[
1+O

(
(mc)−p)]∣∣∣∣∣= ∣∣∣1− η

mp

∣∣∣[1+O
(
(mc)−p)].

(34)

Expanding the last equation gives the result in (21). ut

Recall from our earlier discussions that practically relevant coarse-grid CFL num-
bers mc satisfy mc� 1. From Theorem 1, and specifically (19) and (21), we see that
MGRIT convergence of asymptotically smooth characteristic components is fast for
the non-practically relevant case of mc� 1, while it is worse for mc� 1. Specifically,
for mc� 1, the MGRIT convergence factor of asymptotically smooth characteristic

components is approximately
∣∣∣1−m−p ê(fine)

RK

ê(coarse)
RK

∣∣∣, which quickly approaches unity as m

increases. Note that if the same Runge-Kutta method is used on both grids, then this
approximate convergence factor simplifies to 1−m−p.

Theorem 1 does not cover the situation in which a direct coarse-grid semi-Lagrangian
method is paired with an explicit or implicit method-of-lines discretization on the fine
grid. However, similar arguments can be used to show that asymptotically smooth
characteristic components receive a poor correction. Also recall the example dis-
cussed in Section 1 (see Footnote 2), in which ERK1+U1 on the fine grid is paired
with a first-order semi-Lagrangian discretization on the coarse-grid. For this specific
case the fine-grid method is equivalent to a semi-Lagrangian method, so [13, Thm.
6.4] can be used to show that the two-level convergence factor (17) exceeds unity on
the interval c/cmax ∈

( 1
m ,1−

1
m

)
, which quickly limits to the entire range of possible

CFL numbers as m is increased.

5.3 Numerical results

Now we numerically verify Theorem 1 and expand upon it by examining the conver-
gence factor (16) for all modes ω ∈ [−π,π), not just those that are asymptotically
smooth (as in Theorem 1).

Fig. 2 shows, as a function of fine-grid CFL number, the two-level MGRIT con-
vergence factor (17) (the thin solid lines) for two implicit discretizations. Clearly,
MGRIT convergence is not fast for all combinations of m and c, with the two-level
convergence factor often greater than one-half for p = 1 and often greater than one
for p = 3; recall that a convergence factor bigger than one indicates that MGRIT
diverges. For fixed m, this convergence factor seems to converge to a constant for
c� 1, with this constant being larger than unity for sufficiently large m (recall from
the beginning of Section 5 that practically relevant coarsening factors satisfy m� 1).
We note that the convergence estimates for SDIRK1+U1 in Fig. 2 are consistent with
the maxima of the convergence factors reported in [14, Fig. 4.1(c)], which considered
the same discretization for m = 2 and c ∈ {1,4}.

To verify that (17) is an accurate predictor of the effective convergence factor on
finite-length time domains, in Fig. 2 we overlay effective convergence factors (the
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Fig. 2 MGRIT two-grid convergence factors for implicit method-of-lines discretizations of order p = 1
(left), and p = 3 (right), as a function of the fine-grid CFL number c when rediscretizing on the coarse grid.
MGRIT uses FCF-relaxation (ν = 1), and a coarsening factor of m. Thin solid lines are the two-level LFA
convergence factor (17). Thick dashed lines are the function qρp(c) from (20) that acts as a lower bound on
this convergence factor. Open circle markers are experimentally determined effective convergence factors
on finite-length time domains. Note the different axis limits for each plot.

open circles) as measured from numerical tests. These numerical tests use nx×nt =
210×212 degrees-of-freedom and the convergence factor from the final iteration, with
MGRIT being run either until the `2-norm of the residual was decreased by at least
10 orders of magnitude, or until the number of iterations would exceed 20. In these
tests, the initial MGRIT iterate was taken to be uniformly random, except at t = 0
where it matches the initial condition in (1), which we take as u0(x) = sin4(πx). The
MGRIT implementation is provided by XBraid [47], which we have modified so that
it applies the linear method described in Section 2.2 rather than an FAS version of it
(see further details in Sec. 2 of the Supplementary Materials from [11]).

Finally, also shown in Fig. 2 is the lower bound (19) from Theorem 1 (the thick
dashed lines). In all cases, the lower bound appears tight for small coarse-grid CFL
numbers, mc� 1; for larger mc, the bound is not tight in most cases. In regions where
the lower bound is tight, it means that the convergence of asymptotically smooth char-
acteristic components is the slowest of all space-time modes. To better understand
what is occurring where the lower bound is not tight, we have considered contour
plots of the MGRIT spectral radius (16) in Fourier space. We omit these plots here
for brevity; see [13, Fig. 1] for related plots. These plots indicate that the slowest-
converging modes are no longer asymptotically smooth, but are nonetheless smooth
relative to the most oscillatory modes |ω| ≈ π .

To summarize the findings in this section, the slow convergence of asymptoti-
cally smooth characteristic components precludes fast and robust MGRIT conver-
gence when directly discretizing on the coarse grid. However, there may also exist
other relatively smooth modes with O(h)< |ω| � π that are not damped effectively
by MGRIT. Since both of these sets of modes are smooth, they cannot be efficiently
damped through additional relaxation, and instead must be targeted by an improved
coarse-grid correction (see also [13, Sec. 6.1]).
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6 Coarse-grid operators with corrected truncation error

In this section, we develop improved coarse-grid operators for method-of-lines dis-
cretizations. The two-level coarse-grid operators are described in Section 6.1, with
generalizations to the multilevel setting given in Section 6.2, and numerical results in
Sections 6.3 and 6.4.

6.1 Coarse-grid operators for fine-grid method-of-lines discretizations

The coarse-grid operators developed in this section are motivated by those we devel-
oped previously in [11, Sec. 3] (which we briefly recalled in Section 3) for fine-grid
semi-Lagrangian discretizations, and by the characteristic component analysis from
Section 5. Recall from Section 5 that we showed direct method-of-lines-based coarse-
grid operators fail, at least in part, because of a mismatch between their truncation
error and that of the ideal coarse-grid operator’s for asymptotically smooth character-
istic components. For analogous reasons, as discussed at the end of Section 5.2, a di-
rect coarse-grid semi-Lagrangian discretization also fails to yield satisfactory MGRIT
convergence when paired with a fine-grid method-of-lines discretization. Our idea
here then is to create a coarse-grid modified semi-Lagrangian operator with a trunca-
tion error that matches to lowest order the ideal coarse-grid operator for a fine-grid
method-of-lines operator. The following lemma lays the foundations for how such a
modified semi-Lagrangian family of coarse-grid operators may be constructed.

Lemma 4 (Ideal coarse-grid operator perturbation) Suppose Φ = M
(δ t)
p,p , with

spatial and temporal error constants êFD and êRK, respectively. Suppose the solu-
tion of PDE (1) is sufficiently smooth, and let uuu(tn) ∈ Rnx denote this solution at
time tn sampled at the spatial mesh points. Then, the action of the ideal coarse-grid
operator Ψideal = Φm can be expressed as a perturbation to a direct, coarse-grid
semi-Lagrangian discretization S

(mδ t)
p in the following two ways

Ψidealuuu(tn) =
(

I +ϕ
(mδ t)
p+1 D

(p+1)
s

)
S

(mδ t)
p uuu(tn)+O

(
hp+2,hp+1

δ t,hδ t p+1,δ t p+2),
(35)

=
(

I−ϕ
(mδ t)
p+1 D

(p+1)
s

)−1
S

(mδ t)
p uuu(tn)+O

(
hp+2,hp+1

δ t,hδ t p+1,δ t p+2),
(36)

where the constant ϕ
(mδ t)
p+1 is given by

ϕ
(mδ t)
p+1 = m

[
cêFD +(−c)p+1êRK

]
+(−1)p+1 fp+1

(
ε
(mδ t)). (37)

In (37), the term (−1)p+1 fp+1
(
ε(mδ t)

)
is associated with the truncation error of the

coarse-grid semi-Lagrangian discretization, see Lemma 1.

Proof See Appendix B. ut
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The second term on the right-hand side of (35) is of size O(hp+1), since D
(p+1)
s

and S
(mδ t)
p commute, and D

(p+1)
s uuu(tn) = O(hp+1). Thus, applied to uuu(tn), the ideal

coarse-grid operator and the semi-Lagrangian discretization are consistent up to terms
of size O(hp+1), which makes sense given they are both pth-order accurate discretiza-
tions of the same PDE. As stated above, however, this consistency alone does not pro-
duce satisfactory MGRIT convergence when using Ψ = S

(mδ t)
p . Instead, improved

MGRIT convergence necessitates that we correct the semi-Lagrangian discretization
to increase its accuracy with respect to Ψideal. Thus, based on the estimate (36), we
propose the following coarse-grid operator for this purpose:

Ψ =
(

I−ϕ
(mδ t)
p+1 D

(p+1)
s

)−1
S

(mδ t)
p . (38)

As mentioned in Footnote 2, for the constant-wave-speed advection problem,
ERK1+U1 is equivalent to S

(δ t)
1 if c < 1. Thus, when Φ = ERK1+U1 and c < 1,

the coarse-grid operator (38) is equivalent to that of (7) when Φ = S
(δ t)

1 and c < 1
(i.e., although the formulae for the correction coefficient in (38) and (7) are different
in general, for this special case they produce the same values).

Applying the coarse-grid operator (38) requires solving a linear system, poten-
tially making it substantially more expensive than a standalone semi-Lagrangian dis-
cretization (depending on how accurately the linear system is solved). In the forth-
coming numerical tests, depending on the test, this system is solved directly with
UMFPACK [9] from SuiteSparse, or it is solved efficiently and approximately with a
small number of GMRES iterations (see also [11], [34, Chap. 4] for more details on
this in the context of fine-grid semi-Lagrangian discretizations).

Remark 1 (Explicit versus implicit-explicit coarse-grid operator) From (35), notice
that a more straightforward, and less expensive, coarse-grid operator than (38) which
still applies the truncation error correction is Ψ =

(
I +ϕ

(mδ t)
p+1 D

(p+1)
s

)
S

(mδ t)
p . How-

ever, this coarse-grid operator is unstable (i.e., ‖Ψ‖2 > 1) for sufficiently large m,
and thus cannot serve as a suitable coarse-grid operator. (The specific value of m for
which instability arises depends on problems parameters such as the CFL number,
discretization order, etc. For example, in the case where a fine-grid semi-Lagrangian
discretization is used, it can be as small as m = 4 in some cases, see [34, Sec. 4.2.4].)

Remark 2 (A perturbed, implicit method-of-lines coarse-grid operator) Considering
the coarse-grid operator (38), a natural question is why we elect to base it on a
coarse-grid semi-Lagrangian discretization rather than an implicit method-of-lines
discretization. That is, rather than (38), why not use something like(
I−ϕ

(mδ t)
p+1 D

(p+1)
s

)−1
M

(mδ t)
p,p , with ϕ

(mδ t)
p+1 not given by (37), but instead chosen so as

to take into account the truncation error of M
(mδ t)
p,p rather than S

(mδ t)
p ? Our numeri-

cal tests indicate that such a coarse-grid operator yields MGRIT convergence that is
much less satisfactory than that of (38), often leading to divergence.
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6.2 Coarse-grid operators: The multilevel setting

Following the steps used in [11, Sec. 3.4] to develop coarse operators in the multilevel
setting, we generalize the two-level coarse-grid operator (38) to any coarse level `> 0
in a multilevel hierarchy. Specifically, suppose we have a multilevel hierarchy, with
level ` ≥ 0 employing a time-step size of m`δ t. Let Φ (m`δ t) ∈ Rnx×nx be a time-
stepping operator that evolves solutions forwards in time by an amount m`δ t.9 Then,
we propose the coarse-grid operator

Φ
(m`δ t) =

(
I−ϕ

(m`δ t)
p+1 D

(p+1)
s

)−1
S

(m`δ t)
p , `= 1,2, . . . , (39)

with level-dependent correction coefficient ϕ
(m`δ t)
p+1 defined recursively by

ϕ
(m`δ t)
p+1 =


m
[
cêFD +(−c)p+1êRK

]
+(−1)p+1 fp+1

(
ε(mδ t)

)
, `= 1,

(−1)p+1
[
−m fp+1

(
ε(m

`−1δ t)
)
+ fp+1

(
ε(m

`δ t)
)]

+mϕ
(m`−1δ t)
p+1 , ` > 1.

(40)

6.3 Numerical results: Dissipative discretizations (odd p)

We now examine numerically the effectiveness of the coarse-grid operators developed
in Sections 6.1 and 6.2. Results for dissipative discretizations (p odd), in the sense of
Definition 1, are given in this section, while results for dispersive discretizations (p
even) are given next in Section 6.4.

The numerical tests in this section take the differentiation matrix D
(p+1)
s (see

(6)) in the coarse-grid operators (38) and (39) as a symmetric, second-order accurate
discretization (i.e., s = 2). For SDIRK tests, all coarse-grid linear systems arising
from the application of (38) and (39) are solved directly because the cost of doing
so is not large relative to the direct linear solves carried out during time-stepping on
the finest grid. For two-level ERK tests, the linear systems are solved directly so as
to clearly understand best-case MGRIT convergence, while for multilevel tests they
are solved approximately on all levels with GMRES. GMRES is iterated until the
`2-norm of the relative residual has decreased by at least two orders of magnitude,
or until a maximum number of iterations is reached (10 for ERK1+U1, and 20 for
ERK3+U3 and ERK5+U5). These GMRES halting criteria are chosen so that MGRIT
convergence does not deteriorate relative to when a direct solver is used; however,
they have not been fully optimized to minimize the number of GMRES iterations.

Numerical results are split across several sections. First we focus on MGRIT
convergence (Section 6.3.1), followed by parallel scaling studies (Section 6.3.2), and
then more detailed investigations of some interesting convergence results for specific
cases (Sections 6.3.3 and 6.3.4).

9 Observe the change in notation here; previously we have denoted level `= 0 and `= 1 time-stepping
operators by Φ and Ψ , respectively. That is, in terms of our earlier notation Φ ≡Φ(δ t) and Ψ ≡Φ(mδ t).
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6.3.1 MGRIT convergence study

We begin by assessing the effectiveness of the coarse-grid operators by examining
the two-level MGRIT convergence factor (17) as a function of the fine-grid CFL

Fig. 3 Dissipative discretizations: Convergence factors for method-of-lines discretizations as a function
of the fine-grid CFL number c when using the corrected semi-Lagrangian operator (38) on coarse levels.
Left: Explicit discretizations. Right: Implicit discretizations. MGRIT uses FCF-relaxation (ν = 1), and a
coarsening factor of m. Solid lines are the two-level LFA convergence factor (17). Markers are effective
MGRIT convergence factors on the finite interval t ∈ (0,T ], with circles representing two-level measure-
ments, and asterisks representing multilevel measurements. Note the different axis scales across the plots.
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number (as we did in Section 5.3 for direct coarse operators). Plots for explicit and
implicit discretizations of orders one, three, and five are given in Fig. 3. Notice that
convergence plots for explicit discretizations use the CFL fraction rather than CFL
number (Table 2).

Markers overlaid on the plots in Fig. 3 are effective MGRIT convergence factors,
as measured by numerical experiments. These experiments use the same MGRIT
setup as described in Section 5.3, except that the maximum number of iterations is
increased from 20 to 30. Circle markers are from two-level tests, and asterisks from
V-cycle tests, which coarsen until fewer than two points in time would result.

In stark contrast to the results from Section 5.3 for direct coarse-grid operators
(see Fig. 2), the modified coarse-grid operators result in convergent MGRIT solvers
for almost all combinations of coarsening factor and CFL number pictured. More-
over, the convergence rates pictured are fast in many cases relative to convergence
rates that are typically achievable for the two-grid solution of hyperbolic problems.
Analogously to our previous work in [11], when a semi-Lagrangian discretization is
used on the fine grid, there is also some overall degradation in the convergence factor
here as the order of the discretization is increased.

To help contextualize the convergence factors in Fig. 3, in Table 3 we provide the
number of MGRIT iterations to reach convergence for several example problems, and
also investigate scalability as a function of problem size. Iteration counts are given
as a function of total space-time degrees-of-freedom, which illustrate that the solver
is scalable in that the number of iterations is (approximately) constant as the mesh is
refined.

Quite remarkably, the numerical results in Fig. 3 and Table 3 show little, if any,
deterioration in the convergence rate between two-level and multilevel solves. Scal-
able V-cycle convergence for MGRIT applied to hyperbolic problems has not been
achieved except in our recent works [10,11], with [10] using an approach that is not
practical for real problems, and [11] only applying to (fine-grid) semi-Lagrangian
schemes. For example, both hyperbolic method-of-lines MGRIT studies [31,28] did
not obtain scalable convergence even when using F-cycles, which are more expensive
than V-cycles.

Table 3 Number of two-level MGRIT iterations to reduce the `2-norm of the residual by 10 orders of mag-
nitude, with corresponding V-cycle iteration counts shown in parentheses. MGRIT uses FCF-relaxation,
and the modified coarse-grid operator (39). The ERK3+U3 tests use c = 0.85cmax, and the SDIRK3+U3
tests use c = 5.

nx×nt m = 2 m = 4 m = 8 m = 16

ERK3+U3
26×28 13 (14) 12 (13) 11 (11) 9 (9)

28×210 14 (15) 13 (14) 12 (13) 11 (12)

210×212 14 (15) 14 (14) 12 (13) 12 (12)

SDIRK3+U3
26×28 28 (28) 21 (21) 15 (15) 9 (9)

28×210 29 (29) 25 (25) 20 (20) 16 (16)

210×212 30 (30) 25 (25) 21 (21) 18 (18)



Efficient multigrid reduction-in-time for method-of-lines discretizations of linear advection 23

6.3.2 Parallel results

We now consider the parallel performance of the proposed coarse-grid operators,
with strong-scaling results given in Fig. 4 for a number of problems. Note that we
parallelize only in time as we are primarily interested in temporal scalability. Problem
sizes and the coarsening strategy are chosen to be the same as those used for the
parallel tests in [11] (see the legend of Fig. 4 for specifics). The results were generated
on Ruby, a Linux cluster at Lawrence Livermore National Laboratory consisting of
1,480 compute nodes, with 56 Intel Xeon CLX-8276L cores per node.

Fig. 4 shows that speed-ups relative to sequential time-stepping are obtained
for all four problems considered. Speed-ups for the implicit methods are noticeably
larger than for the explicit methods; this difference occurs because the cost of the
coarse-grid operator relative to the cost of the finest-grid operator is less for the im-
plicit methods than the explicit methods, and, thus, they have greater potential for
speed-ups. Specifically for the explicit results, the solution of the coarse-grid linear
systems is a significant cost, particularly on deeper levels in the multigrid hierarchy,
where the required number of GMRES iterations increases. We anticipate that if the
GMRES halting criteria were optimized, or if a more specialized solver was used,
then the speed-ups would increase further. This is something we hope to address in
future work. Note also that the halting criterion of reducing the residual by 10 or-
ders of magnitude oversolves these problems with respect to discretization accuracy,
meaning that larger speed-ups would result from tuning the halting tolerance.

Fig. 4 Strong-scaling studies for MGRIT V-cycles applied to two explicit discretizations (left panel), and
two implicit discretization (right panel). Wall-clock times for sequential time-stepping on a single proces-
sor are given by the dashed lines; speed-ups over sequential time-stepping when using 1024 processes are
shown in the legends. MGRIT is iterated until the `2-norm of the residual has been reduced by 10 orders of
magnitude; the coarsening factor is m = 16 on the first level, and m = 4 on all coarser levels. All problems
use a space-time mesh with nx×nt = 212×214 degrees-of-freedom. The ERK1+U1 and ERK3+U3 tests
use CFL numbers that are 85% of their respective maxima, while the SDIRK1+U1 and SDIRK3+U3 tests
use CFL numbers of one and five, respectively.
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6.3.3 Slow convergence near the CFL limit for higher-order discretizations

For ERK3+U3 and ERK5+U5 (middle and bottom panels in the left column of Fig. 3),
MGRIT convergence degrades substantially as the fine-grid CFL number approaches
its limit. On one hand, this deterioration is not really a limitation because it can be
avoided through using the discretization at smaller CFL numbers; on the other hand,
for the fifth-order scheme this is somewhat restrictive since the deterioration sets in
at around 60% of the CFL limit.

The reason for this degradation is that, as the CFL limit is approached for these
discretizations, a set of oscillatory spatial modes emerge, with eigenvalues that ap-
proach one in magnitude. That is, the CFL limit is determined by oscillatory modes
that are otherwise relatively dissipative at smaller CFL numbers (i.e., their eigen-
values are not close to one in magnitude), as pictured in the left panel of Fig. 5
for ERK3+U3. It is the case that eigenvalues of the ideal coarse-grid operator with
magnitude close to one need to be very accurately approximated by the coarse-grid
operator, since relaxation cannot be used to damp the associated errors [10,13]. The
issue now, however, is that our coarse-grid operator is unable to accurately capture
these oscillatory modes that become important for MGRIT convergence as the CFL
limit is approached, recalling that it is designed to mimic the ideal coarse-grid op-
erator only for asymptotically smooth modes, ω ≈ 0. The impact that the CFL limit
has on MGRIT convergence in this scenario can be seen clearly in the right panel of
Fig. 5 for ERK3+U3 when m = 4.

While we do not show plots for the ERK5+U5 discretization analogous to those
in Fig. 5, note that the above discussion also applies to it. Notice, however, from
Fig. 3 that the convergence degradation for ERK5+U5 begins at much smaller CFL
fractions than for ERK3+U3. In essence, this earlier onset occurs because the coarse-
grid operator provides a worse approximation to the ideal coarse-grid operator than in

Fig. 5 MGRIT convergence degradation for ERK3+U3 near the CFL limit. Left: The difference between
unity and the eigenvalues of the discretization as a function of the spatial frequency ω for four different
CFL numbers. The value 1− |λ (ω)| marked with a gold triangle approaches zero as the CFL limit is
approached; this eigenvalue is responsible for setting the CFL limit of the discretization. Right: For m = 4,
the two-level, MGRIT convergence factor maxθ ρ

(
Ê (ω,θ)

)
from (16) as a function of ω when using the

modified coarse-grid operator (38) for the four CFL numbers used in the left panel.
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the ERK3+U3 case. It is interesting to note also that the optimized (but not practical)
coarse-grid operator we developed in [10] resulted in extremely fast convergence for
this ERK5+U5 discretization, requiring only three or four iterations to converge for
the tests considered there using c = 0.85cmax (see right-hand side of [10, Tab. 3]).
Unlike (38), which only mimics the ideal coarse-grid operator for non-dissipative
modes that are asymptotically smooth, the eigenvalue-matching optimization strat-
egy in [10] aims to ensure that the coarse-grid operator mimics the ideal coarse-grid
operator over all non-dissipative modes, and not only those which are smooth, which
is likely why it works at higher CFL numbers than (38).

Since a set of isolated modes are responsible for causing this significant deterio-
ration in convergence, it is conceivable that wrapping MGRIT with an outer GMRES
iteration may be able to restore fast MGRIT convergence when close to the CFL limit.
This approach would be analogous to the efforts in [37] to treat smooth characteristic
components in the steady state, spatial multigrid setting.

6.3.4 F- versus FCF-relaxation

Up until this point we have used FCF-relaxation in all of our numerical tests. In our
previous works [10,11] we found that FCF-relaxation sometimes resulted in substan-
tial improvements in convergence compared to F-relaxation. This trend also carries
over to the setting explored in this paper, as we now detail.

Fig. 6 shows convergence factor plots just as in Fig. 3 with the key distinction
that these correspond to F-relaxation and not FCF-relaxation. (For simplicity, we
omit numerically measured convergence factors from Fig. 6, and plots for the fifth-
order discretizations). Note that the vertical axes of the plots in Fig. 6 are not all the
same as those in Fig. 3. It is immediately clear that FCF-relaxation provides substan-
tial improvements in convergence compared to F-relaxation. For example, with F-
relaxation, there are intervals of CFL numbers for the third-order discretizations for
which the convergence factor is larger than unity, while with FCF-relaxation those
same convergence factors are bounded uniformly by 0.6.

Despite the benefits we show above for FCF-relaxation, other literature has re-
ported little or no benefit for advection-dominated problems when using direct coarse-
grid operators [12,28]. Given our analysis for direct coarse-grid operators in Sec-
tion 5, and specifically Theorem 1, this is not surprising. That is, in Theorem 1 we
showed that a direct coarse-grid operator provides an inadequate coarse-grid correc-
tion of asymptotically smooth characteristic components, which gives rise to an un-
satisfactorily large lower bound on the convergence factor, independent of the number
ν of CF-relaxations (recall that asymptotically smooth characteristic components are
unaffected by relaxation). Therefore, if the overall two-grid convergence rate is de-
termined by the convergence of smooth characteristic components, then no improve-
ment in convergence can be obtained by adding relaxation. In contrast, the reason
that additional relaxation benefits the coarse-grid operators presented in this paper
is because the two-grid convergence rate of MGRIT is no longer controlled by the
coarse-grid correction of the smoothest components, due to the fact that our coarse-
grid operator is carefully designed to properly treat these modes. Finally, we remark
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Fig. 6 Dissipative discretizations with F-relaxation (ν = 0): Convergence factors predicted by the two-
level LFA convergence factor (17) for method-of-lines discretizations as a function of the fine-grid CFL
number c when using the corrected semi-Lagrangian discretization (38) on the coarse grid. Left: Explicit
discretizations. Right: implicit discretizations. MGRIT uses a coarsening factor of m. Note the different
axis scales across the plots.

that stronger relaxation than FCF (i.e., ν ≥ 2) does not appear to lead to any signifi-
cant improvement over FCF-relaxation in our tests.

6.4 Numerical results: Dispersive discretizations (even p)

In this section, we investigate the effectiveness of the coarse-grid operators for disper-
sive discretizations, in the sense of Definition 1. As in [11], we find that our coarse-
grid approach does not result in effective MGRIT methods for schemes with even p.
While we do not yet fully understand why this is the case, it is interesting to look at
some results in detail.

Fig. 7 presents convergence factor plots as a function of CFL number for second-
and fourth-order discretizations. MGRIT tests here use the same setup as described
in Section 6.3.1. Unfortunately, convergence is substantially worse than in the case
of dissipative discretizations, see Fig. 3. Overall, the convergence factors are much
larger than in the dissipative case; in particular, convergence factors surpass one at
small CFL numbers for the implicit discretizations, despite fast convergence of im-
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Fig. 7 Dispersive discretizations: Convergence factors for method-of-lines discretizations as a function
of the fine-grid CFL number c when using the modified semi-Lagrangian discretization (38) on the coarse
grid. Left: Explicit discretizations. Right: Implicit discretizations. MGRIT uses FCF-relaxation (ν = 1),
and a coarsening factor of m. Solid lines are the two-level LFA convergence factor (17). Circle markers
are effective two-grid MGRIT convergence factors on the finite interval t ∈ (0,T ]. Note the different axis
scales across the plots.

plicit discretizations in the dissipative case. Deterioration in convergence for the ex-
plicit schemes as the CFL limit is approached occurs for the same reasons as de-
scribed in Section 6.3.3 for the dissipative discretizations. Compared to the dissipa-
tive schemes in Fig. 3, the two-level LFA convergence factors in Fig. 7 do not seem
to provide quite as sharp estimates of the effective convergence factors; however, at
certain CFL numbers, our numerical tests show some small iteration growth as the
mesh is refined, so the estimate may become sharp in the limit of a very fine mesh.

In these tests, the finite-difference matrix D
(p+1)
s (see (6)) in the coarse-grid op-

erator (38) is taken as a first-order accurate discretization (i.e., s = 1), with a one-
point bias to the left. We use this choice because we find that it gives the best results
overall; for example, using skew-symmetric, second-order-accurate discretizations
instead lead to catastrophically worse two-level convergence factors that exceed unity
at all CFL numbers considered in Fig. 7.

Notice in Fig. 7 that there are discontinuities in the convergence factor as the
CFL number varies, which often results in dramatic changes; for example, when m =
2, the two-level convergence factor of ERK4+U4 (bottom left panel of Fig. 7) at
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c/cmax = 0.24− is ≈ 0.15, and at c/cmax = 0.24+ it is ≈ 0.84. These discontinuities
arise because of discontinuous shifts in the stencil of the coarse-grid semi-Lagrangian
discretization S

(mδ t)
p as the coarse-grid CFL number mc is varied.

In [11], for the case of dispersive fine-grid semi-Lagrangian discretizations (even
p), we similarly found that modified coarse-grid operators akin to (38) did not yield
robust two-grid convergence, with a convergence factor larger than unity for most
CFL numbers. So, from this point of view, it is not surprising that the results in
Fig. 7 are worse than in the dissipative cases shown in Fig. 3. For this reason, we
do not consider multilevel tests, and we use a direct solver for the linear systems
arising during the application of the coarse-grid operator (38) so as to show best-case
MGRIT convergence. Moreover, we do not consider parallel scaling studies as we
did for dissipative discretizations.

7 Conclusions and future outlook

We have considered the MGRIT solution of constant-coefficient linear advection
problems discretized with method-of-lines schemes that use upwind finite differences
in space and Runge-Kutta methods in time. Within the parallel-in-time community,
the efficient solution of advection-dominated problems is known to be notoriously
difficult, even for such constant-coefficient advection problems. For example, besides
our previous work [10], which relied on non-practical computations, we know of no
other multigrid-in-time methods that can achieve fast convergence for this class of
problems.

In this paper, we have leveraged and built on our earlier works of [11,13]. Specif-
ically, using the analysis framework we developed in [13], we have proved that di-
rectly discretized method-of-lines coarse-grid operators—standard MGRIT coarse-
grid operators—fail to provide robust MGRIT convergence with respect to discretiza-
tion and solver parameters due, at least in part, to their providing an inadequate
coarse-grid correction of specific smooth Fourier modes known as characteristic com-
ponents. Based on this, we developed modified semi-Lagrangian coarse-grid opera-
tors similar to those we developed in [11] for fine-grid semi-Lagrangian discretiza-
tions. Specifically, the coarse-grid operators we develop here consist of first applying
a semi-Lagrangian discretization followed by a correction term that is carefully de-
signed to alter the truncation error of the resultant operator so that it better approx-
imates that of the ideal coarse-grid operator. We have shown that these coarse-grid
operators are effective for many method-of-lines discretizations of the linear advec-
tion problem.

This work has considered finite-difference spatial discretizations; however, the
approach should, in principle, be extendible to other spatial discretizations such as
finite volume (FV) and discontinuous Galerkin (DG) methods. This would be most
feasible using (stable) semi-Lagrangian coarse-grid discretizations that use the same
type of spatial discretization as the fine grid, and would require error estimates linking
the fine- and coarse-grid discretizations. See [32] and [38] (and references therein)
for FV- and DG-based semi-Lagrangian schemes, respectively.



Efficient multigrid reduction-in-time for method-of-lines discretizations of linear advection 29

Despite the progress here, further substantial developments are still required be-
fore these techniques can be used to speedup simulations of advection problems in
real-world applications. A first step is the extension of the coarse-grid operators de-
veloped here to variable-coefficient linear advection problems. To this end, we are
currently considering heuristically combining the principles developed in this paper
and further approximation techniques including optimization. We are also exploring
extensions to nonlinear hyperbolic PDEs through the use of linearization strategies.

A Proof of Lemma 3: Method-of-lines truncation error

Proof The proof works by substituting the exact PDE solution into a single step of the method-of-lines
scheme (14); in other words, we evaluate uuu(tn+1)−M

(δ t)
p,q uuu(tn). To do this, we require the exact PDE

solution uuu(t), and also an expression relating uuu(tn) to uuu(tn+1).
At any (x, t), the exact solution of PDE (1) satisfies

u(x, t) = exp
(
−αt

∂

∂x

)
u(x,0), (41)

which can be seen by differentiating both sides of this expression with respect to t. Using (41) and consid-
ering u(x, tn)/u(x, tn+1), we find that

u(x, tn) = exp
(

αδ t
∂

∂x

)
u(x, tn+1). (42)

Now we replace the spatial partial derivative on the right-hand side of this expression using the finite-
difference approximation Lp. Using the truncation error estimate of Lp from Lemma 2, we may write[

exp
(

αδ t
∂

∂x

)
u(x, tn+1)

]∣∣∣∣
xi

=

(
exp

(
αδ t

[
Lp

h
+ êFD

D
(p+1)
s

h
+O(hp+1)

])
uuu(tn+1)

)
i

.

(43)

Using (42) and (43), we see that when the exact PDE solution is substituted into the method-of-lines update
(14) it produces the residual

uuu(tn+1)−M
(δ t)
p,q uuu(tn)

=

{
I−M

(δ t)
p,q exp

(
αδ t

[
Lp

h
+ êFD

D
(p+1)
s

h
+O(hp+1)

])}
uuu(tn+1).

(44)

We now simplify the right-hand side of this equation.

First we simplify the method-of-lines time-stepping operator defined in (14), M (δ t)
p,q = Rq

(
− αδ tLp

h

)
.

Using the expansion of Rq given in (12), for any sufficiently smooth vector vvv ∈ Rnx , we have

M
(δ t)
p,q vvv = exp

(
−αδ t

Lp

h

)
vvv+ êRK

(
−αδ t

Lp

h

)q+1

vvv+O
(

δ tq+2
)
, (45)

= exp
(
−αδ t

Lp

h

)
vvv+ êRK(−αδ t)q+1 D

(q+1)
s

hq+1 vvv+O
(

hp
δ tq+1,δ tq+2

)
. (46)

Note that this second expression follows from the fact that
(Lp

h

)q+1vvv is a pth-order approximation to

the q+ 1st derivative of vvv, and, thus, we may write
(Lp

h

)q+1vvv = D
(q+1)
s

hq+1 vvv+O(h) by recalling that the
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approximation D
(q+1)
s

hq+1 must be at least first-order accurate (i.e., s≥ 1 in (6)). Plugging (46) into the right-
hand side of (44) and simplifying gives (omitting the uuu(tn+1))

I−M
(δ t)
p,q exp

(
αδ t

[
Lp

h
+ êFD

D
(p+1)
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h
+O(hp+1)

])
(47)
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[
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)
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(q+1)
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(
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h
+O(hp+1)

])
,

(48)

= I− exp

(
αδ t

[
êFD

D
(p+1)
s

h
+O(hp+1)

])

−

{
êRK(−αδ t)q+1 D

(q+1)
s

hq+1 +O
(

hδ tq+1,δ tq+2
)}{

I +O(δ t)
}
,

(49)

=−αδ t
h

êFDhp+1 D
(p+1)
s

hp+1

− êRK

(
−αδ t

h

)q+1

hq+1 D
(q+1)
s

hq+1 +O
(

hp+1
δ t,hδ tq+1,δ tq+2

)
.

(50)

Plugging (50) into the right-hand side of (44) gives the claim (15). ut

B Proof of Lemma 4: Ideal coarse-grid operator perturbation

Proof We begin by developing an estimate for the action of the ideal coarse-grid operator. Rearranging
the method-of-lines truncation error result (15) from Lemma 3 gives

M
(δ t)
p,p uuu(tn) = O

(
hp+1

δ t,hδ t p+1,δ t p+2
)
+
(

I +
[
cêFD +(−c)p+1êRK

]
D

(p+1)
s

)
uuu(tn+1). (51)

Now multiply both sides of this expression by M
(δ t)
p,p . To simplify the result, first use the fact that M

(δ t)
p,p

commutes with D
(p+1)
s (they are both circulant matrices), and then use (51) to estimate M

(δ t)
p,p uuu(tn+1).

This gives

M
(δ t)
p,p M

(δ t)
p,p uuu(tn) =

(
I +
[
cêFD +(−c)p+1êRK

]
D

(p+1)
s

)
M

(δ t)
p,p uuu(tn+1) (52)

+O
(

hp+1
δ t,hδ t p+1,δ t p+2

)
,

=
(

I +
[
cêFD +(−c)p+1êRK

]
D

(p+1)
s

)2
uuu(tn+2)+O

(
hp+1

δ t,hδ t p+1,δ t p+2
)
, (53)

=
(

I +2
[
cêFD +(−c)p+1êRK

]
D

(p+1)
s

)
uuu(tn+2)+O

(
h2(p+1),hp+1

δ t,hδ t p+1,δ t p+2
)
. (54)

Note that (54) follows by discarding the highest-order term when expanding the square, since
D

(p+1)
s D

(p+1)
s uuu(tn+2) =O(h2(p+1)). Applying M

(δ t)
p,p to both sides of (54) a further m−2 times, each time

applying the above arguments, by induction we arrive at the following estimate for the action of the ideal
coarse-grid operator[

m−1

∏
k=0

M
(δ t)
p,p

]
uuu(tn) =Ψidealuuu(tn) = O

(
h2(p+1),hp+1

δ t,hδ t p+1,δ t p+2
)

(55)

+
(

I +m
[
cêFD +(−c)p+1êRK

]
D

(p+1)
s

)
uuu(tn+m).
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Noticing the uuu(tn+m) on the right-hand side of (55), we seek to rewrite this in terms of the action of the
semi-Lagrangian operator, S (mδ t)

p . To this end, rewriting the semi-Lagrangian truncation error estimate (4)
from Lemma 1 we have(

I− (−h)p+1 fp+1
(
ε
(δ t))D (p+1)

s

)
uuu(tn+m) = S

(δ t)
p uuu(tn)+O(hp+2). (56)

Rearranging for uuu(tn+m), employing a geometric expansion valid for small h, and then using the fact that
uuu(tn) is smooth, we have

uuu(tn+m) =
(

I− (−h)p+1 fp+1
(
ε
(δ t))D (p+1)

s

)−1
S

(δ t)
p uuu(tn)+O(hp+2), (57)

=
(

I +(−h)p+1 fp+1
(
ε
(δ t))D (p+1)

s +
[
(−h)p+1 fp+1

(
ε
(δ t))D (p+1)

s
]2 (58)

+O
([

(−h)p+1 fp+1
(
ε
(δ t))D (p+1)

s
]3))

S
(δ t)
p uuu(tn)+O(hp+2),

=
(

I +(−h)p+1 fp+1
(
ε
(δ t))D (p+1)

s

)
S

(δ t)
p uuu(tn)+O(hp+2). (59)

Next, plug the expression for uuu(tn+m) given by (59) into the right-hand side of (55) to give

Ψidealuuu(tn) =
(

I +m
[
cêFD +(−c)p+1êRK

]
D

(p+1)
s

)
(60)

×
(

I +(−h)p+1 fp+1
(
ε
(δ t))D (p+1)

s

)
S

(δ t)
p uuu(tn)+O

(
hp+2,hp+1

δ t,hδ t p+1,δ t p+2
)
,

=
(

I +
[
mcêFD +m(−c)p+1êRK +(−h)p+1 fp+1

(
ε
(δ t))]D (p+1)

s

)
S

(δ t)
p uuu(tn) (61)

+O
(

hp+2,hp+1
δ t,hδ t p+1,δ t p+2

)
.

This proves the first claim (35) of the lemma, noting that the constant multiplying D
(p+1)
s in (61) is indeed

ϕ
(mδ t)
p+1 given in (37).

The second claim (36) of the lemma follows from (35) by a geometric expansion akin to that used in
(59),

(
I−ϕ

(mδ t)
p+1 D

(p+1)
s

)−1
S

(mδ t)
p uuu(tn) =

(
I +ϕ

(mδ t)
p+1 D

(p+1)
s

)
S

(mδ t)
p uuu(tn)+O(h2(p+1)). ut
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