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Abstract

Square-root Lasso problems are proven robust regression problems. Further-
more, square-root regression problems with structured sparsity also plays an im-
portant role in statistics and machine learning. In this paper, we focus on the
numerical computation of large-scale linearly constrained sparse group square-root
Lasso problems. In order to overcome the difficulty that there are two nonsmooth
terms in the objective function, we propose a dual semismooth Newton (SSN) based
augmented Lagrangian method (ALM) for it. That is, we apply the ALM to the
dual problem with the subproblem solved by the SSN method. To apply the SSN
method, the positive definiteness of the generalized Jacobian is very important.
Hence we characterize the equivalence of its positive definiteness and the constraint
nondegeneracy condition of the corresponding primal problem. In numerical imple-
mentation, we fully employ the second order sparsity so that the Newton direction
can be efficiently obtained. Numerical experiments demonstrate the efficiency of
the proposed algorithm.
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1 Introduction

In this paper, we consider the following linearly constrained sparse group square-root
Lasso (cssLasso) problem

min
x∈Rn

{
‖Ax− b‖ + λ1

J∑

j=1

ωj‖xGj
‖+ λ2‖x‖1 | BEx− cE = 0, BIx− cI ∈ R

mI
+

}
, (1)

whereA : Rn → R
m, BE : Rn → R

mE and BI : R
n → R

mI are given linear mappings whose
adjoints are denoted as A∗,B∗

E and B∗
I , respectively, b ∈ R

m, cE ∈ R
mE and cI ∈ R

mI are
given vectors, ωj > 0 (j = 1, 2, . . . , J) is a weight parameter, Gj (j = 1, 2, . . . , J) is an
index set which contains the indices in the jth group, x = (xG1

; xG2
; . . . ; xGJ

), λ1, λ2 ≥ 0
are regularization parameters, and R

mI

+ denotes an mI-dimensional positive orthant cone.
And ‖ · ‖ and ‖ · ‖1 denote the l2 norm and l1 norm, respectively. Throughout the paper,
we assume that ∪J

j=1Gj = {1, 2, . . . , n} and Gi ∩Gj = φ for 1 ≤ i < j ≤ n.
In statistics and machine learning, the Lasso model

min
x∈Rn

{
1

2
‖Ax− b‖2 + λ‖x‖1

}
, (2)

where λ > 0 is a regularization parameter, performs both variable selection and regular-
ization in order to enhance the prediction accuracy and interpretability of the resulting
statistical model. It was originally introduced in geophysics literature by Santosa and
Symes [28], and later was independently rediscovered and popularized by Tibshirani [33].
Yuan and Lin [36] proposed the group Lasso model

min
x∈Rn

{
1

2
‖Ax− b‖2 + λ

J∑

j=1

ωj‖xGj
‖

}
,

which is more suitable for variable selection and it can be regarded as an extension of the
Lasso for selecting groups of variables. The problem of selecting grouped variables arises
naturally in many practical situations with the multifactor analysis-of-variance problem.
Friedman, Hastie, and Tibshirani [11] considered a model with a more general penalty
that blends the Lasso (l1 norm) with the group Lasso (l2 norm). This penalty yields
solutions that are sparse at both the group and individual feature levels. This is the so
called sparse group Lasso model as below

min
x∈Rn

{
1

2
‖Ax− b‖2 + λ1

J∑

j=1

ωj‖xGj
‖+ λ2‖x‖1

}
. (3)

Although the Lasso model (2) is an attractive estimator, it relies on knowing the
standard deviation ς of the noise. Estimation of ς is nontrivial when n is large, particularly
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when n ≫ m. In view of this flaw, Belloni, Chernozhukov and Wang [3] proposed the
square-root Lasso model

min
x∈Rn

{
‖Ax− b‖+ λ‖x‖1

}
. (4)

In contrast to the Lasso estimator (2), the square-root Lasso estimator (4) is independent
of ς. It has also been proved that the square-root Lasso estimator achieves the near-
oracle rates of convergence under suitable design conditions. In addition, there are other
aspects of significance for the square-root Lasso. The scaled Lasso proposed by Sun and
Zhang [32] is essentially equivalent to the square-root Lasso (4). But the scaled Lasso is
computationally expensive. Xu, Caramanis and Mannor [34] pointed out that the square-
root Lasso (4) is equivalent to a robust linear regression problem subject to an uncertainty
set. It deserves mentioning that Stucky and van de Geer [30] established the sharp oracle
property of the square-root Lasso. Motivated by the wide applicability of group selection
methods, Bunea, Lederer, and She [5] studied the group version of the square-root Lasso

min
x∈Rn

{
‖Ax− b‖+ λ

J∑

j=1

ωj‖xGj
‖

}
. (5)

They also showed that the group square-root Lasso estimator adapts to the unknown
sparsity of the regression vector, and has the same optimal estimation and prediction
accuracy as the group Lasso estimators, under the same minimal conditions on the model.

Meanwhile, in [1, 2, 12, 14, 18, 29] and so on, the constrained Lasso was considered,
which takes the following form

min
x∈Rn

{
1

2
‖Ax− b‖2 + λ‖x‖1

∣∣∣∣ BEx− cE = 0, BIx− cI ∈ R
mI
+

}
.

It extends the widely-used Lasso to handle linear constraints allowing the user to incor-
porate prior information into the model.

In an almost parallel pattern, we consider the cssLasso (1), which may strike an
effective compromise between the square-root Lasso and the group square-root Lasso,
yielding sparseness at the group and individual predictor levels. It deserves mentioning
that Chu, Toh and Zhang [7] recently considered the square-root regression problems
without any constraints. Yang and Xu [35] characterize the equivalence of the cssLasso
(1) and the robust regression problem under a specially chosen uncertainty set. That is,
they provide an interpretation of the cssLasso from a robustness perspective.

In recent years, great process has been made in the computation of the Lasso type
problems. Li, Sun and Toh [16] proposed a semismooth Newton augmented Lagrangian
method (SSN-ALM) to solve the Lasso problem (2). Since problem (2) is piecewise
linear-quadratic, by the conclusion in Sun’s PhD thesis [31] the subdifferential of the
corresponding Lagrangian function Tl is piecewise polyhedral, then by Robinson’s work
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[24], the calmness condition holds for T −1
l , which is equivalent to the metric subregularity

condition holds for Tl according to [9, Theorem 3H.3]. So based on the conclusion pre-
sented by Luque [19], the arbitrarily linear convergence rate can be guaranteed. In fact,
the paper [16] goes beyond the Lasso model. The authors proved that Tl is metrically
subregular under the second order sufficient condition of the dual problem for a relatively
more generalized model problem. Zhang et al. [39] also adopted an efficient Hessian based
algorithm for solving large-scale sparse group Lasso problems (3), which is essentially the
SSN-ALM. Based on the local error bound condition established in [38, Theorem 1], they
presented the metric subregularity condition for the primal problem. So the arbitrarily
linear convergence rate can be guaranteed if applying the ALM on the dual problem.

As for the computation of the group square-root Lasso (5) and the more generalized
cssLasso (1), it is more challenging mainly because the loss function is also nonsmooth
in addition to the regularizer. We have to deal with the structured problem with two
nonsmooth terms in computation. Although the primal alternating direction method
of multipliers (pADMM) is adopted in [17], the efficiency of the pADMM is still not
satisfying especially for some large-scale real data problems. So it is necessary to redesign
an efficient algorithm for the cssLasso problem (1). Since the ALM is an ideal approach
for the Lasso type problems, it is certainly a competitive candidate for the square-root
Lasso type problems. Besides, when applying the ALM, we need to solve the subproblems
as accurately and efficiently as possible. The SSN method is usually an ideal approach
to solve the subproblems since the sparse structure of the generalized Jacobian can be
fully employed to greatly reduce the computational cost. But we must guarantee that
the Jacobian of the subproblem is positive definite before using the SSN method. The
positive definiteness of the Jacobian is not usually obvious, so we need to employ other
equivalent conditions to characterize it. That is, we hope to prove the equivalence of
the primal nondegeneracy condition and the positive definiteness of the Jacobian of the
subproblem.

The remaining parts of this paper are organized as follows. In Section 2, we introduce
some basic knowledge about the proximal mapping and the error bound condition, which
plays a key role in the analysis of the convergence rate of our algorithm. In Section 3, we
describe the detailed structures of several generalized Jacobians. In Section 4, we present
the details of the algorithm. In Section 5, we present some theoretical results which
include the characterization of the equivalent conditions, the strong semismoothness of
the involved function and the convergence results. In Section 6, we discuss the numerical
issues about how to efficiently solve the Newton direction. In Section 7, we present the
numerical results to demonstrate the efficiency of our algorithm. Finally, we give some
concluding remarks in Section 8.

1.1 Additional notations

Let X and Y be two real finite dimensional Euclidean spaces which are equipped with
the inner product 〈·, ·〉. We denote x ◦ y as the Hadamard product of two given vectors
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x, y ∈ X . For a given vector x, supp(x) denotes the support of x, i.e., the set of indices
such that xi 6= 0. For any convex function p : S ⊂ X → (−∞,∞], its conjugate function
is denoted by p∗, i.e., p∗(x) = supy{〈x, y〉 − p(y)}. For a given closed convex set C
and a vector x, we denote the distance from x to C by dist(x, C) := infy∈C ‖x− y‖ and
the Euclidean projection of x onto C by ΠC(x) := argminy∈C ‖x− y‖, the interior of
C is defined as int(C) and its boundary as ∂(C). The set TC(z) denotes the tangent
cone to the set C at the point z, and lin(C) := C ∩ (−C) denotes the lineality space
of C. For any set-valued mapping F : X ⇒ Y , gph F denotes the graph of F , i.e.,
gph F := {(x, y) ∈ X × Y | y ∈ F (x)}. In addition to R

mI
+ , we use R

mI
− to denote

an mI-dimensional negative orthant cone. We use R
mI

++ and R
mI

−− to denote two sets
whose elements are mI-dimensional vectors with all their entries positive and negative,
respectively. We also use S

mI to denote mI-dimensional symmetric matrix space. For
λ > 0 and r a positive integer, we define Bλ

q,r := {x ∈ R
r | ‖x‖q ≤ λ}, where q = 1, 2,∞.

2 Preliminaries

In this section, we discuss some properties of the convex composite optimization problem.
It is very important for the local convergence rate of the proposed algorithm in this paper.

Given a closed proper convex function f : X → (−∞,+∞], the proximal mapping
Proxf (·) associated with f is defined by

Proxf (x) := argmin
u∈X

{
f(x) +

1

2
‖u− x‖2

}
, ∀ x ∈ X .

For any x ∈ dom(f), by Moreau’s Theorem (see, e.g., Theorem 31.5 of [27]), we have
Proxtf (x)+ tProxf∗/t(x/t) = x with a given parameter t > 0. The epigraph of f is defined
as the set

epif :=
{
(x, c) ∈ dom(f)× R

∣∣∣ f(x) ≤ c
}
.

Let T : X ⇒ Y be a multifunction. It is called a monotone operator if

〈x− x′, w − w′〉 ≥ 0, whenever w ∈ T (x), w′ ∈ T (x′).

The monotone operator is said to be maximal monotone if, in addition, the graph

gphT :=
{
(x, y) ∈ X × Y | y ∈ T (x)

}

is not properly contained in the graph of any other monotone operator T ′ : X → Y .
In the work [25], Rockafellar studied a fundamental proximal point algorithm to solve

0 ∈ T (x),
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with T being a maximal monotone operator. That is, for an arbitrary initial point x0, a
sequence {xk} is generated by the following rule

xk+1 ≈ (I + σkT )−1(xk).

For the sake of later convenience, we also present the definition of the error bound
condition, which is essentially important for establishing the local convergence rate of the
proximal point algorithm in [25].

Definition 2.1. Let F : X ⇒ Y be a multifunction and y satisfy F−1(y) 6= ∅. If there
exists ε > 0 such that

dist(x, F−1(y)) ≤ κdist(y, F (x)), ∀ x ∈ X such that dist(y, F (x)) ≤ ε, (6)

is valid, then F is said to satisfy the error bound condition at the point y with modulus κ.

For the convenience of the statement, we denote h(x) = ‖x‖ and p(x) = p1(x)+p2(x),
where p1(x) = λ1

∑J
j=1 ωj‖xGj

‖, p2(x) = λ2‖x‖1, then we can write problem (1) in the
following form

min
x∈Rn

{
h(Ax− b) + p(x)

∣∣∣BEx− cE = 0, BIx− cI ∈ R
mI
+

}
. (7)

By introducing slack variables y and z, we can write problem (7) in an equivalent form

(P ) max
(x,y,z)∈Rn×Rm×R

mI

{
− (h(y) + p(x))

∣∣∣Ax− y = b, BEx− cE = 0,

BIx− cI + z = 0, z ∈ R
mI
−

}
.

The dual of (P ) takes the following form

(D) min
u,w∈Rm,s∈Rn,vE∈RmE ,vI ,v̂I∈RmI

{
h∗(w) + p∗(s) + 〈b, u〉+ 〈cE , vE〉+ 〈cI , vI〉

∣∣∣

A∗u+ B∗
EvE + B∗

IvI + s = 0, −u+ w = 0, vI − v̂I = 0, v̂I ∈ R
mI
−

}
.

The Lagrangian function for the dual problem (D) is

l(u, vE, vI , v̂I , w, s; x, y, z) = h∗(w) + p∗(s) + 〈b, u〉+ 〈cE , vE〉+ 〈cI , vI〉

−〈x, A∗u+ B∗
EvE + B∗

IvI + s〉 − 〈y, −u + w〉 − 〈z, vI − v̂I〉,

v̂I ∈ R
mI
− . (8)

The KKT condition associated with the dual problem (D) is given as follows

Ax− y = b, BEx− cE = 0, BIx− cI + z = 0,

A∗u+ B∗
EvE + B∗

IvI + s = 0, −u+ w = 0, vI − v̂I = 0,

0 ∈ ∂h∗(w)− y, 0 ∈ ∂p∗(s)− x,

v̂I ∈ R
mI
− , BIx− cI ∈ R

mI
+ , 〈v̂I , BIx− cI〉 = 0. (9)

Throughout the paper we assume the following condition holds.
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Assumption 2.1. In problem (P ), for the optimal solution point (x̄, ȳ, z̄), ȳ 6= 0.

For the problem we consider in this paper, we define a function f : Rn×R
m×R

mI → R

as below

f(x, y, z) := h(y) + p(x) + δ{0}(Ax− b) + δ{0}(BEx− cE) + δ{0}(BIx− cI + z) + δ
R
mI
−
(z),

then we can define the operators Tf and Tl related to the closed proper convex function
f in (P ) and the convex-concave function l in (8), respectively by

Tf (x, y, z) := ∂f(x, y, z), Tl(u, vE, vI , w, s, x, y, z) :=
{
(u′, v′E, v

′
I , w

′, s′, x′, y′, z′) | (u′, v′E ,

v′I , w
′, s′,−x′,−y′,−z′) ∈ ∂l(u, vE , vI , w, s, x, y, z)

}
,

with their inverses given by

T −1
f (x′, y′, z′) := ∂f ∗(x′, y′, z′), T −1

l (u′, v′E , v
′
I , w

′, s′, x′, y′, z′) :=
{
(u, vE, vI , w, s, x, y, z)

| (u′, v′E, v
′
I , w

′, s′,−x′,−y′,−z′) ∈ ∂l(u, vE , vI , w, s, x, y, z)
}
.

Note that Tf is a maximal monotone operator in R
n×R

m×R
mI (see e.g., [21, 22]) and

Tl is also a maximal monotone operator in R
m×R

mE ×R
mI ×R

m ×R
n ×R

n×R
m ×R

mI

due to Corollary 37.5.2 of [27].

3 The generalized Jacobians of Proxσh(·),Proxσp(·) and
Π
R
mI
+
(·)

For the convenience of the subsequent statement, given σ > 0, we need to characterize
the structures of the Clarke generalized Jacobians of Proxσh(·),Proxσp(·) and Π

R
mI
+
(·),

respectively.

• Proxσh(·):

For any uh ∈ R
m,

ΠBσ
2,m

(uh) =

{ σuh

‖uh‖ , if ‖uh‖ > σ,

uh, otherwise.

Then

Proxσh(uh) = uh − ΠBσ
2,m

(uh).
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We can calculate

∂ΠBσ
2,m

(uh) =





{
σ

‖uh‖(I −
uhu

T
h

‖uh‖2 )
}
, if ‖uh‖ > σ,{

I − t
σ2uhu

T
h | 0 ≤ t ≤ 1

}
, if ‖uh‖ = σ,

{I}, if ‖uh‖ < σ.

Hence the Clarke generalized Jacobian of Proxσh(·) at uh is

∂Proxσh(uh) = I − ∂ΠBσ
2,m

(uh).

• Proxσp(·):

In [39], Zhang et al. have characterized the so-called surrogate generalized Jacobian
of Proxσp(·). In order to make the paper self-contained, we also describe it here.

We define a linear operator P := (P1,P2, . . . ,PJ) : R
n → R

n, where Pj : R
n →

R
|Gj | is defined by Pjx := xGj

, j = 1, . . . , J . We also define B2 := B
σλ1,1

2,|G1|×B
σλ1,2

2,|G2| ×

· · · ×B
σλ1,J

2,|GJ |. For any up ∈ R
n, by Theorem 4 in [37], we have

Proxσp(up) = v −ΠB2
(v), (10)

where

v = Proxσp2(up) = up − Π
B

λ2
∞,n

(up) = sign(up) ◦max(|up| − σλ2, 0), (11)

and

ΠB2
(v) :=




Π
B

σλ1,1

2,|G1|

(P1v)

...
Π

B
σλ1,J

2,|GJ |

(PJv)


 .

Furthermore, for any up ∈ Rn we are ready to define an alternative for the Clarke
generalized Jacobian of Proxσp(up) as below

∂̂Proxσp(up) :=
{
(I − P∗ΣP)Θ

∣∣∣Σ = Diag(Σ1, . . . ,ΣJ ),Σj ∈ ∂Π
B

σλ1,j

2,|Gj |

(Pjv),

j = 1, . . . , J, v = Proxσp2(up), Θ ∈ ∂Proxσp2(up)
}
, (12)

where

Σj ∈





{
σλ1,j

‖Pjv‖(I −
(Pjv)(Pjv)

T

‖Pjv‖2 )
}
, if ‖Pjv‖ > σλ1,j,{

I − t
(σλ1,j )2

(Pjv)(Pjv)
T | 0 ≤ t ≤ 1

}
, if ‖Pjv‖ = σλ1,j,

{I}, if ‖Pjv‖ < σλ1,j,
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and Θ = Diag(θ) with

θi ∈





{0}, if |(up)i| < σλ2,
[0, 1] , if |(up)i| = σλ2,
{1}, if |(up)i| > σλ2.

(13)

In [39, Theorem 3.1], Zhang et al. have proved that for any M ∈ ∂̂Proxσp(up), M
is symmetric and positive semidefinite.

• Π
R
mI
+
(·):

For any ur ∈ R
mI ,

Π
R
mI
+
(ur) =

1

2
(ur + |ur|).

Then the Clarke generalized Jacobian of Π
R
mI
+
(·) can be described as

∂Π
R
mI
+
(ur) =



V ∈ S

mI

∣∣∣∣∣∣
V = Diag(ṽ), (ṽ)i ∈





{1}, if (ur)i > 0,
[0, 1] , if (ur)i = 0,
{0}, if (ur)i < 0.



 . (14)

4 The SSN-ALM for the dual problem (D)

In this section, we give a brief introduction of the SSN-ALM for the dual problem (D).
For a given σ > 0, the augmented Lagrangian function associated with the dual problem
(D) is defined by

Lσ(u, vE, vI , w, s; x, y, z) := h∗(w) + p∗(s) + 〈b, u〉+ 〈cE, vE〉+ 〈cI , vI〉

+
σ

2
‖A∗u+ B∗

EvE + B∗
IvI + s− σ−1x‖2 +

σ

2
‖w − u− σ−1y‖2

+
1

2σ
‖Π

R
mI
+
(σvI − z)‖2 −

1

2σ
(‖x‖2 + ‖y‖2 + ‖z‖2).

For each inner subproblem of the ALM, the SSN method will be applied to obtain an
inexact solution.
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Algorithm SSN-ALM: Let σ0 > 0 be a given parameter. Select an initial point
(u0, v0E , v

0
I , w

0, s0, x0, y0, z0) ∈ R
m × R

mE × R
mI × R

m × R
n × R

n × R
m × R

mI . For
k = 0, 1, . . ., iterate the following steps.

Step 1. Apply Algorithm SSN to compute

(uk+1, vk+1
E , vk+1

I , wk+1, sk+1) ≈ argmin
u,vE ,vI ,w,s

{
Φk(u, vE, vI , w, s)

:= Lσk
(u, vE, vI , w, s; x

k, yk, zk)
}
. (15)

Step 2. Compute





xk+1 = xk − σk(A
∗uk+1 + B∗

Ev
k+1
E + B∗

Iv
k+1
I + sk+1),

yk+1 = yk − σk(w
k+1 − uk+1),

zk+1 = −Π
R
mI
+
(σkv

k+1
I − zk).

Update σk+1 = ρσk for some ρ ≥ 1.

In the following we go to the details of how to solve the subproblem (15). For simplicity,
we omit the superscript or subscript k. Given (x, y, z) ∈ R

n × R
m × R

mI and σ > 0, for
any (u, vE, vI) ∈ R

m × R
mE × R

mI , we define

ϕ(u, vE, vI) := inf
w∈Rm,s∈Rn

Φ(u, vE, vI , w, s) = h∗(Proxh∗/σ(σ
−1y + u))

+
1

2σ
‖Proxσh(y + σu)‖2 + p∗(Proxp∗/σ(σ

−1x−A∗u− B∗
EvE − B∗

IvI))

+
1

2σ
‖Proxσp(x− σ(A∗u+ B∗

EvE + B∗
IvI))‖

2 +
1

2σ
‖Π

R
mI
+
(σvI − z)‖2

+〈b, u〉+ 〈cE , vE〉+ 〈cI , vI〉 −
1

2σ
(‖x‖2 + ‖y‖2 + ‖z‖2).

By Danskin’s Theorem [8], ϕ is a continuously differentiable function with its gradient
being Lipschitz continuous. We need to compute the solution (ū, v̄E , v̄I) of the following
nonlinear system of equations

∇ϕ(u, vE, vI) =




Proxσh(y + σu)−AProxσp(x− σ(A∗u+ B∗
EvE + B∗

IvI)) + b
−BEProxσp(x− σ(A∗u+ B∗

EvE + B∗
IvI)) + cE

−BIProxσp(x− σ(A∗u+ B∗
EvE + B∗

IvI)) + Π
R
mI
+
(σvI − z) + cI


 = 0.

Then we can obtain that s̄ = Proxp∗/σ(σ
−1x−A∗ū−B∗

E v̄E−B∗
I v̄I) and w̄ = Proxh∗/σ(σ

−1y+
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ū). Since Proxσh(·) and Proxσp(·) are both Lipschitz continuous functions, we define

∂̂2ϕ(u, vE, vI) := σ




∂Proxσh(y + σu)
0

∂Π
R
mI
+

(σvI − z)




+σ




A
BE

BI


 ∂̂Proxσp(x− σ(A∗u+ B∗

EvE + B∗
IvI))

(
A∗ B∗

E B∗
I

)
,

where ∂Proxσh(y + σu), ∂Π
R
mI
+
(σvI − z) and ∂̂Proxσp(x − σ(A∗u + B∗

EvE + B∗
IvI)) are

the generalized Jacobians of Proxσh(·),ΠR
mI
+
(·) and Proxσp(·) at y + σu, σvI − z and x−

σ(A∗u+ B∗
EvE + B∗

IvI), respectively. It is known from [13] that

∂2ϕ(u, vE, vI)(d) = ∂̂2ϕ(u, vE, vI)(d), ∀ d :=




d1
d2
d3


 ∈ R

m+mE+mI ,

where ∂2ϕ(u, vE, vI) is the generalized Hessian of ϕ at (u, vE, vI). Let V1 ∈ ∂Proxσh(y +
σu), V2 ∈ ∂̂Proxσp(x− σ(A∗u+B∗

EvE +B∗
IvI)) and V3 ∈ ∂Π

R
mI
+
(σvI − z). Then we define

H := σ




V1

0
V3


 + σ




A
BE

BI


V2

(
A∗ B∗

E B∗
I

)
∈ ∂̂2ϕ(u, vE, vI). (16)

If we can guarantee that every element H ∈ ∂̂2ϕ(u, vE, vI) is positive definite, then we
can apply the SSN method to get an approximate solution of (ū, v̄E , v̄I). We discuss this
topic in Section 5.

Now we present the detailed algorithm of the SSN as below.
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Algorithm SSN: Given (x, y, z) ∈ R
n × R

m × R
mI , σ > 0, µ ∈ (0, 1

2
), η ∈ (0, 1), τ ∈

(0, 1], ν1, ν2 ∈ (0, 1), and δ ∈ (0, 1), choose (u0, v0E, v
0
I , w

0, s0) ∈ R
m×R

mE×R
mI×R

m×R
n.

Set j = 0 and iterate the following steps.

Step 1. Choose Hj in the form of (16) with V1 ∈ ∂Proxσh(y + σuj), V2 ∈ ∂̂Proxσp(x −
σ(A∗uj + B∗

Ev
j
E + B∗

Iv
j
I)) and V3 ∈ ∂Π

R
mI
+
(σvjI − z). Find the exact solution

(∆uj ,∆vjE,∆vjI) or apply the preconditioned conjugate gradient (PCG) method
to find an approximate solution (∆uj,∆vjE ,∆vjI) to

(Hj + εjI)(∆u,∆vE ,∆vI) = −∇ϕ(uj, vjE , v
j
I),

such that

‖Hj(∆uj,∆vjE ,∆vjI) +∇ϕ(uj, vjE , v
j
I)‖ ≤ ηj := min(η, ‖∇ϕ(uj, vjE, v

j
I)‖

1+τ ),

where εj := ν1min
{
ν2, ‖∇ϕ(uj, vjE , v

j
I)‖
}
.

Step 2. Set αj = δmj , where mj is the first nonnegative integer m for which

ϕ((uj, vjE , v
j
I) + δm(∆uj ,∆vjE,∆vjI)) ≤ ϕ(uj, vjE, v

j
I)

+µδm〈∇ϕ(uj), (∆uj,∆vjE,∆vjI)〉.

Step 3. Set (uj+1, vj+1
E , vj+1

I ) = (uj, vjE, v
j
I) + αj(∆uj,∆vjE ,∆vjI).

5 Theoretical results

In this section we shall present some theoretical results related to the SSN-ALM. Firstly,
we must guarantee that the generalized Jacobian is positive definite when using the SSN
method. However, the positive definiteness of the generalized Jacobian is very essential,
so we shall establish an equivalent condition to characterize the positive definiteness in
Subsection 5.1. Secondly, we analyze the strong semismoothness of the involved function
in the inner problem and the local convergence rate of the SSN method in Subsection
5.2. Thirdly, we need to analyze the global convergence and local convergence rate of the
ALM in Subsection 5.3.
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5.1 Constraint nondegeneracy and the positive definiteness of

∂̂2ϕ(ū, v̄E, v̄I)

By introducing a variable η ∈ R, the primal problem (P ) can be reformulated as

(P ′) max
x∈Rn,y∈Rm,z∈RmI ,η∈R

{
− (h(y) + η)

∣∣∣Ax− y = b, BEx− cE = 0, BIx− cI + z = 0,

z ∈ R
mI
− , (x, η) ∈ epip

}
.

The dual of problem (P ′) is

(D′) min
u,w∈Rm,s∈Rn,vE∈RmE ,vI ,v̂I∈RmI ,ξ∈R

{
h∗(w) + ξ + 〈b, u〉+ 〈cE, vE〉+ 〈cI , vI〉

∣∣∣

A∗u+ B∗
EvE + B∗

IvI + s = 0, −u+ w = 0, vI − v̂I = 0, v̂I ∈ R
mI
− , (s, ξ) ∈ epip∗

}
.

We say that (x′, y′, z′, η′) is a feasible solution to problem (P ′) if

(x′, y′, z′, η′) ∈ FP :=
{
(x, y, z, η) ∈ R

n × R
m × R

mI × R

∣∣∣Ax− y = b,BEx− cE = 0,

BIx− cI + z = 0, z ∈ R
mI
− , (x, η) ∈ epip

}
,

and (u′, v′E, v
′
I , v̂

′
I , w

′, s′, ξ′) is a feasible solution to problem (D′) if

(u′, v′E , v
′
I , v̂

′
I , w

′, s′, ξ′) ∈ FD :=
{
(u, vE, vI , v̂I , w, s, ξ) ∈ R

m × R
mE × R

mI × R
mI × R

m ×

R
n × R

∣∣∣w ∈ domh∗, A∗u+ B∗
EvE + B∗

IvI + s = 0,

−u+ w = 0, vI − v̂I = 0, v̂I ∈ R
mI
− , (s, ξ) ∈ epip∗

}
.

In order to guarantee the existence of the primal and dual solutions, we assume the
following two conditions hold.

Assumption 5.1. Problem (P ′) satisfies the condition:

∃ (x0, y0, z0, η0) ∈ R
n × R

m × R
mI × R, such that Ax0 − y0 = b,

BEx
0 − cE = 0, BIx

0 − cI + z0 = 0, z0 ∈ R
mI
−−, (x

0, η0) ∈ int(epip).

Assumption 5.2. Problem (D′) satisfies the condition:

∃ (u0, v0E, v
0
I , v̂

0
I , w

0, s0, ξ0) ∈ R
m × R

mE × R
mI × R

mI × R
m × R

n × R,

such that w0 ∈ int(domh∗), A∗u0 + B∗
Ev

0
E + B∗

Iv
0
I + s0 = 0, −u0 + w0 = 0, v0I − v̂0I = 0,

v̂0I ∈ R
mI

−−, (s
0, ξ0) ∈ int(epip∗).
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Since Assumption 2.1 holds, the constraint nondegeneracy condition for problem (P ′)
at the primal solution (x̄, ȳ, z̄, η̄) takes the following form

AR
n − R

m = R
m,

BER
n = R

mE ,

BIR
n + R

mI = R
mI ,

R
mI + lin(T

R
mI
−
(z̄)) = R

mI ,

(I I)(Rn × R) + lin(Tepip(x̄, η̄)) = R
n × R. (17)

For any z ∈ R
mI ,

T
R
mI
−
(z) =

{
d̂ ∈ R

mI

∣∣∣ d̂i ≤ 0, if zi = 0; d̂i ∈ R, if zi < 0
}

with its lineality space as

lin(T
R
mI
−
(z)) =

{
d̂ ∈ R

mI

∣∣∣ d̂i = 0, if zi = 0; d̂i ∈ R, if zi < 0
}
.

For any (x, η) ∈ R
n × R,

Tepip(x, η) =





R
n × R, if (x, η) ∈ int(epip),

epip, if (x, η) = (0, 0),
{(dx, dη) ∈ R

n × R | p′(x; dx)− dη ≤ 0} , if (x, η) ∈ ∂(epip) \ {(0, 0)},

where p′(x; dx) is the directional derivative of p at x in the direction dx. The lineality
space of Tepip(x, η) is

lin(Tepip(x, η))

= Tepip(x, η) ∩ −Tepip(x, η)

=





R
n × R, if (x, η) ∈ int(epip),

{(0, 0)}, if (x, η) = (0, 0),
{(dx, dη) ∈ R

n × R | p′(x; dx) ≤ dη ≤ −p′(x;−dx)}, if (x, η) ∈ ∂(epip) \ {(0, 0)}.

Since p(x) = λ1

J∑
j=1

ωj‖xGj
‖+ λ2‖x‖1, we have that

p′(x; dx) = λ1


 ∑

j:xGj
6=0

ωj

(
xGj

‖xGj
‖

)T

(dx)Gj
+

∑

j:xGj
=0

ωj‖(dx)Gj
‖




+λ2

(
∑

i:xi 6=0

sign(xi)(dx)i +
∑

i:xi=0

|(dx)i|

)
.
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Therefore, we can describe the lineality space of Tepip(x, η) as

lin(Tepip(x, η))

=





R
n × R, if (x, η) ∈ int(epip),

{(0, 0)}, if (x, η) = (0, 0),
{(dx, dη) ∈ R

n × R | p′(x; dx) = −p′(x;−dx) = dη,
(dx)i = 0 if xi = 0}, if (x, η) ∈ ∂(epip) \ {(0, 0)}.

Since at the solution point the constraint must be active, which means (x̄, η̄) ∈ ∂(epip)\
{(0, 0)}, we define a linear subspace Tlin(x) ⊆ R

n by

Tlin(x̄) =
{
dx ∈ R

n
∣∣∣ (dx)i = 0 if x̄i = 0

}
. (18)

Then (17) is equivalent to

BET
lin(x̄) = R

mE ,

BIT
lin(x̄) + lin(T

R
mI
−
(z̄)) = R

mI . (19)

Based on Assumption 2.1, ∂Proxσh(ȳ + σū) is a singleton set {V1} with V1 positive

definite. Then we define an element Ĥ ∈ ∂̂2ϕ(ū, v̄E , v̄I) with

Ĥ := σ




V1

0
V 0
3


 + σ




A
BE

BI


V 0

2

(
A∗ B∗

E B∗
I

)
, (20)

where

V 0
2 := (In −P∗ΣP)Θ, (21)

here

Σ = Diag(Σ1, . . . ,ΣJ), j = 1, . . . , J,

Σj =

{
σλ1,j

‖Pjv‖(I −
(Pjv)(Pjv)T

‖Pjv‖2 ), if ‖Pjv‖ > σλ1,j,

I, if ‖Pjv‖ ≤ σλ1,j,

with v = Proxσp2(x̄− σ(A∗ū+ B∗
E v̄E + B∗

I v̄I)), Θ = Diag(θ) with

θi =

{
1, if |(x̄− σ(A∗ū+ B∗

E v̄E + B∗
I v̄I))i| > σλ2,

0, if |(x̄− σ(A∗ū+ B∗
E v̄E + B∗

I v̄I))i| ≤ σλ2,

and

V 0
3 := Diag(ṽ3), (ṽ3)i =

{
1, if (σv̄I − z̄)i > 0,
0, if (σv̄I − z̄)i ≤ 0.

(22)

Now we present the result of equivalence.
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Theorem 5.1. For problems (P ′) and (D′), the following conditions are equivalent:
(i) The primal constraint nondegenaracy condition (19) of the primal problem (P ′) holds
at (x̄, ȳ, z̄, η̄).
(ii) The elements of ∂̂2ϕ(ū, v̄E , v̄I) are all positive definite.

(iii) Ĥ is positive definite.

Proof. “(i)⇒(ii)”: For any V2 ∈ ∂̂Proxσp(x̄−σ(A∗ū+B∗
E v̄E+B∗

I v̄I)), V3 ∈ ∂Π
R
mI
+
(σv̄I− z̄)

and d1 ∈ R
m, d2 ∈ R

mE , d3 ∈ R
mI , d =




d1
d2
d3


, we assume

0 = 〈d, Hd〉 = 〈d1, V1d1〉+ 〈d3, V3d3〉+ 〈A∗d1 + B∗
Ed2 + B∗

Id3, V2(A
∗d1 + B∗

Ed2 + B∗
Id3)〉

≥ 〈d1, V1d1〉+ 〈V3d3, V3d3〉+ 〈V2(A
∗d1 + B∗

Ed2 + B∗
Id3), V2(A

∗d1 + B∗
Ed2 + B∗

Id3)〉

≥ 0. (23)

The first inequality in (23) holds because all the eigenvalues of V2 and V3 are less than or
equal to one.

Since V1 is positive definite and V2, V3 are positive semidefinite, we have d1 = 0,
V3d3 = 0 and V2(B

∗
Ed2 + B∗

Id3) = 0. Due to the structure of ∂Π
R
mI
+
(σv̄I − z̄), we can see

that V3d3 = 0 implies

(d3)i = 0, if (σv̄I − z̄)i > 0.

Combining with the fact that

if z̄i < 0, then (σv̄I − z̄)i > 0,

which can be derived from the KKT condition (9), we obtain that

if z̄i < 0, then (d3)i = 0.

Therefore, for any d̂ ∈ lin(T
R
mI
−
(z̄)),

〈d3, d̂〉 =
∑

i:z̄i=0

(d3)id̂i +
∑

i:z̄i<0

(d3)id̂i = 0. (24)

That is,

d3 ∈ [lin(T
R
mI
−
(z̄))]⊥.

Let us denote the index set

Ξj := Gj ∩ supp(v̄) = {i ∈ Gj | θi = 1}, (25)
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where v̄ = Proxσp2(x̄− σ(A∗ū+ B∗
E v̄E + B∗

I v̄I)), θi is defined in (13).
If x̄i 6= 0, then from

−(A∗ū+ B∗
E v̄E + B∗

I v̄I) = s̄ = Proxp∗/σ(σ
−1x̄− (A∗ū+ B∗

E v̄E + B∗
I v̄I))

= Π
B

λ2
∞,n+B2

(σ−1x̄− (A∗ū+ B∗
E v̄E + B∗

I v̄I)),

we have

‖(σ−1x̄− (A∗ū+ B∗
E v̄E + B∗

I v̄I))Gj
‖ > λ1,j and |(σ−1x̄− (A∗ū+ B∗

E v̄E + B∗
I v̄I))i| > λ2.

That is, i ∈ Ξj . So (V2)I I(B
∗
Ed2 + B∗

Id3)I = 0, where I := {i | x̄i 6= 0}, implies (B∗
Ed2 +

B∗
Id3)I = 0 by the structure of the generalized Jacobian ∂̂Proxσp(·) in (12).
If x̄i = 0, by (18) we obtain that (dx)i = 0.
Hence,
〈(

d2
d3

)
,

(
BE

BI

)
dx

〉
= 〈B∗

Ed2 + B∗
Id3, dx〉

=
∑

i:x̄i 6=0

(B∗
Ed2 + B∗

Id3)i(dx)i +
∑

i:x̄i=0

(B∗
Ed2 + B∗

Id3)i(dx)i

= 0. (26)

From the nondegeneracy condition (19), there exist dx ∈ Tlin(x̄) and d̂ ∈ R
n such that

BEdx = d2 and BIdx+ d̂ = d3. Therefore, in combination with (24) and (26), we have

〈(
d2
d3

)
,

(
d2
d3

)〉
=

〈(
d2
d3

)
,

(
BE 0
BI I

)(
dx

d̂

)〉

=

〈(
B∗
Ed2 + B∗

Id3
d3

)
,

(
dx

d̂

)〉

= 0.

Now we have proved that the elements of the generalized Jacobian ∂̂2ϕ(ū, v̄E , v̄I) are all
positive definite.
“(ii)⇒(iii)”: This is obvious.
“(iii)⇒(i)”: For this result, we prove it by contradiction. We assume that (19) does not

hold. Then for d =




d1
d2
d3


 with d1 ∈ R

m, d2 ∈ R
mE , d3 ∈ R

mI , we can find

0 6= d2 ∈ [BET
lin(x̄)]⊥,

and

0 6= d3 ∈ [BIT
lin(x̄)]⊥ ∩ [lin(T

R
mI
−
(z̄))]⊥.
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Since d2 ∈ [BET
lin(x̄)]⊥, then for any dx ∈ Tlin(x̄),

〈d2, BEdx〉 = 〈B∗
Ed2, dx〉 = 0,

i.e.,

B∗
Ed2 ∈ [Tlin(x̄)]⊥ =

{
d̃ ∈ R

n | d̃i = 0 if x̄i 6= 0
}
. (27)

We may only consider the jth group. It is discussed in two cases. (i). x̄Gj
6= 0: if x̄i 6= 0

for some i ∈ Gj, then (B∗
Ed2)i = 0 by (27); if x̄i = 0 for some i ∈ Gj , then from (11)

we have (Proxσp2(x̄ − σ(A∗ū + B∗
E v̄E + B∗

I v̄I)))i = 0, therefore θi = 0 by (13). Hence,
according to (12), we have (V 0

2 )GjGj
(B∗

Ed2)Gj
= 0. (ii). x̄Gj

= 0: from (10), we can obtain
(Proxσp2(x̄−σ(A∗ū+B∗

E v̄E+B∗
I v̄I)))Gj

= 0. By (12), we also have (V 0
2 )GjGj

(B∗
Ed2)Gj

= 0.

From the two cases, we can find V 0
2 ∈ ∂̂Proxσp(x̄ − σ(A∗ū + B∗

E v̄E + B∗
I v̄I)) such that

V 0
2 (B

∗
Ed2) = 0. In the same way, we can get V 0

2 (B
∗
Id3) = 0. Therefore, V 0

2 (B
∗
Ed2+B∗

Id3) =
0. Meanwhile,

d3 ∈ [lin(T
R
mI
−
(z̄))]⊥ :=

{
ď ∈ R

mI | ďi ∈ R, if z̄i = 0; ďi = 0, if z̄i < 0
}
. (28)

If z̄i = 0, then (σv̄I−z̄)i ≤ 0. In combination with (14) and (28), we can deduce V 0
3 d3 = 0.

In summery, we have found a d 6= 0 such that 〈d, Ĥd〉 = 0, which contradicts the

positive definiteness of Ĥ. Hence, the primal constraint nondegenaracy condition (19)
holds.

5.2 Local convergence rate of the SSN

In this subsection, we analyze the local convergence rate of the SSN. But before that, we
need to consider the strong semismoothness of ∇ϕ. For the definitions of semismoothness
and γ-order semismoothness, one may see the following.

Definition 5.1. (semismoothness) [15, 23] Let O ⊆ Rn be an open set, K : O ⊆ Rn
⇒

Rn×m be a nonempty and compact valued, upper-semicontinuous set-valued mapping, and
F : O → Rn be a locally Lipschitz continuous function. F is said to be semismooth at
x ∈ O with respect to the multifunction K if F is directionally differentiable at x and for
any V ∈ K(x+∆x) with ∆x → 0,

F (x+∆x)− F (x)− V∆x = o(‖∆x‖).

Let γ be a positive constant. F is said to be γ-order (strongly, if γ = 1) semismooth at X
with respect to K if F is directionally differentiable at x and for any V ∈ K(x+∆x) with
∆x → 0,

F (x+∆x)− F (x)− V∆x = O(‖∆x‖1+γ).

In the following, we present the following result about the semismoothness of ∇ϕ.
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Proposition 5.1. ∇ϕ is strongly semismooth.

Proof. Based on Proposition 7.4.7 in [10], we have Π
R
mI
+
(·) is strongly semismooth since it

is piecewise affine. By [6, Proposition 4.3], the projection operator onto the second order
cone is strongly semismooth. Then the strong semismoothness of the proximal operator
Proxσh(·) follows from [20, Theorem 4]. In [39, Theorem 3.1], Zhang et al. have proved
that Proxσp(·) is strongly semismooth. Finally, by Theorem 7.5.17 in [10], we can easily
prove the conclusion and we omit the details.

Since the strong semismoothness of ∇ϕ has been proved, we are in the position to
state the local convergence rate of the SSN method.

Theorem 5.2. Let {(uj, vjE , v
j
I , w

j, sj)} be the infinite sequence generated by Algorithm
SSN. Then {(uj, vjE , v

j
I , w

j, sj)} converges to the unique optimal solution (ũ, ṽE , ṽI , w̃, s̃)
to problem (15) and

‖(uj+1, vj+1
E , vj+1

I , wj+1, sj+1)− (ũ, ṽE, ṽI , w̃, s̃)‖ = O(‖(uj, vjE, v
j
I , w

j, sj)− (ũ, ṽE , ṽI , w̃, s̃)‖
1+τ .

5.3 Convergence analysis of the ALM

In this subsection, we adapt the results developed in [25, 26, 19] to establish the conver-
gence theory of the ALM for problem (D).

Notably, the inner subproblem (15) has no closed-form solution, so we consider how
to solve it approximately with the following stopping criteria introduced in [25, 26].

(A) ϕk(u
k+1, vk+1

E , vk+1
I )− inf

u,vE ,vI
ϕk(u, vE, vI) ≤ ǫ2k/(2σk), ǫk ≥ 0,

+∞∑

k=1

ǫk < +∞,

(B) ϕk(u
k+1, vk+1

E , vk+1
I )− inf

u,vE ,vI
ϕk(u, vE, vI) ≤ δ2k/(2σk)(‖x

k+1 − xk‖2 + ‖yk+1 − yk‖2+

‖zk+1 − zk‖2), δk ≥ 0,
+∞∑

k=1

δk < +∞,

(B′) ‖∇ϕk(u
k+1, vk+1

E , vk+1
I )‖ ≤ δ′k/(2σk)(‖x

k+1 − xk‖2 + ‖yk+1 − yk‖2 + ‖zk+1 − zk‖2)
1

2 ,

0 ≤ δ′k → 0.

Then the global convergence of Algorithm SSN-ALM follows from [25, Theorem 1] and
[26, Theorem 4] without much difficulty.

Theorem 5.3. Suppose inf(D) < +∞, and let Algorithm SSN-ALM be executed with the
stopping criterion (A). If Assumption 5.2 holds, then the sequence (xk, yk, zk) generated
by the algorithm is bounded and (xk, yk, zk) converges to (x̄, ȳ, z̄), where (x̄, ȳ, z̄) is some
optimal solution to (P), and (uk, vkE , v

k
I , w

k, sk) is asymptotically minimizing for (D) with
inf(P ) = max(D).
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If (xk, yk, zk) is bounded and (P) satisfies Assumption 5.1, then the sequence (uk, vkE , v
k
I , w

k, sk)
is also bounded, and all of its accumulation points of the sequence (uk, vkE , v

k
I , w

k, sk) are
optimal solutions to (D).

Next, we state the local convergence rate of Algorithm SSN-ALM.

Theorem 5.4. Suppose inf(D) < +∞, and let Algorithm SSN-ALM be executed with
the stopping criteria (A) and (B). Suppose Assumptions 5.1, 5.2 and 2.1 hold. Sup-
pose that Tf satisfies the error bound condition (6) for the origin with modulus af . Let
{(xk, yk, zk, uk, vkE, v

k
I , w

k, sk)} be any infinite sequence generated by Algorithm SSN-ALM
with the stopping criteria (A) and (B′). Then, the sequence {(xk, yk, zk)} converges to
(x̄, ȳ, z̄) ∈ Ω, where Ω is the solution set to problem (P), and for all k sufficiently large,

dist((xk+1, yk+1, zk+1),Ω) ≤ θkdist((x
k, yk, zk),Ω),

where θk = (af (a
2
f + σ2

k)
−1/2 + 2δk)(1− δk)

−1 → θ∞ = af(a
2
f + σ2

∞)−1/2 < 1, as k → +∞.

Moreover, if the nondegeneracy condition (19) holds, the sequence {(uk, vkE, v
k
I , w

k, sk)}
converges to the unique optimal solution to problem (D).

Moreover, if Tl satisfies the error bound condition (6) for the origin with modulus al
and the stopping criterion (B′) is also used, then for all k sufficiently large,

‖(uk+1, vk+1
E , vk+1

I , wk+1, sk+1)− (ū, v̄E, v̄I , w̄, s̄)‖ ≤ θ′k‖(x
k+1, yk+1, zk+1)− (xk, yk, zk)‖,

where θ′k = al(1 + δ′k)/σk with the limit limk→∞ θ′k = al/σ∞.

6 Numerical issues for solving the subproblem (15)

The key part of Algorithm SSN-ALM is how to efficiently solve the subproblem (15).
The most important thing to solve this subproblem is how to efficiently solve the linear
system to obtain the Newton direction. Denote H̃ := σ−1Ĥ, then the linear system has
the following form

H̃d =






V 0
1

0
V 0
3


 +NV 0

2 N
T


 d = −σ−1∇ϕ(u, vE, vI), (29)

where N ∈ R
m̂×n(m̂ := m + mE + mI) denotes the matrix representation of the linear

operator




A
BE

BI


, d =




d1
d2
d3


 ∈ R

m̂, V 0
1 = Im −W 0

1 , here

W 0
1 =

{
σ

‖y+σu‖(Im − (y+σu)(y+σu)T

‖y+σu‖2 ), if ‖y + σu‖ > σ,

Im, if ‖y + σu‖ ≤ σ,
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V 0
2 and V 0

3 are defined the same as (21) and (22).
In [39, Section 4.3], Zhang et al. once described the special structure similar to

NV 0
2 N

T . For completeness, we also state the details here. Note that

supp(diag(P∗
jPjΘ)) = Ξj ,

where Ξj is the index set defined in (25) that corresponds to the non-zero elements of
v = Proxσp2(x − σ(A∗u + B∗

EvE + B∗
IvI)) in the jth group. The diagonal matrix P∗

jPjΘ
is expected to contain only a few ones on the diagonal so that the computational cost of
NP∗

jPjΘNT can be greatly reduced. Denote Ξ> := {j | ‖Pjv‖ > σλ1,j, j = 1, . . . , J}. Let

Nj ∈ R
m̂×|Ξj | be the sub-matrix ofN with those columns in Ξj and sj := (P∗

jPjv)Ξj
∈ R

|Ξj |

be the sub-vector of P∗
j vj restricted to Ξj. Then we have

NV 0
2 N

T = N(In − P∗ΣP)ΘNT

=
∑

j∈Ξ>

(
1−

σλ1,j

‖Pjv‖

)
NP∗

jPjΘNT +
σλ1,j

‖Pjv‖3
N(P∗

jPjv)(P
∗
jPjv)

TNT

=
∑

j∈Ξ>

(
1−

σλ1,j

‖Pjv‖

)
NjN

T
j +

σλ1,j

‖Pjv‖3
(Njsj)(Njsj)

T .

If we let r :=
∑

j∈Ξ>
|Ξj|, r2 := |Ξ>|,D = [B C] ∈ R

m̂×(r+r2) withBj :=
√

(1−
σλ1,j

‖Pjv‖)Nj ∈

R
m̂×|Ξj |, B := [Bj ]j∈Ξ>

∈ R
m̂×r, cj :=

√
σλ1,j

‖Pjv‖3 (Njsj) ∈ R
m̂ and C := [cj]j∈Ξ>

∈ R
m̂×r2,

then

NV 0
2 N

T = DDT . (30)

For V 0
1 , we only analyze the case of ‖y + σu‖ > 1, which is relatively most complicated.

That is,

V 0
1 =

(
1−

σ

‖y + σu‖

)
Im − σ

(y + σu)(y + σu)T

‖y + σu‖3
. (31)

Combining (30) and (31), the coefficient matrix of (29) has the form

H̃ =




(
1− σ

‖y+σu‖

)
Im − σ(y+σu)(y+σu)T

‖y+σu‖3

0
V 0
3


 +DDT .

Due to the sparse structure, the number r + r2 may be much smaller than m̂. Therefore,
by exploiting the second order sparsity the total computational costs of using the sparse
Cholesky factorization to solve the linear system (29) are significantly reduced from O(m̂3)
to O(m̂(r + r2)

2). But if the dimension of the problem is very large, we tend to apply
the PCG method instead of the sparse Cholesky factorization method because it is more
efficient in practical computation. When using the PCG method, we adopt a diagonal
preconditioner.
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7 Numerical experiments

In this section, we compare the performances of our proposed algorithm with the semi-
proximal ADMM on the cssLasso problems. We implement the algorithm in Matlab

R2019a. All runs are performed on a NoteBook (i710710u 4.7G with 16 GB RAM).
In our experiments, we measure the quality of the computed solution by the rela-

tive primal infeasibility RP and dual infeasibility RD, and the relative complementarity
condition RC as follows

RP =
‖Ax− y − b‖ + ‖BEx− cE‖+ ‖BIx− cI + z‖

1 + ‖b‖+ ‖cE‖+ ‖cI‖
,

RD =
‖A∗u+ B∗

EvE + B∗
IvI + s‖+ ‖w − u‖

1 + ‖u‖+ ‖vE‖+ ‖vI‖+ ‖s‖+ ‖w‖
,

RC =
‖w − Proxh∗(w + y)‖+ ‖s− Proxp∗(s+ x)‖+ ‖vI −Π

R
mI
−
(BIx− cI + vI)‖

1 + ‖w‖+ ‖s‖+ ‖vI‖
.

We stop the algorithm when

ηkkt := max{RP , RD, RC} < Tol,

with Tol = 10−6 as the default. We also stop the algorithm if it reaches the maximum
iteration number 200 for the SSN-ALM and 10000 for the semi-proximal ADMM. Mean-
while, we set the maximum running time to be 4 hours. In addition, we also use the
relative gap RG as a measurement, which is defined as

RG :=
|pobj− dobj|

1 + |pobj|+ |dobj|
,

where pobj and dobj denote the primal and dual objective values, respectively. The
weights ωj =

√
|Gj|, ∀j = 1, 2, . . . , J . We test the problems with two different sets of

regularization parameters:

(S1) λ1 = 0.5γ‖A∗b‖∞, λ2 = 0.5γ‖A∗b‖∞;

(S2) λ1 = 0.8γ‖A∗b‖∞, λ2 = 0.2γ‖A∗b‖∞,

where the parameter γ is chosen to produce a reasonable number of nonzero elements in
the resulting solution x. Let x̂ be the vector obtained by sorting x such that |x̂1| ≥ |x̂2| ≥
· · · ≥ |x̂n|. In our numerical experiments, we define the number of nonzero elements as
the minimal k satisfying

k∑

i=1

|x̂i| ≥ 0.9999‖x‖1.
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7.1 The semi-proximal ADMM for the dual problem (D)

For the clarity, we present the details about the semi-proximal ADMM for the dual prob-
lem (D). For a given σ > 0, the semi-proximal augmented Lagrangian function associated
with the dual problem (D) is defined by

L̂σ(u, vE, vI , v̂I , w, s; x, y, z) := h∗(w) + p∗(s) + δ
R
mI
−
(v̂I) + 〈b, u〉+ 〈cE, vE〉+ 〈cI , vI〉

+
σ

2
‖A∗u+ B∗

EvE + B∗
IvI + s− σ−1x‖2 −

1

2σ
‖x‖2

+
σ

2
‖w − u− σ−1y‖2 −

1

2σ
‖y‖2 +

σ

2
‖vI − v̂I − σ−1z‖2

−
1

2σ
‖z‖2 +

τ̃

2σ
‖vE − vkE‖

2.

If we minimize the above function with respect to the variables v̂I , w and s, they have
the closed-form solution. As for the minimization with respect to u, vE and vI at the kth
iteration, we need to solve the following linear system of equations

M




u
vE
vI


 = rhsk,

where

M =






A
BE

BI


( A∗ B∗

E B∗
I

)
+




I 0 0
0 τ̃ σ−2I 0
0 0 I




 ,

and

rhsk =




−A(sk − σ−1xk) + (wk − σ−1yk)− σ−1b
−BE(s

k − σ−1xk) + τ̃σ−2vkE − σ−1cE
−BI(s

k − σ−1xk) + (v̂kI + σ−1zk)− σ−1cI


 .

Based on the above analysis, the semi-proximal ADMM can be stated as follows
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Algorithm semi-proximal ADMM: Let σ > 0 be a given parameter, τ ∈
(
0, 1+

√
5

2

)
.

Select an initial point (u0, v0E , v
0
I , v̂

0
I , w

0, s0, x0, y0, z0) ∈ R
m × R

mE × R
mI × R

mI × R
m ×

R
n × R

n × R
m × R

mI . For k = 0, 1, . . ., iterate the following steps.

Step 1. Compute




uk+1

vk+1
E

vk+1
I


 = M−1rhsk,




v̂k+1
I

wk+1

sk+1


 =




Π
R
mI
−
(vk+1

I − σ−1zk)

Proxh∗/σ(σ
−1yk + uk+1)

Proxp∗/σ(σ
−1xk −A∗uk+1 − B∗

Ev
k+1
E − B∗

Iv
k+1
I )


 .

Step 2. Compute





xk+1 = xk − τσ(A∗uk+1 + B∗
Ev

k+1
E + B∗

Iv
k+1
I + sk+1),

yk+1 = yk − τσ(wk+1 − uk+1),
zk+1 = zk − τσ(vk+1

I − v̂k+1
I ).

7.2 The description of the computed problems

In the numerical experiments, we focus on three classes of special problems.

I: the general constrained problem. The general constrained problem has the fol-
lowing form

min
x∈Rn

{
‖Ax− b‖+ λ1

J∑

j=1

ωj‖xGj
‖+ λ2‖x‖1

∣∣∣BEx = 0, BIx ≥ 0
}
, (32)

where A ∈ R
m×n, BE ∈ R

mE×n with the ith row (BE)i,: := [0Tki 0Tki · · · 1Tki 0Tki · · · 1
T
ki
],

lb = 0n, and lu = 1n, and BI ∈ R
mI×n is generated in the same way as BE . Note that

0ki ∈ R
ki and 0n ∈ R

n are vectors of all zeros, 1ki ∈ R
ki and 1n ∈ R

n are vectors of all
ones. As for the details for the equality constraint and inequality constraint, one may see
[12].

II: the reparameterization problem. The equality constrained problem has the fol-
lowing form

min
x∈Rn

{
‖Ax− b‖+ λ1

J∑

j=1

ωj‖xGj
‖+ λ2‖x‖1

∣∣∣BEx = 0
}
, (33)
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where A ∈ R
m×n and BE ∈ R

mE×n. Note that BE is generated in the same way as that
in the first class of problem.

III: the sum-to-zero constraint problem. The problem is as follows

min
x∈Rn

{
‖Ax− b‖ + λ1

J∑

j=1

ωj‖xGj
‖+ λ2‖x‖1

∣∣∣
∑

i

xi = 0
}
, (34)

where A ∈ R
m×n. This type of constraint on the Lasso has been considered in [1, 18, 29]

for the analysis of compositional data.

7.3 Numerical results on the synthetic data problems

In this subsection, we compare the the numerical performances between the SSN-ALM
and the semi-proximal ADMM on the synthetic data problems. For the synthetic data
problems, we only focus on the problem (32). In our comparison, we report the problem
(pbname), the number of samples (m), features (n) and nonzero elements (nnz), λ1, λ2,
the relative KKT residual (ηkkt), the primal objective value (pobj), the iteration number
(iter) (for the SSN-ALM, it also includes the total number of Newton iterations in the
bracket) and the running time (time) in the format of “hours:minutes:seconds”. For
simplicity, we use“s sign(t)|t|” to denote a number of the form “s × 10t”, e.g., 1.0-3
denotes 1.0 × 10−3. We present the numerical results in Tables 1 and 2. The numerical
results show that the SSN-ALM can solve all the synthetic problems efficiently and supply
highly accurate solutions. In contrast, the semi-proximal ADMM can only solve a few
problems in much more time, and for most problems it cannot supply satisfying solutions
within the maximum time.

Table 1: The performances of the SSN-ALM and semi-proximal ADMM on the synthetic datasets for
the problem (32) with the parameter setting (S1). In this table, “a”=SSN-ALM, “b”=semi-proximal
ADMM.

pbname
λ1 λ2 nnz

ηkkt pobj iter time
(m,n,mE , mI) a | b a | b a | b a | b

J
rand1 6.638-3 6.638-3 249 9.8-7 | 9.9-7 3.2601+2 | 3.2600+2 18(95) | 3287 03 | 54:47

(100,10000,24,24); 6.638-4 6.638-4 249 6.1-7 | 9.9-7 3.2606+1 | 3.2600+1 21(104) | 8359 04 | 31:21
1000 6.638-5 6.638-5 252 9.3-7 | 1.4-4 3.2777+0 | 3.2827+0 33(180) | 10000 06 | 43:13
rand2 9.458-2 9.458-2 184 7.6-7 | 2.5-1 1.3391+3 | 1.4223+3 18(116) | 402 2:11 | 4:00:09

(100,1000000,24,24); 9.458-3 9.458-3 184 7.3-7 | 3.0+0 1.3391+2 | 1.4056+2 24(133) | 404 2:40 | 4:00:01
100000 9.458-4 9.458-4 184 7.6-7 | 5.0+0 1.3391+1 | 1.4711+1 18(116) | 406 2:16 | 4:00:02
rand3 1.706-1 1.706-1 165 6.5-7 | 1.0-1 3.8494+3 | 4.8077+3 19(115) | 140 13 | 4:01:41

(100,3000000,24,24); 1.706-2 1.706-2 166 9.1-7 | 1.5+0 3.8493+2 | 4.6124+2 25(148) | 140 20:38 | 4:00:10
300000 1.706-3 1.706-3 166 9.9-7 | 4.8+0 3.8490+1 | 4.7712+1 69(373) | 134 35:03 | 4:01:45
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Table 2: The performances of the SSN-ALM and semi-proximal ADMM on the synthetic datasets for
the problem (32) with the parameter setting (S2). In this table, “a”=SSN-ALM, “b”=semi-proximal
ADMM.

pbname
λ1 λ2 nnz

ηkkt pobj iter time
(m,n,mE , mI) a | b a | b a | b a | b

J
rand1 1.062-2 2.655-3 499 5.7-7 | 9.9-7 3.7078+2 | 3.7073+2 19(95) | 3762 03 | 13:39

(100,10000,24,24); 1.062-3 2.655-4 499 8.9-7 | 9.9-7 3.7132+1 | 3.2600+1 22(107) | 8861 04 | 33:47
1000 1.062-4 2.655-5 502 9.4-7 | 5.3-5 3.7696+0 | 3.7283+0 31(160) | 10000 06 | 43:09
rand2 1.513-1 3.783-2 489 4.9-7 | 2.1-1 6.9436+2 | 7.3304+2 17(101) | 364 2:01 | 4:00:22

(100,1000000,24,24); 1.513-2 3.783-3 488 7.9-7 | 1.4+0 6.9434+1 | 7.2685+1 23(118) | 383 2:48 | 4:00:10
100000 1.513-3 3.783-4 492 9.1-7 | 4.2+0 6.9425+0 | 7.5660+0 55(272) | 359 5:38 | 4:00:23
rand3 2.730-3 6.826-4 513 3.9-7 | 7.3-2 2.0434+3 | 2.4657+3 18(98) | 119 14:09 | 4:02:50

(100,3000000,24,24); 2.730-4 6.826-5 513 9.0-7 | 1.5+0 2.0435+2 | 2.3764+2 22(122) | 115 21:26 | 4:00:33
300000 2.730-5 6.826-6 513 9.6-7 | 5.5+0 2.0436+1 | 2.4743+1 59(306) | 130 47:05 | 4:01:33

7.4 Numerical results on the UCI data problems

In this subsection, we also compare the the numerical performances between the SSN-ALM
and the semi-proximal ADMM on the UCI data problems. We focus on the problems (33)
and (34). We list the numerical results in Tables 3-6. From the results, we can see that
the SSN-ALM outperforms the semi-proximal ADMM by a large margin for the UCI
data problems. Specifically, we can obtain highly accurate solutions efficiently by the
SSN-ALM for all the problems. In contrast, the semi-proximal ADMM can hardly supply
solutions that meet the accuracy requirement within the maximum time for nearly all the
problems.

Table 3: The performances of the SSN-ALM and semi-proximal ADMM on the synthetic datasets for
the problem (33) with the parameter setting (S1). In this table, “a”=SSN-ALM, “b”=semi-proximal
ADMM.

pbname
λ1 λ2 nnz

ηkkt pobj iter time
(m,n,mE , mI) a | b a | b a | b a | b

J

E2006.train 1.940-1 1.940-1 20 4.6-7 | 1.2-2 4.5613+3 | 4.4467+3 10(19) | 30 1:26 | 4:05:15
(16087,150360,48,0); 1.940-2 1.940-2 3 2.3-7 | 6.3-3 4.8716+2 | 4.8805+2 13(39) | 32 2:47 | 4:06:38

7518 1.940-3 1.940-3 89 6.6-7 | 5.8-3 9.1671+1 | 9.2247+1 17(78) | 30 10:41 | 4:03:00
triazines.scale.expanded 6.062-2 6.062-2 737 9.2-7 | 6.6-3 6.9373-1 | 6.9651-1 28(157) | 433 4:16 | 4:00:11

(186,635376,48,0); 6.062-3 6.062-3 1013 8.9-7 | 6.3-3 2.9501-1 | 2.9610-1 43(195) | 412 4:48 | 4:00:06
31769 6.062-4 6.062-4 1024 8.3-7 | 2.8-3 2.3169-1 | 2.5109-1 51(327) | 364 7:07 | 4:00:28

pyrim.scale.expanded 2.440-4 2.440-4 424 8.8-7 | 4.0-5 6.9227-1 | 3.7804-1 28(294) | 8491 56 | 4:00:01
(74,201376,48,0); 2.440-5 2.440-5 568 9.4-7 | 6.5-6 1.2228-1 | 7.9402-2 32(253) | 9909 56 | 4:00:00

10069 2.440-6 2.440-6 787 8.8-7 | 4.8-6 6.6985-2 | 6.5592-2 23(143) | 8251 1:02 | 4:00:00
housing.scale.expanded 5.701+0 5.701+0 27 4.9-7 | 2.2-2 4.7022+4 | 4.6289+4 10(67) | 238 36 | 4:00:08

(506,77520,48,0); 5.701-1 5.701-1 159 7.0-7 | 1.0-2 3.4639+3 | 4.6442+3 12(86) | 282 51 | 4:00:34
3876 5.701-2 5.701-2 527 4.7-7 | 1.0-3 5.3645+1 | 2.4724+2 15(96) | 305 1:07 | 4:00:23
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Table 4: The performances of the SSN-ALM and semi-proximal ADMM on the synthetic datasets for
the problem (33) with the parameter setting (S2). In this table, “a”=SSN-ALM, “b”=semi-proximal
ADMM.

pbname
λ1 λ2 nnz

ηkkt pobj iter time
(m,n,mE , mI) a | b a | b a | b a | b

J

E2006.train 3.103-1 7.759-2 20 4.9-7 | 1.2-2 7.2676+3 | 7.08461+3 10(20) | 30 1:47 | 4:05:41
(16087,150360,48,0); 3.103-2 7.759-3 3 7.3-7 | 1.6-3 7.4997+2 | 7.5035+2 12(39) | 30 3:07 | 4:04:14

7518 3.103-3 7.759-4 600 9.2-7 | 6.1-3 1.2102+2 | 1.1832+2 17(99) | 27 16:02 | 4:02:20
triazines.scale.expanded 9.700-2 2.425-2 1813 7.9-7 | 2.8-3 4.9387-1 | 4.9432-1 33(174) | 457 4:24 | 4:00:17

(186,635376,48,0); 9.700-3 2.425-3 1822 8.8-7 | 1.4-3 2.5726-1 | 2.5802-1 45(230) | 422 6:06 | 4:00:13
31769 9.700-4 2.425-4 1940 9.5-7 | 6.2-4 2.2746-1 | 2.4322-1 47(368) | 449 7:28 | 4:00:28

pyrim.scale.expanded 3.903-4 9.758-5 1211 3.9-7 | 1.0-5 7.9688-1 | 6.8910-1 26(239) | 9004 50 | 4:00:01
(74,201376,48,0); 3.903-5 9.758-6 1229 8.7-7 | 8.2-6 1.2931-1 | 9.1925-2 23(179) | 7885 52 | 4:00:01

10069 3.903-6 9.758-7 1588 7.8-7 | 2.3-6 6.8215-2 | 6.6066-2 24(132) | 9644 1:25 | 4:00:01
housing.scale.expanded 9.121+0 2.280+0 25 4.5-7 | 1.9-2 3.0438+5 | 9.2003+4 14(98) | 267 33 | 4:00:45

(506,77520,48,0); 9.121-1 2.280-1 362 3.0-7 | 5.1-3 1.1145+4 | 7.8453+3 12(71) | 273 43 | 4:00:13
3876 9.121-1 2.280-2 1021 9.3-7 | 5.7-4 4.4121+1 | 4.4143+1 13(74) | 293 1:18 | 4:00:33

Table 5: The performances of the SSN-ALM and semi-proximal ADMM on the synthetic datasets for
the problem (33) with the parameter setting (S1). In this table, “a”=SSN-ALM, “b”=semi-proximal
ADMM.

pbname
λ1 λ2 nnz

ηkkt pobj iter time
(m,n,mE , mI) a | b a | b a | b a | b

J

housing.scale.expanded 5.701+0 5.701+0 14 5.7-7 | 1.4-3 3.7574+2 | 3.2811+2 11(48) | 10000 27 | 1:53:57
(506,77520,1,0); 5.701-1 5.701-1 68 4.4-7 | 1.6-6 1.6595+5 | 1.6578+5 12(58) | 10000 38 | 2:10:06

7752 5.701-2 5.701-2 429 4.8-7 | 9.9-7 1.3394+4 | 1.3394+4 12(55) | 2956 33 | 26:11
E2006.test 4.733-2 4.733-2 10 8.3-7 | 4.1-3 1.2016+4 | 1.2211+4 4(17) | 1124 1:32 | 4:00:09

(3308,150358,1,0); 4.733-3 4.733-3 10 3.8-7 | 4.8-4 1.2219+3 | 1.2192+3 10(20) | 934 59 | 4:00:08
15036 4.733-4 4.733-4 695 6.8-7 | 9.0-4 1.3575+2 | 1.3618+2 19(104) | 1144 2:33 | 4:00:02

pyrim.scale.expanded 2.400-4 2.400-4 474 4.2-7 | 4.7-5 5.2631+0 | 4.3656+0 16(87) | 10000 29 | 2:47:58
(74,201376,1,0); 2.400-5 2.400-5 476 9.9-7 | 1.3-5 5.7609-1 | 2.1273-1 16(80) | 10000 28 | 2:40:48

20138 2.400-6 2.400-6 534 5.3-7 | 4.1-6 2.1273-1 | 7.0729-2 14(54) | 10000 28 | 2:48:43
triazines.scale.expanded 6.062-1 6.062-1 246 1.7-7 | 8.3-2 2.2854+0 | 2.2356+0 7(56) | 611 6:28 | 4:00:10

(186,635376,1,0); 6.062-2 6.062-2 981 8.1-8 | 3.8-3 7.6679-1 | 7.6780-1 7(88) | 661 7:10 | 4:00:02
63538 6.062-3 6.062-3 1152 5.0-7 | 1.7-3 3.0670-1 | 3.0847-1 12(60) | 566 4:52 | 4:00:24

8 Conclusion

In this paper, we have developed a dual SSN based ALM for the large-scale linearly
constrained sparse group square-root Lasso problems. In this process, we mainly overcome
the difficulty of dealing with two nonsmooth terms. We have established an equivalent
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Table 6: The performances of the SSN-ALM and semi-proximal ADMM on the synthetic datasets for
the problem (33) with the parameter setting (S2). In this table, “a”=SSN-ALM, “b”=semi-proximal
ADMM.

pbname
λ1 λ2 nnz

ηkkt pobj iter time
(m,n,mE , mI) a | b a | b a | b a | b

J

housing.scale.expanded 9.121+0 2.280+0 19 2.0-7 | 8.9-4 3.6539+2 | 2.3640+2 13(54) | 10000 36 | 2:00:29
(506,77520,1,0); 9.121-1 2.280-1 73 3.2-7 | 2.5-6 2.2607+5 | 2.2610+5 12(56) | 10000 38 | 2:45:36

7752 9.121-2 2.280-2 568 5.2-7 | 9.9-7 1.8789+4 | 1.8789+4 14(56) | 3411 32 | 28:22
E2006.test 7.570-2 1.890-2 10 3.6-7 | 8.6-3 1.9210+4 | 1.9210+4 6(10) | 1116 43 | 4:00:07

(3308,150358,1,0); 7.570-3 1.890-3 10 7.6-7 | 1.1-3 1.9419+3 | 1.9482+3 9(17) | 1108 1:02 | 4:00:08
15036 7.570-4 1.890-4 405 3.4-7 | 8.8-4 2.0948+2 | 2.0952+2 19(97) | 983 2:07 | 4:00:13

pyrim.scale.expanded 3.903-4 9.758-5 539 5.0-7 | 6.2-5 7.4039+0 | 6.7661+0 15(89) | 10000 33 | 3:01:02
(74,201376,1,0); 3.903-5 9.758-6 535 7.3-7 | 1.3-5 7.9365-1 | 3.8679-1 15(68) | 10000 28 | 2:46:37

20138 3.903-6 9.758-7 617 4.9-7 | 7.1-6 1.1597-1 | 7.6044-2 14(51) | 10000 29 | 3:02:51
triazines.scale.expanded 9.700-1 2.425-1 259 7.1-7 | 6.2-2 1.9711+0 | 1.7830+0 9(58) | 646 6:23 | 4:00:10

(186,635376,1,0); 9.700-2 2.425-2 1152 5.9-7 | 4.7-3 6.3766-1 | 6.4020-1 13(110) | 657 8:50 | 4:00:17
63538 9.700-3 2.425-3 1417 6.3-7 | 1.6-3 2.7556-1 | 2.7690-1 11(70) | 667 4:11 | 4:00:03

condition to characterize the nonsingularity of the generalized Jacobian. And we have
also presented the convergence theory of the algorithm. Finally, we have presented the
numerical results to demonstrate the efficiency of the proposed algorithm.
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