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Abstract. Non-overlapping Schwarz methods with generalized Robin transmission conditions
were originally introduced by B. Després for time-harmonic wave propagation problems and
have largely developed over the past thirty years. The aim of the paper is to provide both a
review of the available formulations and methods as well as a consistent theory applicable to
more general cases than studied until to date. An abstract variational framework is provided
reformulating the original problem by the well-known form involving a scattering operator and
an interface exchange operator, and the equivalence between the formulations is discussed thor-
oughly. The framework applies to a series of wave propagation problems throughout the de
Rham complex, such as the scalar Helmholtz equation, Maxwell’s equations, a dual formulation
of the Helmholtz equation in H(div), as well as any conforming finite element discretization
thereof, and it applies also to coercive problems. Three convergence results are shown. The first
one (using compactness) and the second one (based on absorbtion) generalize Després’ early
findings and apply as well to the FETI-2LM formulation (a discrete method introduced by de
La Bourdonnaye, Farhat, Macedo, Magoulés, and Roux). The third result, oriented on the
work by Collino, Ghanemi, and Joly, establishes a convergence rate and covers cases with cross
points, while not requiring any regularity of the solution. The key ingredient is a global inter-
face exchange operator, proposed originally by X. Claeys and further developed by Claeys and
Parolin, here worked out in full generality. The third type of convergence theory is applicable at
the discrete level as well, where the exchange operator is allowed to be even local. The resulting
scheme can be viewed as a generalization of the 2-Lagrange-multiplier method introduced by
S. Loisel, and connections are drawn to another technique proposed by Gander and Santugini.

1. Introduction

Domain decomposition (DD) methods [90, 86, 93, 71, 34] can be classified according to their
formulation complexity (see Table 1). In the simplest case, such as for the overlapping Schwarz
method, one has a preconditioner (based on domain decomposition) for the original standard
finite element system. The Neumann-Neumann and the BDDC methods are preconditioners
for the Schur complement formulation, eliminating interior degrees of freedom (dofs) that are
not associated with the interface. In dual iterative substructuring, such as for classical FETI
and FETI-DP methods, the original problem is reformulated even more, involving function
spaces that allow discontinuities across subdomain interfaces. At such a stage, the domain
decomposition plays an essential role in the formulation, even before any preconditioning.

Schwarz methods with Robin transmission conditions, often found under the name optimized
Schwarz methods, are classically formulated as an iterative process involving spaces with the same
discontinuity property. The transmission conditions, making the solution and its associated flux
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overlapping primal dual non-overlapping
additive Schwarz iterative substructuring iterative substructuring Robin-Schwarz

Au = f SuΓ = g Fλ = d (I −XS)λ = d

Table 1. Examples of some DD methods and their underlying (re-)formulation.
Increasing formulation complexity when moving to the right.
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2 C. PECHSTEIN

continuous, are only reached at convergence. These Robin-Schwarz methods are among the most
successful DD methods for wave propagation problems, and it is a major goal of this article
to provide a fundamental understanding of the underlying formulation, the iterative process,
and the convergence theory—in the continuous as well as in the discrete case. There will be
a certain emphasis on wave propagation problems, but the framework includes the coercive
(positive definite) case.

1.1. History and literature review. The first non-overlapping Schwarz methods with Robin
transmission conditions were independently proposed and analyzed around 1990 by Pierre-Louis
Lions [65] for the Laplace equation and by Bruno Després for the Helmholtz equation [23, 24, 25]
(early results on the time-harmonic Maxwell equations can be found in [25, 26]). There, the
original variational problem is reformulated using a decomposition of the domain into non-
overlapping subdomains, where the coupling across the interfaces happens via impedance traces
(classical Robin traces, instead of Dirichlet and Neumann traces, see [93, 34] and references
therein). The proposed scheme can be seen as a fixed point iteration and was shown to converge.
Lions’ and Després’ original proofs both use compactness arguments and energy estimates, in
the Helmholtz case based on the novel concept of pseudo-energy. Another milestone was the
classical paper by Collino, Ghanemi, and Joly [19] from 2000, proving that (i) the damped
Schwarz iteration converges and (ii) if there are no junctions (i.e., any interface between two
subdomains is either a closed manifold or empty) and if special impedance operators are used
(leading to generalized Robin transmission conditions), then the convergence is geometric, i.e.,
the error in the k-th iteration can be bounded by ρk compared to the initial error, with a
convergence rate ρ < 1. Recently, this kind of convergence result was investigated in more
depth in [21, 20, 81] using non-local impedance operators based on integral operators with
singular kernels, see also the early paper [18]. For an early work using a local but non-trivial
impedance operator based on the surface Laplace-Beltrami operator see [85].

While in [65, 25, 19], the method was analyzed on the continuous level involving Sobolev
spaces, at the very end of the 20th century a huge development started around computational
methods of Schwarz type using finite elements. This development was greatly influenced by
the finite element tearing and interconnecting (FETI) method, introduced by Farhat and Roux
for static structural mechanics [43, 44]. Two early approaches for the Helmholtz equation are
the FETI-H method [42, 39, 40], introduced by Farhat, Macedo, Tezaur, and Lesoinne, and
the FETI-2LM method [22, 41, 40] by de La Bourdonnaye, Farhat, Macedo, Magoulès, and
Roux. Both methods use Robin transmission conditions on the discrete level as well as Lagrange
multipliers in addition to the separated subdomain degrees of freedom (dof). As the article at
hand will demonstrate, the formulation behind FETI-2LM can be seen as one out of many
possible discrete counterparts of Després’ original method, and it has a broader spectrum of
applicability than the FETI-H method. In the early works on FETI-H and FETI-2LM, the focus
lay rather on the efficient parallel computation than on the analysis. It is worth mentioning that
the reformulated problem was typically solved using Krylov acceleration. In the long run, due
to the complex symmetric (but non-Hermitian) structure of the system matrix, GMRES became
the iterative method of choice. Using carefully chosen “coarse” modes (typically plane waves
on the subdomains, inspired from a careful spectral analysis of the two-subdomain case), it was
demonstrated numerically that two-level schemes can lead to rather fast convergence. Although
such two-level approaches have been a very important topic until today (as of 2021), they are
not pursued in the paper at hand.

In 1994, Nataf, Rogier, and de Sturler [77] showed for an overlapping Schwarz method that
it is possible to construct optimal transmission conditions involving non-local operators (e.g.,
Dirichlet-to-Neumann maps) such that a Krylov method would converge after N steps, where
N subdomains cover the original domain in a strip-like fashion. Starting with Caroline Japhet
[61], a huge development began following the paradigm of approximating the optimal non-local
operators by parametrized local ones and then optimizing the parameters with respect to the rate
of convergence, typically on the continuous level, often the PDE-level, using Fourier analysis for
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Figure 1. Left: Example of subdomain decomposition: • global interface dofs,
◦ remaining dofs. The dof at the center is a cross point dof and shared by four
subdomains. Middle/right: Illustration of Lagrange multiplier layout for FETI-
2LM (middle) and Loisel’s method (right): ◦ local subdomain dofs, • dofs on
local trace space, → each arrow tip indicates one Lagrange multiplier.

the case of two subdomains sharing a common face (often two half-spaces). For a comprehensive
survey on optimized Schwarz methods see [45, 50], for the case of wave propagation see in
particular [31, 32, 33, 46, 48, 1].

Around 2005, more work appeared on non-overlapping (optimized) Robin-Schwarz methods
in the discrete case, with special emphasis on cross points, i.e., points shared by more than
two subdomains. Two approaches were inspired from the FETI-DP method [93, Ch. 6]. The
method by Bendali and Boubendir [3] follows Després’ method, but it maintains continuity of
all dofs shared by more than two subdomains and can thus be regarded as a dual-primal version
of FETI-2LM. The FETI-DPH method [38] is a generalization of the FETI-H method, keeping
continuity of certain dofs, e.g., at subdomain vertices, and was demonstrated numerically to be
very efficient with regard to the problem size, the number of subdomains, and the wave number.

In the FETI-2LM method [22, 41, 40], each dof on a facet (a subdomain interface of codimen-
sion one, shared by two subdomains) generates two Lagrange multipliers. For a cross point dof
in 2D shared by four subdomains, this means that due to the four facets, there are 8 Lagrange
multipliers, see Fig. 1 (left, middle); details to be shown in Sect. 3.2. A different paradigm was
introduced by Sébastien Loisel [66] (therein called 2-Lagrange multiplier method and worked out
for a finite element discretization of the Laplace equation, later for heterogeneous diffusion [67]).
For this method, the number of Lagrange multipliers associated with an original dof is equal to
the number of sharing subdomains (in the case above, four instead of eight, see Fig. 1 (right).
This is achieved using a projection operator for each group of separated subdomain dofs that
simply averages the values using the reciprocal multiplicity as weights. Such averaging opera-
tors have been used early on in substructuring methods, e.g., the balancing Neumann-Neumann
methods [68, 69], and play a principal role in FETI and BDDC methods with heterogeneous
coefficients (see [93, 82] and references therein). For cross point dofs the FETI-2LM leads to
redundancy (the Lagrange multipliers for the solution are not unique), whereas Loisel’s method
is a non-redundant formulation. Apart from this difference, both methods are oriented on De-
sprés’ method and iterate on the Lagrange multipliers. Gander and Kwok [47] investigated the
choice of the Robin parameter at cross points in order to obtain a convergence order that is
comparable to the case without cross points.

From another perspective, discrete non-overlapping Robin-Schwarz methods for cross points
were investigated by Gander and Santugini [49] (therein for the finite element discretization of a
positive definite problem). The authors propose two variants: discrete optimized Schwarz with
auxiliary variables and complete communication. As we shall see in the paper at hand, the first
variant follows the FETI-2LM paradigm, whereas the second variant is closely related to Loisel’s
method. As a main (but minor) difference, FETI-2LM and Loisel’s method iterate purely on
the Lagrange multipliers, whereas the methods in [49] iterate on the primal subdomain dofs or
on both sets of variables.
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For standard nodal H1-conforming finite elements, a geometric cross point always leads to
a dof shared by more than two subdomains. However, this is not true for every discretization.
Monk, Sinwel, and Schöberl [76] consider a dual formulation of the Helmholtz equation set up in
H(div) discretized by Raviart-Thomas elements in 2D or Nédélec face elements in 3D. As every
dof is face-based, from a discrete perspective there are no “cross points”, to be more precise,
no cross point dofs and no redundancy. The authors of [76] explore connections between the
global finite element formulation, the ultra-weak variational formulation (UWVF) introduced
by Cessenant and Després [7], and a novel hybridized formulation (which can be interpreted
as a hybrid discontinuous Galerkin (DG) scheme but is equivalent to the original formulation).
The latter technique was further investigated and extended to a discretization scheme for the
time-harmonic Maxwell equations by M. Huber, A. Pechstein (née Sinwel), and J. Schöberl [60],
see also Huber’s doctoral thesis [59].

A further contribution from the engineering community for electromagnetic wave propaga-
tion is the FETI-2λ method proposed by Vouvakis [94] (see also [97, 63, 96, 95]) and further
investigated numerically by Paraschos [80]. The basic scheme follows again the FETI-2LM par-
adigm but the authors focus on non-matching meshes. Related FETI-type schemes involving
(generalized) Robin interface conditions can also be found in [84, 87].

Non-overlapping domain decompositions naturally involve broken spaces, in particular, bro-
ken trace spaces that also appear in boundary integral equations [72, 91]. Indeed, many of the
techniques above were applied to integral equations or boundary element techniques. A bound-
ary element counterpart to FETI-H, applied both for the Helmholtz as well as the time-harmonic
Maxwell equations, was introduced by Windisch [98]. Independently, local multi-trace methods
were introduced by Hiptmair and Jerez-Hanckes [56] and global multi-trace methods by Claeys
and Hiptmair [14, 13], see also [9, 15, 16, 57]. These formulations involve layer potentials or
boundary integral operators, often make use of Caldéron identities, and can be put in to the
framework of operator preconditioning [54]. Furthermore, they use exchange operators between
subdomain interfaces, in some cases, similar to those from Després’ method. A connection
between Schwarz methods and local multi-trace formulations was pointed out in [12].

Motivated from the techniques of multi-trace formulations, Xavier Claeys [10] recently sug-
gested an interface exchange operator that is completely different to the one used so far which
simply swaps pairs of traces between subdomains. The novel exchange operator is non-local in
the sense that it involves a projection step where a function from the global multi-trace space is
projected to the single-trace space. Albeit this operator is computationally equivalent to solving
a global, coercive (positive definite) problem, the analysis in [10] shows geometric convergence,
even for the case of cross points, and does not need any regularity assumptions anymore. In a
joint work by X. Claeys and E. Parolin [17], geometric convergence was also shown for a dis-
cretization of the Helmholtz equation, where the rate of convergence is independent of the mesh
parameter, again in presence of cross points. Parolin’s doctoral thesis [81] includes the case of
Maxwell’s equations as well.

Lastly, it should be mentioned that the original purpose of Robin boundary conditions is the
approximation of the exterior PDE, and there exist improved ways to do so, which leads to a
more goal-oriented construction of impedance operators. Recently, quite some work has appeared
[4, 27, 28, 36, 73, 74, 92] that use such generalized impedance boundary conditions (GIBC), high
order absorbing boundary conditions (HABC), or high order transmission conditions (HOTC)
for domain decomposition methods, in many cases also considering cross points.

1.2. Purpose and structure of this work. The paper at hand provides an abstract theo-
retical framework for non-overlapping Schwarz methods with Robin transmission conditions.
Whereas Parolin [81] has already presented a high amount of abstraction by treating the
Helmholtz and Maxwell equations in a common framework, the theory in here goes one step
further and works in general Hilbert spaces with wave equations in operator or matrix form. Not
only does this improve the generality of the theory substantially, but makes visible the essential
properties. Using a convenient and compact notation, the continuous and the discrete case can
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be handled to a large extent uniformly. Instead of using the PDE level or the variational level,
the whole description is operator-based, which is close to an algorithm-oriented matrix-based
notation, but more precise and independent of any chosen bases. Furthermore, connections are
drawn between many existing variants of Robin-Schwarz, in particular Després’ method, the
FETI-2LM method [22, 41, 40], Loisel’s method [66], and the two variants proposed by Gander
and Santugini [49]. The convergence analysis is provided for three cases:

(i) In the general case, convergence is guaranteed, but with no information on the speed. In
the continuous case, compactness and a regularity condition are required; in the discrete
case, the Lagrange multipliers may be non-unique.

(ii) Assuming strong absorbtion in the problem, the compactness assumption can be dropped.
(iii) In a special case one obtains geometric convergence. The theory covers the classical

situation where no cross points are present [19, Sect. 4.2] as well as Claeys’ choice of a
global interface exchange operator in the presence of cross points, cf. [10, 17]. It is also
shown how this operator can be localized in the discrete case.

Another achievement of the paper at hand is the precise display of the set of equations behind
many methods that are often formulated as an iterative process, and the clarification under
which conditions these reformulations are equivalent to the original problem. The theoretical
framework is built upon a minimal set of assumptions that play the role of axioms and provide
more generality than in previous publications, much in the spirit of the abstract overlapping
Schwarz theory [93, Ch. 2]. As a side product, the paper explains many methods and variants
using the same compact notation, which allows to see more clearly the differences and common
building blocks. In addition to the Robin-Schwarz variants, some related techniques are included
that involve Robin transmission conditions as well. The author hopes that this piece of work
will serve as a good reference for other scientists and be of benefit for future developments in
the field.

The remainder of this paper is organized as follows. Section 2 introduces the global problem,
some abstract domain decomposition, and a fundamental reformulation in terms of traces. Sec-
tion 3 examines various choices of trace operators based on facets. On the one hand, this section
is very technical and may initially bypassed. On the other hand, it will be very helpful for
understanding the different variants of Robin-Schwarz methods proposed in the literature. Sec-
tion 4 introduces a formulation using interface fluxes and discusses thoroughly the equivalence
with the original formulation. Section 5 deals with reformulations involving generalized Robin
transmission conditions. One particular formulation is of fixed point form and involves only one
set of impedance traces for all subdomains. At this point, some of the prominent methods are
classified. In Section 6, the convergence of the associated fixed point method is analyzed in the
general case, the absorbtive case, and in the special case (iii) described above. Section 7 shows
how to construct the trace operators, spaces, and the interface exchange operator depending on
a fixed impedance operator (with localization treated in Sect. 7.1), such that the assumptions
leading to the stronger convergence result are fulfilled. Some related formulations that involve
transmission conditions of Robin kind are briefly discussed in Sect. 8, and some technical results
are contained in an appendix.

2. Fundamental non-overlapping domain decomposition formulations

Before the development of the general framework (starting with Sect. 2.2), let us begin with
a closer look at Després’ original method and fix some basic notation.

2.1. Motivation. In his seminal thesis [25], Bruno Després considered the Helmholtz equation
in a bounded domain with a Robin boundary condition,

−∆u− κ2u = f in Ω ⊂ Rd,

iκu+ ∂
∂νu = 0 on ∂Ω,

(2.1)
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where u is the unknown phasor1 of a time-harmonic field U(x, t) = u(x)eiωt that solves the
wave equation ∂2U/∂t2 − c2∆U = F , with c being the speed of sound, ω the angular frequency,
and κ = ω/c > 0 denoting the wave number, f ∈ L2(Ω) is a given source term such that
F (x, t) = f(x)eiωt, and ν is the outward unit normal on ∂Ω. The absorbing boundary condition
(ABC) is an approximation of a radiation condition at infinity: if u is a plane wave propagating
in direction ±ν, then u can only be outgoing with respect to Ω.

For a non-overlapping decomposition Ω =
⋃N
i=1 Ωi with Ωi ∩ Ωj = ∅, i 6= j and for a suitably

chosen initial guess (u
(0)
i )Ni=1, the method proposed by Després is as follows. In each iteration

(index n = 0, 1, . . .), a local Helmholtz problem is solved on each subdomain Ωi, where the Robin
boundary data comes from the previous step and from the neighboring subdomains:

−∆u
(n+1)
i − κ2u

(n+1)
i = f in Ωi ,

iκu
(n+1)
i + ∂

∂νi
u

(n+1)
i = iκu

(n)
j −

∂
∂νj
u

(n)
j on Σij := ∂Ωi ∩ ∂Ωj ,

iκu
(n+1)
i + ∂

∂νi
u

(n+1)
i = 0 on ∂Ωi ∩ ∂Ω,

(2.2)

where νi is the unit normal on ∂Ωi, outward w.r.t. Ωi. Després showed that the iterates converge
to the solution of the global problem (2.1) subdomain-wise in H1 (under assumptions that
will be discussed below). The particular choice of this method is motivated by the following
characteristics:

(i) The global problem can be solved iteratively by solving a sequence of local problems
that can be solved independently of each other, i.e. in parallel.

(ii) The communication between the subdomains is only across the interfaces Σij of dimen-
sion (d− 1).

(iii) The local problems are Robin boundary value problems and as such free of internal
resonances (regardless of the wave number κ).

As it is well known, the solution u of (2.1) satisfies the Dirichlet and Neumann transmission
conditions

ui = uj on Σij ,

∂
∂νi
ui = − ∂

∂νj
uj on Σij ,

(2.3)

where ui denotes the restriction of u to the subdomain Ωi. Linear combination of these conditions
yields the Robin transmission conditions

iκui ± ∂
∂νi
ui = iκuj ∓ ∂

∂νj
uj on Σij ,(2.4)

from which we eventually see that the solution of (2.1) is a fixed point of (2.2). Here, a special
role is played by the two impedance traces iκui ± ∂

∂νi
ui of ui. To get a feel for the meaning of

these traces, suppose that Σij is a planar face in 3D or a straight interface line in 2D such that
the normal vector νi is constant and (νi · x) is constant for x ∈ Σij . If ui is a combination of an

incoming and an outgoing wave with respect to Ωi, i.e., ui(x) = cine
iκ(νi·x) + coute

−iκ(νi·x), then

iκui + ∂
∂νi
ui = 2iκcine

iκ(νi·x),

iκui − ∂
∂νi
ui = 2iκcoute

−iκ(νi·x),
(2.5)

i.e., the impedance trace iκui + ∂
∂νi
ui is essentially cin, the amplitude of the incoming wave,

whereas the impedance trace iκui− ∂
∂νi
ui is essentially cout, the amplitude of the outgoing wave.

For the Laplace equation, the same methodology was developed independently by Pierre-Louis
Lions [65]: Setting κ = 0 in the PDEs of (2.1) and (2.2), replacing the outer boundary condition
by a more suitable one (e.g. a homogeneous Dirichlet condition), and replacing the imaginary

1In a large part of literature, U(x, t) = u(x)e−iωt is used (see e.g., [17, 75], opposed to [19, 48]), which would
lead to a replacement of i by −i throughout this paper.
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factor iκ in the transmission conditions of (2.2) by a positive factor γ > 0, one obtains the
method proposed by Lions, which works with the (real-valued) Robin traces γui ± ∂

∂νi
ui.

As the attentive reader might have noticed in (2.2), the normal derivative ∂
∂νi
u

(n)
i of a general

function u
(n)
i ∈ H1(Ωi) is not necessarily well-defined. Accordingly, Després assumed that the

normal derivative of the solution u and of the initial functions u
(0)
i is in L2, cf. [25, Lem. 4.3].

Then, one can guarantee that all further normal derivatives appearing in (2.2) are in L2 as well

(see also [19, Sect. 2.3]) and that the iterates (u
(n)
i ) converge. Such kind of regularity condition

can certainly be an obstacle and rises questions about possible discrete counterparts. Collino,
Ghanemi, and Joly [19] were able to relax the regularity condition by modifying the method in
two ways.

(i) The Robin transmission conditions are generalized to

iMijui ± ∂
∂νi
ui = iMijuj ∓ ∂

∂νj
uj on Σij ,(2.6)

where the impedance operator2 Mij is an isomorphism from Hs(Σij) to its dual, where s ∈ [0, 1
2),

and fulfills a symmetry and coercivity property such that it induces a norm. Under the condition

that the normal derivatives of the solution and of the initial functions u
(0)
i are in the dual of

Hs(Σij), the damped Schwarz method is well-defined and can be shown to converge.
(ii) Assume that (a) the impedance operator in (2.6) is chosen with s = 1

2 and (b) the
subdomain partition has no junctions [17, Eqn. (29)]:

for each (i, j), Σij is either empty or a closed manifold of dimension (d− 1),(2.7)

in the sense that Σij has no boundary, cf. [19, Sect. 4.2]. To obtain a well-defined iterative

process, the normal derivatives of the initial functions u
(0)
i only need to be in H−1/2(Σij), which

is a natural condition and poses no further restriction, see e.g. [72]. Under these stronger
conditions, the damped Schwarz method converges geometrically with a convergence rate < 1.
The assumption of no junctions, however, is a severe limitation and has only been overcome
recently [10, 17].

In the following sections, Després’ and Lions’ method is put into a strict functional framework
in (finite- or infinite-dimensional) Hilbert spaces using the variational level rather than the PDE
level, which allows treating the case of finite element discretization too. All involved operations
will be displayed precisely, in particular the restriction to a subdomain, the action of the normal
derivative, and the exchange of data across subdomain interfaces. The framework applies to
rather general wave propagation problems and to coercive problems.

Notation: Given a (real or complex) Banach space V , its dual V ∗ is the space of bounded linear
functionals3 with the standard dual norm. The duality pairing is denoted by 〈·, ·〉V ∗×V , where
the subscript is omitted whenever clear from context. All vector spaces in this paper are assumed
to be (real or complex) Hilbert spaces and as such reflexive, which permits us to simply identify
the bidual (V ∗)∗ with V . However, we will not identify V ∗ with V . Given a linear operator
B : V → W , its transpose BT : W ∗ → V ∗ is defined by 〈BTψ, v〉 = 〈ψ,Bv〉 for ψ ∈ W ∗, v ∈ V .
Recall that BT is bounded if and only if B is bounded. When V and W are Euclidean spaces (Rn
or Cn), B is identified with its matrix representation, and BT : W → V denotes the transpose
matrix (which is, up to possible conjugation, the adjoint with respect to the Euclidean inner
products). The inner product (·, ·) of a complex Hilbert space is a sesquilinear form, including
conjugation of the second argument. In Cn, however, we use the expression v ·w =

∑n
i=1 viwi

(without conjugation).

2In [19] this operator is called transmission operator and denoted by Tij .
3In the literature, the dual of a complex Banach space is sometimes defined as the space of bounded anti-linear

forms and, correspondingly, sesquilinear forms are used. This article features linear and bilinear forms because
they better correspond to the matrix-vector setting.
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2.2. General problem setting. Our starting point is the linear operator equation

find û ∈ Û : Âû = f̂ ,(2.8)

where Û is a finite- or infinite-dimensional Hilbert space, Â : Û → Û∗ a bounded linear operator,

and f̂ ∈ Û∗ a bounded linear functional.
Throughout the paper, the following basic properties are assumed:

(i) Û is either Hilbert space over the field of real numbers, or a complexified Hilbert space

of the form Û = Ûre +iÛre, where Ûre is a real Hilbert space and where the inner product

on Ûre is extended to one on Û . In the latter case, Û enjoys complex conjugation.

(ii) ker(Â) = {0} and range(Â) = Û∗, i.e., Problem (2.8) is well-posed.

The inner product and norm in Û are denoted by (·, ·)
Û

and ‖ · ‖
Û

, respectively.

Example 2.1 (variational formulation of the Helmholtz equation). Consider the following
boundary value problem for the Helmholtz equation in strong form,

−∆û− κ2û = gΩ, in Ω,

û = 0 on ΓD ,
∂û

∂ν
= gN on ΓN ,

∂û

∂ν
+ iηû = gR on ΓR ,

(2.9)

where Ω ⊂ Rd is a bounded Lipschitz domain with its boundary composed of three disjoint parts

ΓD, ΓN , ΓR (ΓD and/or ΓN are allowed to be empty). Let Û := H1
D(Ω) denote the subspace

of functions in the complex-valued space H1(Ω) vanishing on the Dirichlet boundary ΓD. Then

the weak formulation reads: find û ∈ Û such that∫
Ω
∇û · ∇v̂ − κ2û v̂ dx+ i

∫
ΓR

η û v̂ ds︸ ︷︷ ︸
〈Âû,v̂〉

=

∫
Ω
gΩ v̂ dx+

∫
ΓN

gN v̂ ds+

∫
ΓR

gR v̂ ds︸ ︷︷ ︸
〈f̂ ,v̂〉

∀v̂ ∈ Û .(2.10)

With the standard assumptions that gΩ ∈ L2(Ω), gR ∈ L2(ΓR), κ ∈ L∞(Ω) and κ > 0 uniformly,
η ∈ L∞(ΓR) and η > 0 uniformly, this formulation can be easily cast into the form (2.8).

The energy space Û fulfills the basic property (i), and—provided that ΓR has positive surface

measure—the system operator Â fulfills the basic property (ii), cf. e.g. [55, Sect. 4.5]. We can also

choose Û as a suitable conforming finite element subspace of H1
D(Ω) such that (2.10) becomes

a Galerkin discretization, while it is still of form (2.8). Such a setup will be referred to as a
discrete case in contrast to the previously described continuous case. For standard choices of
finite element space with small enough mesh size, the discrete problem stays well-posed, see e.g.
[55, Sect. 4.7.2]. After having fixed a finite element basis, the operator equation can be rewritten

in matrix form. Note that the resulting equation is again of form (2.8) where Â is the stiffness

matrix, f̂ the load vector, and Û = Cn (n being the dimension of the finite element space).

2.3. Abstract domain decomposition. The theory in this paper works on an abstract level
and does not require any geometric description of subdomains. Rather, an algebraic description
specifies how subdomain operators (or linear functionals) assemble the global operator (or func-
tional, respectively). Nevertheless, the abstract assumptions will be accompanied by examples
involving the geometric setup. Throughout the paper, the two following definitions will be used
extensively.

Definition 2.2. An abstract domain decomposition of Û is described by

(i) Local spaces Ui, i = 1, . . . , N , that are assumed to be Hilbert spaces, with inner prod-

ucts (·, ·)Ui and norms ‖ · ‖Ui . If Û is finite-dimensional, infinite-dimensional, real, or
complexified then each space Ui has the corresponding property, respectively. We define
the associated product space

U :=

N∏
i=1

Ui ,
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Û∗

Û

Â

Ui

U∗i

Ai

Ri

RT
i

(a)

Û∗

Û

Â

U

U∗
A

R

RT

(b)

Figure 2. (a) Illustration of the local space Ui. (b) Illustration of the broken

space U and of the assembling property Â = RTAR.

also referred to as the broken space. The i-th component of u ∈ U is denoted by ui, the
inner product is (u, v)U :=

∑N
i=1(ui, vi)Ui , and the associated norm is denoted by ‖u‖U .

(ii) Bounded linear restriction operators Ri : Û → Ui, assumed to be real-valued4, which

altogether define the collective restriction operator R : Û → U ,

Rû := (Riû)Ni=1 .

Definition 2.3. The local bounded linear operators Ai : Ui → U∗i and local functionals fi ∈ U∗i ,
i = 1, . . . , N fulfill the assembling property iff

Â =
N∑
i=1

RT
i AiRi, f̂ =

N∑
i=1

RT
i fi .(2.11)

From here on, we assume a given abstract domain decomposition (U,R) as well as the existence
of Ai, fi, i = 1, . . . , N fulfilling the assembling property. For a more compact notation, we define
the block-diagonal operator A = diag(Ai)

N
i=1 : U → U∗ and the linear functional f = (fi)

N
i=1 ∈

U∗ acting on the product space, such that (2.11) simply reads Â = RTAR and f̂ = RTf , see
also Fig. 2.

Example 2.4 (assembling property). For the Helmholtz formulation of Example 2.1, let {Ωi}Ni=1

be a non-overlapping decomposition of Ω into Lipschitz subdomains Ωi such that
⋃N
i=1 Ωi = Ω

and Ωi ∩ Ωj = ∅ for i 6= j. In the continuous case, the local space Ui is chosen (by default) as
Ui = H1(Ωi) if measd−1(∂Ωi ∩ ΓD) = 0 and Ui = H1

D(Ωi) = {v ∈ H1(Ωi) : v|ΓD
= 0} otherwise.

The restriction operator Ri simply restricts a function in H1
D(Ω) to the subdomain Ωi. The

definition of the local operators Ai and linear functionals fi follows that of Â and f̂ , replacing
Ω by Ωi, ΓR by ΓR ∩ ∂Ωi, etc. (see also Table 2 for an example with gΩ = 0, gN = 0), and

they altogether fulfill the assembling property (Def. 2.3). If Û is a finite element subspace of
H1
D(Ω) based on a mesh that resolves the subdomain decomposition, then we define Ui as the

restriction of Û to the elements of Ωi. The assembling property holds again.

Remark 2.5. If Dirichlet conditions are present in the original space then they need not nec-
essarily be inherited in the local spaces. Suppose for Example 2.1 that we have a subdomain
Ωi with measd−1(∂Ω ∩ ΓD) > 0. Then—in contrast to the default choice Ui = H1

D(Ωi)—we are
allowed to use Ui = H1(Ωi), see Fig. 3. However, in the latter case, range(Ri) ( Ui.

Our next assumption is on the collective restriction operator.

Assumption (A1).

• ker(R) = {0} (coverage property),
• range(R) is closed (reconstruction property).

4Here real-valued means that either (a) Û and Ui are real Hilbert spaces, or (b) Û and Ui are complexified
and Ri has the form Ri(ure + iuim) = Ri,reure + iRi,reuim for an operator Ri,re acting on the real Hilbert spaces.
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Û
U

R

Figure 3. Illustration of detaching Dirichlet boundary (diagonal hatching):
none of the local spaces has an inbuilt Dirichlet condition, see Remark 2.5.

Helmholtz Maxwell Helmholtz dual

Ai,0
∫

Ωi
∇u · ∇v dx

∫
Ωi
µ−1 curl u · curl v dx

∫
Ωi
κ−2 div u div v dx

+iAi,1 +i
∫
∂Ωi∩ΓR

η u v ds +iω
[ ∫

Ωi
σu · v dx+

∫
∂Ωi∩ΓR

η uτ · vτ ds
]

+i
∫
∂Ωi∩ΓR

η−1unvn ds

−Ai,2 −
∫

Ωi
κ2u v dx −ω2

∫
Ωi
εu · v dx −

∫
Ωi

u · v dx

fi
∫
∂Ωi∩ΓR

gR v ds −iω
∫
∂Ωi∩ΓR

jS · vτ ds
∫
∂Ωi∩ΓR

η−1gRvn ds

Table 2. Examples of variational formulations with Ai = Ai,0 +iAi,1−Ai,2 with
operators Ai,k corresponding to bilinear forms 〈Ai,k·, ·〉 as indicated. Above, Ωi is
the i-th subdomain, ΓR the Robin boundary, κ the wave number, ω the angular
frequency. The subdomain energy space Ui is a suitable subspace of H1(Ωi),
H(curl,Ωi), H(div,Ωi), and uτ denotes the tangential trace and un the (scalar)
normal trace, such that u = uτ + unn for smooth functions.

The coverage property is equivalent to(
∀i = 1, . . . , N : Riv̂ = 0

)
=⇒ v̂ = 0,

and is fulfilled for the typical examples as long as
⋃N
i=1 Ωi = Ω. The reconstruction property

implies that R has a unique bounded right inverse defined on range(R), so given the restrictions

Riû, one can always reconstruct the original function û. In other words, R : Û → range(R) is
an isomorphism. In particular, ‖Rv̂‖U is an equivalent norm to ‖v̂‖

Û
; in the typical cases, one

even has (û, v̂)
Û

=
∑N

i=1(Riû, Riv̂)Ui = (Rû,Rv̂)U .

Example 2.6 (reconstruction property). Let us continue with Example 2.4. Any function

û ∈ Û = H1
D(Ω) fulfills

N∑
i=1

∫
Ωi

∇ui ·ϕ dx = −
N∑
i=1

∫
Ωi

ui(divϕ) dx ∀ϕ ∈ C∞0 (Ω)d,(2.12)

where ui := Riû = û|Ωi
. Conversely, given a broken function u ∈ U =

∏N
i=1H

1
D(Ωi), we can

form the patchwork function û in L2(Ω) by the piecewise definition û|Ωi
= ui for i = 1, . . . , N .

Apparently, û is in H1(Ω) if and only if (2.12) holds. Finally, since ui|ΓD
= 0 for each i, it

follows that û|ΓD
= 0, so û ∈ Û . To summarize, u ∈ range(R) if and only if (2.12) holds.

All expressions in (2.12) are continuous w.r.t. to u ∈ U , and so range(R) must be closed. The
analogous statement holds for the choice Ui = H1(Ωi), see Remark 2.5, only that the local
Dirichlet boundary condition has to be added to (2.12).

The assumptions made so far hold for a large variety of variational problems, such as the
Helmholtz equation and the time-harmonic Maxwell equations, see Table 2, as well as for strongly
coercive (“positive definite”) problems in the stated function spaces (e.g., formed by replacing
Ai in Table 2 by Ai,0 + Ai,1 + Ai,2). They also hold for the Galerkin discretization of these
problems by standard finite elements.
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(a) (b) (c)

Figure 4. Simple illustration of junctions, cross points, and dof multiplicity.
(a) No junctions, no cross points, µmax = 2. (b) Junctions (•), but no cross
points, µmax = 2. (c) Cross point (×); for nodal discretization µmax > 2, for
Raviart-Thomas discretization µmax = 2 still (see Example 2.23).

Remark 2.7. Definitions 2.2, 2.3 and Assumption (A1) generalize the assumptions that are
usually made in BDDC methods, cf. [70, 83]. Note also that Definition 2.2 is similar to but
different from the assumptions made in the classical abstract Schwarz theory, see [93, Sect. 2.2].

In that theory, prolongation/extension operators Ei : Ui → Û are needed in the first place

and their transposed operators ET
i : Û∗ → U∗i restrict dual quantities. In the present theory,

we need the restriction operators Ri : Û → Ui in the first place and assemble dual quantities

using the transposes RT
i : U∗i → Û∗. According to [93, (2.3)], the extension operators from the

Schwarz theory must fulfill the coverage property
∑N

i=1Ei(Ui) = Û , which is quite different from
Assumption (A1).

2.3.1. Discrete case – matrix notation. In the discrete case, we can identify all operators with

their associated matrices without changing the notation. Then Â is the global stiffness matrix,

Ai the subdomain stiffness matrix, f̂ the global load vector, and fi the subdomain load vector.
In most situations, each local degree of freedom (dof) of a subdomain i can be associated with

a global dof. Suppose that Û = Rn or Cn and that for each i = 1, . . . , N , the local space of
subdomain dofs is given by Ui = Rni or Cni , respectively. Then Ri must select the local dofs of

subdomain i out of the global dofs, i.e., Ri : Û → Ui is an incidence matrix of the form

(Ri)`k =

{
1 if gi(`) = k

0 otherwise,
(2.13)

where gi : {1, . . . , ni} → {1, . . . , n} is an injective mapping, the local-to-global mapping. From
these properties, one derives that

RiR
T
i = I = diag(1)ni

`=1, RTi Ri = diag(µ
(i)
k )nk=1,(2.14)

where µ
(i)
k ∈ {0, 1} indicates whether the global dof k is shared by subdomain i or not. Based

on that, we can define for each global dof k = 1, . . . , n its multiplicity µk :=
∑N

i=1 µ
(i)
k and

the set of sharing subdomains Nk := {i = 1, . . . , N : µ
(i)
k = 1}. The coverage property from

Assumption (A1) holds if and only if the minimal multiplicity is ≥ 1. Regarding the maximal
dof multiplicity µmax := maxk=1,...,n µk, we distinguish three cases:

• µmax = 1, a degenerate case (either one subdomain or no coupling between subdomains),
• µmax = 2, a special case, where some formulations below turn out to be non-redundant,
• µmax > 2, the general case, where some formulations below involve redundancy.

The last case occurs typically (but not necessarily) when the geometric domain decomposition
has cross points. A cross point is a geometric point in Ω that lies on at least three subdomains
boundaries, cf. [49]. In [47], a dof k with µk > 2 is called cross point as well. Note also
that the notions of cross points and junctions (cf. (2.7)) are slightly different, see also Fig. 4.
Decompositions without cross points are sometimes called 1D or one-way decompositions, those
without junctions are also called onion-like.
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Remark 2.8. There also cases where Ri is a zero-one matrix with at most one entry of 1 per
column and per row, but possibly with zero rows for phantom dofs. Then

RiR
T
i = diag(ρ

(i)
` )ni

`=1 , RTi Ri = diag(µ
(i)
k )nk=1 ,(2.15)

where ρ
(i)
` ∈ {0, 1} indicates whether dof ` corresponds to a global dof or is a phantom [83,

Remark 2.3]. Such phantom dofs are used in the TFETI method [35] and the all-floating BETI
method [78, 79] to detach Dirichlet boundary conditions from the local systems, see also [82]. If

ρ
(i)
` = 0 for some `, then range(Ri) ( Ui, see also Remark 2.5 and Fig. 3.

2.4. Subdomain flux formulation. Using the assembling property (2.11), problem (2.8) can
be rewritten as

RT(ARû− f) = 0.

Introducing the new variables u = Rû and t = Au− f yields the following formulation.

Subdomain flux formulation:

find (u, t) ∈ range(R)× ker(RT) : Au− t = f.(2.16)

Note that the equation on the right is equivalent to Aiui − ti = fi for all i = 1, . . . , N , so we
have one individual equation for each subdomain, while the coupling between the subdomains
is expressed through the (closed) spaces range(R) and ker(RT). The following lemma clarifies
the relation between the original problem (2.8) and formulation (2.16).

Lemma 2.9. Let Assumption (A1) hold. Then

(i) If û is a solution of (2.8) then (Rû,ARû− f) is a solution of (2.16).

(ii) If (u, t) is a solution of (2.16) then there exists û ∈ Û such that û solves (2.8) and
u = Rû and t = ARû− f .

(iii) The solution of (2.16) is unique.
(iv) There exists a bounded linear solution operator S : f 7→ (u, t) for (2.16).

Proof. Beforehand, note that due to (A1), range(R) is a closed subspace of U .
Part (i) is proved already.

Part (ii): Since u ∈ range(R), (A1) guarantees the existence of a unique function û ∈ Û with
Rû = u. Application of RT and using that t ∈ ker(RT) yields RT(ARû− f) = 0 which is (2.8).

Part (iii): Recall from Sect. 2.2 that ker(Â) = {0}. So û is unique and by (ii) also u and t.

Part (iv): Recall from Sect. 2.2 that Â has a bounded inverse. We define

S : U∗ → range(R)× ker(RT) : f 7→ (RÂ−1RTf,ARÂ−1RTf − f).

The following is easily verified:

1) S is well-defined, linear, and bounded,
2) if (u, t) = Sf then Au− t = f ,
3) if (u, t) ∈ range(R)× ker(RT) then S(Au− t) = (u, t).

So S is a bounded solution operator for (2.16). �

In block-operator notation, one can write

S =

[
I
A

]
RÂ−1RT −

[
0
I

]
.(2.17)

Before moving on to characterizing the spaces range(R) (Sect. 2.5) and ker(RT) (Sect. 4), we
show that the variable t, introduced as a distribution on the whole space U (i.e., acting on all
subdomains), vanishes for bubble functions and can thus be interpreted as a distribution acting
on the interface.
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(a)

ΓN,i

(b)

ΓD,i

(c)

ΓD

Figure 5. Support of subdomain flux for a simple nodal discretization for three
cases (◦ dofs where ti vanishes, • interface dofs, where ti is supported).

Definition 2.10 (bubble functions). On a subdomain i, the bubble space Ui,B is given by

Ui,B := {vi ∈ Ui : ∃v̂ ∈ Û : Riv̂ = vi, Rj v̂ = 0 ∀j 6= i},
i.e., it is the space of functions on subdomain i that can be extended by zero to a function in

the global space Û . The product space of bubble functions is given by

UB :=
N∏
i=1

Ui,B ⊆ U.

Proposition 2.11. Any t ∈ ker(RT) fulfills

〈ti, vi,B〉 = 0 ∀vi,B ∈ Ui,B ∀i = 1, . . . , N.

Proof. RTt = 0 implies 〈t, Rv̂〉 = 0 for all v̂ ∈ Û . For fixed i and vi,B ∈ Ui,B there exists, by

Definition 2.10, a function v̂B ∈ Û with Riv̂B = vi,B and Rj v̂B = 0 for all j 6= 0. Hence

0 = 〈t, Rv̂B〉 = 〈ti, Riv̂B〉 = 〈ti, vi,B〉. �

Due to the property in Proposition 2.11, it is justified to call t the subdomain flux, cf. (2.16).

Example 2.12 (flux on a closed subdomain boundary). Consider Example 2.1 for an interior
subdomain Ωi that has no intersection with the outer boundary ∂Ω. Then ti ∈ H1(Ωi)

∗ vanishes

on all functions from H1
0 (Ωi), which is why we can represent it by a distribution in H−1/2(∂Ωi).

Integration by parts in the principal term shows that the very same distribution generalizes the
normal derivative û/∂νi on ∂Ωi, see in particular [72, Lemma 4.3] and [86, Lemma 1.2.1].

Example 2.13 (flux with Neumann boundary). Consider Example 2.1 for a subdomain Ωi

where ΓN,i := ∂Ωi ∩ΓN is connected and has positive surface measure and where ∂Ωi ∩ΓD = ∅,
∂Ωi ∩ ΓR = ∅. Then, since the bubble functions do have support on ΓNi , the flux ti vanishes
on Γi,N . To be precise, the trace of a bubble function on ΓN,i is in the Lions-Magenes space

H
1/2
00 (ΓN,i), see e.g. [93, Appendix A] (which is often denoted by H̃1/2(ΓN,i), cf. [72, Ch. 3]).

This is why ti can be represented by an element in the dual of H1/2(∂Ωi \ ΓNi), i.e., ti is a

distribution supported on ∂Ωi \ ΓN,i that can be extended by zero to H−1/2(∂Ωi). A discrete
analogon is illustrated in Fig. 5(a).

Example 2.14 (flux with Dirichlet boundary). Consider Example 2.1 for a subdomain Ωi

where ΓD,i := ∂Ωi ∩ΓD is connected and has positive surface measure and where ∂Ωi ∩ΓN = ∅,
∂Ωi ∩ ΓR = ∅. We treat two choices for the local space Ui, see also Remark 2.5.
(i) Ui = H1

D(Ωi). Since the flux ti ∈ H1
D(Ωi)

∗ vanishes on functions from Ui,B = H1
0 (Ωi), we

conclude that ti can be represented by an element in the dual of H
1/2
00 (∂Ωi \ ΓD), i.e., it is a

distribution supported on ∂Ωi \ ΓD that cannot necessarily be extended by zero to H−1/2(∂Ωi).
For a discrete analogon see Fig. 5(b).
(ii) Ui = H1(Ωi). Still, due to Definition 2.10, Ui,B = H1

0 (Ωi). Since locally, we work on the full
space Ui = H1(Ωi), the flux ti is defined in H1(Ωi)

∗ and it vanishes on functions from H1
0 (Ωi).
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1 2

3

1 2

3

1 2

3

1 2

3 4

t1 = 0 u1 = u2
t1 + t2 = 0

u1 = u2 = u3
t1 + t2 + t3 = 0

u1 = u2 = u3 = u4
t1 + t2 + t3 + t4 = 0

Figure 6. Sketch of the conditions u ∈ range(R), t ∈ ker(RT) in the discrete
case for an individual global dof shared by one up to four subdomains. Black
bullets (•) indicate the location of the corresponding local dofs.

We conclude that ti can be represented by a distribution in H−1/2(∂Ωi) corresponding to the
normal derivative û/∂νi on the entire boundary ∂Ωi. For a discrete analogon see Fig. 5(c).

Example 2.15 (flux for Maxwell’s equations). For the E-field formulation of Maxwell’s equa-
tions (see Table 2), the variable ti represents the tangential trace of µ−1 curl ui, which is (up
to a factor of ±iω and a possible rotation by 90◦) the electric surface current on the interface.

Example 2.16 (discrete flux). In the discrete case (Sect. 2.3.1), for a global dof k shared by
subdomains Nk, the k-th row of the condition RTt = 0 reads∑

i∈Nk

ti,g−1
i (k) = 0,

where g−1
i (k) denotes the local dof on subdomain i corresponding to the global dof k. If k is

shared by two subdomains, the two fluxes must have opposite sign. In general, the fluxes must
add up to zero, see Figure 6.

2.5. Traces. Formulation 2.16 can be read as: find (u, t) ∈ U × U∗ with

Au− t = f, u ∈ range(R), RTt = 0.

Opposed to the two equations, the condition u ∈ range(R) is inconvenient for any algorithmic
development, and we will characterize it using trace operators. For the abstract framework of
this paper, we assume the following for each subdomain i = 1, . . . , N :

(i) Local trace space Λi, a Hilbert space with inner product (·, ·)Λi and norm ‖ · ‖Λi . If Û is
finite-/infinite-dimensional, real/complexified then Λi shares the same property.

(ii) Local trace operator Ti : Ui → Λi, linear, bounded, and real-valued.

We define the compound trace space Λ :=
∏N
i=1 Λi, equipped with the natural inner product

(λ, µ)Λ :=
∑N

i=1(λi, µi)Λi and corresponding norm ‖ · ‖Λ, as well as the compound trace operator

T = diag(Ti)
N
i=1 : U → Λ.

Before moving on to the next ingredient, the interface exchange operator, we study two important
examples of trace spaces for H1-formulations.

Example 2.17 (natural trace operator). For the case Û = H1(Ω), let Ω =
⋃N
i=1 Ωi be a non-

overlapping subdomain decomposition with sufficiently smooth boundaries and interfaces. For
an interior subdomain (with positive distance from the global boundary ∂Ω), the natural trace

space is H1/2(∂Ωi), and the associated trace operator Ti : H
1(Ωi)→ H1/2(∂Ωi) is surjective, see

e.g., [93, 82], for an illustration see Fig. 8(b). We will return to this type of choice in Sect. 7.
Suppose now that we have Dirichlet conditions and that and ∂Ωi ∩ ΓD is connected and has
positive surface measure. If we wish to use Ui = H1

D(Ωi) then the natural trace space is the

Lions-Magenes space H
1/2
00 (∂Ωi \ ΓD). However, we are also free to choose Ui = H1(Ωi) and

use H1/2(∂Ωi) as trace space. In the discretized case, we can use Ti as the zero-one restriction
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Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

F14 F25 F36

F12

F45

F23

F56

F20

Ω2

U2 = H1(Ω2)

T2

−→

Λ2

L2(F12)

L2(F25)

L2(F12)

L2(F20)

Figure 7. Left: Geometric sketch of facets for a two-dimensional subdomain
decomposition. Right: Sketch of the subdomain trace operator for Example 2.18.

Û
U

R
Λ

T
(a) Λ

T
(b)

Figure 8. Sketch of the compound trace operator T for two different choices:
(a) “torn” traces, (b) natural traces.

matrix that selects the dofs of subdomain i with multiplicity ≥ 2 (and possibly phantom dofs,
see Remark 2.8).

Example 2.18 (collective trace operator). In the classical works [65, 25, 19], the interface is
split into facets5 Fij , which are open manifolds of one dimension lower than Ω, form the interface

between two subdomains, i.e., F ij = ∂Ωi∩∂Ωj , and have a non-trivial surface measure, cf. Fig. 7,

left. Let Fi denote the facets of Ωi. For Û and {Ωi} as in Example 2.17, we can define a trace
operator TiF : H1(Ωi) → L2(F ) for each facet F ∈ Fi, and then define the subdomain trace
operator

Ti : H
1(Ωi)→ Λi :=

∏
F∈Fi

L2(F ), Tiui := (TiFui)F∈Fi

of collective type. In these definitions, we can replace L2(F ) by Hs(F ) for s ∈ [0, 1
2 ], cf. [19].

Note that the compound trace space Λ =
∏
i=1 Λi has two instances of spaces on each facet

(see Fig. 8(a)), which is a feature to be used a lot later on. Note also that so far, we have
only dealt with interior facets shared by two subdomains (marked in blue in Fig. 7). However,
there may be exterior facets (marked in grey in Fig. 7) that only belong to one subdomain
only: either Dirichlet facets (see Remark 2.5 and Fig. 5(c)) or auxiliary facets, where we wish
to evaluate traces for some other reason. In the discretized case, TiF : Ui → ΛF is the zero-one
matrix that selects the dofs of subdomain i that are associated with the facet F , and we can
set Λi :=

∏
F∈Fi

ΛF and define Ti as above. This can be done for any conforming finite element

discretization of H1(Ω), H(curl,Ω), and H(div,Ω), see also Examples 2.23–(2.24) below. Note
that if a dof is associated with more than one facet (as it happens for cross point dofs), then the
collective trace operator Ti creates multiple copies of that dof (see also Sect. 3.2.1 below) and is
not surjective.

The continuity of traces will be enforced using an interface exchange operator acting on the
local trace spaces:

5In the literature, one often reads of faces, in the two-dimensional case of edges.
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Assumption (A2). The interface exchange operator X : Λ→ Λ is linear and bounded, and

(i) X 2 = I,
(ii) range(R) = ker((I −X )T ).

The first property states that the interface exchange operator is an involution (X−1 = X ),
the second property can be read as u ∈ range(R) ⇐⇒ Tu = XTu.

Under Assumptions (A1)–(A2), the subdomain flux formulation (2.16) is equivalent to

find (u, t) ∈ U × U∗ : Au− t = f,

(I −X )Tu = 0,

RTt = 0.

(2.18)

The operator S from Lemma 2.9 is also a solution operator for (2.18).

Example 2.19 (swapping operator). For the setup from Example 2.18, let X be the operator
that swaps traces in the sense that for each interior facet F = Fij , we have (Xλ)iF = λjF and
(Xλ)jF = λiF for λ ∈ Λ, where λjF denotes the component of λj corresponding to F ; see also
[19, Formula (42)]. For exterior Dirichlet facets F ∈ Fi, we can set (Xλ)iF = −λiF such that
the condition (I−X )Tu = 0 enforces the homogeneous Dirichlet condition on F , see also Sect. 3
below. Property (i) of Assumption (A2) obviously holds. Assume for simplicity that we have
no exterior facets at all, such that Ui = H1

D(Ωi). To verify property (ii), we have to show that
for all u ∈ U ,

u ∈ range(R) ⇐⇒
[
∀F ∈ F : TiFui = TjFuj

]
.(2.19)

Recall from Example 2.6 that the broken function u ∈ U is in range(R) if and only if (2.12)
holds, i.e.,

N∑
i=1

∫
Ωi

∇ui ·ϕ dx = −
N∑
i=1

∫
Ωi

ui(divϕ) dx ∀ϕ ∈ C∞0 (Ω)d.

Integration by parts on each subdomain shows that (2.12) is equivalent to

N∑
i=1

∫
∂Ωi

ui(ϕ · νi) ds = 0 ∀ϕ ∈ C∞0 (Ω)d.

Since ϕ vanishes on ∂Ω and since ui|F is in L2(F ) for each interior facet F ∈ Fi, the above can
be rewritten as ∑

Fij∈F

∫
Fij

(ui − uj)(ϕ · νi︸︷︷︸
=−νj

) ds = 0 ∀ϕ ∈ C∞0 (Ω)d.

Since C∞0 (F ) is dense in L2(F ), the above identity holds if and only if TiFui = TjFuj for all

Fij ∈ F . The same argument works if L2(F ) is replaced by Hs(F ) for s ∈ [0, 1
2 ]. In the

discretized case, assume that we use the collective trace operators as well and that we have
again no exterior facets. If we fix an ordering within the selected dofs on each facet F = Fij
such that TiF and TjF map into the same space ΛF , then the condition (2.19) holds and we can
define X as above.

Remark 2.20. Note that the exchange operator Π defined in [19, Sect. 2] is slightly different
from X in Example 2.19: Π swaps traces on the interior facets but it evaluates to zero on
exterior Robin facets. Therefore, the condition Π2 = I only holds on the interior facets, cf. [19,
Lemma 2].

Remark 2.21. As the attentive reader will have noticed, the operator (I−X )T in Example 2.19
evaluates the jump on each interior facet twice:

((I −X )Tu)iF = TiFui − TjFuj , ((I −X )Tu)jF = TjFuj − TiFui .
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Certainly, one can construct one-sided jump operators, and these are excessively used in the
classical FETI and FETI-DP methods as well as the FETI-H method [42, 39, 40]; see also
Sect. 8.2 and 8.3. In the article at hand, the two-sided nature of X will play a principal role.

Example 2.22 (trace and swapping for H(div)). For Û = H(div,Ω) and Ui = H(div,Ωi),
the natural trace space for the normal trace operator (see e.g. [75, Sect. 3.5]) on an interior

facet F ∈ Fi is H
−1/2
00 (F ), i.e., the dual of H

1/2
00 (F ) containing distributions on F that are

not necessarily extendible by zero to H−1/2(∂Ωi). Let us define TiF : H(div,Ωi) → H
−1/2
00 (F )

by ui 7→ σiF (ui · νi)|F , where σiF = −σjF ∈ {−1, 1} is a fixed sign pattern (for each interior
facet F = Fij). Then Condition (2.19) can be shown to hold as well. To see this, we can use
integration by parts to show that a broken function u ∈ U is in range(R) if and only if

N∑
i=1

〈(ui · νi), ϕ〉H−1/2(∂Ωi)×H1/2(∂Ωi)
= 0 ∀ϕ ∈ C∞0 (Ω).(2.20)

We restrict the test functions ϕ to those that vanish in the neighborhood of ∂F for all interior

faces F , such that ϕ|F ∈ H
1/2
00 (F ). Then (2.20) implies∑

Fij∈F
σiF 〈TiFui − TjFuj , ϕ〉H−1/2

00 (F )×H1/2
00 (F )

= 0,(2.21)

which holds if and only if TiFui = TjFuj in H
−1/2
00 (F ) for all Fij ∈ F (by a density argument).

Conversely, one can show that (2.21) implies (2.20) by using the fact that the space of C∞0 (Ω)-
functions that vanish in the vicinity of the wirebasket

(⋃
i ∂Ωi

)
\
(
∂Ω ∪

⋃
F∈F int(F )

)
is dense

in H1
0 (Ω), cf. [3, Lemma 3.1] and [8]. The same kind of argument can be used to prove (2.19)

for H(curl,Ω), at least for sufficiently smooth interfaces.

Example 2.23 (trace and swapping for Raviart-Thomas elements). Consider a lowest-order
Raviart-Thomas discretization of H(div,Ω) (Nédélec face elements) such that each dof is as-
sociated with a face f of the mesh, which has a fixed orientation. It is then reasonable to let
the subdomain restriction operators Ri simply select dofs according to their ownership and not
change any orientation, so Ri is a zero-one matrix. For a facet F , which is the union of mesh
faces, we can simply define TiF , TjF as the zero-one matrices selecting the dofs on the faces
f ⊂ F . In that case, it is easy to see that again the condition (2.19) holds and X can be
defined as the swapping operator. Note that each dof has at most multiplicity two, and so the
trace operator Ti is surjective, and it coincides with the natural trace operator (up to possible
reordering) that selects all dofs of subdomain i with multiplicity ≥ 2.

Example 2.24 (trace and swapping for Nédélec elements). Consider an H(curl)-conforming
discretization by lowest-order Nédélec edge elements such that each dof is associated with an
edge e of the mesh, which has a fixed orientation. It is then reasonable to let the subdomain
restriction operators Ri simply select dofs according to their ownership and not change any
orientation, so Ri is a zero-one matrix. For a facet F , we can simply define TiF , TjF as the

zero-one matrices selecting the dofs on the edges e ⊂ F . In that case, it is easy to see that
again the condition (2.19) holds and X can be defined as the swapping operator. Note that if
an edge e with an associated dof is on the interface between two facets, e ⊂ ∂F1 ∩ ∂F2, then the
collective trace operator is not surjective.

The following lemma connects the involution X with its associated projections and will be
helpful in many ways later on.

Lemma 2.25. Let X : Λ→ Λ be a linear and bounded involution (X 2 = I). Then

(i) 1
2(I ±X ) and 1

2(I ±XT) are projections,

(ii) range(I ±X ) = ker(I ∓X ) and range(I ±XT) = ker(I ∓XT).
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Proof. 1
4(I ± X )(I ± X ) = 1

4(I ± 2X + X 2) = 1
2(I ± X ), same for the transposed version. The

two projections sum up to unity, i.e., 1
2(I ∓ X ) = I − 1

2(I ± X ). From the projection property,

it can also be shown that range(1
2(I ±X )) = ker(1

2(I ∓X ), same for the transposed version. In
particular all the ranges are closed subspaces. �

Remark 2.26. One can also reverse the statement of Lemma 2.25: for any linear and bounded
projection P , we can construct an involution XP := 2P −I, which is the reflection operator that
coincides with the identity on range(P ) and flips the sign on ker(P ).

Remark 2.27. In the complexified case (see Sect. 2.2), under Assumption (A2),

v ∈ range(R)⇐⇒ v ∈ range(R)⇐⇒ (I −X )Tv = 0⇐⇒ (I −X )Tv = 0⇐⇒ Tv ∈ ker(I −X ),

where v is the conjugate of v and X := Xre − iXim denotes the conjugate operator of X =
Xre+iXim where Xre, Xim are operators on the real Hilbert space (see also Section 2.3). Therefore,

range(R) = ker((I −X )T ).

Moreover, X 2
= I and 1

2(I ± X ) and 1
2(I ± XH) are projections, where XH := XT

denotes the
Hermitian transpose. This fact is used in [11], see also Remark 7.12 below.

3. Facet systems∗

This section formalizes the facets from Example 2.18 in the general and in the discrete case.
Since this is a detailed and technical matter, readers who are mainly interested in the Schwarz
method itself are encouraged to (at least initially) bypass this section and continue with Sect. 4
(p. 24).

3.1. General facets systems∗. Let (U,R) be an abstract domain decomposition of Û (Def. 2.2)
with Assumption (A1) fulfilled.

Definition 3.1. A facet F of the abstract domain decomposition is characterized by

• the adjacency set NF , a non-empty set of subdomain indices linked by the facet,

• the facet space UF , a Hilbert space (real or complexified in accordance with Û , U), and

• linear bounded trace operators TjF : Uj → UF , j ∈ NF and T̂F : Û → UF that fulfill the
consistency relation

TjFRj = T̂F ∀j ∈ NF .(3.1)

A facet F is interior if |NF | ≥ 2 and exterior if |NF | = 1. There are two kinds of exterior
facets, Dirichlet facets (where Dirichlet conditions are imposed) and auxiliary facets (which are
included for some other reason, however, only in rare cases). If |NF | = 2, we call F bilateral.

A facet system is a collection F of facets, and it is called bilateral if all its facets are bilateral.
We denote by Fi the set of facets shared by subdomain i.

Definition 3.2. A facet system F is admissible with the abstract domain decomposition (U,R)
if

u ∈ range(R) ⇐⇒

{
TiFui = TjFuj ∀i, j ∈ NF for all interior facets F ∈ F ,
TiFui = 0 with NF = {i} for all exterior Dirichlet facets F ∈ F .

For admissible facet systems, the local trace space and trace operator are defined by

Λi =
∏
F∈Fi

UF , Tiui := (TiFui)F∈Fi ,

i.e., of collective type. If all interior facets are bilateral, we can define X : Λ→ Λ by

(Xλ)iF =


λjF for bilateral facets F with NF = {i, j},
−λiF for exterior Dirichlet facets F with NF = {i},
λiF for exterior auxiliary facets F with NF = {i}.

(3.2)
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Then Assumption (A2) holds true.

3.2. Discrete facet systems∗. In the continuous case, the proper choice of geometric facets
and the associated trace operators in order to achieve admissibility (Def. 3.2) hinges on the
structure of the underlying geometry and Sobolev spaces, see Examples 2.19 and 2.22. The
discrete case allows to construct facets solely from the sets of dofs and the sharing subdomains
— albeit not uniquely. Two particular ways of construction are discussed below, using the
assumptions and notations of Sect. 2.3.1.

Definition 3.3 (discrete facet). A discrete facet F is characterized by

(i) the adjacency set NF , and
(ii) a global dof set DF ,

such that the compatibility relation NF ⊆ Nk holds for all k ∈ DF (with Nk defined as in
Sect. 2.3.1).

The dof set DF induces a trace space UF = RnF or CnF with nF being the number of dofs in
DF , where we agree on a unique numbering of the dofs. Along with that, we obtain

• a global trace operator T̂F : Û → UF , the zero-one matrix selecting the dofs DF from all
the global dofs, and
• for each subdomain j ∈ NF a local trace operator TjF : Uj → UF , the zero-one matrix

selecting the dofs DF from the local subdomain dofs.

These operators obviously fulfill the consistency relation (3.1), and altogether the conditions in
Definition 3.1 are met. Note that two distinct discrete facets may have the same dof set but
different adjacency sets (see e.g., Fig. 9, facets F23 and F14).

Definition 3.4. A discrete facet F with adjacency set NF and dof set DF is called closed if DF
contains all the dofs shared by the subdomains listed in NF , i.e., if

DF = {k = 1, . . . , n : NF ⊆ Nk}.

Remark 3.5. If one wishes to include Dirichlet facets, one has to extend Definition 3.3 and
allow exterior facets F with an empty global dof set but with a non-trivial trace space UF and

an associated trace operator fulfilling the property T̂F = 0. The theory of Sect. 3.2.1 below does
not include any exterior facets, but can be extended without major effort.

In the following, two constructions of discrete facet systems are discussed that are admissible
in the sense of Definition 3.2.

3.2.1. Bilateral discrete facet systems∗. For each pair i 6= j of subdomain indices we collect the
global dofs shared by i and j,

Dij := {k = 1, . . . , n : {i, j} ⊆ Nk}.(3.3)

The simplest discrete bilateral facet system is the maximal set

Fbil
max :=

{
({i, j},Dij) : i 6= j = 1, . . . , n, Dij 6= ∅

}
,(3.4)

which simply contains all possible closed facets (with non-empty dof sets). Other discrete facet
systems can be obtained by removing dofs from the dof sets of individual facets, or even removing
entire facets from Fbil

max. Proposition 3.7 below states how much one can actually remove such
that the discrete facet system is still admissible in the sense of Definition 3.2.

Definition 3.6 (Connectivity graph). Let F be a discrete bilateral facet system (Def. 3.1,
Def. 3.3). For each global interface dof k ∈ DΓ := {k = 1, . . . , n : µk ≥ 2}, the associated
connectivity graph Ck = (Nk, Ek) is the undirected graph with nodes Nk and edges

Ek :=
{
{i, j} : i 6= j ∈ Nk, ∃F ∈ F , NF = {i, j}

}
,
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Figure 9. Discrete bilateral facet systems for a setting with four subdomains.
Local dofs are visualized by •, individual facets are visualized by groups of colored
double arrows, each of them connecting local dofs of two subdomains. Left: fully-
redundant. Middle: properly closed. Right: non-redundant.
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Figure 10. Discrete bilateral facet systems for a setting with three subdomains.
Local dofs are visualized by •, individual facets are visualized by groups of colored
double arrows, each of them connecting local dofs of two subdomains. Left: fully-
redundant. Middle: properly closed. Right: non-redundant.
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Figure 11. Discrete bilateral facet systems for a setting with a degenerate
(non-Lipschitz) domain, divided into four subdomains. Local dofs are visualized
by •, individual facets are visualized by groups of colored double arrows, each of
them connecting local dofs of two subdomains. Left: fully-redundant. Middle:
properly closed. Right: non-redundant.

i.e., the subdomains are the nodes of the graph and the facets its edges. The graph Ck is
connected if each pair of nodes i 6= j ∈ Nk can be joined by a path of m edges

{i`, i`+1} ∈ Ek for ` = 1, . . . ,m

with i = i1, im+1 = j, and i` ∈ Nk for ` = 2, . . . ,m, i.e., we can link two subdomains by passing
through facets. The graph Ck is called

• maximal if Ek = {{i, j} : i 6= j ∈ Nk},
• minimal if Ek is a spanning tree for Nk, i.e., the graph is connected, has no cycles, and

each node is visited by at least one edge. In that case #Ek = #Nk − 1.

The proof of the following proposition is left to the reader.
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Proposition 3.7. Let F be a bilateral discrete facet system (Def. 3.1, Def. 3.3). Then F is
admissible (Def. 3.2) if and only if the connectivity graph Ck of each interface dof k ∈ DΓ is
connected (Def. 3.6). In the admissible case, DΓ =

⋃
F∈F DF .

Definition 3.8. Let F be a discrete bilateral facet system (Def. 3.1, Def. 3.3) and assume that
for each interface dof k ∈ DΓ the connectivity graph Ck is connected. We call F

• fully redundant if each connectivity graph is maximal,
• non-redundant if each connectivity graph is minimal.

Obviously, the maximal discrete facet system Fbil
max is fully redundant.

A non-redundant discrete facet system Fbil
nr can be computed in the following way:

(1) Starting from Fbil
max, we run over each dof k ∈ DΓ and compute a minimal spanning tree

for the connectivity graph Ck.
(2) For each edge {i, j} ∈ Ek that is not contained in the spanning tree, we remove the dof

k from the dof set DF of every facet F with NF = {i, j}. Facets with empty dof sets are
removed.

Doing so, all the updated connectivity graphs are minimal.
Proposition 3.7 states that the fully redundant and the non-redundant versions are good

choices, because admissibility (Def. 3.2) is guaranteed by construction. Both variants have been
used in the classical FETI method and in the FETI-DP method, cf. [93, Ch. 6].

A third variant, here called properly closed, is constructed as follows:

Fbil
pc := {F ∈ Fbil

max : ∃k ∈ DF : #Nk = 2},
i.e., we drop those facets from Fmax where all dofs have multiplicity > 2. Note that indeed, all
the facets in Fbil

pc are closed in the sense of Definition 3.4. In general, Fbil
pc is neither fully redun-

dant nor non-redundant, and for most examples the discretes facets of Fbil
pc are in accordance

with the geometric facets of dimension (d − 1), see Fig. 9–10. Note, however, that in case of
degenerate domains, the properly closed variant may lead to non-connected connectivity graphs,
see Fig. 11. Nevertheless, for non-degenerate geometries, the properly closed version usually
leads to connected graphs and so Proposition 3.7 guarantees admissibility as well. The properly
closed variant is (implicitly) used in the FETI-2LM formulation [22, 41, 40].

The following statement marks a special case where all the above variants coincide.

Proposition 3.9. Let (U,R) be an abstract subspace decomposition of Û (Def. 2.2) and let the
assumptions of Sect. 2.3.1 hold. In addition, assume that µmax ≤ 2, i.e., no dof is shared by
more than two subdomains. Then there is only one unique discrete facet system that is admissible
(unless one allows exterior facets). In particular, any facet system following the construction
from above of Fbil

nr and Fbil
pc is equal to Fbil

max.

The following proposition shows that once µmax > 2 (i.e., once a cross point dof appears), the
trace operator necessarily fails to be surjective.

Proposition 3.10. Let (U,R) be an abstract subspace decomposition of Û (Def. 2.2), let the
assumptions of Sect. 2.3.1 hold, and let F be an admissible bilateral facet system. Then

µmax ≤ 2 ⇐⇒ range(T ) = Λ.

Proof. Assume that µmax > 2 such that µk > 2 for some global dof k. Due to Proposition 3.7,
the connectivity graph Ck must be connected. Since k is shared by at least three subdomains,
there have to be three subdomain indices, say 1, 2, and 3, such that the edges (1, 2) and (2, 3)
are in the connectivity graph. Therefore, two facets F12, F23 of subdomain 2 must exist that
contain dof k. However, in range(T2), the copies of the local dof corresponding to k on F12, F23

are equal, whereas in Λ2 the two corresponding entries may in general differ from each other,
see Fig. 12. So we have shown µmax > 2 =⇒ range(T ) 6= Λ. To see the other implication
µmax ≤ 2 =⇒ range(T ) = Λ, observe that for µmax ≤ 2, the connectivity graph Ck of any
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1

2 3

Figure 12. Left: global dof k (•) shared by three subdomains 1, 2, and 3.
Middle: associated connectivity graph Ck. Right: sketch relevant dofs (◦) of
local subdomain spaces and dofs (•) of trace space Λ.

interface dof k consists of only two subdomains, so there exists only one facet between them.
In other words, each local interface dof of any subdomain is contained in a unique facet; this
implies range(T ) = Λ. �

3.2.2. Non-bilateral Discrete Facet Systems – Globs∗. While for bilateral discrete facets, con-
tinuity is imposed between the dofs of two subdomains at a time, we can also use conditions
between the dofs of several subdomains simultaneously.

Definition 3.11 (globs). The set DΓ = {k = 1, . . . , n : µk ≥ 2} of interface dofs is partitioned
into equivalence classes with respect to the equivalence relation k ∼ j ⇐⇒ Nk = Nj , such that
the dofs within a class are shared by the same set of subdomains. A discrete facet system is
formed (in the sense of Definition 3.3) by looping over each equivalence class:

• the equivalence class becomes the dof set DG,
• the set of (commonly) sharing subdomains becomes the adjacency set NG.

In that special case, we speak of a glob G (instead of a facet). For each glob G there is the
associated trace space UG induced by the global dofs of G and trace operators TjG, j ∈ NG and

T̂G fulfilling the consistency relation (3.1). Finally, one may add Dirichlet globs which have an

adjacency set with just one subdomain and a trace operator fulfilling T̂G = 0, cf. Remark 3.5.
The set of all the globs is denoted by G and the globs of subdomain i by Gi.

For the standard H1-conforming discretization of piece-wise linear finite elements, the globs
correspond to geometric entities that may be called subdomain faces, edges, and vertices, cf.
[93, 82].

It turns out naturally that the glob set is admissible in the sense of Definition 3.2, the proof
of which is left to the reader. Figure 13 shows some examples. The glob G = V in the left-
most example is shared by four subdomains NV = {1, 2, 3, 4} and we have the trace operators
T1V , . . . , T4V which all select the vertex dof out of the respective subdomain dofs. The conditions
enforced at the vertex, as expressed in Definition 3.2, read

∀i, j ∈ {1, 2, 3, 4} : TiV ui = TjV uj ,

so all the dofs associated with V are imposed to be equal. This is in contrast to the bilateral
case, where only two dofs are constrained at a time. We note that globs are frequently used in
BDDC methods [29, 83] as well as in the analysis of FETI and FETI-DP methods [93, 82].

The construction of the trace space and collective trace operator follows that for general
discrete facets: the subdomain trace space is given by Λi :=

∏
G∈Gi UG and the subdomain trace

operator by Tiui := (TiGui)G∈Gi . Finally, Λ :=
∏N
i=1 Λi and Tu := (Tiui)

N
i=1. Since every local

interface dof is contained in a unique glob, there is a one-to-one correspondance between traces
and local interface dofs, which is summarized in the following proposition.

Proposition 3.12. Let the glob system G and the trace operator T be constructed as above. Then
range(T ) = Λ. In particular, there exists a right-inverse (an extension operator) T † : Λ → U
such that TT † = I.
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Figure 13. Discrete globs for three different situations; local interface dofs
visualized by •, individual globs indicated by different color.

Observe that the property range(T ) = Λ never holds for bilateral discrete facet systems with
µmax > 2 (Proposition 3.10), whereas it is always fulfilled for glob systems.

Recall the definition (3.2) of the interface exchange operator X in the bilateral case. In the
following, we construct such an operator for the case of globs, using the averaging projection
operator Em : Λ→ Λ (m stands for multiplicity), given by

(Emλ)iG :=

{
1
|NG|

∑
j∈NG

λjG ∀i ∈ NG for all G ∈ G that are no Dirichlet globs,

0 for all Dirichlet globs G, where NG = {i}.
(3.5)

This operator, averaging traces and redistributing them, plays a principal role in the 2-Lagrange
multiplier method proposed by Loisel [66].6 We use it here to define the exchange operator

Xm := 2Em − I,(3.6)

which is actually the reflection corresponding to the projection Em (cf. Remark 2.26). Note
that for a bilateral facet F with NF = {i, j},

(Xmλ)iF = 2(1
2λiF + 1

2λjF )− λiF = λjF ,

so (3.6) is a genuine generalization of the bilateral exchange operator from (3.2).

Proposition 3.13. Let the glob system G and the trace operator T be constructed as above.
With Em, X = Xm defined as in (3.5)–(3.6), Assumption (A2) holds true.

Proof. Property (i): It is easy to show that Em is a projection, i.e., E2
m = Em. From this we

see that X 2
m = (2Em − I)2 = 4E2

m − 4Em + I = I.
Property (ii): Apparently, I −Xm = 2(I − Em). So (I −Xm)Tu = 0 if and only if{

∀i ∈ NG : TiGui − 1
|NG|

∑
j∈NG

TjGuj = 0 for all G ∈ G that are not Dirichlet globs,

TiGui − 0 = 0 for all Dirichlet globs G, where NG = {i},
which means that for non-Dirichlet globs G, the values {TjGuj}j∈NG

must be equal, and for
Dirichlet globs, TiGui = 0. Since the glob system is admissible, this concludes the proof. �

Remark 3.14. The averaging operator Em defined in (3.5) is only one out of a whole family.
For each glob G, let {DjG}j∈NG

be linear operators DiG : UG → UG that form a partition of
unity, i.e., ∑

j∈NG

DjG = I.(3.7)

Using these, we define

(EDλ)iG :=
∑

j∈NG

DjGλjG ∀G ∈ G ∀i ∈ NG .(3.8)

Apparently, ED is a projection, i.e., E2
D = ED, and we can define an interface exchange operator

by XD := 2ED − I. The averaging operators ED play a principal role in FETI and balancing

6The projection operator defined in (3.5) is denoted by K in [66].
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methods [93, 29, 83]. The simplest choice of weights is the multiplicity scaling DjG = 1
|NG|I, in

which case, ED = Em. We will revisit this type of weighted projection in Sect. 7.1.

To summarize Section 3: The concept of admissible facet systems leads to a natural definition
of the interface exchange operator X such that Assumption (A2) holds. In the discrete case, one
can systematically construct bilateral facet systems or glob systems (each of them admissible).
In the continuous case, bilateral admissible facet systems are available at least for the de Rham
complex (see Examples 2.19, 2.22).

4. Interface flux formulation

With the help of the trace operator T and the exchange operator X , the subdomain flux
formulation (2.16) is equivalent to (2.18), i.e., Au−t = f , (I−X )Tu = 0, and RTt = 0. Although
all three conditions are proper equations, still the variable t is a volumetric distribution. The
following lemma provides a characterization of ker(RT) in terms of dual traces.

Lemma 4.1. Let Assumption (A2) hold. Then

ker(RT) = {TTτ : (I + XT)τ = 0, τ ∈ Λ∗}.
The space {TTτ : (I + XT)τ = 0, τ ∈ Λ∗} is closed if and only if range((I −X )T ) is closed.

Proof. The proof makes use of Banach’s closed range theorem (see, e.g., [72, p. 23ff] or [99,
Sect. VII.5]). Let X, Y be Banach spaces. Given a subset W ⊆ X, the associated annihilator7

is defined asW 0 := {ψ ∈ X∗ : 〈ψ,w〉 = 0 ∀w ∈W}. For any bounded linear operatorB : X → Y ,

ker(BT) = range(B)0 , ker(B)0 = range(BT),(4.1)

cf. [72, Lem. 2.10, Lem. 2.11]. In our context, since range(R) = ker((I −X )T ), it follows that

ker(RT) = range(R)0 = ker((I −X )T )0 = range(TT(I −XT)).

Apparently,
range(TT(I −XT)) = {TTτ : τ ∈ range(I −XT)},

and this space is closed if and only if range((I − X )T ) is closed [72, Thm. 2.13]. The proof is
concluded by noting that range(I −XT) = ker(I + XT), see Lemma 2.25. �

The result of the previous lemma gives rise to the following reformulation.

Interface flux formulation: find (u, τ) ∈ U × Λ∗ :

Au− TTτ = f,

(I −X )Tu = 0,

(I + XT)τ = 0.

(4.2)

Remark 4.2. Using Remark 2.27, we obtain ker(RT) = {TTτ : (I + XH)τ = 0, τ ∈ Λ∗}. There-
fore, we are allowed to replace X by X in the second line and/or XT by XH in the third line of
(4.2). For the simple exchange operators X from (3.2) and from (3.6), XH = XT anyway.

Before discussing the connection between (4.2) and (2.8), let us investigate the uniqueness of
solutions to (4.2).

Definition 4.3. The interface flux redundancy space is given by

Z := ker(TT) ∩ ker(I + XT).

Proposition 4.4. Let (A1)–(A2) hold and let f = 0. Then (u, τ) is a solution of (4.2) if and
only if

u = 0 and τ ∈ Z.
7called polar set in [51, p. 58]
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Proof. From the second line of (4.2) we find by (A2) that there exists û ∈ Û with u = Rû. The
third line and Lemma 4.1 imply that TTτ ∈ ker(RT). Applying RT to the first line of (4.2)

proves RTARû = 0, which shows that û = 0 by our assumptions on Â. The remaining equations
yield TTτ = 0 and (I + XT)τ = 0. �

Note that range(T ) = Λ implies ker(TT) = {0}, which means that Z is trivial. Therefore,
the only interesting case where Z can be non-trivial is that of finite dimensions. As it turns
out, each cycle of the connectivity graph corresponds to a non-trivial element of the redundancy
space.

Theorem 4.5. In the finite-dimensional case, let Assumption (A1)–(A2) hold and let F be
a bilateral discrete facet system that is admissible. For each global interface dof k ∈ DΓ, let
`k = #Ek + 1 − #Nk denote the number of independent cycles of the connectivity graph Ck
(Def. 3.6). Then the dimension of the redundancy space Z is given by dim(Z) =

∑
k∈DΓ

`k.

Proof. See Appendix A, where even a basis for Z is constructed. �

After having characterized the redundancy space Z, our next goal is finding conditions under
which formulation (4.2) is equivalent to the original formulation (2.8). In the finite-dimensional
case, the space in Lemma 4.1 is always closed and so we can parametrize any t ∈ ker(RT)
as t = TTτ with (I + XT)τ = 0. In the infinite-dimensional case, there are two possibilities:
range((I−X )T ) can be closed or not. While the following lemma provides a sufficient condition
for this space to be closed, Lemma 4.7 below helps in the non-closed case.

Lemma 4.6. Let (A1)–(A2) hold and assume in addition that range(T ) = Λ. Then the space
range((I −X )T ) is closed. In particular, together with Lemma 4.1, this implies

ker(RT) = {TTτ : (I + XT)τ = 0, τ ∈ Λ∗}.

Proof. Due to Lemma 2.25, range(I −X ) is closed. By assumption range(T ) = Λ, so altogether
we can conclude that range((I −X )T ) is closed. �

Lemma 4.7. Let (A1)–(A2) hold and assume that range(T ) = Λ. Then

range(TT) ∩ ker(RT) =
{
TTτ : (I + XT)τ = 0, τ ∈ Λ∗

}
.

Proof. “⊇”: The space on the right is, by Lemma 4.1, contained in ker(RT) and it is obviously
also contained in range(TT).
“⊆”: Suppose τ ∈ Λ∗ with TTτ ∈ ker(RT) = range(R)0 by (4.1). Then

〈TTτ, v〉 = 0 ∀v ∈ range(R),

which implies
〈τ, Tv〉 = 0 ∀v ∈ range(R).

Since by (A2), v ∈ range(R) if and only if (I −X )Tv = 0, we can conclude that

〈τ, λ〉 = 0 ∀λ ∈ range(T ) with (I −X )λ = 0.

By assumption range(T ) is dense in Λ, so it follows that

〈τ, λ〉 = 0 ∀λ ∈ ker(I −X ).

This implies that τ ∈ ker(I −X )0 = range(I −XT) = ker(I + XT) by Lemma 2.25. �

With these tools available, we can state the main theorem of this section.

Theorem 4.8. Under Assumptions (A1)–(A2), the following statements hold.

(i) If (u, τ) solves (4.2) then u = Rû where û is the unique solution of (2.8).
(ii) If û solves (2.8) and, in addition, either

(a) all spaces are finite-dimensional, or
(b) range(T ) = Λ, or

(c) range(T ) = Λ and ARû− f ∈ range(TT),
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then there exists τ ∈ Λ∗such that (Rû, τ) solves (4.2). In cases (b) and (c), τ is guaran-
teed to be unique, whereas in the finite-dimensional case (a), τ is only unique up to an
element from the space Z, see Proposition 4.4.

(iii) In cases (a) and (b), there exists a bounded linear solution operator S(τ) : f 7→ (u, τ) for
(4.2).

Remark 4.9. The assumption range(T ) = Λ in Case (c) is merely of technical type. If this
assumption is not fulfilled for an infinite-dimensional setting, it means that the trace space Λ is
chosen unnecessarily large.

Proof of Theorem 4.8. (i) If (u, τ) solves (4.2) then TTτ ∈ ker(RT) due to Lemma 4.1. Hence,
(u, TTτ) solves (2.18) and so u = Rû, where û is the unique solution of (2.8).
(ii) Suppose û solves (2.8). Then there exists (u, t) solving (2.18), in particular with t ∈ ker(RT).
In cases (a) and (b), the space {TTτ : (I+XT)τ = 0, τ ∈ Λ∗} is closed (Lemma 4.6) and coincides
with ker(RT), see Lemma 4.1. Hence there exists τ ∈ Λ∗ with (I+XT)τ = 0 such that t = TTτ .
Apparently, (u, τ) solves (4.2).
In case (c), it follows (by assumption) that t = ARû − f ∈ range(TT) ∩ ker(RT), and so by
Lemma 4.7 there exists τ ∈ Λ∗ with t = TTτ and (I + XT)τ = 0. Again, (u, τ) solves (4.2).
Due to Proposition 4.4, τ in (4.2) is only unique up to an element from Z. In case (b), however,

ker(TT) = range(T )0 = Λ0 = {0}. In case (c), ker(TT) = range(T )0 = range(T )
0

= {0}.
(iii) In cases (a) and (b), ker(RT) = {TTτ : (I +XT)τ = 0, τ ∈ Λ∗} is closed and so there exists
a bounded linear operator Q : ker(RT) → ker(I + XT) with the property that TTQt = t for
t ∈ ker(RT). Recall that S : U∗ → range(R) × ker(RT) from Lemma 2.9 is a bounded solution
operator for (2.16). We define

S(τ) : U∗ → ker((I −X )T )× ker(I + XT) : f 7→ (Suf,QStf),

where Sf = (Suf,Stf). We verify three properties of S(τ).

1) The operator S(τ) is well-defined, linear, and bounded.

2) If (u, τ) = S(τ)f then Au− TTτ = f . This follows from the properties of S and the fact
that TTQStf = Stf since Stf ∈ ker(RT).

3) Any (u, τ) ∈ ker((I − X )T )× ker(I + XT) fulfills S(τ)(Au− TTτ) = (u, τ + z) for some
element z ∈ Z. To see this, we define (v, t) := S(Au − TTτ) ∈ range(R) × ker(RT).
By construction, Av − t = Au − TTτ , and Assumption (A2) and Lemma 4.1 imply
that (u, TTτ) ∈ range(R) × ker(RT). Therefore, (u − v, t − TT) solve the homogeneous
problem, and so Lemma 2.9(iii) implies v = u and t = TTτ . The second component of

S(τ)(Au − TTτ) is therefore given by σ = Qt = QTTτ . Applying TT and using that
t ∈ ker(RT) shows that

TTσ = TTτ.

Therefore, σ − τ ∈ ker(TT). By construction, σ = Qt is also in ker(I + XT), which is a
property that it shares with τ . Hence, σ − τ ∈ Z.

Altogether, S(τ) is a bounded solution operator for (4.2). �

A short summary of Theorem 4.8: In case (b), i.e., if the trace operator is surjective, Formu-
lation (4.2) is well-posed and equivalent to (2.8). In the finite-dimensional case (a), the same
holds, up to possible non-uniqueness of τ . For the infinite-dimensional case with non-surjective
trace operator, case (c), equivalence of (4.2) and (2.8) can be guaranteed under a mild density
assumption and the regularity assumption ARû − f ∈ range(TT). The solution operator, how-
ever, is possibly unbounded. In the following, some examples are given that apply to the primal
formulation of the Helmholtz or Laplace equation in H1.

Example 4.10 (L2 traces). Consider the setup of Example 2.18 with Λi =
⋃
F∈Fi

L2(F ). Then

already the single-facet trace operator TiF : H1(Ωi) → L2(F ) fails to have a closed range, and

range(T ) is not closed as well. Therefore, we are in case (c). The condition range(T ) = Λ
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1 2 3F12 F23

Figure 14. Illustration of a typical “1D decomposition”: facets are separated.

ΓD

1 2F12

Figure 15. Example of non-matching trace spaces: the local space on the left
is H1(Ω1) with its trace space H1/2(F12). Due to the Dirichlet boundary ΓD,
the space on the right, however is constrained and the trace space is a genuine
subspace of H1/2(F12) with its functions properly decaying to zero on the bottom
edge of F12.

is fulfilled and the regularity assumption is equivalent to ∂û/∂νi ∈ L2(Γi) for the interface
Γi := ∂Ωi ∩

⋃
j 6=i ∂Ωj of each subdomain (cf. [23, p. 314] and [19, p. 10]).

Example 4.11 (a problem with cross points). Consider the setup from Example 2.18 with

Λi =
⋃
F∈Fi

H1/2(F ) and with a cross point. More precisely, assume that for a subdomain Ωi

there are two faces that share a common edge in three dimensions or a common vertex in two
dimensions. In contrast to Example 4.10, the single-facet trace operator TiF does have closed
range, but the collective trace operator Ti : H

1(Ωi) →
⋃
F∈Fi

H1/2(F ) does not; in particular
it is not surjective. This kind of obstruction is analyzed in detail in Grisvard’s monograph
[53]. To get the idea, let F and G be two edges of a rectangular subdomain Ωi ⊂ R2 that

share a common vertex. Due to the peculiar property that C∞0 (F ) is dense in H1/2(F ) [72,
Thm. 3.40], we can find a sequence of C∞ functions in Ωi that vanish entirely on G and whose
trace on F converges to the constant function 1 in the ‖ · ‖H1/2(F )-norm. So the collective trace

of this sequence has a limit in the product space H1/2(F ) ×H1/2(G), but this limit is not the

collective trace of any H1 function. To summarize, range(T ) ( Λ but range(T ) = Λ. The
regularity condition from case (c) is equivalent to saying (for an interior subdomain Ωi) that the

restriction of ∂û/∂νi ∈ H−1/2(∂Ωi) to each facet F ∈ Fi is in H−1/2(F ), which is the dual of

H1/2(F ) and contains distributions that are extendible by zero to H−1/2(∂Ωi).

Example 4.12 (a non-collective, surjective trace operator). Consider the case of Û = H1(Ω)
and Ui = H1(Ωi) for a general subdomain partition with cross points, where we do not split

the interface into faces, i.e., we use Ti : H
1(Ωi) → H1/2(Γi) with Γi := ∂Ωi ∩

⋃
j 6=i ∂Ωj , which

is perfectly surjective, so the strong assumption range(T ) = Λ holds. However, in general, one
cannot use the simple swapping operator X , see also Remark 4.17 and Sect. 7. Note also that
if the interface touches the Dirichlet boundary, some traces spaces may have to be adapted in
order to maintain surjectivity.

Example 4.13 (no junctions). Consider the case of Û = H1(Ω) and Ui = H1(Ωi) for a general
subdomain partition with no junctions in the sense of (2.7), such that the interface naturally
splits into facets that are closed manifolds of co-dimension one, each of them with two subdo-
mains on each side. We can use Ti : H

1(Ωi) → H1/2(Γi) with Γi := ∂Ωi ∩
⋃
j 6=i ∂Ωj , which is

perfectly surjective, so the strong assumption range(T ) = Λ holds. Apparently, the simple type
of swapping operator X can be used without any complications.

Example 4.14 (no cross points). Consider the case of Û = H1(Ω), and Ui = H1(Ωi) and
suppose that we have no cross points, in the sense that the interface ∂Ωi ∩ ∂Ωj between two
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subdomains is either empty or a (possibly open) manifold of co-dimension one, and each such
interface has positive distance from each other, for an example see Figure 14. Note that this
assumption allows two subdomains to meet at the outer boundary, cf. Fig. 4, so (2.7) does

not necessarily hold. In such a case, if we use Ti : H
1(Ωi) → Λ := H1/2(Γi), where Γi :=

∂Ωi ∩
⋃
j 6=i ∂Ωj , then Ti is surjective. At the same time, since the local interface Γi is the union

of disconnected facets, each of which is shared by a unique neighboring subdomain, we can
use the simple type of swapping operator X without any complications. Note, however, that if
Ui includes a Dirichlet condition and Γi intersects the Dirichlet boundary in a manifold of co-
dimension two, then the trace space Λi must be adapted to include the same Dirichlet boundary

condition (leading to a H
1/2
00 -like space). Otherwise, there is no chance for surjectivity. If the

Dirichlet boundary only lies on one side of a face, this can lead to non-matching trace spaces
for the same facet, such that the simple swapping operator cannot be used anymore, cf. Fig. 15.

The following two examples concern the discrete case.

Example 4.15. Let F be a discrete bilateral facet system with µmax > 2. Then the condi-
tions of Cases (b) and (c) are not fulfilled as range(T ) ( Λ, cf. Proposition 3.10. Therefore,
Formulation 4.2 has a solution operator, but the component τ of the solution is not unique.

Example 4.16. Assume that we have either a bilateral discrete facet system with µmax ≤ 2
or a glob system. Then range(T ) = Λ, cf. Proposition 3.10 and Proposition 3.12. Therefore,
Formulation 4.2 has a unique solution operator.

Remark 4.17. In the infinite-dimensional case, the most appealing version is case (b) with
the strong assumption range(T ) = Λ. While the latter can be fulfilled quite easily by a proper
choice of Λ and T , the attentive reader may ask: do there even exist operators X fulfilling
Assumption (A2) under these circumstances? This question is the subject of Sect. 7 below and
a short answer is: in fact always, but in general X will be non-local.

The following proposition will be helpful later on in Sect. 6.4.

Proposition 4.18. Let E : Λ→ U let be an arbitrary linear and bounded extension operator such
that TE = I. (In general, such an extension is not unique, but it can only exist if range(T ) = Λ.)
Then the solution operator from the proof of Theorem 4.8 has the form

S(τ) =

[
I 0
0 ET

]
S =

[
I

ETA

]
RÂ−1RT −

[
0
ET

]
.

Proof. If suffices to show that ET : U∗ → Λ∗ can be used instead of the operator Q in the
proof of Theorem 4.8. Therefore we have to show that (i) TTETt = t for all t ∈ ker(RT) and
(ii) ETt ∈ ker(I + X T ) for all t ∈ ker(RT). Property (i) follows simply from the fact that
ker(RT) ⊆ range(TT). To see Property (ii), recall from Lemma 4.6 that for any t ∈ ker(RT)
there exists τ ∈ ker(I + XT) such that t = TTτ . Hence, ETt = ETTTτ = τ ∈ ker(I + XT). �

5. Formulations with Robin Transmission Conditions

In this section, based on the interface flux formulation, another formulation is derived using
generalized Robin transmission conditions. This leads to the classical method by Després (in the
continuous case) and to the FETI-2LM formulation and variants thereof (in the discrete case).

5.1. Robin Transmission Conditions. For the H1-setting, recall the classical Robin trans-
mission conditions (2.4) and the generalized transmission conditions (2.6) with the impedance
operator on each facet. If, like in Example 2.18, the trace space has the form Λi =

∏
F∈Fi

UF ,
then we can use an impedance operator MF : UF → U∗F on each facet, with a bounded inverse.
The generalized incoming and outgoing impedance traces are given by αMFTiFui ± τiF , where
α = i or 1 (depending whether we deal with the Helmholtz or the Laplace equation) and where
τiF is the component of τi ∈ Λ∗i corresponding to F and stands for the normal derivative ∂ui/∂νi.
For the choice UF = L2(F ) and 〈MFλ, µ〉 = κ

∫
F λµds, we reproduce the classical impedance
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traces. Forming the operators Mi = diag(MF )F∈Fi and M = diag(Mi)
N
i=1 : Λ→ Λ∗, we can eval-

uate all these traces simultaneously, αMTu± τ . Note that if all operators MF have a bounded
inverse, so has M . Although at a certain point later on, we will return to impedance operators M
of such particular block-diagonal structure, the following theory covers more general situations.

Assumption (A3). The impedance operator M : Λ → Λ∗ is linear and bounded, and the
operator (M + XTMX ) has a bounded inverse.

Example 5.1. Consider Example 2.18 with the swapping operator X from Example 2.19 and
assume a block-diagonal structure M = diag(Mi)

N
i=1 and Mi = diag(MiF )F∈Fi . Then Assump-

tion (A3) states that the sum (MiF + MjF ) on each facet F ∈ Fi ∩ Fj is invertible. However,
MiF may differ from MjF .

Lemma 5.2. Let (A2)–(A3) hold and let α ∈ C \ {0}. Then for any γ ∈ Λ and τ ∈ Λ∗, the
following statements are equivalent:

(i) (I −X )γ = 0 and (I + XT)τ = 0,
(ii) αM(I −X )γ + (I + XT)τ = 0.

Proof. Obviously (i) =⇒ (ii). To show the reverse implication, we apply (I −XT) to (ii):

α(I −XT)M(I −X )γ + (I −XT)(I + XT)τ = 0.

Due to Lemma 2.25 the underlined expression vanishes. A side computation reveals that

(I −XT)M(I −X ) = M + XTMX −MX − XTM︸ ︷︷ ︸
=XTMXX

= (M + XTMX )(I −X ).

Therefore, α(M + XTMX )(I − X )γ = 0. Since α 6= 0 and (M + XTMX ) is invertible, this
shows that (I −X )γ = 0. Insertion into (ii) proves that (I + XT)τ = 0. �

Remark 5.3. In the proof of Lemma 5.2, only the property X 2 = I is used from (A2).

Remark 5.4. In Sect. 6, we will use the stronger assumptions that M itself has a bounded
inverse (Assumption (A6)) and that XTMX = M (Assumption (A4)).

Remark 5.5. As a viable alternative to Assumption (A3), one can assume that M + XHMX
has a bounded inverse and obtain the equivalence between (i) (I −X )γ = 0 and (I +XH)τ = 0
and (ii) αM(I −X )γ + (I + XH)τ = 0. See also Remark 7.12 below.

For the following, we fix the Robin parameter α (later on, we will set α = 1 for the coercive
case and α = i for the wave propagation case). Using Lemma 5.2, Formulation (4.2) is equivalent
to

find (u, τ) ∈ U × Λ∗ :

[
A −TT

αM(I −X )T (I + XT)

] [
u
τ

]
=

[
f
0

]
,(5.1)

where the second line enforces the generalized Robin transmission conditions.

5.2. A formulation based on generalized Robin traces. Using the impedance operator M
and the scalar Robin parameter α from the previous section, we define the generalized impedance
trace (or generalized Robin trace) λ := αMTu+ τ . In view of (2.5), we can call λ the incoming
impedance trace. Applying the bijective transformation of variables (u, τ) ↔ (u, λ) to (5.1) we
arrive at the

Interface impedance trace formulation:

find (u, λ) ∈ U × Λ∗ :

[
(A+ αTTMT ) −TT

−αXT(M + XTMX )T (I + XT)

] [
u
λ

]
=

[
f
0

]
.(5.2)

Corollary 5.6. Let (A1)–(A3) hold and let f ∈ U∗ be given. Then:

(i) If (u, λ) solves (5.2) then u = Rû where û is the unique solution of (2.8).
(ii) If, in addition, either
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(a) all spaces are finite-dimensional, or
(b) range(T ) = Λ, or

(c) range(T ) = Λ and ARû− f ∈ range(TT),
then there exists λ ∈ Λ∗ such that (Rû, λ) solves (5.2). In cases (b) and (c), λ is
guaranteed to be unique, whereas in the finite-dimensional case (a), λ is only unique up
to an element from Z (see Def. 4.3).

(iii) In cases (a) and (b), there exists a bounded linear solution operator S(λ) : f 7→ (u, λ) for

(5.4). In case (b), S(λ) is unique.

Proof. The proof follows from Theorem 4.8, Lemma 5.2, and the fact that the transforma-
tion (u, τ) ↔ (u, λ) is isomorphic. In cases (a) and (b), the solution operator is given by

S(λ)f = (u, τ + αMTu) where (u, τ) = S(τ)f . �

With an extension operator E as in Proposition 4.18, the solution operator can be written as

S(λ) =

[
I 0

αMT I

]
S(τ) =

[
I

αMT + ETA

]
RÂ−1RT −

[
0
ET

]
.(5.3)

The following assumption will mainly be used in Sect. 6 and allows for a simplified formulation.

Assumption (A4). XTMX = M .

This assumption can be interpreted in two ways. (i) If the exchange operator X is fixed, (A4)
restricts the choice of the impedance operator M to ones that are “the same from either side”,
see Example 5.7 below. (ii) If M is fixed, (A4) restricts the choice of the exchange operator X ;
this point of view will be adopted in Sect. 7. Note also that under (A4), Assumption (A3)
actually requires that M has a bounded inverse.

Example 5.7 (facet-local impedance operator). For the setup from Example 2.18 with the
swapping operator X from Example 2.19, assume that M is block-diagonal with respect to the
facets, i.e., M = diag(Mi)

N
i=1 and Mi = diag(MiF )F∈Fi . Then Assumption (A4) states that for

a facet F shared by subdomain i and j, the condition MiF = MjF must hold, i.e., we use the
same impedance operator on both sides of the facet.

Remark 5.8. Under the additional assumption of (A4), formulation (5.2) simplifies to

find (u, λ) ∈ U × Λ∗ :

[
(A+ αTTMT ) −TT

−2αXTMT (I + XT)

] [
u
λ

]
=

[
f
0

]
.(5.4)

Multiplication of the second line by 1
2αM

−1XT leads to the formally symmetric system[
A −TT

−T 1
2αM

−1(I + XT)

] [
u
λ

]
=

[
f
0

]
.(5.5)

This is because under Assumption (A4), M−1XT = XM−1.

Remark 5.9. Under the additional assumption of (A4), the substitution λ = Mλ in (5.2) leads
to the system

find (u, λ) ∈ U × Λ:

[
(A+ αTTMT ) −TTM
−2αXT (I + X )

] [
u
λ

]
=

[
f
0

]
,(5.6)

which is used, e.g., in [17].

The elimination of the primal variable u from (5.2) requires the following assumption.

Assumption (A5). The operator (A+ αTTMT ) has a bounded inverse.

If M is block-diagonal w.r.t. the subdomains, i.e., M = diag(Mi)
N
i=1 with Mi : Λi → Λ∗i ,

then Assumption (A5) means that (Ai + αTT
i MiTi) has a bounded inverse for each individual

subdomain i = 1, . . . , N ; see also Assumption (A6), Sect. 6.1.
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Remark 5.10. For the Helmholtz equation posed in H1 (Example 2.1) with a block-diagonal
impedance operator, the property of Assumption (A5) can be shown using standard techniques.
The case of Maxwell’s equations is much more intricate, and invertibility is in some situations
even an open problem [81]. Some basic techniques, however, are compiled in Appendix B.

Assumption (A5) allows us to form the Schur complement system of (5.2):

find λ ∈ Λ: (I −XTS)λ = d,(5.7)

where

S := −I + α(M + XTMX )T (A+ αTTMT )−1TT,

d := αXT(M + XTMX )T (A+ αTTMT )−1f.
(5.8)

Proposition 5.11. Let Assumptions (A1)–(A5) hold. Then the definitions in (5.8) simplify to

S = −I + 2αMT (A+ αTTMT )−1TT, d = 2αXTMT (A+ αTTMT )−1f.

For any (v, σ) fulfilling the homogeneous equation Av−TTσ = 0, the scattering operator S maps
the incoming impedance trace λ = αMTv+σ to the outgoing impedance trace Sλ = αMTv−σ.8

The connection between (5.2) and (5.7) is established in a standard fashion:

Proposition 5.12. Let (A1)–(A3), and (A5) hold.

(i) Let f ∈ U∗ be given. If (u, λ) solves (5.2) then λ solves (5.7) with d as in (5.8).
(ii) Let f ∈ U∗ be given, let d be as in (5.8), and suppose that λ solves (5.7). Then, with

u = (A+ αTTMT )−1(f + TTλ), one obtains that (u, λ) solves (5.2).

Remark 5.13. Applying XT to the Schur system (5.7) yields (under Assumption (A4)) the
formulation [

I + XT − 2αMT (A+ αTTMT )−1TT
]
λ = 2αMT (A+ αTTMT )−1f,(5.9)

which is essentially the one used in the method introduced by de La Bourdonnaye, Farhat,
Macedo, Magoulès, and Roux [22, 41]. Note that therein, (5.9) is solved iteratively and with a
Krylov subspace method and a preconditioner based on a projection to subdomain plane wave
functions. In a related journal paper [40], the method was called regularized FETI method with
two Lagrange multiplier fields (FETI-2LM). The exact ordering of the unknowns and equations
is not described in detail, but for two subdomains, [22, (51)–(52)] coincides with (5.9). On the
contrary, formulation (5.7) is used in the FETI-2LM method described in [89, 88]. See also [96]
for a similar formulation for Maxwell’s equations.

Remark 5.14. Under the additional Assumption (A4), M is invertible due to (A3), and so we
can use the bijective transformation λ := M−1λ = αTu + M−1τ . The transformed equation
reads

(I −XS)λ = d,(5.10)

where S = −I + 2αT (A + αTTMT )−1TTM and d = 2αXT (A + αTTMT )−1f , which is the
Schur complement formulation of (5.6). Formulation (5.10) is, e.g., used in [17] (with α = −i
and with the minus sign in front of X moved into S).

5.3. The Robin-Schwarz iteration. Given a damping parameter β ∈ (0, 1], the non-overlapping
Schwarz iteration with Robin transmission conditions is nothing else than a damped Richardson
method for the Schur complement system (5.7):

Given: λ(0) ∈ Λ∗,

λ(n+1) := λ(n) + β
[
d− (I −XTS)λ(n)

]
∀n ≥ 0.

(5.11)

8For the Helmholtz equation and for the choice α = i and M = κI, we have λi = iκui + ∂ui/∂νi and
Siλi = iκui − ∂ui/∂νi, cf. (2.5).
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Remark 5.15. Equation (5.7) can also be written in fixed-point form, λ = XTSλ+ d. Corre-

spondingly, (5.11) can be written as λ(n+1) = (1− β)λ(n) + β
[
XTSλ(n) + d

]
.

Remark 5.16. With λ(0) ∈ Λ given, the iteration corresponding to (5.10) reads (see also [17])

λ(n+1) = λ(n) + β
[
d− (I −XS)λ(n)

]
∀n ≥ 0.(5.12)

Along with the dual iterates λ(n) of (5.11), we define the corresponding primal sequence

u(n) := (A+ αTTMT )−1(f + TTλ(n)) ∀n ≥ 0,(5.13)

such that

λ(n+1) = λ(n) + β
[
αXT(M + XTMX )Tu(n) − (I + XT)λ(n)

]
∀n ≥ 0.(5.14)

In that form, the scheme can be interpreted as a damped Uzawa iteration for (5.2).

The iterates λ(n) of (5.11) are Lagrange multipliers on the interface. In the discrete case, this
is more preferrable compared to an iteration involving functions on the whole subdomains. How-
ever, the classical Schwarz method [25, 65] was proposed in terms of iterates on the subdomains,
and the following result provides a link to such a form.

Proposition 5.17. Let (A1)–(A3), and (A5) hold and assume that range(T ) = Λ. Then the

sequence (u(n)) defined in (5.13) fulfills the recurrence relation

u(n+1) = (1− β)u(n) + β(A+ αTTMT )−1
(
f + TT

[
αMXTu(n) −XT(TT)†(Au(n) − f)

])
,

(5.15)

for all n ≥ 0, where (TT)† : range(TT) → Λ∗ is the unique left-inverse of TT, such that
(TT)†TT = I. (Note that (TT)† is linear but not necessarily bounded!) Also,

Au(n) − f ∈ range(TT) ∀n ≥ 0,

which is why (5.15) is well-defined. Recall that u(0) is defined by λ(0), but actually, we can choose

u(0) freely as long as Au(0) − f ∈ range(TT) is fulfilled.

Proof. Since ker(TT) = range(T )0 = range(T )
0

= Λ0 = {0}, cf. (4.1), there exists a unique
linear right inverse (TT)† : range(TT) → Λ∗ such that (TT)†TT = I. From (5.13), one can see
easily that

Au(n) − f = TT(λ(n) − αMTu(n)),

so Au(n) − f ∈ range(TT). Therefore, we can multiply the previous identity by (TT)† to obtain

λ(n) = (TT)†(Au(n) − f) + αMTu(n).(5.16)

Substitution of (5.16) into the right-most occurrence of λ(n) in (5.14), applying TT, adding f
on both sides, and finally applying (A+ αTTMT )−1 yields (5.15). �

Example 5.18 (classical impedance operator). Consider the Helmholtz equation from Exam-
ple 2.1 with globally constant wave number κ, with the choice of L2-traces (Example 2.18), the
swapping operator X from Example 2.19, and with α = i and Mi = κI. Then the expression

(TT)†(Au(n)−f) evaluates for each subdomain Ωi the normal derivative ∂
∂νi
u

(n)
i on the interface

∂Ωi ∩ Γ as a quantity in L2. For damping parameter β = 1, the equations for u(n+1) in strong
form read

−∆u
(n+1)
i − κ2u

(n+1)
i = fi in Ωi ,

iκu
(n+1)
i +

∂

∂νi
u

(n+1)
i = iκu

(n)
j −

∂

∂νj
u

(n)
j on ∂Ωi ∩ ∂Ωj ,

(5.17)

plus the given exterior boundary condition on ∂Ωi ∩ ΓD, ∂Ωi ∩ ΓN , and ∂Ωi ∩ ΓR. In this form,
the method was proposed by B. Després in [25, p. 29].
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Figure 16. Local subdomain dof (◦) corresponds to dofs (•) on two bilateral
facets. For an element τi ∈ Λi, the operation ti = TT

i τi adds up the values of the
two trace dofs • to the local subdomain dof ◦. From ti the original values of the
two trace dofs cannot be recovered. Therefore ker(TT

i ) 6= {0} and range(Ti) ( Λi.

method proposed in facet system formulation
FETI-2LM [22, 41, 40] bilateral, properly closed dual (5.7)
auxiliary variables [49, Sect. 3] bilateral, properly closed mixed (5.13)–(5.14)
Loisel’s method [66] globs dual (5.7)
complete communication [49, Sect. 4] globs primal (5.15)

Table 3. Classification of discrete methods.

Remark 5.19. The fixed point formulation behind the primal iteration (5.15) reads

u = (A+ αTTMT )−1
(
f + TT

[
αMXTu−XT(TT)†(Au− f)

])
,(5.18)

where (TT)† : U∗ → Λ∗ is a generalized inverse of TT (not necessarily bounded!) such that

(TT)†TT = I (which is only possible if ker(TT) = {0} or, equivalently, range(T ) = Λ). Reorder-
ing the terms yields

(
I − (A+ αTTMT )−1TT

[
αMXT −XT(TT)†A

])
u = (A+ αTTMT )−1

[
f + XT(TT)†f

]
,

(5.19)

which is of similar structure as (5.7). Note that if E : Λ → U is a bounded extension operator
with TE = I (which requires range(T ) = Λ), then (TT)† can be replaced by ET.

5.4. A classification of discrete methods. If we are in the discrete case and range(T ) ( Λ,
then ker(TT) is non-trivial. This means that once a dual variable λ is assembled to TTλ,
it cannot be recovered in general, see Figure 16 and see [49, Sect. 3]. Right inverses (TT)†

of TT do exist, but they only fulfill TT(TT)†TT = TT; however, (TT)†TT 6= I. From the
perspective of the dual formulation (5.7) this is not a problem at all. The FETI-2LM method
[22, 41, 40] was introduced exactly along these lines, and also the classical FETI method [44]
lives with comparable redundancies, cf. [93, Sect. 6], [82, Sect. 2.2]. From the perspective of
trying to leverage formulation (5.17) from the continuous to the discrete case by using the
bilateral properly closed facets (see Sect. 3.2.1), the lack of surjectivity of T turns out to be a

real obstacle. The formulation (5.13)–(5.14), involving both the dual and primal iterate λ(n)

and u(n), has been proposed by Gander and Santugini [49, Sect. 3] and is therein called auxiliary
variable method or optimized Schwarz with auxiliary variables.

Under the condition range(T ) = Λ one can obviously use the primal form (5.15) (also in the
discrete case). Recall that for bilateral facet systems, the condition range(T ) = Λ fails to hold
once a global dof is shared by three or more subdomains (Proposition 3.10). Recall, however,
that for glob systems, the condition range(T ) = Λ holds always. Indeed, the construction in the
paper by S. Loisel [66] (therein called 2-Lagrange multiplier method) is reproduced if one uses a
glob system and the dual formulation (5.7). Independently, Gander and Santugini [49, Sect. 4]
proposed a scheme called complete communication method, which is reproduced if one uses a
glob system and the primal formulation (5.15). These observations are summarized in Table 3.
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6. Convergence analysis

This section contains three types of convergence theorems that all extend available results.
Section 6.2 generalizes the result with minimal assumptions and simple convergence by Collino,
Ghanemi, and Joly [19] building on Després’ original proof [25]. Section 6.4 generlizes the
result in [19] with stronger assumptions on the trace operator achieving linear convergence (in
[19] called exponential convergence). For completeness, Section 6.3 covers the case where the
wave propagation problems have a lot of absorbtions or the coercive problems have a sufficient
zero order term, leading to linear convergence as well, as e.g., demonstrated in [49]. Whereas
the assumptions made so far have been tailored to guarantee that the reformulations in (5)
are equivalent to the original equation, one needs additional assumptions to make convergence
accessible (Sect. 6.1).

6.1. Additional assumptions for the convergence analysis. Opposed to many analyses
of coercive problems where the system operator can serve as an energy norm, here errors are
measured using the impedance operator, which requires the following stronger assumption and
goes back to the concept of pseudo-energy, see [25].

Assumption (A6). The operatorM from (A3) has the block-diagonal formM = diag(Mi)
N
i=1,

where each operator Mi : Λi → Λ∗i is real-valued, symmetrica, and positively bounded from

below, i.e., there exists a constant ci > 0 such that 〈Miλi, λi〉 ≥ ci‖λi‖2Λi
for all λi ∈ Λi.

aMi : Λi → Λ∗i is symmetric iff MT
i = Mi.

With Assumption (A6) fulfilled, we can define the following inner products and norms:

(λ, µ)M := 〈Mλ,µ〉, ‖λ‖M := 〈Mλ, λ〉1/2 λ, µ ∈ Λ,

(λ, µ)M−1 := 〈M−1λ, µ〉, ‖µ‖M−1 := 〈M−1µ, µ〉1/2 λ, µ ∈ Λ∗,

where µ denotes the complex conjugate of µ.

Assumption (A7). The exchange operator X is real-valued.

Assumptions (A4), (A6), and (A7) together imply that the exchange operator is an isometry:

‖Xλ‖M = ‖λ‖M ∀λ ∈ Λ,

‖XTµ‖M−1 = ‖µ‖M−1 ∀µ ∈ Λ∗.
(6.1)

Our next assumption states that we are dealing either with a coercive (positive definite)
problem, or with a (time-harmonic) wave propagation problem.

Assumption (A8). One of the following cases holds:

(i) Coercive case: α = 1 and each operator Ai is real-valued, symmetric, and non-
negativea.

(ii) Wave propagation case: α = i and each operator Ai can be written as

Ai = Ai,0 + iAi,1 −Ai,2
with real-valued, symmetric, and non-negative operators Ai,k.

aAi : Ui → U∗i is non-negative iff 〈Aiv, v〉 ≥ 0 for all v ∈ Ui.

The following lemma states that the pseudo-energy (cf. [25, Lemme 4.3]) of the incoming
impedance trace λ is the same as that of the outgoing impedance trace Sλ plus the interior
losses.

Lemma 6.1. Let Assumptions (A1)–(A8) hold. Then

‖Sλ‖2M−1 + 4p = ‖λ‖2M−1 ∀λ ∈ Λ∗,
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where p ≥ 0 is defined as

p =

{
〈Av, v〉 in case (i) of (A8)

Im〈Av, v〉 in case (ii) of (A8)

}
with v = (A+ αTTMT )−1TTλ.

In particular, the scattering operator S is non-expansive with respect to the norm ‖ · ‖M−1:

‖Sλ‖M−1 ≤ ‖λ‖M−1 ∀λ ∈ Λ∗.

Proof. In addition to v given above, we define σ := λ− αMTv. Proposition 5.11 implies

Av − TTσ = 0, λ = αMTv + σ, Sλ = αMTv − σ.

We form

‖Sλ‖2M−1 − ‖λ‖2M−1 = ‖αMTv − σ‖2M−1 − ‖αMTv + σ‖2M−1

= −4Re (σ, αMTv)M−1︸ ︷︷ ︸
α〈TTσ,v〉

= −4 Re
(
α〈Av, v〉

)︸ ︷︷ ︸
=:p

.

According to (A8), we have two cases: In case (i), α = 1 and A is real-valued, symmetric, and

non-negative, so p = 〈Av, v〉 ≥ 0. In case (ii), α = i, so p = Im〈Av, v〉 =
∑N

i=1〈Ai,1vi, vi〉 ≥ 0,
since each operator Ai,1 is real-valued and non-negative. �

Remark 6.2. For the formulation from Remark 5.14, ‖S λ‖2M + 4p = ‖λ‖2M for all λ ∈ Λ, with

p as in Lemma 6.1 but with v = (A+ αTTMT )−1TTMλ.

6.2. Convergence in the general case. This section generalizes the convergence result by
Collino, Ghanemi, and Joly [19, Lemma 5] which is based on the early findings by Després.

Lemma 6.3. Let (A1)–(A3), and (A5) hold. Then (with Z as in Def. 4.3)

ker(I −XTS) = Z.

If, in addition, Assumption (A6) holds then ker(I −XS) = M−1(Z) (see Remark 5.14).

Proof. Assume that λ ∈ Λ∗ with (I−XTS)λ = 0. We define f = 0 and u = (A+αTTMT )−1TTλ
and find that (u, λ) solves (5.4), cf. Proposition 5.12. With τ = λ − αMTu, this implies that

(u, τ) solves (4.2). Since the solution operator S(τ) for (4.2) depends only on f = 0, it follows
from Theorem 4.8 that (u, τ) = (0, z) for some element z ∈ Z. This implies, in turn, that λ ∈ Z.
The second relation follows from MS = SM , cf. Remark 5.14. �

Theorem 6.4. Let Assumptions (A1)–(A8) hold. In addition, either

1. all spaces are finite-dimensional, or
2. all the following assumptions hold:

(a) range(T ) = Λ,
(b) ARû− f ∈ range(TT),
(c) T is compact.

Then the Robin-Schwarz iteration (5.11) with damping parameter β ∈ (0, 1) converges in the
sense that

TTλ(n) n→∞−→ w(∞) in U∗, u(n) n→∞−→ Rû in U,

where w(∞) := (A + αTTMT )Rû − f and u(n) := (A + αTTMT )−1(f + TTλ(n)). In general,

(λ(n)) only contains weakly convergent subsequences. Likewise, the iterates (λ(n)) from (5.12)

fulfill TTMλ(n) n→∞−→ w(∞).

Proof. The structure of the proof follows that of [19, Lemma 5]. Due to the stated assumptions,
Theorem 4.8 guarantees the existence of τ ∈ Λ∗ such that (Rû, τ) solves (4.2), or equivalently
(5.1). In the finite-dimensional case, τ is not necessarily unique, but we fix one possible solution.
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With λ := αMTRû+τ , we find that (Rû, λ) solves (5.4) and consequently λ solves (5.7). Defining

µ(n) := λ(n) − λ, we find from (5.11) that

µ(n+1) = (1− β)µ(n) + βXTSµ(n).

Hence,

‖µ(n+1)‖2M−1 = (1− β)2‖µ(n)‖2M−1 + 2β(1− β)Re
(
XTSµ(n), µ(n)

)
M−1 + β2‖XTSµ(n)‖2M−1 .

As in the proof of [19, Lemma 5], we use the identity

2Re
(
XTSµ(n), µ(n)

)
M−1 = ‖µ(n)‖2M−1 + ‖XTSµ(n)‖2M−1 − ‖(I −XTS)µ(n)‖2M−1(6.2)

in the earlier formula to obtain

‖µ(n+1)‖2M−1 = (1− β)‖µ(n)‖2M−1 − β(1− β)‖(I −XTS)µ(n)‖2M−1 + β‖XTSµ(n)‖2M−1 .

Due to the isometry property (6.1) and Lemma 6.1,

‖XTSµ(n)‖2M−1 = ‖Sµ(n)‖2M−1 = ‖µ(n)‖2M−1 − 4p(n) ,

with p(n) ≥ 0 given by

p(n) =

{
Re
〈
Ae(n), e(n)

〉
in case (i) of (A8),

Im
〈
Ae(n), e(n)

〉
in case (ii) of (A8),

where e(n) = (A+ αTTMT )−1TTµ(n). By induction, we can show that

‖µ(n+1)‖2M−1 + β(1− β)
n∑
k=1

‖(I −XTS)µ(k)‖2M−1 + 4β
n∑
k=1

p(k) = ‖µ(0)‖2M−1 .

Since all terms on the left-hand side are non-negative and since β ∈ (0, 1), this proves that

(i) the sequence (µ(n)) is bounded with respect to ‖ · ‖M−1 ,

(ii) the series
∑∞

k=1 ‖(I −XTS)µ(k)‖2M−1 converges, and so (I −XTS)µ(k) k→∞−→ 0 in Λ∗.

Because of (i) there exists a weakly convergent subsequence (µ(n`)) with a weak limit µ(∞) ∈ Λ∗,

i.e., µ(n`) ⇀ µ(∞). Next, we need a case distinction:

• In case 1, all spaces are finite-dimensional and so weak convergence implies strong con-
vergence. Because of (ii) this yields (I −XTS)µ(∞) = 0.
• In case 2, due to (2c), TT is compact, and so

TTµ(n`) `→∞−→ TTµ(∞) (strongly) in U∗,

TT(I −XTS)µ(n`) `→∞−→ TT(I −XTS)µ(∞) (strongly) in U∗.

Since (I − XTS)µ(n`) converges to zero, it follows that TT(I − XTS)µ(∞) = 0. Due to

assumption (2a) it follows that ker(TT) = range(T )0 = range(T )
0

= {0}, and so

(I −XTS)µ(∞) = 0.

In both cases, we conclude from Lemma 6.3 that µ(∞) ∈ ker(TT) ∩ ker(I + XT). In the finite-

dimensional case, µ(∞) may be non-zero and depend on the subsequence. Nevertheless, it is true
in general that TTµ(∞) = 0, which shows that

TTµ(n`) `→∞−→ 0 (strongly) in U∗.

Suppose now that the original sequence TTµ(n) does not converge to zero. Then there must
be a subsequence (nj) and some ε > 0 such that ‖TTµ(nj)‖M−1 ≥ ε. However, we can repeat
the arguments from above and extract a sub-subsequence that does converge to zero, which is a
contradiction. Therefore,

TTµ(n) n→∞−→ 0 (strongly) in U∗.
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From the definition of µ(n) we obtain that

TTλ(n) n→∞−→ αTTMTRû+ TTτ︸︷︷︸
ARû−f

= (A+ αTTMT )Rû− f.

Using (A5), the convergence property for u(n) follows suit. �

Example 6.5. For the Helmholtz equation (Example 2.1), suppose that we use a bilateral
facet system with facet trace space UF := Hs(F ), where 0 ≤ s < 1/2, and the usual exchange
operator that swaps traces (see Example 2.19). Then Assumptions (A1)–(A2) and (A7) are
fulfilled. For each facet F , let MF : Hs(F ) → Hs(F )∗ be a real-valued, symmetric impedance
operator which is bounded positively from below, and define Mi as a block-diagonal operator
with entries (MF )F∈Fi . Then Assumptions (A3), (A4), and (A6) hold. The invertibility of the
local subdomain problems (Assumption (A5)) is also guaranteed, see Appendix B.4. Finally,
with α = i, Assumption (A8) holds (see Table 1). In the continuous case, range(T ) is dense in

Λ because the natural trace space H1/2(F ) is dense in the chosen trace space Hs(F ), and T is

compact because the embedding H1/2(F ) ⊂ Hs(F ) is compact for s < 1/2, so Assupmtions 2.a)
and 2.c) hold. Assumption 2.b) states that the normal derivative of the global solution must be
piecewise in Hs(F )∗. For s = 0, this is the L2 regularity used in [25] and [19, Sect. 2.3].

Remark 6.6. For the special case of the Laplace and the Helmholtz equation, Lions [65] and
Després [25] proved that the undamped Schwarz scheme (with β = 1) converges as well. A
generalization of that line of proof, however, is beyond the scope of this paper as it would
require more assumptions and appear even more technical.

It would be advantageous if the scattering operator S were a contraction, because this would
at once imply linear convergence à la Banach’s fixed point theorem.

Proposition 6.7. Let Assumptions (A1)–(A8) hold and suppose that

‖Sµ‖M−1 ≤ ρ‖µ‖M−1 ∀µ ∈ Λ∗,

for some contraction factor ρ < 1. Then for any damping parameter β ∈ (0, 1], the Robin-
Schwarz iteration (5.11) converges linearly in the sense that for n ≥ 0,

‖λ(n+1) − λ‖M−1 ≤ ρ‖λ(n) − λ‖M−1

and therefore ‖λ(n) − λ‖M−1 ≤ ρn‖λ(0) − λ‖M−1.

However, two causes can prevent S from being (strongly) contractive.

(i) In case of redundancies, i.e., if Z = ker(I −XTS) is non-trivial, there exists an element
µ 6= 0 such that XTSµ = µ, and so ‖Sµ‖M−1 = ‖XTSµ‖M−1 = ‖µ‖M−1 .

(ii) For wave propagation problems, the typical subdomain i has mostly propagative modes,
these are functions µi ∈ Λ∗i \ {0} such that

Siµi = ξµi with ξ ∈ C, |ξ| = 1,

which is why ‖Siµi‖M−1
i

= ‖µi‖M−1
i

. Indeed, Lemma 6.1 shows that if Ai,1 = 0 then all

functions in Λi are propagative and Si is an isometry.

Remark 6.8. A recent and very promising work [52] on an overlapping Robin-Schwarz method
for the Helmholtz equation proves power-contractivity (but does not fit into the framework of
this paper).

6.3. Convergence for strong absorbtion. The following theorem shows convergence also
for damping parameters of one and can do so without compactness, however, under strong
assumptions on the subdomain operators (cf. [49, Thm. 3.2]).

Theorem 6.9. Let Assumptions (A1)–(A8) hold. In addition,

1. all spaces are finite-dimensional, or
2. the two following assumptions hold:
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(a) range(T ) = Λ,
(b) ARû− f ∈ range(TT).

Furthermore, assume that there exist positive constants ai > 0 such that for each i = 1, . . . , N ,

〈Aiv, v〉 ≥ ai‖v‖2Ui
in case (i) of (A8),

〈Ai,1v, v〉 ≥ ai‖v‖2Ui
in case (ii) of (A8).

Then the Robin-Schwarz iteration (5.11) with damping parameter β ∈ (0, 1] converges in the
sense that

TTλ(n) n→∞−→ w(∞) in U∗, u(n) n→∞−→ Rû in U.

where w(∞) := (A+ αTTMT )Rû− f and u(n) := (A+ αTTMT )−1(f + TTλ(n)).

Proof. With the stated assumptions, we can repeat the first few arguments from the proof of
Theorem 6.4 and obtain

‖µ(n+1)‖2M−1 + β(1− β)

n∑
k=1

‖(I −XTS)µ(k)‖2M−1 + 4β

n∑
k=1

p(k) = ‖µ(0)‖2M−1 ,

with

p(k) =

Re
〈
Ae(k), e(k)

〉
=
∑N

i=1

〈
Aie

(k)
i , e

(k)
i

〉
in case (i) of (A8),

Im
〈
Ae(k), e(k)

〉
=
∑N

i=1

〈
Ai,1e

(k)
i , e

(k)
i

〉
in case (ii) of (A8),

where e(k) = (A+ αTTMT )−1TTµ(k). Since p(k) ≥ 0 and β > 0 the series
∑∞

k=1 p
(k) converges,

and so p(k) → 0 as k →∞. By assumption, this implies that

e(k) → 0 (strongly) in U.

From the definition of e(k) and µ(k) = λ(n)−λ, one can easily conclude that the sequence (TTλ(k))
converges. Recalling that λ = αMTRû+ τ and ARû− TTτ = f , we find that

e(n) = (A+ αTTMT )−1TTλ(n) − (A+ αTTMT )−1(αTTMTRû+ TTτ︸︷︷︸
ARû−f

)

= (A+ αTTMT )−1(TTλ(n) + f)−Rû = u(n) −Rû.

Therefore, u(n) → Rû in U . �

Remark 6.10. In the typical coercive case (such as for Laplace’s equation), the assumption
in Theorem 6.9 essentially states that each subdomain operator Ai has a trivial kernel. In
the typical wave propagation case (such as for the Helmholtz equation), the assumption in
Theorem 6.9 leads to the damping of any wave. Note, however, that the assumption is quite
strong since Ai,1 has to include not only a zero-order term (which would be more typical) but
also a portion of the principal term.

6.4. Convergence with surjective traces. In this section, linear convergence is shown under
the additional assumption that the trace operator T is surjective (range(T ) = Λ), but neither
regularity nor compactness is needed anymore. The proofs work along the lines of [19, Sect. 4.2].

Lemma 6.11. Let Assumptions (A1)–(A3), (A5) hold and in addition that range(T ) = Λ. Then
the operator (I −XTS) is an isomorphism, and the same applies to the operator (I −XS) from
Remark 5.14.

Proof. Recall the solution operator S(λ) : U∗ → U×Λ∗ from Corollary 5.6. Since by assumption,
range(T ) = Λ, there exists a bounded extension operator E : Λ→ U such that TE = I, see also
Proposition 4.18. We define T : Λ∗ → Λ∗ by

T := S(λ)
λ

1
α(A+ αTTMT )E(M + XTMX )−1XT,

with the notation S(λ)f = (S(λ)
u f,S(λ)

λ f).
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1) T is well-defined, linear, and bounded,
2) (I −XTS)T e = e for all e ∈ Λ∗: For arbitrary but fixed e ∈ Λ∗, we set

f := 1
α(A+ αTTMT )E(M + XTMX )−1XTe,

such that λ = S(λ)
λ f = T e. From Corollary 5.6 we see that (I − XTS)λ = d where

d = αXT(M + XTMX )T (A+ αTTMT )−1f . As one can check, d = e.
3) T (I −XTS)λ = λ for all λ ∈ Λ∗: For arbitrary but fixed λ ∈ Λ∗, we set

d := (I −XTS)λ, f := 1
α(A+ αTTMT )E(M + XTMX )−1XTd.

Obviously, µ := T (I − XTS)λ = S(λ)
λ f . Proposition 5.12(ii) implies that (u, λ) with

u = (A+ αTTMT )−1TTλ solves (5.4). Corollary 5.6 shows that λ = S(λ)
λ f , so µ = λ.

Summarizing, T is the bounded inverse of (I −XTS). �

Corollary 6.12. Let the prerequisites of Lemma 6.11 be fulfilled. Then

(I −XTS)−1 = 1
αE

T
[
Ã(RÂ−1RT)Ã− Ã

]
E
(
M + XTMX

)−1XT

= 1
α

[
(ETA+ αMT )RÂ−1RT(AE + αTTM)− ETAE − αM)

](
M + XTMX

)−1XT,

where Ã = (A+ αTTMT ) and E : Λ→ U is an arbitrary extension operator such that TE = I.

Proof. The statement follows from the proof of Lemma 6.11 and the definition (5.3) of S(λ), see
also Proposition 4.18. �

Remark 6.13. The representation of (I − XTS)−1 in Corollary 6.12 is used in [17] to derive
a lower bound for the associated inf-sup constant in the discrete case, where this bound is
independent of the mesh parameter. See also Remark 6.21 below.

Corollary 6.14. Let Assumptions (A1)–(A3), (A5)–(A6) hold and assume that range(T ) = Λ.
Then there exists a constant γ > 0 such that

‖(I −XTS)λ‖M−1 ≥ γ‖λ‖M−1 ∀λ ∈ Λ∗.(6.3)

Under the additional Assumptions (A4), (A7) and (A8), the following coercivity estimate holds
(with the same constant γ as above):

Re
〈
M−1(I −XTS)λ, λ

〉
≥ γ2

2
‖λ‖2M−1 ∀λ ∈ Λ∗.(6.4)

Likewise, ‖(I − XS)µ‖M ≥ γ‖µ‖M and Re
〈
M(I − XS)µ, µ

〉
≥ γ2

2 ‖µ‖
2
M for all µ ∈ Λ, cf.

Remark 5.14.

Proof. The first estimate follows directly from Lemma 6.11, owing to the fact that (I − XTS)
has a bounded inverse and that M−1 induces a norm due to (A6).
For the second part, let (A4), (A7) and (A8) hold in addition. Using identity (6.2) from the
proof of Theorem 6.4,

Re〈M−1XTSλ, λ〉 = 1
2

[
‖λ‖2M−1 + ‖XTSλ‖2M−1 − ‖(I −XTS)λ‖2M−1

]
∀λ ∈ Λ∗ ,

as well as Property (6.1), Lemma 6.1, and Lemma 6.11, we obtain

Re
〈
M−1(I −XTS)λ, λ

〉
= ‖λ‖2M−1 − Re

〈
M−1XTSλ, λ

〉
= ‖λ‖2M−1 −

1

2

[
‖λ‖2M−1 + ‖XTSλ‖2M−1︸ ︷︷ ︸

=‖Sλ‖2
M−1≤‖λ‖2M−1

− ‖(I −XTS)λ‖2M−1︸ ︷︷ ︸
≥γ2‖λ‖2

M−1

]
≥ γ2

2
‖λ‖2M−1 . �
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Remark 6.15. The constant γ in (6.3) may be called an inf-sup constant as (6.3) is equivalent
to

inf
λ∈Λ∗

sup
µ∈Λ

|〈(I −XTS)λ, µ〉|
‖λ‖M−1‖µ‖M

≥ γ.

A stronger property is

|〈M−1(I −XTS)λ, λ〉| ≥ γFV‖λ‖2M−1 ∀λ ∈ Λ∗.(6.5)

This can be equally expressed by saying that the numerical range (in the finite dimensional case
also called field of values) of (I−XTS) with respect to the inner product (·, ·)M−1 has a distance
of at least γFV from the origin:

min
z∈W
|z| ≥ γFV , where W =

{(
(I −XTS)λ, λ

)
M−1 : ‖λ‖M−1 = 1

}
⊂ C.

Obviously, (6.5) implies (6.3) with γ = γFV:

γFV‖λ‖2M−1 ≤
(
(I −XTS)λ, λ

)
M−1 ≤ ‖(I −XTS)λ‖M−1‖λ‖M−1 .

An even stronger property is

Re〈M−1(I −XTS)λ, λ〉 ≥ γco‖λ‖2M−1 ∀λ ∈ Λ∗,(6.6)

as (6.6) implies (6.5) with γFV = γco. Note that in the finite-dimensional case, (6.6) states that
the Hermitian part of (I − XTS) is positive definite, where Hermitian and positive definite are
to be understood with respect to the inner product (·, ·)M−1 in Λ∗.

We have seen that, in general, the coercivity property (6.6) implies the inf-sup property (6.3)
with γ = γco. The second part of Corollary 6.14, however, states that for the special operator
(I −XTS), the inf-sup property (6.3) implies the coercivity property (6.6) with γco = 1

2γ
2.

Theorem 6.16. Let Assumptions (A1)–(A8) hold and assume, in addition, that range(T ) = Λ.
Then the Robin-Schwarz iteration (5.11) with damping parameter β ∈ (0, 1) converges linearly
in the sense that for n ≥ 0,

• ‖λ(n+1) − λ‖M−1 ≤ ρ‖λ(n) − λ‖M−1 and therefore ‖λ(n) − λ‖M−1 ≤ ρn‖λ(0) − λ‖M−1,

• ‖u(n) −Rû‖U ≤ C ρn‖λ(0) − λ‖U ,

where C is constant and ρ =
√

1− (1− β)βγ2 < 1, with the inf-sup constant γ from Corol-

lary 6.14. Likewise, ‖λ(n+1) − λ‖M ≤ ρ‖λ(n) − λ‖M for the transformed iteration 5.12.

Proof. As in the proof of Theorem 6.4, we define µ(n) := λ(n) − λ and obtain

‖µ(n+1)‖2M−1 = (1− β)‖µ(n)‖2M−1 − β(1− β)‖(I −XTS)µ(n)‖2M−1 + β‖XTSµ(n)‖2M−1 .

Thanks to (A4), Lemma 6.1, and Corollary 6.14, this implies

‖µ(n+1)‖2M−1 ≤ (1− β)‖µ(n)‖2M−1 − β(1− β)γ2‖µ(n)‖2M−1 + β‖µ(n)‖2M−1

=
(
1− β(1− β)γ2

)
‖µ(n)‖2M−1 .

As in the proof of Theorem 6.9, one easily shows that e(n) = u(n)−Rû = (A+αTTMT )−1TTµ(n).

Due to (A5), (A6), there exists a constant C such that ‖e(n)‖U ≤ C‖µ(n)‖M−1 . �

Example 6.17. For the Helmholtz equation (Example 2.1), suppose that we use the natural

trace space Λi = H1/2(Γi) on the subdomain interface Γi := ∂Ωi∩
⋃
j 6=i ∂Ωj , then the additional

assumption range(T ) = Λ holds. Let Mi be a real-valued, symmetric impedance operator which
is bounded positively from below. With α = i, Assumption (A8) holds (see Table 1), and
Assumption (A5) is guaranteed by Appendix B.4. We distinguish two cases.

(i) In the case of no junctions, the usual swapping operator can be used (see also Exam-
ple 4.11, Example 4.13, Example 4.14, and Example 5.7), provided that Mi is block-
diagonal and can be written as (MF )F∈Fi , i.e., with the same impedance MF on either
side of the facet F . Then Assumptions (A1)–(A3), (A6), and (A7) are fulfilled, and so
Theorem 6.16 reproduces the result of [19, Sect. 4.2].
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(ii) In the general case, one can resort to the exchange operator constructed in Section 7.
Then Assumptions (A1)–(A3), (A6), and (A7) are fulfilled as well, and Theorem 6.16
reproduces the result of [10, 17, 81] for the Helmholtz equation.

Remark 6.18. In the finite-dimensional case, the convergence of the weighted GMRES iteration
for (I − XTS) using the inner product (·, ·)M−1 can be estimated along the classical result by
Elman [37], see also [64] and references therein. The lower bound (6.4) and the upper bound

sup
λ∈Λ∗

‖(I −XTS)λ‖M−1

‖λ‖M−1

≤ 2,

result in the convergence estimate of

‖(I −XTS)(λn − λ)‖M−1 ≤ ρnGMRES‖(I −XTS)(λ0 − λ)‖M−1 ,

for the residuals of weighted GMRES, where ρGMRES =
√

1− γ2/4 < 1. This estimate is similar
to that of Theorem 6.16, observing that for the choice β = 1/2, the estimated convergence rate

for the iterates is ρ =
√

1− γ2/4, cf. [19, Remark 9].

Lemma 6.19. Let Assumptions (A1)–(A8) hold and assume that range(T ) = Λ. In addition,
suppose that we have estimates of the form

‖Rv̂‖U ≤ CR‖v̂‖Û ∀v̂ ∈ Û ,
‖Av‖U∗ ≤ CA‖v‖U ∀v ∈ U,
‖Tv‖M ≤ CT ‖v‖U ∀v ∈ U,
‖Eλ‖U ≤ CE‖λ‖M ∀λ ∈ Λ,

‖Âv̂‖
Û∗ ≥ cÂ‖v̂‖Û ∀v̂ ∈ Û ,

then the inf-sup stability (6.3) holds with

γ = 2

(
(CACE + CT )2C2

R

c
Â

+ CAC
2
E + 1

)−1

≥
c
Â

(CACE + CT )2C2
R

.

Remark 6.20. In applications, often ‖Rv̂‖U = ‖v̂‖
Û

, which implies CR = 1. If, in addi-
tion, M is chosen as the minimal extension, i.e., ‖λ‖M = minv∈U : Tv=λ ‖v‖U , and if Eλ =
argminv∈U : Tv=λ ‖v‖U , then CT = 1 and CE = 1, and so the bound depends on CA and c

Â
only.

Proof of Lemma 6.19. Apparently, (6.3) is equivalent to

‖(I −X TS)−1µ‖M−1 ≤ γ−1‖µ‖M−1 ∀µ ∈ Λ∗.(6.7)

Corollary 6.12 together with (A4) yields

(I −X TS)−1µ = 1
2α

[
(ETA+ αMT )RÂ−1RT(AE + αTTM)− ETAE − αM

]
M−1XTµ.

In order to estimate the ‖ · ‖M−1-norm of the above expression, we make use of the fact that
‖ · ‖M−1 is the dual norm of ‖ · ‖M , which implies

‖ETψ‖M−1 ≤ CE‖ψ‖U∗ ∀ψ ∈ U∗ ,(6.8)

‖TTµ‖U∗ ≤ CT ‖µ‖M−1 ∀µ ∈ Λ∗.(6.9)

Together with the assumed bounds for the operators Â, A, R, T , and E this yields

‖(I −X TS)−1µ‖M−1

≤ 1

2|α|

[
(CECA + |α|CT )

C2
R

c
Â

(CACE + |α|CT ) + (CECACE + |α|)
]
‖M−1XTµ‖M .
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Recall that due to Assumptions (A6) and (A4), ‖XTµ‖M−1 = ‖µ‖M−1 , and that due to (A8),
|α| = 1. Altogether, this implies (6.7) with

γ−1 =
1

2

(
(CACE + CT )2C2

R

c
Â

+ CAC
2
E + 1

)
.

Since TE = I, it follows that CTCE ≥ 1. In addition, since Â = RTAR, it can be shown that
CAC

2
R/cÂ ≥ 1. Therefore,

CAC
2
E + 1 ≤ CE(CACE + CT ) ≤

CECAC
2
R

c
Â

(CACE + CT ) ≤
C2
R

c
Â

(CACE + CT )2 ,

which implies the second estimate. �

Remark 6.21. In [17], it is shown that for a family of refined meshes with mesh parameter
h → 0, the associated family of Schwarz methods leads to a uniform positive bound for γh for
the Helmholtz equation. This fact is reflected in Lemma 6.19 when considering that CR = 1,
and that all the other estimates (for the chosen set of discrete operators) can be shown to hold
uniformly w.r.t. h→ 0.

For completeness, a result is given for the absorbing case with surjective trace.

Theorem 6.22. Let Assumptions (A1)–(A8) hold. In addition, assume that range(T ) = Λ and
that there exist positive constants ai > 0 such that for each i = 1, . . . , N ,

〈Aiv, v〉 ≥ ai‖v‖2Ui
in case (i) of (A8),

〈Ai,1v, v〉 ≥ ai‖v‖2Ui
in case (ii) of (A8).

Then

‖Sµ‖M−1 ≤
√

1− ζ‖µ‖M−1 ∀µ ∈ Λ∗, with ζ =
(

min
i=1,...,N

ai
) 4

(CA + C2
T )2C2

E

,

with CA, CE, and CT as in Lemma 6.19. Therefore, by Proposition 6.7, the sequence (λ(n)) of
Robin-Schwarz iterates with damping parameter β ∈ (0, 1] converges linearly.

Proof. Recall from Lemma 6.1 that

‖Sµ‖2M−1 ≤ ‖µ‖2M−1 − 4p, where p =

{
〈Aiv, v〉 in case (i) of (A8),

〈Ai,1v, v〉 in case (ii) of (A8),

with v = (A+ αTTMT )−1TTµ. Due to the stated assumptions,

‖Sµ‖2M−1 ≤ ‖µ‖2M−1 − 4
(

min
i=1,...,N

ai
)
‖v‖2U .

From ‖(A+αTTMT )v‖U∗ ≤ (CA+C2
T )‖v‖U and ‖µ‖Λ∗ ≤ CE‖ETµ‖U∗ (which follows from (6.9)

with ψ = ETµ using TE = I), we obtain

‖v‖U ≥
1

CA + C2
T

‖TTµ‖U∗ ≥
1

(CA + C2
T )CE

‖µ‖M−1 .

Combination of the two estimates concludes the proof. �

7. Generalized interface exchange operators

In this section, we follow the key idea of [17] and construct generalized interface exchange
operator based on surjective trace operators. Compared to [17] the situation is more general
and based on just two assumptions (B1), (B2) on the trace operator, to be discussed below.

Proposition 7.1. Let (A1) hold. Then the bubble space UB from Definition 2.10 is a closed

subspace of range(R). If Û is a complexified Hilbert space, then so is UB.
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Proof. From Definition 2.10, it is easily seen that Ui,B = {vi : v ∈ range(R), vj = 0 ∀j 6= i}.
Therefore, we can write

UB =

N∑
i=1

{v ∈ range(R) : vj = 0 ∀j 6= i},

which shows that UB is a closed subspace of range(R). If Û is a complexified Hilbert space then
U is complexified and R real valued. Therefore, UB is complexified, too. �

Assumption (B1). ker(T ) ⊆ UB.

Assumption (B2). range(T ) = Λ.

Assumption (B1) states that a function ui with Tiui = 0 can always be extended by zero to the
other subdomains. Assumption (B2) states that the trace operator is surjective, cf. Example 2.17
and Sect. 3.2.2.

Remark 7.2. In the special case of ker(T ) = UB, together with (B2), it follows that Λ is
isomorphic to any complementary space U⊥B such that U = UB ⊕ U⊥B and T isomorphic to the

operator that projects a function u ∈ U to U⊥B .

Lemma 7.3. Let (A1), (B1) hold. Then there exists a Hilbert space Λ̂ and a bounded linear

operator RΛ : Λ̂→ Λ such that

(i) RΛ is injective,
(ii) range(TR) = range(RΛ),

(iii) Λ̂ is isomorphic to any complementary subspace V fulfilling Û = R−1(ker(T )) ⊕ V, and
to any complementary subspace W fulfilling range(R) = ker(T )⊕W,

(iv) if Û is a complexified Hilbert space, then also Λ̂ is complexified and RΛ is real-valued.

Proof. Without loss of generality, we may assume that all spaces are real (in the complex case,
we can follow the construction of the real case and then complexify the space and operator).
Since ker(T ) is a closed subspace of UB ⊆ range(R), there exists a complementary space W
such that range(R) = ker(T ) ⊕W. We restrict T to W and call it RΛ,W : W → Λ. With this

construction, Λ̂ =W and RΛ = RΛ,W fulfill properties (i), (ii), and (iv):

ker(RΛ,W) = ker(T ) ∩W = {0},
range(RΛ,W) = T (W) = T (ker(T )⊕W︸ ︷︷ ︸

=range(R)

) = range(TR).

Finally, since R is an isomorphism between Û and range(R) and since ker(T ) is closed, the space

R−1(ker(T )) ⊆ Û is closed, and any complementary space V is isomorphic to W. �

Remark 7.4. Under the assumptions of Lemma 7.3, one can even show that there exists an

operator T̂ : Û → Λ̂ such that RΛT̂ = TR, see Figure 17. If Λ̂ = V ⊂ Û (see Lemma 7.3(iii)),

the operator T̂ is simply the projection to V and vanishes on R−1(ker(T )).

Proposition 7.5. Let (A1), (B1) hold. Then

u ∈ range(R) ⇐⇒ Tu ∈ range(RΛ).

Proof. “=⇒” follows from Lemma 7.3(ii).

“⇐=”: Let u ∈ U with Tu ∈ range(RΛ) = range(TR) by Lemma 7.3(ii). So there exists v̂ ∈ Û
such that Tu = TRv̂, or equivalently, u−Rv̂ ∈ ker(T ) ⊆ UB by Assumption (B1). Consequently,
there exists vB ∈ UB such that u = Rv̂ + vB. Since both Rv̂ and vB are contained in range(R),
the proof is concluded. �

Proposition 7.6. Let (A1), (B1), and (B2) hold. Then range(TR) is closed.
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Û R
U

Λ̂ RΛ

Λ

TT̂

Λ̂ RΛ

EΛ

Λ

Λ̂ RΛ

EΛ

Λ

Figure 17. Left: Illustration of Lemma 7.3 and Remark 7.4 (the diagram com-
mutes). Top right: Illustration of Lemma 7.7. Bottom right: Illustration of
Sect. 7.1.1.

Proof. Due to (B2), range(T ) is closed, so there exists a bounded right-inverse

T † : range(T )→ U, TT †T = T.

Let (û(k)) be an arbitrary but fixed sequence in Û with the property that TRû(k) k→∞−→ λ(∞) ∈ Λ.

Since range(T ) is closed, also λ(∞) ∈ range(T ). We apply T †:

T †TRû(k)︸ ︷︷ ︸
=:w(k)

k→∞−→ T †λ(∞)︸ ︷︷ ︸
=:w(∞)

∈ U.

Since Tw(k) = TRû(k) or equivalently, w(k) − Rû(k) ∈ ker(T ), we can conclude from (B1) that

w(k) = Rû(k)+w
(k)
B for some bubble function w

(k)
B ∈ UB ⊆ range(R). Therefore, w(k) ∈ range(R).

Since (w(k)) converges and range(R) is closed (due to (A1)), it follows that w(∞) ∈ range(R).

Observing that λ(∞) = Tw(∞), we conclude that λ(∞) ∈ range(TR). Summarizing, the limit of

the arbitrary sequence TRû(k) is again in range(TR), so range(TR) must be closed. �

Lemma 7.7. Let (A1), (B1), and (B2) hold. Then

(i) range(RΛ) is closed,

(ii) there exists a bounded linear, real-valued operator EΛ : Λ→ Λ̂ such that EΛRΛ = I,
(iii) for any operator EΛ with the properties of (ii), the reflection operator X := 2RΛEΛ − I

fulfills Assumption (A2).

Proof. Part (i): Due to Lemma 7.3, range(RΛ) = range(TR), which is closed (Proposition 7.6).

Part (ii): Since range(RΛ) is closed, there exists a pseudo-inverse EΛ : Λ→ Λ̂ (one out of many)
such that RΛEΛRΛ = RΛ. Since RΛ is injective, also EΛRΛ = I.
Part (iii): From (ii), we find that P := RΛEΛ : Λ → Λ is a projection (i.e., P 2 = P ) and that
range(P ) = range(RΛ). The operator X := 2P − I is the reflection corresponding to P , and one
checks easily that X 2 = I. Moreover,

ker
(

1
2(I −X )

)
= ker(I − P ) = range(P ) = range(RΛ),

and so also ker((I −X )) = range(RΛ). Finally, Proposition 7.5 leads to the conclusion that

u ∈ range(R) ⇐⇒ Tu ∈ ker(I −X ),

which is another way of expressing that range(R) = ker((I −X )T ). �

Recall that in Sect. 6.2 we assumed (A4), i.e., XTMX = M , which means a certain restriction
on M and X . The following lemma provides a construction of an operator X depending on M .

Lemma 7.8. Let (A1), (B1), (B2), and (A6) hold. Then EΛ : Λ→ Λ̂ given by

EΛ = (RT
ΛMRΛ)−1RT

ΛM
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is well-defined and the operator X := 2RΛEΛ−I fulfills Assumptions (A2) and (A4). Moreover,
X is real-valued, i.e., Assumption (A7) holds.

Proof. Firstly, (RT
ΛMRΛ) : Λ̂ → Λ̂∗ is easily seen to be real-valued, symmetric, and positively

bounded from below, which is why it has a bounded inverse. So, EΛ is well-defined and real-
valued. By construction, EΛRΛ = I. Secondly, the operator X as defined above is real-valued
and fulfills Assumption (A2), see Lemma 7.7. Lastly, using the symmetry of M , one easily
verifies the identity ET

ΛR
T
ΛM = MRΛEΛ, which implies XTM = MX . The proof is concluded

by applying X from the right. �

Remark 7.9. For EΛ, X given as in Lemma 7.8, P := RΛEΛ = 1
2(I + X ) is the M -orthogonal

projector to range(RΛ) ⊆ Λ, cf. [17, Sect. 4].

Proposition 7.10. Let (A1), (B1), (B2), and (A6) hold. Moreover, let X : Λ → Λ be an
operator fulfilling (A2) and (A4). Then X = 2RΛEΛ − I with EΛ from Lemma 7.8.

Proof. Due to Assumption (A2) and Proposition 7.5,

u ∈ range(R) ⇐⇒ (I −X )Tu = 0 ⇐⇒ Tu ∈ range(RΛ).

Since range(T ) = Λ, it follows that range(RΛ) = ker(I − X ). As an immediate consequence,
XRΛ = RΛ. Applying RT

Λ to the identity XTMX = M of (A4) yields

RT
ΛMX = RT

ΛM.

Lemma 2.25 implies that range(I + X ) = range(RΛ). Let λ ∈ Λ be arbitrary but fixed. Then

there exists λ̂ ∈ Λ̂ such that (I + X )λ = RΛλ̂. Combination with the above identity yields

RT
ΛM (I + X )λ︸ ︷︷ ︸

RΛλ̂

= 2RT
ΛMλ.

Due to (A6) and the fact that range(RΛ) is closed, the operator RT
ΛMRΛ has a bounded inverse

and so
λ̂ = 2(RT

ΛMλRΛ)−1RT
ΛMλ = 2EΛλ.

Finally, Xλ = (I + X )λ− λ = Rλλ̂− λ = (2RΛEΛ − I)λ. �

Remark 7.11. The statements of Lemma 7.8 and Proposition 7.10 also hold if we replace (A6)
by the weaker set of assumptions that (i) MT = M and (ii) RT

ΛMRΛ has a bounded inverse. But
then, in Lemma 7.8 X is no more guaranteed to be real-valued and P = RΛEΛ is not necessarily
an orthogonal projection either.

Remark 7.12. The convergence analysis from Sect. 6 (in particular Thm. 6.4, Thm. 6.16) can
without much effort also be generalized to the case of Hermitian impedance operators M = MH.
For this purpose, one has to work with the slightly adapted interface flux formulation

find (u, τ) ∈ U × Λ∗ : Au− TTτ = f,

(I −X )Tu = 0,

(I + XH)τ = 0,

(7.1)

instead of (4.2). Assumption (A3) has to be replaced by the assumption that M +XHMX has
a bounded inverse (see also Remark 5.5), then the interface impedance trace formulation (5.2)
takes the form

find (u, λ) ∈ U × Λ∗ :

[
(A+ αTTMT ) −TT

−αXH(M + XHMX )T (I + XH)

] [
u
λ

]
=

[
f
0

]
.(7.2)

Assumption (A4) has to be replaced by the assumption that XHMX = M , Assumption (A6)
can be weakened to requiring Mi only needs Hermitian (MH

i = Mi) and bounded positively
from below (still constituting a norm), and Assumption (A7) can be dropped. In that case,
the exchange operator is an isometry by construction. Moreover, if X is constructed as in
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Lemma 7.8, i.e., X = 2RΛ(RT
ΛMRΛ)−1RT

ΛM , then the identity XHMX = M holds. The
exchange operator, however, is in general not real-valued anymore. Note that for standard
wave propagation problems, the (complex-valued) operator A is symmetric, which means that
the augmented operator (A+ iαTTMT ), being a combination of a symmetric and a Hermitian
operator, looses such structural property. A treatment of even more general impedance operators
(operators with positive definite Hermitian part) can be found in [11].

7.1. Local and quasi-local impedance operators. The definition of EΛ in Lemma 7.8

rewrites as Eλλ = λ̂ ∈ Λ̂, where

(RT
ΛMRΛ)λ̂ = RT

ΛMλ,(7.3)

i.e., the application of EΛ requires the solution of an coercive problem on the continuous interface

space Λ̂. Unless the decomposition is free of cross points (such that the geometric interface splits
into individual components not touching each other), this is a global problem. Still, one can say
that one has reduced the original non-coercive wave propagation problem to a sequence of local
wave problems and a global coercive problem. But from an algorithmic point of view, (i) this
global problem must be solved in each step of the Schwarz iteration and (ii) if (7.3) is not solved
exactly, a refined convergence analysis would actually be necessary. Fortunately, in the discrete
case this drawback can be overcome using local or quasi-local impedance operators.

7.1.1. Glob-local impedance operators. Let the assumptions of Sect. 2.3.1 hold and let Λ and T
be constructed via the glob system, see Sect. 3.2.2. Assume furthermore that each Mi : Λi → Λ∗i
in Assumption (A6) has the form

(Miλ)iG = MiGλiG ,(7.4)

i.e., Mi is block-diagonal with respect to the glob partition. Then, one can show that EΛ from
Lemma 7.8 has the form

(EΛλ)G = M̂−1
G

∑
i∈NG

MiGλiG , where M̂G :=
∑
j∈NG

MjG ,(7.5)

where we use the convention that Λ̂ =
∏
G∈G UG and λ̂G denotes the component of λ̂ ∈ Λ̂

corresponding to glob G, see also Figure 17. With the definition from Remark 3.14, RΛEΛ = ED
with weight matrices DjG = M̂−1

G MjG.

Apparently, making the matrices M̂−1
G available is quite an affordable operation because it

requires next neighbor communication only. Similar procedures are used in FETI-DP and BDDC
methods with deluxe scaling [2, 30, 83]. The investigation of Robin-Schwarz methods with glob-
local impedance operators is yet a topic of future research, in particular their performance in
practice and their convergence analysis with respect to the discretization parameter. Clearly,
enforcing Mi to be block-diagonal with respect to the glob partition comes at the price that
this operator has no continuous counterpart anymore, so the convergence rate is likely to be no
more independent of the discretization parameter. The goal, of course, would be an impedance
operator with a rate depending only very mildly on the discretization parameter.

In the following cases, the operator EΛ becomes fully local. If for every glob G, the impedance
operators have the special form

MiG = kiGM̌G ,

with scalars kiG and an operator M̌G independent of the subdomain index, then formula (7.5)
simplifies to

(EΛλ)G =
∑
i∈NG

kiG∑
j∈NG

kjG
λiG .(7.6)
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Finally, if for every glob G, the impedence operators MiG are the same, i.e., MiG = M̌G, for all
i ∈ NG, then

(EΛλ)G =
1

#NG

∑
i∈NG

λiG ,(7.7)

i.e., RΛEΛ is the same as the multiplicity projector Em from Sect. 3.2.2. The associated exchange
operator X = 2RΛEΛ − I fulfills Assumption (A4) but has the simple form

(Xλ)iG =
( 2

#NG
− 1
)
λiG +

∑
j∈NG\{i}

2

#NG
λjG .(7.8)

For a glob shared by two subdomains, the operator X simply swaps the two associated functions.

7.1.2. Diagonal impedance operators. Let the assumptions of Sect. 2.3.1 hold and let Λ and T
be constructed via the glob system, see Sect. 3.2.2. Assume furthermore that Mi : Λi → Λ∗i in

Assumption (A6) is a diagonal matrix with diagonal entries (m
(i)
` )

dim(Λi)
`=1 . Then, one can show

that EΛ from Lemma 7.8 has the form

(EΛλ)k = m̂−1
k

∑
i∈N̂k

m
(i)

ĝ−1
i (k)

λi,ĝ−1
i (k) , where m̂k :=

∑
j∈N̂k

m
(j)

ĝ−1
j (k)

,(7.9)

where the global interface dof k = 1, . . . ,dim(Λ̂) is shared by subdomains N̂k and corresponds
to the local interface dof ` = ĝ−1

i (k) of subdomain i.

If for all global interface dofs k all subdomain impedance values {m(i)

ĝ−1
i (k)
}
i∈N̂k

take the

same value independently of the subdomain index i, but only depending on k, then, like in
(7.7), RΛEΛ = Em, where Em is the multiplicity projector from Sect. 3.2.2, which appears in
Loisel’s method [66] (therein denoted by K). The exchange operator X = 2RΛEΛ − I takes
the simple form (7.8). Indeed, Loisel [66] assumes a diagonal impedance operator with identical
values. Moreover, an inspection of [49, Sect. 4] reveals that the complete communication method
suggested by Gander and Santugini follows the same principle. Summarizing, Sect. 7 can be
viewed as a generalization of the method proposed by Claeys [10] and the discrete methods from
[66] and [49, Sect. 4].

7.2. An exceptional interface exchange operator. While certainly not of any practical
value, the following proposition marks a theoretical corner case where the interface exchange
operator is chosen in a way that leads to instantaneous convergence.

Proposition 7.13. Let (A1) hold and assume moreover that

(1) T = I, i.e., Λ = U and in particular range(T ) = Λ,
(2) AT = A,
(3) A has a bounded inverse,
(4) we choose M = A, α = 1.

Then the only possible interface exchange operator X fulfilling (A2) and (A4), i.e., XTAX = A,

is given by X = 2RÂ−1RTA − I. With such a choice of X , the undamped Robin-Schwarz
iteration (5.11) (with β = 1) fulfills

u(1) = Rû.

Remark 7.14. One may say that under the stated assumptions, the iteration converges after
the first step. More precisely, the proposition states the algebraic property that the first iterate
already reproduces to the solution, without the need of any estimate on the norm of the error.

This property does not come as a surprise, since the application of X involves Â−1, i.e., the
solution of the original problem.

Proof of Proposition 7.13. Firstly, the choice X = 2RÂ−1RTA − I obviously fulfills (A2) and
XTAX = A. Secondly, assume that (A2) and XTAX = A hold. Then, due to Lemma 2.25,
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(i) 1
2(I + X ) is a projection,

(ii) ker(I −X ) = range(I + X ) = range(R).

Because of that, XR = R. Applying RT to the identity XTAX = A therefore yields

RTA(I + X ) = 2RTA.

For given λ ∈ Λ, due to (ii), (I + X )λ = Rv̂ for some v̂ ∈ Û , so

RTAR︸ ︷︷ ︸
Â

v̂ = 2RTAλ.

Therefore, v̂ = 2Â−1RTAλ, from which we deduce X = 2RÂ−1RTA− I.
Together with the other stated assumptions, we find that (A3) holds. Moreover, since T = I,

α = 1, M = A, and A has a bounded inverse, also (A+ αTTMA) = 2A has a bounded inverse,
so (A5) holds, and since M = A, (A4) holds. Proposition 5.11 and a straightforward calculation
shows that S = 0 and d = XTf , from which we deduce that

λ(1) = XTf, u(1) = 1
2A
−1(f + λ(1)).

Insertion of the formula for X and substitution yields

u(1) = 1
2A
−1(f + 2ARÂ−1RTf − f) = RÂ−1RTf︸︷︷︸

f̂

= Rû. �

8. Related formulations

In this section, a couple of formulations have been collected from the literature that are related
to some of the formulations above, and they are displayed using the same compact notation.

8.1. A three-field formulation. A different way of reformulating the subdomain flux formu-
lation (2.16) in terms of equations is the three-field domain decomposition method introduced
by Brezzi and Marini in [5], see also [86]. Let Assumption (A1) and Assumption (B1) hold. By
Proposition 7.5,

u ∈ range(R) ⇐⇒ Tu = RΛϕ

for some ϕ ∈ Λ̂. Following the proof of Lemma 7.3, we can write range(R) = ker(T )⊕W with
W = T †(range(RΛ)), where T † is some not necessarily bounded right-inverse of T such that

TT † = I. Therefore, ker(RT) = range(R)◦ = ker(T )◦ ∩W◦ = range(TT) ∩W◦ and so

ker(RT) = {TTτ : τ ∈ Λ∗, 〈TTτ, T †RΛψ〉 = 0 ∀ψ ∈ Λ̂} = {TTτ : τ ∈ Λ∗, RT
Λτ = 0}.

Collecting the equations yields the three-field formulation

find (u, ϕ, τ) ∈ U × Λ̂× Λ∗ :

 A 0 −TT

0 0 RT
Λ

−T RΛ 0

uϕ
τ

 =

f0
0

 .(8.1)

Similarly to Theorem 4.8, we have the following result:

Proposition 8.1. Let Assumptions (A1) and (B1) hold. Then

(i) If (u, ϕ, τ) solves (8.1) then u = Rû where û is the unique solution of (2.8).
(ii) If û solves (2.8) and if either (a) all spaces are finite-dimensional, or (b) range(T ) = Λ

or (c) ARû − f ∈ range(TT), then there exists ϕ ∈ Λ̂ and τ ∈ Λ∗ such that (Rû, ϕ, τ)
solves (8.1).

(iii) In cases (a) and (b), there exists a bounded solution operator for (8.1).
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8.2. A hybridized DG-like formulation. In this section, a technique is reviewed and gener-
alized that was originally proposed in [76] for a Raviart-Thomas discretization of the Helmholtz
equation (which is shown to be a transformed version of the ultra-weak variational formulation
of [7]) and further discussed in [60, 59] for Maxwell’s equations. As a difference to the original
works, the technique is applied on the subdomain rather than on the element level.

Suppose that Assumption (A1) holds and assume further that T and X are based on an
admissible facet system F where all interior facets are bilateral (cf. Sect. 3), such that As-
sumption (A2) holds as well. The special structure allows the definition of a single facet space
UF :=

∏
F∈F UF and of the one-sided, signed jump operator JF : Λ→ UF , given by

(JFτ)F =


τiF − τjF for bilateral facets F with NF = {i, j}, i > j,

2τiF for exterior Dirichlet facets F with NF = {i},
0 for exterior auxiliary facets F with NF = {i},

for τ ∈ Λ(8.2)

(the factor 2 for the Dirichlet facets may be spared). In addition, we can define the distribution
operator DF : UF → Λ by

(DFuF )iF =


uF for bilateral facets F ∈ Fi ,
0 for exterior Dirichlet facets F ∈ Fi ,
uF for exterior auxiliary facets F ∈ Fi ,

for uF ∈ UF .(8.3)

Proposition 8.2. In addition to the above, let Assumptions (A3)–(A4) hold. Then

• ker(JF ) = range(DF ) = range(I + X ) = ker(I −X ),
• range(JT

F ) = ker(DT
F ) = ker(I + XT) = range(I −XT), and

• the operator DT
FMDF is invertible.

Starting with the interface impedance trace formulation (5.2) and performing the change of
variables

λ+ := JT
FvF + αMDFuF , for uF ∈ UF , vF ∈ U∗F ,(8.4)

one obtains

(A+ αTTMT )u− TTJT
FvF − αTTMDFvF = f,

−2αMTu+ 2MDFuF = 0.

Multiplying the last line by 1
2JFM

−1 and another time by 1
2D

T
F , we arrive at the structurally

symmetric system (A+ αTTMT ) −TTJT
F −αTTMDF

−JFT 0 0
−αDT

FMT 0 αDT
FMDF

 uvF
uF

 =

f0
0

 .(8.5)

Whereas λ+ ∈ Λ∗ represents the two (generalized) Robin traces on each facet, the pair (uF , vF ) ∈
UF × U∗F stands for the Dirichlet and Neumann trace. The second line of (8.5) enforces

JFTu = 0,

i.e., the continuity of u across facets. This implies that Tu ∈ range(DF ). The third line of (8.5)
can be rewritten as

αDT
FM(Tu−DFuF ) = 0.

Since Tu ∈ range(DF ) and since DT
FMDF is invertible, this implies

Tu = DFuF ,

i.e., uF is the continuous Dirichlet trace. Using Proposition 8.2 one can show that (8.4) is
a bijective transformation of variables, and so Formulation (8.5) is equivalent to the interface
impedance trace formulation (5.2). Under Assumption (A5), the broken primal variable u can be
eliminated from the system. Preconditioners for the reduced system are discussed in [76, 60, 59].
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8.3. The FETI-H formulation. The FETI-H method [42, 39, 40] was originally introduced to
overcome the internal resonance problem of domain decomposition methods for the Helmholtz
equation. To get the main idea, let us assume a bilateral facet system. As a first ingredient, we
need a subdomain sign pattern (σi)

N
i=1 and a selection of facets F⊥ ⊂ F such that

(i) each subdomain i has either a plus sign (σi = +1) or a minus sign (σi = −1),
(ii) for each facet F ∈ F⊥ with NF = {i, j} the sign changes, i.e., σi = −σj , and

(iii) for each subdomain i, the set F⊥i := Fi ∩ F⊥ is non-empty, i.e., each subdomain has at
least one facet where the neighboring subdomain has opposite sign.

These properties can be achieved by constructing a minimal spanning tree for the connectiv-
ity graph (with subdomains as nodes and facets as edges), starting with +1 at the root, and
alternating the sign when going up the tree.

The second ingredient are modified subdomain operators Ãi : Ui → U∗i . For each facet F ∈
F⊥, let MF : UF → U∗F be a fixed impedance operator and define

Ãi := Ai + iσi
∑
F∈F⊥i

TT
iFMFTiF ,(8.6)

as well as Ã := diag(Ãi)
N
i=1 : U → U∗.

Proposition 8.3. The modified subdomain operators (Ãi)
N
i=1 satisfy the assembling property

Â =
N∑
i=1

RT
i ÃiRi .

Proof. Expanding the definition of Ãi one finds that the terms on the facets F ∈ F⊥ cancel due
to the opposite signs. �

Apparently, if Ai is loss-free (i.e., if Ai = Ai,0−Ai,2 for real-valued and non-negative operators

Ai,0, Ai,2, cf. Assumption (A8)), then Ãi corresponds to a more or less classical Robin problem.
More details will be discussed below. Using the jump operator B := JFT : U → UF with JF
from (8.2), one derives the

FETI-H formulation:

find (u, λF ) ∈ U × U∗F :

[
Ã BT

B 0

] [
u
λF

]
=

[
f
0

]
(8.7)

Compared to Formulation (5.2) (and recalling that we assume bilateral facets) there is only
one set of Lagrange parameters per facet, which is a Robin-type trace. The second line of (8.7)
still couples the Dirichlet traces whereas (5.2) couples the two Robin traces. In this light, (5.2)
is a Robin-Robin scheme and (8.7) a Dirichlet-Robin scheme.

Proposition 8.4. Under Assumptions (A1)–(A2), the following statements hold.

(i) If (u, λF ) solves (8.7) then u = Rû where û is the unique solution of (2.8).
(ii) If û solves (2.8) and, in addition, either

(a) all spaces are finite-dimensional, or
(b) range(T ) = Λ, or

(c) range(T ) = Λ and ARû− f ∈ range(TT),
then there exists λF ∈ U∗F such that (Rû, λF ) solves (8.7). In cases (b) and (c), λF is
guaranteed to be unique, whereas in the finite-dimensional case (a), λF is only unique
up to an element from ker(BT), which is related to Z, see Proposition 4.4.

(iii) In cases (a) and (b), there exists a bounded linear solution operator for (8.7).



A UNIFIED THEORY OF NON-OVERLAPPING ROBIN-SCHWARZ METHODS 51

Proof. (i) Assume that (u, λF ) solves (8.7). Then JT
FλF ∈ range(JT

F ) = ker(I + XT), and so by
Lemma 4.1,

range(BT) = range(TTJT
F ) ⊂ ker(RT), range(BT) = ker(RT).(8.8)

Moreover, from Proposition 8.2 and Assumption (A2) we obtain ker(B) = ker(JFT ) = range(R),
which is why there exists û such that Rû = u. Multiplying the first line of (8.7) by RT from the
left, we obtain (using Proposition 8.3 and (8.8))

(RTÂR)︸ ︷︷ ︸
=Â

û+RTBTλF︸ ︷︷ ︸
=0

= RTf︸︷︷︸
=f̂

.

(ii) Under the stated assumptions, there exists a solution (u, τ) of the interface flux formula-
tion (4.2). Since τ ∈ ker(I + XT) = range(JT

F ), there exists τF ∈ U∗F with τ = JT
FτF and

so
Au+ TTJT

F τF = f

with u = Rû. We define λF ∈ U∗F by

λF :=

{
τiF − iσiMFTiFRiû for F ∈ F⊥ with NF = {i, j}, i > j,

τiF for F ∈ F \ F⊥ with NF = {i, j}, i > j.

A short computation using (8.6) and the definition of JF reveals that, indeed, Ãu+TTJT
FλF = f .

The rest of the proof is straightforward. �

In the original FETI-H method, system (8.7) is further reduced by forming the Schur comple-

ment. To this end, one has to assume that the modifed subdomain operators Ãi have bounded
inverses. This assumption is similar to Assumption (A5) in its nature, and some tools are pro-
vided in Appendix B. However, it becomes apparent that if the original operator Ai has losses,
i.e., Ai = Ai,0 + iAi,1 − Ai,2 with non-trivial Ai,1, and if σi = −1, then there is a mismatch of
signs in the loss terms and the theory breaks down. As a matter of fact, the FETI-H method
was originally proposed for loss-free problems (see e.g., [39, Sect. 2.1] where the system matrices
Ks−k2Ms are real-valued, corresponding to the boundary conditions in [39, Sect. 2.2, Eqn. (11)]
of Dirichlet and Neumann type).

Under the stated assumption, the resulting Schur complement system is

find λF ∈ U∗F : BTÃ−1B︸ ︷︷ ︸
=:F

λF = BTÃ−1f︸ ︷︷ ︸
=:d

.(8.9)

In the original FETI-H method, this equation is solved by a Krylov method, including a projec-
tion such that the residual is orthogonal to precomputed interface modes based on plane waves,
see [39, Sect. 4.1].

8.4. Multi-trace formulations. This section deals with formulations of multi-trace type, re-
lated to [12, 13, 15, 56, 57, 62, 63, 84]. The involved variables are two pairs per interface, namely
the Dirichlet and Neumann trace on either side.

Let Assumptions (A1) and (A2) hold and let the interface flux formulation (4.2) be the
starting point. Recall from Theorem 4.8 that if we either have finite dimensions, range(T ) = Λ,
or regularity, then (4.2) is equivalent to the original formulation (2.8). Suppose, in addition,
that Assumption (A3) holds, such that Lemma 5.2 allows us to rewrite (4.2) as

find (u, τ) ∈ U × Λ∗ :

[
A −TT

αM(I −X )T (I + XT)

] [
u
τ

]
=

[
f
0

]
.(8.10)

Separating the terms involving X , we obtain([
A −TT

αMT I

]
︸ ︷︷ ︸

=: A

+

[
0 0

−αMXT XT

]
︸ ︷︷ ︸

=: C

)[
u
τ

]
=

[
f
0

]
.(8.11)
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Next, let us assume that the augmented operator Ã := A + αTTMT is invertible (Assump-
tion (A5)). Then operator A is invertible: a block factorization shows that

A−1 =

[
I 0

−αMT I

] [
Ã−1 0

0 I

] [
I TT

0 I

]
.

We multiply (8.11) by A−1, like applying a preconditoner:(
I +A−1C

) [u
τ

]
= A−1

[
f
0

]
.(8.12)

Since C depends, besides τ , only on Tu we can introduce

γ := Tu ∈ Λ(8.13)

as a new variable and multiply the first equation by T . This yields(
I +

[
T 0
0 I

]
A−1

[
0 0

−αMX XT

])[
γ
τ

]
=

[
T 0
0 I

]
A−1

[
f
0

]
or, more explicitly,(

I +

[
T 0

−αMT I

] [
Ã−1 0

0 I

] [
−αTTM TT

−αM I

] [
X 0
0 XT

])[
γ
τ

]
=

[
T 0

−αMT I

] [
Ã−1f

0

]
.

The unknowns are now (γ, τ) ∈ Λ× Λ∗, i.e., if Λ is based on a facet system, we have two pairs
of unknowns per facet. The original solution u can be obtained by solving

Ãu = f + TT(τ + αMγ)

separately on each subdomain. Rearranging the above formulation reveals more structure:(
I −

[
T 0

−αMT I

] [
Ã−1 0

0 I

] [
αTTM TT

αM I

]
︸ ︷︷ ︸

=:P

[
X 0
0 −XT

]
︸ ︷︷ ︸

=:X

)[
γ
τ

]
=

[
I
−αM

]
TÃ−1f︸ ︷︷ ︸

=:d

.(8.14)

As will be shown below, the operator P : Λ × Λ∗ → Λ × Λ∗ is an analog of the Caldéron
projector (cf. e.g. [72, 91, 15]). Note that if M is block-diagonal, then so is P. The operator
X : Λ× Λ∗ → Λ× Λ∗ exchanges the (candidates for the) Cauchy traces and flips the sign of the
interface fluxes, and it fulfills X2 = I. We summarize:

Local multi-trace formulation I:

find

[
γ
τ

]
∈ Λ× Λ∗ : (I − PX)

[
γ
τ

]
= d,(8.15)

with P, X, and d defined in (8.14).

The above formulation is of the same form as the one in [12, Sect. 3.1].

Proposition 8.5. Let Assumptions (A1)–(A3) and (A5) be fulfilled, then the following state-
ments hold:

(i) If (γ, τ) ∈ Λ × Λ∗ is a solution of the local multi-trace formulation (8.15), then there
exists u ∈ U such that

γ = Tu, Au− TTτ = f,

and (u, τ) is a solution of the interface flux formulation (4.2).
(ii) Conversely, if (u, τ) ∈ U × Λ∗ is a solution of the interface flux formulation (4.2), then

(Tu, τ) solves the local multi-trace formulation (8.15).

Part (ii) has already been shown when deriving the local multi-trace formulation. The proof
of Part (i) is given below and requires a couple of results on the properties of P and d.

Lemma 8.6.
[
αM I

]
P =

[
αM I

]
and P2 = P.
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Proof. We can write P as

P =

[
T 0

−αMT I

] [
Ã−1 0

0 I

] [
TT

I

] [
αM I

]
.(8.16)

A short calculation shows[
αM I

]
P =

[
αM I

] [ T 0
−αMT I

]
︸ ︷︷ ︸[

0 I
]

[
Ã−1 0

0 I

] [
TT

I

] [
αM I

]
=
[
αM I

]
.

With the above representation of P, we see immediately that P2 = P. �

Definition 8.7. Given g ∈ U∗, we define the linear manifold

CP(g) =:

{[
γ
σ

]
∈ Λ× Λ∗ : ∃u ∈ U : γ = Tu,Au− TTσ = g

}
⊂ Λ× Λ∗,

which is the set of Cauchy pairs for the linear equation involving A and the right-hand side g.
Apparently, CP(g1) + CP(g2) = CP(g1 + g2).

The following lemma shows that the Calderón projector P maps to the space of Cauchy pairs
for the homogeneous equation.

Lemma 8.8. range(P) =

{[
γ
σ

]
∈ Λ× Λ∗ : ∃u ∈ U : γ = Tu, Au− TTσ = 0

}
= CP(0).

Proof. “⊆”: Let (γ̃, σ̃) ∈ Λ× Λ∗ be arbitrary but fixed and set[
γ
σ

]
= P

[
γ̃
σ̃

]
=

[
TÃ−1TT(αMγ̃ + σ̃)

(I − αMTÃ−1TT)(αMγ̃ + σ̃)

]
.

We define
u := Ã−1TT(αMγ̃ + σ̃).

Following the definition of P, we find that indeed Tu = γ. Moreover,

Au = (Ã− αTTMT )u = (I − αTTMTÃ−1)TT(αMγ̃ + σ̃)

= TT(I − αMTÃ−1TT)(αMγ̃ + σ̃) = TTσ.

“⊇”: Assume that we have γ ∈ Λ, σ ∈ Λ∗ and u ∈ U with γ = Tu and Au− TTσ = 0. Then

Ã−1TT(αMγ + σ) = Ã−1(TTαMTu+ TTσ) = Ã−1
[
(Ã−A)u+ TTσ

]
= u.

Therefore

P

[
γ
σ

]
=

[
TÃ−1TT(αMγ + σ)

(I − αMTÃ−1TT)(αMγ + σ)

]
=

[
Tu

αMγ + σ − αMTu

]
=

[
γ
σ

]
,

which shows that (γ, σ) is in the range of P. �

Lemma 8.9. ker(P) =

{[
γ
τ

]
∈ Λ× Λ∗ : αMγ + τ = 0

}
.

Proof. “⊇” follows from (8.16).
“⊆”: Suppose that Pv = 0, then

[
αM I

]
Pv = 0. Lemma 8.6 implies that

[
αM I

]
v = 0. �

Lemma 8.10. d ∈ CP(f) and
[
αM I

]
d = 0.

Proof. Recall that d =

[
TÃ−1f

−αMTÃ−1f

]
=:

[
γ
σ

]
. By setting u := Ã−1f , we find that γ = Tu and

Au = AÃ−1f = (Ã− TTαMT )Ã−1f = f + TTσ.

The second relation follows immediately from the definition of d. �
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Remark 8.11. If M is block-diagonal, i.e., M = diag(Mi)
N
i=1, then P = diag(Pi)

N
i=1 with

P2
i = Pi and

range(Pi) =

{[
γi
σi

]
∈ Λi × Λ∗i : ∃ui ∈ Ui : γi = Tiui , Aiui − TT

i σi = 0

}
,

ker(Pi) =

{[
γi
σi

]
∈ Λi × Λ∗i : αMiγi + σi = 0

}
.

If Ui = Λi and α = 1, and if Mi is the exterior operator w.r.t. to Ai, then Ã−1
i plays the role of

the fundamental solution and Pi is indeed the classical Caldéron projector.

Proof of Proposition 8.5, Part (i). Assume that (γ, τ) solves (8.15), i.e.,[
γ
τ

]
− PX

[
γ
τ

]
= d.

Due to Lemma 8.8 and Lemma 8.10,[
γ
τ

]
∈ CP(f) + CP(0) = CP(f),

so there exists u ∈ U with Tu = γ and Au− TTτ = f . Next we apply
[
αM I

]
to the system:[

αM I
] [γ
τ

]
︸ ︷︷ ︸

=αMγ+τ

−
[
αM I

]
P︸ ︷︷ ︸

=
[
αM I

] X
[
γ
τ

]
=
[
αM I

]
d︸ ︷︷ ︸

=0

,

where we have used Lemma 8.6 and Lemma 8.10. Employing the definition of X we obtain the
condition αM(I −X )γ + (I + XT)τ = 0, which is, due to Lemma 5.2, equivalent to

(I −X )γ = 0, (I + XT)τ = 0.

Since γ = Tu, we end up with the interface flux formulation (4.2). �

We have seen that γ = Tu and Au− TTτ = f can be expressed by

(I − P)

[
γ
τ

]
= d(8.17)

and that (I −X )γ = 0 and (I + XT)τ can be written as

(I − X)

[
γ
τ

]
= 0.(8.18)

Combining the two latter conditions using a complex number θ 6= 0 leads to the following
formulation, which is related to [57].

Local multi-trace formulation II:

find

[
γ
τ

]
∈ Λ× Λ∗ :

(
(I − P) + θ(I − X)

)[
γ
τ

]
= d.(8.19)

Proposition 8.12. Let Assumptions (A1)–(A3) and (A5) be fulfilled and let θ 6= 0, then the
following statements hold:

(i) If (γ, τ) ∈ Λ × Λ∗ is a solution of the local multi-trace formulation (8.19), then there
exists u ∈ U such that

γ = Tu, Au− TTτ = f,

and (u, τ) is a solution of the interface flux formulation (4.2).
(ii) Conversely, if (u, τ) ∈ U × Λ∗ is a solution of the interface flux formulation (4.2), then

(Tu, τ) solves the local multi-trace formulation (8.19).
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Proof. (ii) has already been shown. For (i), we apply
[
αM I

]
to (8.19) and use Lemmas 8.6

and 8.10 to obtain

θ
[
αM I

]
(I − X)

[
γ
τ

]
= 0.

From Lemma 5.2, we obtain that (I − X)

[
γ
τ

]
= 0. Insertion into (8.19) yields (I − P)

[
γ
τ

]
= d,

from which we conclude that there exists u ∈ U with Au−TTτ = f and γ = Tu. Summarizing,
(u, τ) fulfills (4.2). �

Remark 8.13. The multi-trace formulation (8.15) can be derived from (8.19) setting θ = −1
and applying the bijective transformation (γ, τ) 7→ X(γ, τ).

Remark 8.14. In the framework of boundary integral methods, the Caldéron projector is based
on choosing M as the exterior operator to A (supposing that Λ = range(T )). Then P = 1

2I + A
with a block-operator A involving boundary integral operators, cf. [56, 15]. In that case, the
choice θ = −1

2 leads to (
A− 1

2
X
)[
γ
τ

]
= −d,

which is of the same form as in [56], [15, Sect. 6].
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Appendix A. Proof of Theorem 4.5

Beforehand, observe that since none of the operators T , X couples subdomain dofs or trace
dofs that correspond to two different global dofs, we can treat one global interface dof at a time.
So without loss of generality, we may assume that DΓ consists of a single global interface dof k,
such that our goal is a proof for dim(Z) = `k.

Let E ′k be the edges of a fixed minimal spanning tree of the connectivity graph Ck (see Fig. 18,
left) and let us collect the remaining edges Ek \E ′k in a sequence (e1 , . . . , em). By classical graph
theory, #E ′k = #Nk − 1 and for each remaining edge ei, i = 1, . . . ,m, there exists an associated
cycle Li consisting of edges from E ′k ∪ {e1, . . . , ei}, such that the number of independent cycles
in Ck is given by `k = m (see Fig. 18, middle).

As one observes, µ ∈ Λ∗ has two values per facet (one for each subdomain), so accordingly,
two values per edge of the connectivity graph. Since each subdomain corresponds to a node of
the graph, we can think of these values as being associated with the endpoints of the edges.
Under that perspective, the operator TT sums up the all values per node, while the operator
(I + XT) sums up the two values per edge.

For each edge ei, we define an element µ̂i ∈ Z by putting values ±1 along the associated
cycle Li as illustrated in Figure 18 (right) and zero elsewhere. Apparently, TTµ̂i = 0 because
the two non-zero values associated with each node within the cycle have opposite sign. At the
same time, the two values associated with each edge within the cycle sum up to zero as well,
so (I + XT)µ̂i = 0. Altogether, µ̂i ∈ Z. Moreover, the element µ̂i is linearly independent from
{µ̂j}i−1

j=1 because the latter are not supported on the edge ei. Therefore dim(Z) ≥ m.

In order to see that dim(Z) ≤ m, we let µ ∈ Z be arbitrary but fixed. Recall the sequence
(e1, . . . , em) of remaining edges and let us start with the edge em. Since (I −XT)µ = 0, the two
values of µ on edge em must have opposite sign. Therefore, we can find a coefficient αm such
that µm := µ − αmµ̂m has vanishing values on edge em. We proceed inductively. For i > 1,
suppose that µi ∈ Z has vanishing values on all edges ei, . . . , em. Then, since (I − XT)µi = 0,
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Figure 18. Illustration of the proof Theorem 4.5. Left: minimal spanning tree,
◦ nodes with just one edge attached. Middle: black edges: minimal spanning
tree, colored: sequence of remaining edges with associated cycles. Right: Values
of µ̂5 associated with the cycle of e5.

the two values of µi on edge ei−1 must have opposite sign. So there exists a coefficient αi−1 such
that µi−1 := µi−αi−1µ̂i−1 has vanishing values on edge ei−1. Since µ̂i−1 has vanishing values on
all the edges ei, . . . , em, the function µi−1 vanishes on all the edges ei−1, . . . , em and µi−1 ∈ Z.
The inductive process stops with µ1 ∈ Z vanishing entirely on all remaining edges e1, . . . , em,
and so the only possible non-zero values of µ1 are located at the edges of the minimal spanning
tree. This spanning tree, however, must have nodes with just one edge attached. The condition
TTµ1 = 0 implies that the values of µ1 at these node and the attached edges is zero. Using the
condition (I + XT)µ1 = 0 along the edges allows to show, eventually, that µ1 = 0. Therefore,
dim(Z) = m and Z = span{µ̂1, . . . , µ̂m}.

Appendix B. Invertibility of generalized Robin problems

In this section, we investigate the invertibility of the augmented operator A + αTTMT , cf.
Assumption (A5). As for classical wave propagation, the two building blocks are the Fredholm
property and the injectivity, which altogether ensure a bounded inverse, see e.g. [75, 55]. In
discrete case, invertibility is usually proved either via injectivity alone or via an inf-sup condition
derived from the continuous counterpart, cf. e.g. [55].

We begin with the injectivity (Sect. B.1), visit some general tools on the Fredholm property
(Sect. B.2) and apply these for standard as well as generalized Robin problems (Sect. B.3 and
Sect. B.4). As will be noted, for some constellations in the case of Maxwell’s equations, the
Fredholm property remains an open problem.

B.1. Injectivity. We start with the assumption that the operator M is block-diagonal, which
allows to treat one subdomain at a time.

Assumption (C1). The operatorM from (A3) has the block-diagonal formM = diag(Mi)
N
i=1,

where each operator Mi : Λi → Λ∗i is real-valued, symmetric, non-negative, and definite, i.e.,

〈Miλi, λi〉 = 0 =⇒ λi = 0 for all λi ∈ Λi.

Note that Assumption (A6) implies (C1) but not vice versa.

Assumption (C2). In accordance with Assumption (A8), the following holds:

(i) In the coercive case (with α = 1):[
Aivi = 0 and Tivi = 0

]
=⇒ vi = 0 ∀vi ∈ Ui .

(ii) In the wave propagation case (with α = i):[
(Ai,0 −Ai,2)vi = 0 and Ai,1vi = 0 and Tivi = 0

]
=⇒ vi = 0 ∀vi ∈ Ui .

Assumption (C2) can be seen as an abstract version of Holmgreen’s theorem: Aiv = 0 (in
case (i)) implies that the Neumann trace on the interface is zero, Tiv = 0 means that the
Dirichlet trace on the interface is zero. Inside the subdomain, v fulfills the homogeneous PDE,
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so v must vanish entirely; see also [39, Thm. 1] or [40, Thm. A.1]. In the typical coercive
cases, Ai has a finite-dimensional kernel (constant functions, rigid body modes), which is fixed
by the Dirichlet condition. For Maxwell’s equations, Part (ii) of (C2) is widely known as the
continuation principle, cf. e.g. [75, Sect. 4.6].

In the discrete case, the following proposition, which is essentially [11, Lemma 5.1], allows to

derive (C2) from the assumptions on the original operator Â.

Proposition B.1. Let Assumption (A8) hold, assume that ker(Â) = {0} (as stated in Sect. 2.2),
and let, in addition, Assumption (B1) be fulfilled. Then Assumption (C2) holds al well.

Proof. Assume without loss of generality, that we are in Case (ii) of Assumption (A8) (the
proof of Case (i) is analogous) and that (Ai,0 − Ai,2)vi = 0 and Ai,1vi = 0 and Tivi = 0.
Assumption (B1) guarantees that ker(Ti) ⊆ Ui,B, and so for Tivi = 0 there exists a function

v̂ ∈ Û such that vi = Riv̂ and Rj v̂ = 0 for all j 6= i. From this and our initial assumptions, we

can conclude that Âv̂ = 0, which implies v̂ = 0 and therefore vi = 0. �

Proposition B.2 (injectivity). Let Assumptions (A8), (C1), and (C2) hold. Then the operator

Ãi is injective.

Proof. For arbitrary but fixed v ∈ Ui with Ãiv = 0, we show that v = 0.

Coercive case (α = 1): Ãi = Ai + TT
i MiTi with Ai real-valued, symmetric, and non-negative.

Due to our assumptions,
〈Aiv, v〉+ 〈MiTiv, Tiv〉 = 0,

and since both terms are non-negative, both must vanish. From the assumptions on Ai and Mi,
this implies Aiv = 0 and Ti = 0. Assumption (C2)(i) guarantees that v = 0.
Wave propagation case (α = i):

Ãi = Ai,0 + iÃi,1 −Ai,2 , where Ãi,1 = Ai,1 + TT
i MiTi .

Due to our assumptions,

〈(Ai,0 −Ai,2)v, v〉+ i
(
〈Ai,1v, v〉︸ ︷︷ ︸
≥0

+ 〈MiTiv, Tiv〉︸ ︷︷ ︸
≥0

)
= 0.

Both the real and imaginary part must vanish. Since all the summands in the imaginary part
are non-negative,

〈Ai,1v, v〉 = 0 and 〈MiTiv, Tiv〉 = 0.

From the assumptions on Ai,1 and on Mi, it follows that Ai,1v = 0 and Tiv = 0. Recalling

that Ãiv = 0, this implies also that (Ai,0 − Ai,2)v = 0. Assumption (C2)(ii) guarantees that
v = 0. �

B.2. Technical Tools for Fredholm Operators.

Lemma B.3. Let V be a real or complexified Hilbert space and A : V → V ∗ a bounded linear
operator that fulfills a generalized G̊arding inequality with respect to an isomorphism F : V → V
and a compact bounded linear operator C : V → V ∗, i.e., there exists a constant γ > 0 such that∣∣〈Av,Fv〉+ 〈Cv, v〉

∣∣ ≥ γ‖v‖2V ∀v ∈ V,(B.1)

Then A is Fredholm with index zero.

Proof. We find that the (possibly complex-valued) operator FTA+ C is positive bounded from
below in the sense that ∣∣〈(FTA+ C)v, v〉

∣∣ ≥ γ‖v‖2V ∀v ∈ V.
Since FTA+C is obviously bounded, a suitable version of the Lax-Milgram lemma (see e.g. [75,
Lemma 2.21] implies that FTA+C is an isomorphism. In particular, FTA+C is Fredholm with
index zero. Since C is compact, a standard result (see e.g. [72, Thm 2.26]) implies that FTA
is Fredholm with index zero. Since FT is an isomorphism, another standard argument (see e.g.
[72, Thm. 2.21]) yields that A itself is Fredholm with index zero. �
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Lemma B.4. Let V be a complexified Hilbert space and A : V → V ∗ a bounded linear operator
of the form

A = A0 + iσA1 −A2 ,

with σ ∈ {+1,−1} and with linear, bounded, real-valued, symmetric, and non-negative operators
Ai : V → V ∗. Moreover, assume real-valued projection operators N and R : V → V with N+R = I
such that

(i) A0N = 0,
(ii) A2R is compact,

(iii) either (a) A1N is compact or (b) A1R is compact, and
(iv) there exists a constant c > 0 such that 〈(A0 +A1 +A2)v, v〉 ≥ c ‖v‖2V for all v ∈ V .

Then A is Fredholm with index zero. The same holds if (iii) and (iv) are replaced by the
alternative conditions

(iii’) NTA1R is compact, and
(iv’) there exists a constant c > 0 such that 〈(A0 +A2)v, v〉 ≥ c ‖v‖2V for all v ∈ V .

Remark B.5. The case N = 0 is admitted. In that case, only (ii) and (iv) are required.

Proof of Lemma B.4. We define F := R− N, which is an isomorphism:

F2 = (2R− I)2 = 4R2 − 4R + I = I.

Using property (i) and the relations F = 2R− I = I − 2N, we find that

〈Av,Fw〉 = 〈A0v, (R− N)w〉 − 〈A2v, (R− N)w〉+ iσ〈A1v, (R− N)w〉
= 〈A0v, (R + N)w〉+ 〈A2v, (I − 2R)w〉+ iσ〈A1v, (2R− I)w〉
= 〈(A0 +A2)v, w〉 − iσ〈A1v, w〉 − 2〈A2v,Rw〉+ 2iσ〈A1v,Rw〉,

which will be used for Case (b). Alternatively, we have

〈Av,Fw〉 = 〈A0v, (R + N)w〉+ 〈A2v, (I − 2R)w〉+ iσ〈A1v, (I − 2N)w〉
= 〈(A0 +A2)v, w〉+ iσ〈A1v, w〉 − 2〈A2v,Rw〉 − 2iσ〈A1v,Nw〉,

which will be used for Case (a). We define C : V → V ∗ by

〈Cv,w〉 :=

{
2〈A2v,Rw〉+ 2iσ〈A1v,Nw〉 in Case (a),

2〈A2v,Rw〉 − 2iσ〈A1v,Rw〉 in Case (b),

which is a compact operator by property (ii) and (iii). Then,∣∣〈(A+ C)v,Fv〉
∣∣ =

∣∣ 〈(A0 +A2)v, v〉︸ ︷︷ ︸
∈R+

0

+ i δσ︸︷︷︸
=±1

〈A1v, v〉︸ ︷︷ ︸
∈R+

0

∣∣ = 〈(A0 +A1 +A2)v, v〉 ≥ c ‖v‖2V ,

with δ = 1 in Case (a) and δ = −1 is Case (b). An application of Lemma B.3 shows that Ã is
Fredholm. Under the conditions (iii’) and (iv’), we can use

〈Av,Fw〉 = 〈A0v, (R + N)w〉+ 〈A2v, (I − 2R)w〉+ iσ〈A1(R + N)v, (R− N)w〉
= 〈(A0 +A2)v, w〉 − 2〈A2v,Rw〉+ iσ

(
〈A1Rv,Rw〉 − 〈A1Nv,Nw〉 − 〈A1Rv,Nw〉+ 〈A1Nv,Rw〉

)
.

We define C : V → V ∗ by 〈Cv,w〉 := 2〈A2v,Rw〉 + iσ〈A1Rv,Nw〉 − iσ〈A1Nv,Rw〉, which is a
compact operator by properties (ii) and (iii’). Due to (iv’)∣∣〈(A+ C)v,Fv〉

∣∣ =
∣∣ 〈(A0 +A2)v, v〉︸ ︷︷ ︸

∈R+
0

+iσ
(
〈A1Rv,Rv〉−〈A1Nv,Nv〉

)︸ ︷︷ ︸
∈R

∣∣ ≥ 〈(A0 +A2)v, v〉 ≥ c‖v‖2V ,

and so again Lemma B.3 implies that Ã is Fredholm. �
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B.3. Standard Robin problems. For the following, let us assume that Ω ⊂ R3 is a bounded
Lipschitz domain and ΓD, ΓN , ΓR ⊂ ∂Ω disjoint surfaces such that ∂Ω = ΓD ∪ ΓN ∪ ΓR and such
that ΓR has non-vanishing surface measure. Note, however, that ΓD and/or ΓN are allowed to be
empty. Moreover, any of the sets ∂ΓD, ∂ΓN , ∂ΓR (unless empty) should fulfill the requirements
stated in [58, Sect. 2], in particular being the union of closed curves that are piecewise C1. Later
on, it is further assumed that Ω is a curvilinear Lipschitz polyhedron.

B.3.1. The primal Helmholtz equation. Let Û := H1
D(Ω) = {v ∈ H1(Ω): v = 0 on ΓD} and let

Â : Û → Û∗ be given by Â = Â0 + iÂ1 − Â2 with

〈Â0û, v̂〉 =

∫
Ω
∇û · ∇v̂ dx, 〈Â1û, v̂〉 =

∫
ΓR

η û v̂ ds, 〈Â2û, v̂〉 =

∫
Ω
κ2û v̂ dx.

We set N̂ = 0 and R̂ = I. Since Â2 is compact and since

〈(Â0 + Â1 + Â2)v̂, v̂〉 ≥ min(1, κ2
min)‖v̂‖2H1(Ω) ,

where κmin is a positive lower bound for the coefficient κ in Ω, Lemma B.4 guarantees that Â is
Fredholm.

B.3.2. The dual Helmholtz equation. Let Û := {v ∈ HΓN
(div,Ω): vn|ΓR

∈ L2(ΓR)}, where vn

denotes the normal trace of v in H−1/2(∂Ω). The restriction vn|ΓR
is well-defined in H

−1/2
00 (ΓR).

We use the norm ‖v‖2
Û

= ‖v‖2L2(Ω) + ‖div v‖2L2(Ω) + ‖vn|ΓR
‖2L2(ΓR). The operator Â : Û → Û∗ is

given by Â = Â0 + iÂ1 − Â2 with

〈Â0û, v̂〉 =

∫
Ω
κ−2 div û div v̂ dx, 〈Â1û, v̂〉 =

∫
ΓR

η−1 ûnv̂n ds, 〈Â2û, v̂〉 =

∫
Ω

û · v̂ dx.

Due to the regular decomposition result in [58], there exist bounded, linear, and real-valued
projections N : HΓN

(div,Ω)→ HΓN
(div 0,Ω) and R : HΓN

(div,Ω)→ H1
ΓN

(Ω) with N+R = I in

HΓN
(div,Ω). For v̂ ∈ Û ,

v̂n|ΓR
= (Rv̂)n|ΓR

+ (Nv̂)n|ΓR
∈ L2(ΓR).

Assuming that Ω is a curvilinear polyhedron (cf. [6]), the outer normal n is piecewise smooth.

Therefore, since Rv̂ ∈ H1
ΓN

(Ω), we find that (Rv̂)n|ΓR
= (Rv̂)|ΓR

·n ∈ H1/2
pw (ΓR) ⊂ L2(ΓR). This

shows that (Nv̂)n|ΓR
∈ L2(ΓR) as well. Hence, we can restrict R, N to operators R̂, N̂ : Û → Û ,

and we meet the prerequisites of Lemma B.4:

• R̂, N̂ are projectors and R̂ + N̂ = I in Û ,

• Â0N̂ = 0 since N maps to HΓN
(div 0,Ω),

• Â2R̂ is compact since R maps to H1
ΓN

(Ω) which is compactly embedded in L2(Ω),

• Â1R̂ is compact since (Rv̂)n|ΓR
∈ H1/2

pw (ΓR) which is compactly embedded in L2(ΓR),

• 〈(Â0 + Â1 + Â2)v̂, v̂〉 ≥ min(1, κ−2
max, η

−1
max)

(
‖ div v̂‖2L2(Ω) + ‖v̂‖2L2(Ω) + ‖v̂n|ΓR

‖2L2(ΓR)

)
,

where κmax, ηmax are finite upper bounds for the coefficients κ, η in Ω.

B.3.3. Maxwell’s equations. To avoid complications, it is again assumed that Ω is a curvilinear

Lipschitz polyhedron (cf. [6]). Let Û := {v ∈ HΓD
(curl,Ω): vτ |ΓR

∈ L2(ΓR)}, where vτ = v×n

denotes the tangential trace of v in H−1/2(∂Ω) and the restriction vτ |ΓR
is well-defined, for details

see [6, 75]. We use the norm ‖v‖2
Û

= ‖v‖2L2(Ω) + ‖ curl v‖2L2(Ω) + ‖vτ |ΓR
‖2L2(ΓR). The operator

Â : Û → Û∗ is given by Â = Â0 + iÂ1 − Â2 with

〈Â0û, v̂〉 =

∫
Ω
µ−1 curl û · curl v̂ dx, 〈Â1û, v̂〉 =

∫
ΓR

ωη−1 ûτ · v̂τ ds, 〈Â2û, v̂〉 =

∫
Ω
ω2εû · v̂ dx.
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There exist bounded, linear, and real-valued projectors N : HΓD
(curl,Ω)→ HΓD

(curl 0,Ω) and

R : HΓD
(curl,Ω)→ H1

ΓD
(Ω) with R + N = I in HΓD

(curl,Ω), see [58]. For v̂ ∈ Û ,

v̂τ |ΓR
= (Rv̂)τ |ΓR

+ (Nv̂)τ |ΓR
∈ L2(ΓR).

Due to the assumptions on Ω, the normal n is piecewise smooth. Therefore, since Rv̂ ∈ H1
ΓD

(Ω),

we find that (Rv̂)τ |ΓR
= (Rv̂)|ΓR

×n ∈ H
1/2
pw (ΓR) ⊂ L2(ΓR). This shows that (Nv̂)τ |ΓR

∈ L2(ΓR)

as well. Hence, we can restrict N, R to operators N̂, R̂ : Û → Û , and we meet the prerequisites
of Lemma B.4:

• N̂, R̂ are projectors and N̂ + R̂ = I in Û ,

• Â0N̂ = 0 since N maps to HΓD
(curl 0,Ω),

• Â2R̂ is compact since R maps to H1
ΓD

(Ω) which is compactly embedded in L2(Ω),

• Â1R̂ is compact since (Rv̂)τ |ΓR
∈ H

1/2
pw (ΓR) which is compactly embedded in L2(ΓR),

• 〈(Â0+Â1+Â2)v̂, v̂〉 ≥ min(µ−1
max, ω

2ε2
min, ωηmin)

(
‖ curl v̂‖2L2(Ω)+‖v̂‖

2
L2(Ω)+‖v̂τ |ΓR

‖2L2(ΓR)

)
,

where µmax, εmin, ηmin are finite upper/positive lower bounds for the coefficients µ, ε, η in Ω.

B.4. Generalized Robin problems. In this section, we investigate whether the subdomain
operator

Ãi := Ai + αTT
i MiTi

is Fredholm with index zero.

B.4.1. Wave propagation case. In accordance with Assumption (A8) (with α = i), we assume
that there exist projectors Ni, Ri such that

(i) Ai,0Ni = 0,
(ii) Ai,2Ri is compact,

(iii) either (a) Ai,1Ni is compact or (b) Ai,1Ri is compact, and
(iv) there exists a constant ci > 0 such that 〈(Ai,0 +Ai,1 +Ai,2)v, v〉 ≥ c‖v‖2Ui

for all v ∈ Ui.
such that Lemma B.4 implies that Ai is Fredholm with index zero. With the definitions

Ãi = Ai,0 + iÃi,1 −Ai,2 , where Ãi,1 = Ai,1 + TT
i MiTi ,

Lemma B.4 would imply that Ãi is Fredholm with index zero as well if, in addition to the above:

(v) either (a) Ãi,1Ni is compact or (b) Ãi,1Ri is compact, and

(vi) there exists a constant ci > 0 such that 〈(Ai,0 + Ãi,1 +Ai,2)v, v〉 ≥ c‖v‖2Ui
for all v ∈ Ui.

The inequality (vi) follows from (iv) because Mi is non-negative. We are left with the question
whether the operator TT

i MiTiNi (in case (a)) or TT
i MiTiRi (in case (b)) is compact:

• For the primal Helmholtz formulation, we can use Ni = 0.
• If the trace operator Ti itself is compact (cf. Theorem 6.4), we are also done.

• For the dual Helmholtz formulation, (iii) holds with case (b), range(TiRi) ⊂ H
1/2
pw (Γi),

where Γi is the chosen interface, possibly split into facets. The latter space is compactly
embedded in L2(Γi), and thus also compactly embedded in any chosen trace space Λi
(which requires at most H−1/2-regularity). Therefore, TiRi : Ui → Λi is compact, and so
(v) holds with case (b).

The Maxwell case is to a large extent open, at least if Ti is not compact. However, one
exceptional situation shall be mentioned: If Ai,1 = 0 and Mi is orthogonal with respect to the

regular decomposition, i.e., NT
i T

T
i MiTiRi = 0, then using the alternative conditions (iii’), (iv’)

in Lemma B.4, one can show that Ãi is Fredholm with index zero. For more results see [81,
Sect. 3.4.2].
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B.4.2. Coercive case. In accordance with Assuption (A8) (with α = 1), we assume that there
exists a compact operator9 Ci such that Ai +Ci is bounded positively from below, such that Ai
is Fredholm with index zero. Since, by assumption Mi is non-negative,

〈(Ãi + Ci)v, v〉 = 〈(Ai + Ci)v, v〉+ 〈MiTiv, Tiv〉 ≥ γi‖v‖2Ui
,

for some constant γi > 0 such that Ãi is Fredholm.
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