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Abstract. In this study, we propose a unified, general framework for the direct discontinuous Galerkin methods. In the new
framework, the antiderivative of the nonlinear diffusion matrix is not needed. This allows a simple definition of the numerical flux,
which can be used for general diffusion equations with no further modification. We also present the nonlinear stability analyses
of the new direct discontinuous Galerkin methods and perform several numerical experiments to evaluate their performance. The
numerical tests show that the symmetric and the interface correction versions of the method achieve optimal convergence and are
superior to the nonsymmetric version, which demonstrates optimal convergence only for problems with diagonal diffusion matrices
but loses order for even degree polynomials with a non-diagonal diffusion matrix. Singular or blow up solutions are also well
captured with the new direct discontinuous Galerkin methods.
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1. Introduction In this paper, we continue to study direct discontinuous Galerkin method [31] and
other three versions of the direct discontinuous Galerkin (DDG) method [32, 41, 43] for solving the nonlinear
diffusion equation

(1.1)
∂U

∂t
= ∇ · (A(U)∇U), (x, t) ∈ Ω× (0, T ),

with the initial data U0(x) = U(x, 0). Nonlinear diffusion matrix A(U) ∈ Rd×d is assumed to be positive
definite. We adapt Ω ⊂ Rd to denote the computational domain. In this study, we consider a 2-dimensional
setting with d = 2. Our focus is to derive a generalized and unified DDG method for nonlinear diffusion
equations (1.1) that can be easily extended and applied to system and multi dimensional cases.

The discontinuous Galerkin (DG) method was first introduced by Reed and Hill for neutron transport
equations in 1973 [35]. However, it is after a series of papers by Cockburn, Shu et al. [19, 18, 16, 21] that the
DG method became the archetype of high order methods used in the scientific community. Essentially, the
DG method is a finite element method, but with a discontinuous piecewise polynomial space defined for the
numerical solution and test function in each element. Due to this property, the DG method has a smaller and
more compact stencil compared to its continuous counterpart. Hence, the data structure required to implement
DG methods is extremely local, which allows efficient parallel computing and hp-adaptation.

One of the key features of the DG method is that the communication between computational elements
is established through a numerical flux defined at element interfaces. In this regard, the DG method bears
a striking similarity to finite volume method, where a Riemann solver is employed to calculate the numerical
flux. Therefore, the DG method enjoys the high-order polynomial approximations as a finite element method
while benefiting from the characteristic decomposition of the wave propagation provided by Riemann solvers as
a finite volume method. For this reason, the DG method has been successfully applied to hyperbolic problems,
i.e. compressible Euler equations, in the last three decades, cf. [17, 38, 48].

On the other hand, for elliptic and parabolic problems, i.e. linear/nonlinear diffusion equations, the
numerical flux must involve a proper definition for the solution gradient at element interfaces. It is, in fact,
the variety of this definition that leads to several DG methods such as the interior penalty (IPDG) methods
[1, 42, 3], the nonsymmetric interior penalty (NIPG) method [36, 37] and the symmetric interior penalty (SIPG)
method [27, 26, 28]. Another important group of DG methods for solving diffusion problems include the method
of Bassi and Rebay (BR) and its variations [5, 6, 7, 4]; the local DG (LDG) method [20, 14, 44]; the method
of Baumann and Oden (BO) [8, 9]; hybridized DG (HDG) method [15]. Recent works include the weakly
over-penalized SIPG method [10]; weak DG [30] method and ultra weak DG method [13, 11]. For a review of
these methods, we refer to [2, 39] and the references therein. Among the many DG methods mentioned, there
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is little discussion of nonlinear diffusion equations except Bassi and Rebay [5] and Local DG related methods
[20, 15].

In addition to all the efforts mentioned above to devise a numerical flux for the diffusive terms in el-
liptic/parabolic equations, Liu and Yan [31] introduced Direct DG (DDG) method for nonlinear diffusion
equations. Inspired by the exact trace formula corresponding to the solution of heat equation with a smooth
initial data that contains a discontinuous point, Liu and Yan derived a simple formula for the numerical flux
to compute the solution derivative at the element interface. Although DDG method is proven to converge to
the exact solution optimally when measured in an energy norm, it suffers from an order loss in the L2-norm
when the solution space is approximated by even degree polynomials. In order to recover optimal convergence,
Liu and Yan [32] developed the direct DG method with interface correction (DDGIC). In their subsequent
studies, Yan and collaborators presented symmetric and nonsymmetric versions of the DDG method [41, 43].
Even though DDG methods degenerate to the IPDG method with piecewise constant and linear polynomial
approximations, there exist a number of advantages with DDG methods for higher order approximations. For
such advantages, we refer to the discussions on a third order bound preserving scheme in [12], superconvergence
to ∇U in [45, 34] and elliptic interface problems with different jump interface conditions in [29].

Despite the aforementioned favorable features, in the previous versions of DDG methods, the numerical flux
definition is based on the antiderivative of the nonlinear diffusion matrix A(U). However, this antiderivative
might not exist if the diffusion matrix A(U) is complicated enough. Therefore, the previous DDG methods
are not applicable to nonlinear equations with such diffusion matrices. One important example where the
diffusion matrix A(U) cannot be integrated explicitly is the energy equation of compressible Navier-Stokes
equations. A similar difficulty arises for the interface terms involving test function. This problem is addressed
by defining a new direction vector on element interfaces, which depends on the nonlinear diffusion matrix
A(U) and geometric information of the interface. With the introduction of the nonlinear direction vector, the
evaluation of the nonlinear numerical flux is greatly simplified. Interface terms can also be clearly defined with
no ambiguity. Danis and Yan recently applied the method in [22] to solve compressible Navier-Stokes equations
with DDGIC method. This treatment of a generic diffusion process opens up the possibility of a straightforward
extension of all DDG versions to the complicated nonlinear diffusion equations, which motivates this study.

In this paper, the concept of the nonlinear direction vector is extended to all versions of DDG method
in a generalized, unified framework. The new framework does not only address the problem of calculating
the antiderivative of the diffusion matrix, but also provides an easy and practical recipe for using the DDG
methods for general system of conservation laws. Moreover, interface terms of all versions of DDG methods
are presented within a unified format that is clean and easy to be evaluated. Nonlinear stability analyses
are presented for the new DDGIC, symmetric DDG and nonsymmetric DDG methods, and we investigate
their performance in several numerical experiments. Since DDG methods degenerate to the IPDG method
with low order approximations as mentioned, all numerical tests are conducted with high order polynomial
approximations. In the numerical tests, optimal order of accuracy are obtained for DDGIC and symmetric
DDG methods over uniform triangular meshes while a slight fraction of order loss is observed for nonsymmetric
DDG method with even degree polynomial approximations. It is also shown that singular or blow up phenomena
can be well captured under the new DDG framework.

Throughout the paper, we denote the exact solution of Equation (1.1) by the uppercase U and the DG
solution of Equation (1.1) by the lowercase u. The rest of the paper is organized as follows. In Section 2, we
briefly review the direct DG methods. In Section 3, the new methodology is described. In Section 4, nonlinear
stability analysis are presented. Implementation details of the new methods are explained and several numerical
examples are presented in Section 5. Finally, we draw our conclusions in Section 6.

2. A review of direct DG methods In this section, we will present a brief review of the original
direct DG methods [31, 32, 41, 43] and the required notation for later use.

We consider a shape regular triangular mesh partition Th of Ω such that Ω = ∪K∈ThK. For each element
K, we denote the diameter of the inscribed circle by hK . Furthermore, we define the numerical solution space
as

Vkh := {v ∈ L2(Ω) : v(x, y)K ∈ Pk(K)},
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where Pk(K) represents the space of polynomials of degree k in two dimensions. Note that this solution space
is discontinuous across element interfaces. For this purpose, we adopt the following notation for the interface
solution jump and average

JuK = u+ − u−, {{u}} =
u+ + u−

2
, ∀(x, y) ∈ ∂K,

where u+ and u− are the solution values calculated from the exterior and interior of the element K.
Next, for a test function v ∈ Vkh, we multiply Equation (1.1) by v, integrate it by parts and apply the

divergence theorem to obtain the weak form of Equation (1.1). Along with the initial projection, the weak
form is then given by∫

K

utv dxdy +

∫
K

A(u)∇u · ∇v dxdy −
∫
∂K

Â(u)∇u · n v ds = 0, ∀v ∈ Vkh,(2.1) ∫
K

u(x, y, 0)v(x, y) dxdy =

∫
K

U0(x, y)v(x, y) dxdy, ∀v ∈ Vkh.(2.2)

In Equation (2.1), the volume integration is performed over individual elements K and the surface integral is
performed over the element boundary ∂K. Here, n is the outward unit normal vector on ∂K. Furthermore,
since u(x, y, t)|K is a discontinuous across the elements, A(u)∇u is multi-valued on ∂K. For this reason,

A(u)∇u is written with a hat in the surface integral term in Equation (2.1). In fact, Â(u)∇u is known as the
numerical flux. The original DDG method [31] defines the numerical flux as

(2.3) ̂aij(u)uxj
=
β0

he
Jbij(u)Knj + {{bij(u)xj

}}+ β1heJbij(u)x1xj
n1 + bij(u)x2xj

n2K,

where we denote by aij(u) the ij component of the diffusion matrix A(u). Here, bij(u) are the components
of the matrix B(u). Basically, the components of B(u) are the antiderivatives of aij(u) and it is defined as
bij(u) =

∫ u
aij(s)ds. In Equation (2.3), he is the average of the element diameters sharing the edge ∂K, nj

are the components of the unit normal n for j = 1, 2, and the subscripts xj denote the partial derivative with
respect to the corresponding spatial coordinate axis for j = 1, 2. Furthermore, (β0, β1) is a pair of coefficients
that affects the stability and optimal convergence of the DDG method. Along with Equations (2.1) and (2.3),
the definition of the original direct DG method [31] is now completed.

It is well-known that the original DDG method loses an order for even degree polynomials [31]. This
problem is fixed either by including a jump term for the test function or introducing a numerical flux for the
test function. What determines the name of the corresponding DDG version is in fact how these additional
terms are implemented.

2.1 The DDG method with interface correction The scheme formulation of the original DDGIC
method [32] is given as∫

K

utv dxdy +

∫
K

A(u)∇u · ∇v dxdy

−
∫
∂K

Â(u)∇u · n v ds+

∫
∂K

JB(u)K{{∇v}} · n ds = 0, ∀v ∈ Vkh,

where the numerical flux Â(u)∇u is calculated using Equation (2.3). Note that the test function v is only
nonzero inside the element K by definition, thus the interface correction term is calculated as

JB(u)K{{∇v}} =
1

2
JB(u)K(∇v)−.
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2.2 The symmetric DDG method The scheme formulation of the original symmetric DDG method
[41] is given by ∫

K

utv dxdy +

∫
K

A(u)∇u · ∇v dxdy

−
∫
∂K

Â(u)∇u · n v ds+

∫
∂K

JB(u)K∇̂v · n ds = 0, ∀v ∈ Vkh.

As in the DDGIC method, the numerical flux Â(u)∇u is calculated by Equation (2.3) while the numerical for
the test function is given as

(2.4)

v̂x = β0
JvK
he
n1 + {{vx}}+ β1heJvxxn1 + vyxn2K,

v̂y = β0
JvK
he
n2 + {{vy}}+ β1heJvxyn1 + vyyn2K.

Note that the test function is zero outside of the element K. Thus, Equation (2.4) can be simplified as

v̂x = −β0
v−

he
n1 +

1

2
v−x − β1he

(
v−xxn1 + v−yxn2

)
,

v̂y = −β0
v−

he
n2 +

1

2
v−y − β1he

(
v−xyn1 + v−yyn2

)
.

2.3 The nonsymmetric DDG method The scheme formulation of the original nonsymmetric DDG
method [43] is given by∫

K

utv dxdy +

∫
K

A(u)∇u · ∇v dxdy

−
∫
∂K

Â(u)∇u · n v ds−
∫
∂K

Ã(v)∇v · nJuK ds = 0, ∀v ∈ Vkh.

Similar to the other DDG versions, the numerical flux Â(u)∇u is calculated by Equation (2.3). The numerical
flux for the test function is defined similarly but with a different penalty coefficient β0v:

(2.5) ˜aij(v)vxj =
β0v

he
Jbij(v)Knj + {{bij(v)xj}}+ β1heJbij(v)x1xjn1 + bij(v)x2xjn2K.

Since the test function is undefined outside of the element K, Equation (2.5) can be simplified as

˜aij(v)vxj
= −β0v

he
bij(v

−)nj +
1

2
bij(v

−)xj − β1he
(
bij(v

−)x1xjn1 + bij(v
−)x2xjn2)

)
.

3. The new DDG framework for nonlinear diffusion equations As can be seen in the previous
section, the numerical flux definition of original DDG versions is based on calculating an antiderivative matrix
B(u) that is calculated according to

B(u) =

∫ u

A(s)ds.

A major drawback occurs when the components of the diffusion matrix A(u) cannot be integrated explicitly. In
such cases, none of the original DDG versions can be implemented. A striking example is the energy equation
of compressible Navier-Stokes equations. This drawback limits the use of the original DDG versions only to
simple applications where the antiderivative matrix B(u) is available.

The new framework is based on the adjoint-property of inner product, which was used in the proof of
a bound-preserving limiter with DDGIC method [12]. On the continuous level, the integrand of the surface
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integral in the weak form Equation (2.1) can be rewritten as

A(u)∇u · n = ∇u ·A(u)Tn.

By applying the adjoint-property, we define a new direction vector ξ(u) = A(u)Tn. The new direction vector
is simply obtained by stretching/compressing and rotating the unit normal vector n through diffusion matrix
A(u). On the discrete level, the new direction vector can be calculated by

(3.1) ξ ({{u}}) = A({{u}})Tn.

The numerical flux can suitably be defined as

Â(u)∇u · n = ∇̂u · ξ ({{u}}) ,

where the numerical flux ∇̂u = (ûx, ûy) can be computed by the original DDG numerical flux formula for the
heat equation [31]:

(3.2)

ûx = β0
JuK
he

n1 + {{ux}}+ β1heJuxxn1 + uyxn2K,

ûy = β0
JuK
he

n2 + {{uy}}+ β1heJuxyn1 + uyyn2K.

Now, we reformulate all DDG versions for Equation (1.1) according to the new framework: Find u ∈ Vkh
such that

(3.3)

∫
K

utv dxdy +

∫
K

A(u)∇u · ∇v dxdy

−
∫
∂K

∇̂u · ξ({{u}})v ds+ σ

∫
∂K

JuK∇̃v · ξ({{u}}) ds = 0, ∀v ∈ Vkh,

where σ = 0 for the basic DDG scheme, σ = 1 for DDGIC and symmetric DDG schemes, and σ = −1 for the
nonsymmetric DDG scheme. Furthermore, we denote by ∇̃v the numerical flux for the test function v ∈ Vkh.
Along with the following definitions of the numerical flux for the test function, Equation (3.3) defines the new
DDG versions:

The baseline DDG scheme (σ = 0):

(3.4) ∇̃v = 0.

The DDGIC scheme (σ = 1):

(3.5) ∇̃v = {{∇v}}.

The symmetric DDG scheme (σ = 1):

(3.6)

ṽx = β0
JvK
he
n1 + {{vx}}+ β1heJvxxn1 + vyxn2K,

ṽy = β0
JvK
he
n2 + {{vy}}+ β1heJvxyn1 + vyyn2K.

The nonsymmetric DDG scheme (σ = −1):

(3.7)

ṽx = β0v
JvK
he
n1 + {{vx}}+ β1heJvxxn1 + vyxn2K,

ṽy = β0v
JvK
he
n2 + {{vy}}+ β1heJvxyn1 + vyyn2K.
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In [12], the adjoint property of inner product was only used in the proof of positivity-preserving (Theorem 3.2).
All numerical tests of [12] involving nonlinear diffusion equations were implemented with the original DDGIC
scheme formulation [32].

Remark 3.1. We summarize the main features and advantages of the generalized DDG methods (3.3) for
nonlinear diffusion equation (1.1).

• Nonlinearity of the diffusion process goes into the corresponding new direction vector defined at the
cell interface that greatly simplifies the implementation of the DDG method.

• Numerical flux for the solution’s gradient ∇u can be approximated by the linear numerical flux formula
of the original DDG. Since the solution’s gradient is independent of the governing equation, this allows
the code reuse for general nonlinear diffusion problems.

• The nonlinear direction vectors are further applied to define the interface terms involving test function.

4. Nonlinear stability of the new DDG methods In this section, we will discuss the nonlinear
stability theory of the DDG methods developed in Section 3. The important inequalities used in the proofs of
the main theorems are discussed later in Appendix A.

We say that the DDG method is stable in L2 sense if∫
Ω

u2(x, y, T ) dxdy ≤
∫

Ω

U2
0 (x, y) dxdy, ∀T ≥ 0.

Note that the primal weak formulation of the new DDG methods is obtained by summing Equations (2.2) and
(3.3) over all element K ∈ Th.∫

Ω

utv dxdy + B(u, v) = 0, ∀v ∈ Vkh.(4.1) ∫
Ω

u(x, y, 0)v(x, y) dxdy =

∫
Ω

U0(x, y)v(x, y) dxdy, ∀v ∈ Vkh,(4.2)

Here, U0(x, y) denotes the initial data and B(u, v) is given by

(4.3) B(u, v) =

∫
Ω

A(u)∇u · ∇v dxdy +
∑
e∈Eh

∫
e

(
JvK∇̂u+ σJuK∇̃v

)
· ξ({{u}}) ds = 0.

where Eh = ∪K∈Th∂K represents the set of all element edges.

Theorem 4.1 (Stability of nonsymmetric DDG method). Let the model parameter σ = −1 in the scheme
formulation Equation (3.3) that is equipped with the numerical flux for the gradient of the numerical solution
Equation (3.2) and the numerical flux for the gradient of the test function Equation (3.7). If β0 ≥ β0v, then
we have ∫

Ω

u2(x, y, T ) dxdy ≤
∫

Ω

U2
0 (x, y) dxdy, ∀T ≥ 0.

Proof. By setting u = v, we integrate Equation (4.1) with respect to time over (0, T ).

(4.4)
1

2

∫
Ω

u2(x, y, T ) dxdy +

∫ T

0

B(u, u) dt =
1

2

∫
Ω

u2(x, y, 0) dxdy,

where

(4.5)

∫ T

0

B(u, u) dt =

∫ T

0

∫
Ω

A(u)∇u · ∇u dxdy dt+
∑
e∈Eh

∫ T

0

∫
e

JuK(∇̂u− ∇̃u) · ξ({{u}}) ds dt.

Since A(u) is positive definite, we have A(u)∇u · ∇u = ∇uTA(u)∇u > 0 and thus,

(4.6)

∫ T

0

∫
Ω

A(u)∇u · ∇u dxdy dt ≥ 0, ∀T ≥ 0.
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Furthermore, we have that

∇̂u− ∇̃u =
β∗0
he

JuKn,

where β∗0 = β0 − β0v ≥ 0 by the assumptions of the theorem. Recalling that ξ({{u}}) = A({{u}})Tn and A(u) is
the positive definite, we can write

JuK(∇̂u− ∇̃u) · ξ({{u}}) =
β∗0
he

JuK2
(
n ·A({{u}})Tn

)
> 0.

Thus, we have

(4.7)

∫ T

0

∫
e

JuK(∇̂u− ∇̃u) · ξ({{u}}) ds dt ≥ 0, ∀e ∈ Eh, ∀T ≥ 0.

Substituting Equations (4.6) and (4.7) into Equation (4.5), and then Equation (4.5) into Equation (4.4), we
obtain ∫

Ω

u2(x, y, T ) dxdy ≤
∫

Ω

u2(x, y, 0) dxdy, ∀T ≥ 0.

Finally, we apply the Schwarz inequality to the initial projection Equation (4.2) with v = u(x, y, 0) and obtain∫
Ω

u2(x, y, 0) dxdy ≤
∫

Ω

U2
0 (x, y) dxdy,

which completes the proof.

Theorem 4.2 (Stability of symmetric DDG method). Assume that A(u) is a positive definite matrix and
there exists γ, γ∗ ∈ R such that the eigenvalues (γ1, γ2) of A(u) lie between [γ, γ∗] for ∀u ∈ Vkh. Furthermore,
let the model parameter σ = 1 in the scheme formulation Equation (3.3) that is equipped with the numerical
flux for the gradient of the numerical solution Equation (3.2) and the numerical flux for the gradient of the test

function Equation (3.6). If β0 ≥ C(β1)k2
(
γ∗

γ

)2

β2
1 , then we have

1

2

∫
Ω

u2(x, y, T ) dxdy +

(
1− C(β1)k2

(
γ∗

γ

)2
β2

1

β0

)∫ T

0

∫
Ω

A(u)∇u · ∇u dxdy dt

≤ 1

2

∫
Ω

U2
0 (x, y) dxdy,

where C(β1) = C1/2β
2
1 + 2C2 > 0 and C1, C2 > 0 are constants.

Proof. By setting u = v, Equation (4.1) becomes

(4.8)
1

2

d

dt

∫
Ω

u2 dxdy + B(u, u) = 0,

where

(4.9) B(u, u) =

∫
Ω

A(u)∇u · ∇u dxdy + 2
∑
e∈Eh

∫
e

JuK∇̂u · ξ({{u}}) ds = 0.

Note that

JuK∇̂u · ξ({{u}}) =
β0

h
JuK2n · ξ({{u}}) + JuK{{∇u}} · ξ({{u}}) + β1hJuKJ∇(∇u · n)K · ξ({{u}}).
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Therefore, invoking Lemmas A.5 to A.7, we get∑
e∈Eh

∫
e

JuK∇̂u · ξ({{u}}) ds

≥
∑
e∈Eh

γβ0

h
‖JuK‖2L2(e)

−
∑
e∈Eh

γβ0

2h
‖JuK‖2L2(e) −

∑
K∈Th

C1
(γ∗k)2

4γβ0
‖∇u)‖2L2(K)

−
∑
e∈Eh

γβ0

2h
‖JuK‖2L2(e) −

∑
K∈Th

C2
(γ∗β1k)2

γβ0
‖∇u‖2L2(K)

= −
∑
K∈Th

C1
(γ∗k)2

4γβ0
‖∇u)‖2L2(K) −

∑
K∈Th

C2
(γ∗β1k)2

γβ0
‖∇u‖2L2(K)

= −
∑
K∈Th

1

2

(
C1

2β2
1

+ 2C2

)
(γ∗β1k)2

γβ0
‖∇u)‖2L2(K) .

This can be rewritten as∑
e∈Eh

∫
e

JuK∇̂u · ξ({{u}}) ds ≥ −C(β1)k2

2

(γ∗)2

γ

β2
1

β0

∑
K

‖∇u)‖2L2(K) .

where C(β1) = C1/2β
2
1 + 2C2. Next, we use the assumption on the eigenvalues of A(u):∑

K

‖∇u)‖2L2(K) ≤
1

γ

∑
K

∫
K

∇u ·A(u)∇u dxdy,

and obtain

(4.10)
∑
e∈Eh

∫
e

JuK∇̂u · ξ({{u}}) ds ≥ −C(β1)k2

2

(
γ∗

γ

)2
β2

1

β0

∑
K

∫
K

∇u ·A(u)∇u dxdy.

Substituting this Equation (4.10) into Equation (4.9), and then, Equation (4.9) into Equation (4.8) gives

(4.11)
1

2

d

dt

∫
Ω

u2 dxdy +

(
1− C(β1)k2

(
γ∗

γ

)2
β2

1

β0

)∫
Ω

A(u)∇u · ∇u dxdy ≤ 0.

Lastly, we integrate Equation (4.11) over (0, T ) and recall∫
Ω

u2(x, y, 0) dxdy ≤
∫

Ω

U2
0 (x, y) dxdy,

from the proof of Theorem 4.1. This completes the proof provided that we have β0 ≥ C(β1)k2
(
γ∗

γ

)2

β2
1 .

Theorem 4.3 (Stability of DDGIC method). Assume that A(u) is a positive definite matrix and there
exists γ, γ∗ ∈ R such that the eigenvalues (γ1, γ2) of A(u) lie between [γ, γ∗] for ∀u ∈ Vkh. Furthermore, let
the model parameter σ = 1 in the scheme formulation Equation (3.3) that is equipped with the numerical flux
for the gradient of the numerical solution Equation (3.2) and the numerical flux for the gradient of the test
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function Equation (3.5). If β0 ≥ C(β1)k2
(
γ∗

γ

)2

β2
1 , then we have

1

2

∫
Ω

u2(x, y, T ) dxdy +

(
1− C(β1)k2

(
γ∗

γ

)2
β2

1

β0

)∫ T

0

∫
Ω

A(u)∇u · ∇u dxdy dt

≤ 1

2

∫
Ω

U2
0 (x, y) dxdy.

where C(β1) = C1/β
2
1 + C2 > 0 and C1, C2 > 0 are constants.

Proof. The proof is very similar to the proof of Theorem 4.2. Therefore, we will only lay out the sketch of
the proof. By setting u = v, Equation (4.1) becomes

1

2

d

dt

∫
Ω

u2 dxdy + B(u, u) = 0,

where

B(u, u) =

∫
Ω

A(u)∇u · ∇u dxdy +
∑
e∈Eh

∫
e

JuK
(
∇̂u+ {{∇u}}

)
· ξ({{u}}) ds = 0.

Note that

JuK
(
∇̂u+ {{∇u}}

)
· ξ({{u}}) =

β0

h
JuK2n · ξ({{u}})

+ 2JuK{{∇u}} · ξ({{u}}) + β1hJuKJ∇(∇u · n)K · ξ({{u}}).

As in the proof of Theorem 4.2, we invoke Lemmas A.5 to A.7:∑
e∈Eh

∫
e

JuK
(
∇̂u+ {{∇u}}

)
· ξ({{u}}) ds

≥
∑
e∈Eh

γβ0

h
‖JuK‖2L2(e)

−
∑
e∈Eh

γβ0

2h
‖JuK‖2L2(e) −

∑
K∈Th

C1
(γ∗k)2

γβ0
‖∇u)‖2L2(K)

−
∑
e∈Eh

γβ0

2h
‖JuK‖2L2(e) −

∑
K∈Th

C2
(γ∗β1k)2

γβ0
‖∇u‖2L2(K)

= −C(β1)k2 (γ∗)2

γ

β2
1

β0

∑
K

‖∇u)‖2L2(K) ,

where C(β1) = C1/β
2
1 +C2. Then, following the same lines of steps as in the proof of Theorem 4.2 will lead to

the desired result.

5. Numerical Examples In this section, the results of several numerical examples are presented. All
results are obtained on a square domain Ω = [x0, x0 +L]×[y0, y0 +L] where we denote by x0, y0 the origin of the
(x, y) coordinate system, and L is the domain size in the x and y directions. A set of uniform triangular meshes
is used to discretize the computational domain Ω as shown in Figure 1. In all simulations, we set β0 = (k+1)2,
β0v = β0

2 and β1 = 1
2k(k+1) in the numerical flux definitions, and the time integration is performed by a third

order explicit strong stability-preserving (SSP) Runge-Kutta scheme [40]. Unless stated otherwise, the time
step size ∆t is determined by the following Courant-Friedrichs-Levy (CFL) rule:

(5.1) ∆t
µ

minK h2
K

< ωλ,
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where λ is the CFL number, µ is a diffusion constant and ω is the minimum quadrature weight for the volume
integration developed in [49].

Furthermore, the convergence rates are reported only in the L2 and L∞ norms. To do that, we employ the
(k + 1)th order quadrature rule to calculate the L2-error while the L∞-errors are measured using 361 points
generated by the same quadrature rule in each element.

(a) h (b) h/2 (c) h/4 (d) h/8

Fig. 1: The set of uniform unstructured meshes with h = L/5

Example 5.1. In this example, we consider the heat equation

∂U

∂t
= µ∆U,

with periodic boundary conditions on Ω = [0, 1] × [0, 1] where µ is a constant diffusion coefficient. Note that
the diffusion matrix A(u) is given as

A(u) = µI,

where I ∈ R2×2 is the identity matrix. The initial condition for this example is obtained from the following
exact solution at t = 0:

U(x, y, t) = e−8π2µt cos (2π(x+ y)) .

In this example, we set λ = 0.1, µ = 0.01 and T = 1. In addition, all quadrature rules are exact up to
polynomials of degree 2k + 1.

The L2 and L∞ errors are listed in Tables 1 and 2, respectively. We observe that optimal (k + 1)th order
convergence in the L2-norm is obtained by the DDGIC and symmetric DDG methods without any order loss for
even degree polynomials. On the other hand, the nonsymmetric DDG method is optimally convergent only for
k = 3 in the L2-norm. For even degree polynomials, the convergence rate of the nonsymmetric DDG method
is degrading as the mesh is refined. However, in the L∞-norm, all DDG methods demonstrate (k + 1)th order
optimal convergence.

Example 5.2. In this numerical test, we now consider an anisotropic diffusion equation with mixed derivatives

∂U

∂t
= µ (2Uxx + 3Uxy + 3Uyy) ,

with periodic boundary conditions on Ω = [0, 1] × [0, 1]. Note that this equation is still linear, i.e. diffusion
matrix A(u) is a constant coefficient matrix. Moreover, it can be written in a nonsymmetric form

A(u) = µ

(
2 1
2 3

)
.
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Table 1: L2 errors for Example 5.1 at T = 1

L2 errors and orders for the DDGIC method
h h/2 Order h/4 Order h/8 Order

k = 2 2.47E-03 3.10E-04 3.00 3.88E-05 3.00 4.85E-06 3.00
k = 3 1.87E-04 1.17E-05 4.00 7.29E-07 4.00 4.55E-08 4.00
k = 4 1.16E-05 3.64E-07 5.00 1.14E-08 5.00 3.55E-10 5.00

L2 errors and orders for the symmetric DDG method
h h/2 Order h/4 Order h/8 Order

k = 2 2.82E-03 3.55E-04 2.99 4.45E-05 2.99 5.56E-06 3.00
k = 3 2.10E-04 1.30E-05 4.01 8.10E-07 4.00 5.06E-08 4.00
k = 4 1.28E-05 4.02E-07 4.99 1.26E-08 5.00 3.93E-10 5.00

L2 errors and orders for the nonsymmetric DDG method
h h/2 Order h/4 Order h/8 Order

k = 2 2.29E-03 2.88E-04 2.99 3.73E-05 2.95 5.20E-06 2.84
k = 3 1.85E-04 1.15E-05 4.01 7.21E-07 4.00 4.50E-08 4.00
k = 4 1.13E-05 3.66E-07 4.95 1.26E-08 4.86 5.12E-10 4.62

Table 2: L∞ errors for Example 5.1 at T = 1

L∞ errors and orders for the DDGIC method
h h/2 Order h/4 Order h/8 Order

k = 2 8.58E-03 1.03E-03 3.06 1.31E-04 2.97 1.65E-05 2.99
k = 3 7.77E-04 5.40E-05 3.85 3.43E-06 3.98 2.17E-07 3.98
k = 4 4.63E-05 1.35E-06 5.10 4.23E-08 4.99 1.32E-09 5.00

L∞ errors and orders for the symmetric DDG method
h h/2 Order h/4 Order h/8 Order

k = 2 6.15E-03 7.01E-04 3.13 8.96E-05 2.97 1.13E-05 2.99
k = 3 6.18E-04 4.36E-05 3.83 2.83E-06 3.94 1.79E-07 3.98
k = 4 3.39E-05 1.01E-06 5.07 3.26E-08 4.96 1.03E-09 4.99

L∞ errors and orders for the nonsymmetric DDG method
h h/2 Order h/4 Order h/8 Order

k = 2 1.14E-02 1.39E-03 3.03 1.83E-04 2.92 2.32E-05 2.98
k = 3 9.58E-04 6.56E-05 3.87 4.10E-06 4.00 2.59E-07 3.98
k = 4 6.04E-05 1.86E-06 5.02 6.08E-08 4.94 1.96E-09 4.96

A nonsymmetric diffusion matrix is chosen to see how the new DDG methods would behave in such a setting.
The initial condition is set from the following exact solution at t = 0:

(5.2) U(x, y, t) = e−32π2µt cos(2πy) cos(4πx− 2πy).

As in the previous example, we set λ = 0.1, µ = 0.01, T = 1, and all quadrature rules are exact up to
polynomials of degree 2k + 1.

The L2 and L∞ errors are listed in Tables 3 and 4, respectively. The DDGIC and symmetric DDG methods
behave similarly in all cases. For the even degree polynomials, these methods do not lose order. On the other
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hand, the nonsymmetric DDG method demonstrates optimal (k + 1) convergence only for k = 3 while it loses
an order for even degree polynomials, which is clearer compared to Example 5.1. Furthermore, the order loss
is not only seen in the L2-error but also clearly observed in the L∞-error in this case.

Remark 5.1. This problem has been also tested equivalently with the diffusion matrix

A(u) = µ

(
2 1.5

1.5 3

)
,

which is symmetric-positive definite. We note that the performance of the new DDG methods does not change
with this diffusion matrix and the same results in Tables 3 and 4 are obtained. Therefore, those results are not
reported.

Table 3: L2 errors for Example 5.2 at T = 1

L2 errors and orders for the DDGIC method
h h/2 Order h/4 Order h/8 Order

k = 2 1.34E-02 2.59E-03 2.37 2.14E-04 3.60 1.76E-05 3.61
k = 3 3.37E-03 1.16E-04 4.87 5.31E-06 4.45 3.12E-07 4.09
k = 4 4.62E-04 1.19E-05 5.29 3.73E-07 4.99 1.18E-08 4.99

L2 errors and orders for the symmetric DDG method
h h/2 Order h/4 Order h/8 Order

k = 2 1.41E-02 3.01E-03 2.22 2.56E-04 3.56 1.96E-05 3.71
k = 3 3.68E-03 1.27E-04 4.86 5.51E-06 4.53 3.20E-07 4.11
k = 4 4.92E-04 1.22E-05 5.33 3.88E-07 4.98 1.22E-08 4.99

L2 errors and orders for the nonsymmetric DDG method
h h/2 Order h/4 Order h/8 Order

k = 2 1.17E-02 2.47E-03 2.25 4.34E-04 2.51 9.21E-05 2.24
k = 3 3.67E-03 2.00E-04 4.20 1.07E-05 4.23 6.35E-07 4.07
k = 4 5.70E-04 1.15E-05 5.63 5.70E-07 4.34 3.47E-08 4.04

Example 5.3. In this example, we consider the porous medium equation

(5.3)
∂U

∂t
= µ∆(Uγ),

where γ is a model parameter. Note that this equation models a nonlinear diffusion process for γ 6= 1, i.e.
coefficients of the diffusion matrix A(u) are functions of u:

A(u) = µ

(
γuγ−1 0

0 γuγ−1

)
= µγuγ−1I,

where I ∈ R2×2 is the identity matrix. Notice that the diffusion matrix is diagonal, but for γ > 1, Equation (5.3)
becomes highly nonlinear. In order to assess the performance of the new DDG methods in a highly nonlinear
diffusion problem and measure the convergence rate, we solve Equation (5.3) on Ω = [0, 1] × [0, 1] with γ = 3
and employ the method of manufactured solutions by enforcing the solution

U(x, y, t) = e−8π2µt sin(2π(x+ y)).

The initial condition for this problem is obtained from this manufactured solution at t = 0. Also, note that
the boundary conditions are periodic. Furthermore, we set λ = 0.1, µ = 0.01, T = 1, and employ quadrature
rules that are exact up to polynomials of degree 4k + 1.
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Table 4: L∞ errors for Example 5.2 at T = 1

L∞ errors and orders for the DDGIC method
h h/2 Order h/4 Order h/8 Order

k = 2 2.28E-02 4.33E-03 2.40 4.03E-04 3.43 4.04E-05 3.32
k = 3 7.81E-03 3.68E-04 4.41 2.18E-05 4.08 1.41E-06 3.96
k = 4 1.30E-03 3.48E-05 5.22 1.22E-06 4.84 3.97E-08 4.94

L∞ errors and orders for the symmetric DDG method
h h/2 Order h/4 Order h/8 Order

k = 2 2.38E-02 4.96E-03 2.26 4.71E-04 3.40 4.54E-05 3.37
k = 3 8.33E-03 4.03E-04 4.37 2.03E-05 4.31 1.28E-06 3.99
k = 4 1.37E-03 3.61E-05 5.25 1.27E-06 4.82 4.17E-08 4.94

L∞ errors and orders for the nonsymmetric DDG method
h h/2 Order h/4 Order h/8 Order

k = 2 2.13E-02 4.40E-03 2.28 8.01E-04 2.46 1.69E-04 2.25
k = 3 8.39E-03 5.87E-04 3.84 4.10E-05 3.84 2.66E-06 3.95
k = 4 1.49E-03 3.44E-05 5.43 1.50E-06 4.52 6.94E-08 4.44

The L2 and L∞ errors are listed in Tables 5 and 6, respectively. We observe that all DDG methods converge
with optimal (k + 1)th order accuracy for all reported cases. Although this problem is highly nonlinear, the
optimal convergence might be due to the diagonal structure of the nonlinear diffusion matrix A(u).

Table 5: L2 errors for Example 5.3 at T = 1

L2 errors and orders for the DDGIC method
h h/2 Order h/4 Order

k = 2 3.19E-03 4.02E-04 2.99 5.00E-05 3.01
k = 3 2.46E-04 1.29E-05 4.26 7.48E-07 4.10
k = 4 1.74E-05 5.63E-07 4.95 1.54E-08 5.20

L2 errors and orders for the symmetric DDG method
h h/2 Order h/4 Order

k = 2 3.26E-03 4.37E-04 2.90 5.64E-05 2.95
k = 3 2.87E-04 1.43E-05 4.33 8.33E-07 4.10
k = 4 1.85E-05 6.12E-07 4.91 1.69E-08 5.18

L2 errors and orders for the nonsymmetric DDG method
h h/2 Order h/4 Order

k = 2 2.93E-03 4.41E-04 2.73 5.19E-05 3.09
k = 3 2.09E-04 1.31E-05 3.99 8.54E-07 3.94
k = 4 1.72E-05 5.23E-07 5.04 1.50E-08 5.13

Example 5.4. In this example, we consider the same equation as in Example 5.3, but with the model coefficient
γ = 2 on Ω = [−10, 10] × [−10, 10]. Here, we investigate the performance of the new DDG methods for two
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Table 6: L∞ errors for Example 5.3 at T = 1

L∞ errors and orders for the DDGIC method
h h/2 Order h/4 Order

k = 2 2.42E-02 3.87E-03 2.65 5.33E-04 2.86
k = 3 2.29E-03 7.78E-05 4.88 3.45E-06 4.49
k = 4 2.60E-04 1.06E-05 4.62 3.50E-07 4.92

L∞ errors and orders for the symmetric DDG method
h h/2 Order h/4 Order

k = 2 2.29E-02 3.54E-03 2.69 4.97E-04 2.83
k = 3 2.05E-03 5.61E-05 5.19 2.78E-06 4.33
k = 4 2.45E-04 1.02E-05 4.59 3.41E-07 4.90

L∞ errors and orders for the nonsymmetric DDG method
h h/2 Order h/4 Order

k = 2 2.69E-02 4.46E-03 2.59 6.06E-04 2.88
k = 3 2.45E-03 6.97E-05 5.14 4.32E-06 4.01
k = 4 2.79E-04 1.15E-05 4.61 3.70E-07 4.95

initially disconnected, merging bumps which are defined by the following:

U0(x, y) =


e

−1

6−(x−2)2−(y+2)2 , (x− 2)2 − (y + 2)2 < 6

e
−1

6−(x+2)2−(y−2)2 , (x+ 2)2 − (y − 2)2 < 6

0, otherwise.

Note that U(x, y, t) = 0 on ∂Ω for t ≥ 0. In this case, we solve the problem on h/16 mesh along with λ = 0.1,
µ = 1 and T = 4. In Figure 2, we present a third order (k = 2) symmetric DDG solution. The solutions
corresponding to other DDG versions are similar, hence they are not included. In this case, we solve the
problem on h/16 mesh along with λ = 0.1, µ = 1 and T = 4. We observe that bumps are diffused quickly and
merged with finite time. The results are in good agreement with those in literature [41, 43, 33]

Example 5.5 In this example, we continue to study the same equation as in Example 5.3, but with the model
coefficient γ = 2 on Ω = [−1, 1]× [−1, 1]. U(x, y, t) = 0 on ∂Ω for t ≥ 0 and the initial condition is defined as

U0(x, y) =

{
1, (x, y) ∈ [− 1

2 ,
1
2 ]× [− 1

2 ,
1
2 ]

0, otherwise.

We set λ = 0.1, µ = 1 and T = 0.005 and solve the problem on h/16 mesh.
Since the initial condition is discontinuous, the numerical solutions obtained by the new DDG methods

blow up unless a maximum-principle-satisfying (MPS) limiter is employed. Therefore, the linear scaling limiter
in [47] is implemented to keep the numerical solution in 0 ≤ u(x, y, t) ≤ 1 for t ≥ 0. Note that the CFL
condition Equation (5.1) is still in use, and the DDG parameters β0 and β1 are kept the same.

In Figure 3, the numerical solution obtained by the DDGIC method for a third order numerical solution
(k = 2) is shown. We observe that the numerical solution diffuses out smoothly in a stable manner and is in
good agreement with Example 5.7 of [23].

Example 5.6 In this example, we consider

(5.4)
∂U

∂t
= µ

(
2Uxx + 3(U1.5)yy + U2

)
,
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(a) t = 0 (b) t = 0.5

(c) t = 1 (d) t = 4

Fig. 2: The contour plot corresponding to the third (k = 2) order symmetric DDG solution for Example 5.4.
17 equally spaced contours are used between 0 and 0.8.

x

u
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0

0.2

0.4

0.6

0.8

1

(a) (b)

Fig. 3: The third (k = 2) order numerical solution obtained by DDGIC with MPS limiter for Example 5.4 at
T = 0.005. (a) The solution along y = 0, (b) surface plot. 19 equally spaced contour levels are used between 0
and 1.



16 M. E. DANIS AND J. YAN

with the initial condition U0(x, y) = 200 sin (πx) sin (πy) on Ω = [0, 1] × [0, 1]. We apply the homogeneous
Dirichlet boundary condition. Due to the last term on the right-hand side of Equation (5.4), the solution
eventually blows up. As reported in Example 3.7 of [25], we observe that the numerical solution blows up
after one time-step when a positivity-preserving limiter is not used. Therefore, the linear scaling limiter in
[47] is employed to maintain the stability of the numerical approximation. However, the limiter’s upper bound
condition on the numerical solution is removed and the lower bound is set to 0 to preserve the positivity of the
numerical solution. Furthermore, according to [25], the CFL condition in Equation (5.1) is modified as

∆t
µ

minK h2
K

< min

(
ωλ,

1

maxK u

)
.

As in the previous example, the DDG parameters β0, β1 are kept the same. The h/16 mesh is used to solve
this problem, and we set λ = 0.01, µ = 1, and the quadrature rules are exact up to polynomials of degree
(2k+1)th. As for the stopping criterion, we follow [25] and take ∆t < 10−13. However, it is worth emphasizing
that the focus of this paper is not to design a positivity-preserving limiter. Instead, we simply explore the
performance of the new DDG methods in computationally challenging cases. Therefore, the modified CFL
condition along with the linear scaling limiter does not guarantee the positivity of the numerical solution for
the time level tn+1. In fact, almost all of the MPS or positivity-preserving limiters are designed for forward
Euler method, but instead, they are used in a Runge-Kutta scheme. Even though they might propose a CFL
condition that might guarantee the positivity (or maximum-principle) of the numerical solution for a forward
Euler method, the physical limits of the problem might be violated by the numerical solution at any stage of
the Runge-Kutta scheme. Therefore, we follow [46] and restart the Runge-Kutta time step with ∆t/2 when it
is no longer possible to maintain the positivity of the numerical solution in one or more cells.

For a third (k = 2) order solution, we observe that the restart algorithm is only activated at the last
time-step at t = 1.8155 × 10−2 for all DDG versions. However, it turns out that the time step becomes
smaller than the machine precision ε, i.e. ∆t < ε, during the restart procedure. This means that it is no
longer possible to continue time-stepping without violating the positivity in one or more cells. Therefore, we
denote t = 1.81552× 10−2 as the blow-up time. Note that this value is slightly smaller than the blow-up time
t = 1.82378× 10−2 reported in [25]. Thus, we obtain slightly lower values for maxK uK . In Figure 4, we show
the numerical solution for a third order (k = 2) numerical solution obtained by the DDGIC method when the
solution blows up at t = 1.81552 × 10−2. Since the results obtained by other DDG versions are similar, they
are not shown. We observe that the numerical solution does not have oscillations and qualitatively similar to
that in [25].

6. Concluding Remarks In this paper, we have unified the new framework for direct discontinuous
Galerkin (DDG) methods by extending the new DDGIC method [22] to the symmetric and the nonsymmetric
DDG versions. Unlike their original counterparts, the new DDG methods do not require evaluating an anti-
derivative of the nonlinear diffusion matrix. By constructing a new direction vector at each element interface, a
linear numerical flux is used regardless of the problem type. Furthermore, the nonlinear linear stability theory
of the new methods has been developed and several numerical experiments have been conducted to perform
the error analysis. In all numerical examples, the DDGIC and symmetric DDG methods demonstrated optimal
(k + 1)th order convergence and their performances were assessed to be equivalent. On the other hand, the
performance of the nonsymmetric DDG method varied in all numerical examples. The nonsymmetric DDG
method achieved optimal (k+1)th order convergence for odd degree polynomials in all examples while an order
loss was observed with the even degree polynomials except for the cases with diagonal diffusion matrices. In
short, a high-order accuracy is achieved by all new DDG methods. However, the DDGIC and symmetric DDG
methods were found to be superior to the nonsymmetric version.

Appendix A. Important Inequalities.
In this section, we discuss important inequalities used in the proofs of the stability analysis for symmetric

DDG and DDGIC methods.

Lemma A.1 (Young’s inequality). Suppose that a, b ≥ 0, 1 < p, q,∞, and that 1
p + 1

q = 1. Then, we have
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(a) u (b) log(u)

Fig. 4: The third (k = 2) order numerical solution obtained by DDGIC with MPS limiter for Example 5.6 at
T = 1.81552× 10−2

that

ab ≤ ap

p
+
bq

q
.

A corollary to Lemma A.1 can be obtained by considering ab = (aε1/p)(b/ε1/p) for ε > 0.

Corollary A.2. Suppose that a, b ≥ 0, 1 < p, q,∞, and that 1
p + 1

q = 1. Furthermore, if ε > 0, then

ab ≤ εap

p
+

bq

qεq/p
.

We will also recall the following lemma due to Ern and Guermord [24]:

Lemma A.3. Let v ∈ Vkh and l ∈ N. There exists a constant C > 0 for any non-negative integer m ≤ l
such that

|v|W l,p(K) ≤ Ch
m−l+d( 1

p−
1
r )

K |v|Wm,r(K) , ∀p, r ∈ [1,∞].

Proof. See the proof of Lemma 12.1 in [24].

Next, we will derive a series of essential inequalities used in the proof of the stability results for symmetric
DDG and DDGIC methods.

Lemma A.4. Assume that A(u) ∈ R2×2 is positive definite and there exist γ, γ∗ ∈ R such that the eigen-
values (γ1, γ2) of A(u) lie between [γ, γ∗] for ∀u ∈ R. If ξ(u) is given as in Equation (3.1), then ∀x ∈ R2 there
holds

|ξ(u) · x| ≤ γ∗ ‖x‖ ,

where we denote by ‖·‖ the Euclidean norm in R2.

Proof. Using the Scharwz inequality, we have

|ξ(u) · x| ≤ ‖ξ(u)‖ ‖x‖ .
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Let e1, e2 be the orthonormal eigenvectors corresponding to the eigenvalues γ and γ∗, respectively. Since
A(u) is positive-definite, its eigenvectors form a basis of R2. Then, the unit normal vector can be written as
n = n1e1 + n2e2, and then, it follows that

‖ξ(u)‖2 =
∥∥A({{u}})Tn

∥∥2
= ‖γ1n1e1 + γ2n2e2‖2 = γ2

1n
2
1 + γ2

2n
2
2

≤ (γ∗)2
(
n2

1 + n2
2

)
= (γ∗)2

and the conclusion holds.

Lemma A.5. Suppose that A(u) ∈ R2×2 is positive definite and there exist γ, γ∗ ∈ R such that the eigen-
values (γ1, γ2) of A(u) lie between [γ, γ∗] for ∀u ∈ R. If β0 ≥ 0, then we have that∑

e∈Eh

∫
e

β0

he
JuK2n · ξ({{u}}) ds ≥

∑
e∈Eh

∫
e

γβ0

he
JuK2 ds.

Proof. Recall the definition of the new direction vector ξ{{u}} = A({{u}})Tn. Then,

β0

he
JuK2n · ξ({{u}}) =

β0

he
JuK2n ·A({{u}})Tn.

Since n ·A({{u}})Tn ≥ γ1 ≥ γ, the conclusion follows.

Lemma A.6. Suppose that A(u) ∈ R2×2 is positive definite and there exist γ, γ∗ ∈ R such that the eigen-
values (γ1, γ2) of A(u) lie between [γ, γ∗] for ∀u ∈ Vkh. If β0 ≥ 0, then there exists a constant C > 0 such
that ∑

e∈Eh

∫
e

JuK{{∇u}} · ξ({{u}}) ds ≥ −
∑
e∈Eh

γβ0

2h
‖JuK‖2L2(e) −

∑
K∈Th

C
(γ∗k)2

4γβ0
‖∇u‖2L2(K) .

Furthermore, under the same assumptions, there also holds∑
e∈Eh

∫
e

JuK{{∇u}} · ξ({{u}}) ds ≥ −
∑
e∈Eh

γβ0

4h
‖JuK‖2L2(e) −

∑
K∈Th

C
(γ∗k)2

2γβ0
‖∇u‖2L2(K) .

Proof. Note that {{∇u}} = 1
2 (∇u)+ + 1

2 (∇u)−. Then, we have∑
e∈Eh

∫
e

JuK{{∇u}} · ξ({{u}}) ds

=
1

2

∑
e∈Eh

∫
e

JuK
(
(∇u)+ + (∇u)−

)
· ξ({{u}}) ds

≥ −1

2

∑
e∈Eh

∫
e

|JuK|
(∣∣(∇u)+ · ξ({{u}})

∣∣+
∣∣(∇u)− · ξ({{u}})

∣∣) ds
≥ −γ

∗

2

∑
e∈Eh

∫
e

|JuK|
∥∥(∇u)+

∥∥ ds− γ∗

2

∑
e∈Eh

∫
e

|JuK|
∥∥(∇u)−

∥∥ ds,

where we have invoked Lemma A.4 in the last step. Moreover, by Corollary A.2 with ε = γβ0

γ∗h , we obtain

(A.1) γ∗
∫
e

|JuK|
∥∥(∇u)±

∥∥ ds ≤ γβ0

2h
‖JuK‖2L2(e) +

(γ∗)2h

2γβ0

∥∥(∇u)±
∥∥2

L2(e)
.
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So that we have

(A.2)

∑
e∈Eh

∫
e

JuK{{∇u}} · ξ({{u}}) ds

≥ −
∑
e∈Eh

γβ0

2h
‖JuK‖2L2(e)

−
∑
e∈Eh

(γ∗)2h

4γβ0

∥∥(∇u)+
∥∥2

L2(e)
−
∑
e∈Eh

(γ∗)2h

4γβ0

∥∥(∇u)−
∥∥2

L2(e)
.

Note that the last two terms above are simply summations over individual edges in the triangulation Th, and
each summation is responsible for accumulating ‖(∇u)±‖2L2(e) only from one side of the edge. In the global

sense, these summations accumulate
∥∥(∇u)interior

∥∥2

L2(∂K)
for each cell K in the domain. Thus, they can be

converted into a single summation over cells. That is,

(A.3)
∑
e∈Eh

(γ∗)2h

4γβ0

∥∥(∇u)+
∥∥2

L2(e)
+
∑
e∈Eh

(γ∗)2h

4γβ0

∥∥(∇u)−
∥∥2

L2(e)
=
∑
K∈Th

(γ∗)2h

4γβ0
‖∇u‖2L2(∂K) .

This expression is useful since we can invoke the trace inequality

(A.4)
∑
K∈Th

(γ∗)2h

4γβ0
‖∇u‖2L2(∂K) ≤

∑
K∈Th

C
(γ∗k)2

4γβ0
‖∇u‖2L2(K) ,

for some constant C > 0. Thus, substituting Equations (A.3) and (A.4) into Equation (A.2) completes the first
part of the proof. The second part follows after following the same steps but using ε = γβ0

2γ∗h in Equation (A.1)
instead.

Lemma A.7. Suppose that A(u) ∈ R2×2 is positive definite and there exist γ, γ∗ ∈ R such that the eigen-
values (γ1, γ2) of A(u) lie between [γ, γ∗] for ∀u ∈ Vkh. If β0 ≥ 0, then there exists a constant C > 0 such
that ∑

e∈Eh

∫
e

β1hJuKJ∇(∇u · n)K · ξ({{u}}) ds

≥ −
∑
e∈Eh

γβ0

2h
‖JuK‖2L2(e) −

∑
K∈Th

C
(γ∗β1k)2

γβ0
‖∇u‖2L2(K) .

Proof. By convention, the outward unit normal vector n is understood as n = n+. Also, it can be
understood in terms of the inward unit normal vector as n = −n−. Therefore, the jump term for the second
derivatives can be rewritten as

J∇(∇u · n)K = (∇(∇u · n))
+

+ (∇(∇u · n))
−
.

With this understanding, we have that∫
e

β1hJuKJ∇(∇u · n)K · ξ({{u}}) ds

=

∫
e

β1hJuK
(
(∇(∇u · n))+ + (∇(∇u · n))−

)
· ξ({{u}}) ds

≥ −
∫
e

β1h |JuK|
∣∣((∇(∇u · n))+ + (∇(∇u · n))−

)
· ξ({{u}})

∣∣ ds
≥ −γ∗

∫
e

β1h |JuK|
(∥∥(∇(∇u · n))+

∥∥+
∥∥(∇(∇u · n))−

∥∥) ds.
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Note that we have invoked Lemma A.4 and triangle inequality in the last step. Furthermore, by Corollary A.2
with ε = γβ0

2γ∗β1h2 , we obtain

γ∗
∫
e

β1h |JuK|
∥∥(∇(∇u · n))±

∥∥ ds ≤ γβ0

4h
‖JuK‖2L2(e) +

(γ∗β1)2h3

γβ0

∥∥(∇(∇u · n))±
∥∥2

L2(e)
.

Thus,

(A.5)

∑
e∈Eh

∫
e

β1hJuKJ∇(∇u · n)K · ξ({{u}}) ds ≥ −
∑
e∈Eh

γβ0

2h
‖JuK‖2L2(e)

−
∑
e∈Eh

(γ∗β1)2h3

γβ0

∥∥(∇(∇u · n))+
∥∥2

L2(e)

−
∑
e∈Eh

(γ∗β1)2h3

γβ0

∥∥(∇(∇u · n))−
∥∥2

L2(e)
.

As in the proof of Lemma A.6, we convert the summations over edges to a summation over cells:

(A.6)

∑
e∈Eh

(γ∗β1)2h3

γβ0

∥∥(∇(∇u · n))+
∥∥2

L2(e)
+
∑
e∈Eh

(γ∗β1)2h3

γβ0

∥∥(∇(∇u · n))−
∥∥2

L2(e)

=
∑
K∈Th

(γ∗β1)2h3

γβ0
‖∇(∇u · n)‖2L2(∂K) .

At this point, it might be tempting to invoke the trace theorem for the norm on the right-hand side of the above
equation. However, a more useful inequality can be obtained by considering the Euclidean norm ‖∇(∇u · n)‖2.
We first note that

‖∇(∇u · n)‖2 = (uxxn1 + uyxn2)2 + (uxyn1 + uyyn2)2

= (u2
xx + u2

xy)n2
1 + (u2

yx + u2
yy)n2

2 + 2n1n2(uxxuyx + uxyuyy).

For the cross-product term above, we invoke Lemma A.1 with p = q = 2

2n1n2(uxxuyx + uxyuyy) = 2 ((n2uxx)(n1uyx) + (n2uxy)(n1uyy))

≤ (u2
xx + u2

xy)n2
2 + (u2

yx + u2
yy)n2

1.

Since n2
1 + n2

2 = 1, we obtain

‖∇(∇u · n)‖2 ≤ u2
xx + u2

xy + u2
yx + u2

yy.

Using this and the trace inequality gives

‖∇(∇u · n)‖2L2(∂K) =

∫
∂K

‖∇(∇u · n)‖2 ds

≤
∫
∂K

(
u2
xx + u2

xy + u2
yx + u2

yy

)
ds

≤ C k
2

h

∫
K

(
u2
xx + u2

xy + u2
yx + u2

yy

)
dxdy = C

k2

h
|u|2H2(K) .

By Lemma A.3 with d = l = p = r = 2 and m = 1, we have

|u|H2(K) ≤
C

h
|u|H1(K) =

C

h
‖∇u‖L2(K) ,
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which leads to

(A.7) ‖∇(∇u · n)‖2L2(∂K) ≤ C
k2

h3
‖∇u‖2L2(K) .

Finally, substituting Equations (A.6) and (A.7) in Equation (A.5) leads to the desired result.
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