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Abstract

The multilayer model proposed in this paper is a generalization of the multilayer non-hydrostatic model for shallow
granular flows Fernández-Nieto et al. [40], the multilayer model with µ(I) rheology Fernández-Nieto et al. [36], and
the monolayer model with weakly non-hydrostatic pressure for dry granular flows Garres-Dı́az et al.[42]. We show
that the proposed model verifies a dissipative energy balance. A well-balanced numerical scheme is proposed to solve
the equations based on a projection method and a hydrostatic reconstruction for the Coulomb friction terms. In order
to reduce the computational cost associated with solving the linear system of the projection method, a precomputing
of the initial guess for an iterative solver is proposed. This strategy allows us to reduce the computational time by
around 70% when 20 layers are considered. In the numerical tests, we show that the proposed model can recover the
in-depth velocity profiles typically observed in lab experiments and capture the flow/no-flow interface that appears
in granular avalanches. During the initial stage of granular collapse simulations, the model is shown to improve the
approximation of the mass profiles compared to other models and to predict the parabolic shape of the front velocity
evolution with time, as observed in lab experiments. Interestingly, our numerical tests show that the ability of the
granular flow to overcome obstacles strongly depends on the model used, which is of strong interest for landslide
hazard assessment.

Keywords: Multilayer models Non-hydrostatic pressure Finite Volume Granular flows.

1 Introduction

Many efforts have been devoted in recent years to the understanding of granular flows, due to their importance in a wide
variety of natural phenomena. Both dry and fluidized granular flows have been broadly studied from a theoretical point of
view, and also many resources have been employed to perform experimental studies, in particular at the laboratory scale
(see e.g. [43, 28, 48, 1] for reviews). The understanding and quantification of the complex behavior of these flows is still a
challenge, since their dynamics is strongly conditioned by many different physical processes (friction, dilatancy, fluid-grain
interactions, particle segregation, etc.), see for instance [65, 12, 78, 6]. In particular, the flow/no-flow local transition that
controls erosion/deposition processes, involves many theoretical and numerical difficulties [55, 52, 12, 63, 36].

Here, we deal with dry and dense granular flows, which are nowadays described by the µ(I)-rheology, introduced in
[53, 54]. This rheology is based on a Drucker-Prager plasticity criterion, that defines the deviatoric tensor as

τ =
µ(I)p

∥D∥
D if ∥D∥ ≠ 0,

∥τ∥ ≤ µsp if ∥D∥ = 0,

(1)

where p is the pressure, µs is the tangent of the repose angle of the material, D the strain-rate tensor and µ(I) is a
strain-rate and pressure dependent friction coefficient, which will be defined later. It is known that the incompressible
µ(I)-rheology is ill-posed for low and high values of the inertial number I (see [7]). Many works have been devoted to
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improve the well-posed character of the µ(I)-rheology. A regularized incompressible µ(I) law, which improves the range
of values for I where it is well-posed, was proposed in [5]. This regularized expression was considered in [44, 6] among
others. A compressible version of the µ(I), called µ(I), ϕ(I)-rheology, has also been investigated (see e.g. [17, 77]),
considering that the solid volume fraction ϕ is no more constant. Some authors suggested that this compressible version
improves the well/ill-posed character of the µ(I) for steady problems (see [8, 51]), although this is not necessarily true
for transient problems (see [80]). As commented above, when the compressible rheological law is considered, the solid
volume fraction ϕ is also variable (depending on I in the aerial case or on the viscous number J in the submerged case),
and dilation/contraction of the material occurs (see [77]). Dilatancy effects in a shallow depth-averaged model for dry
avalanches was recently investigated in [11], where the model is obtained by removing the fluid phase in the two-phase
model for debris flows with dilatancy [12]. In addition, in the last years, some authors have introduced non-local effects
in the constitutive law (see e.g. [76, 16]). However, the local µ(I)-rheology continues being very popular, and actually
the most accepted law, since many questions about non-local models still need to be clarified.

In the following, we focus on the incompressible µ(I)-rheology. This rheology has been used in models solving the full
Navier-Stokes equations for free surface flows. The yield stress can be dealt with by defining a regularized µ(I)-viscosity
as in the 2D solver of [55] or [56]. A different approach was followed in [52, 63], where authors used a finite element solver
combined with an Augmented Lagrangian method, also modelling sidewall friction effects. They showed a qualitative
good agreement with granular collapse laboratory experiments.

Solving the full Navier-Stokes system however requires huge computational efforts. For this reason, depth-averaged
shallow models appear as an interesting alternative. Many authors have proposed such models for granular flows since the
pioneering Savage-Hutter model [79] where Mohr-Coulomb friction terms with constant friction coefficients are added to
the classical Saint-Venant system. A more sophisticated friction coefficient was proposed in [74, 73, 75], which depends on
the thickness and velocity of the flow, e.g. on its Froude number. This variable friction coefficient has been widely used
to model dry granular flows (see [62, 60, 72, 19] among many others). Interestingly, when these depth-averaged models
are considered in tilted (or local) coordinates over a reference plane or bottom, the flow could start flowing for slopes
that could differ (being lower or higher) from the angle of repose of the material. This was shown in [10], where authors
proposed a correction of the friction coefficient in terms of a second order correction of the pressure. This correction
allows the model to verify the physical threshold to flow, defined by the angle of repose.

A rigorous derivation of a shallow model with the µ(I)-rheology under a dimensional analysis is presented in [46],
where authors also included a second order viscous term in the form of a horizontal diffusion term. To derive the
model, they needed to assume a Bagnold profile for the downslope velocity even though velocity profiles are known to
vary significantly from linear, Bagnold or S-shape profiles during the different phases of the flow (initial acceleration,
developed flow, deceleration) (see [43]). The main drawback of such depth-averaged models is the fact that all the
in-depth information is lost due to the shallow hypothesis and the depth-integration procedure. In particular, it makes
it impossible to reproduce the lower static layer that exists in granular collapse or during the stopping phase of granular
flows. This flow/no-flow (also called flowing/static) interface is shown to depend on the derivatives of the downslope
velocity with respect to the direction normal to the topography, an information intrinsically missing in depth-averaged
models [57].

As an intermediate step between full Navier-Stokes and depth-averaged models, multilayer (or layer-averaged) models
[3, 39] have been shown to be able to recover important in-depth variations of the flow properties such as velocity profiles.
In [39] a multilayer model is deduced as the set of equations verified by a particular weak solution of the full Navier-Stokes
system. There, the domain is subdivided in shallow layers and the velocity field is approximated by a layerwise constant
function. Such a model is shown to reproduce the different shapes of the velocity profiles associated with different flow
regimes. For example, in [36], simulations performed with a multilayer model for dry granular flows with the µ(I)-rheology
were successfully compared to granular collapse experiments in [61], showing an excellent qualitative agreement concerning
the shape of the deposits, of the velocity profiles, or the influence of an erodible bed on the travel distance (runout) of
these flows. Moreover, this multilayer model was able to approximate the flow/no-flow interface separating the mobile
and static layers of material during granular column collapse. The multilayer approach makes it also possible to properly
account for sidewalls friction that has a strong influence on the flow dynamics [37].

All these depth-averaged models assume that the pressure is hydrostatic. However, during the initial destabilization,
the mass geometry may significantly differ from a shallow layer, thus inducing strong non-hydrostatic effects arising from
the non-negligible acceleration in the direction normal to the topography. This could explain part of the discrepancies
observed when comparing the results of shallow depth-averaged models with granular collapse experiments, in particular
during the initial instants e.g.[36]. Going beyond the hydrostatic assumption, dispersive models have become a very
active topic of research in recent years, looking for an improvement of nonlinear dispersive properties.

Two families of dispersive models can be considered: Boussinesq type systems, where high order derivatives of the
variables are included in the model (see, e.g., [15, 67] among others); and non-hydrostatic systems (see, e.g., [23, 82]),
where the pressure is split into hydrostatic and non-hydrostatic counterparts, involving new unknowns and restrictions in
the model. Actually, most classical dispersive models for water flows can be reformulated as non-hydrostatic systems, as
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shown in [32]. The advantage of the second approach is that only first-order derivatives appear in the model, which are
easier to treat numerically. In addition, the specific structure of these models and their similarities to the Shallow Water
Equations (SWE) enables the extension of numerous familiar numerical schemes for SWE to non-hydrostatic models, as
demonstrated in [30]. One of the drawbacks of non-hydrostatic models is that they do not fall into the class of hyperbolic
PDE systems. Furthermore, there is a need to address implicit problems to include the non-hydrostatic pressure terms
to avoid the restrictive time step that would give an explicit scheme. Various numerical methods can be found in the
literature for approximating hyperbolic-elliptic dispersive systems: the pressure-correction-based methods (e.g., [26, 81]
in the framework of Navier-Stokes equations), semi-implicit methods on staggered meshes (see, e.g., [4, 24, 50, 82]), or
more recent trends based on obtaining a hyperbolic relaxation system that can be discretized with explicit methods (see
[20, 27, 32, 34, 47, 49]).

However, such non-hydrostatic models widely developed for water wave propagation, have been poorly applied to
granular flows. The non-hydrostatic contribution associated to the acceleration in the direction normal to the slope
described above is different from other non-hydrostatic effects such as those arising from the viscous stress tensor involved
in the pressure [13], which are always ignored in granular flow models owing to their complexity.

Recently, a shallow model for dry granular flows with a weakly non-hydrostatic pressure was introduced in [42]. The
pressure is called weakly non-hydrostatic because only the contribution of the normal acceleration is considered in the
pressure and not the ones coming from the stress tensor. This is a strong limitation since these last terms are of first
order in the dimensional analysis based on the shallow parameter ε while those associated to the normal velocity are of
second order. This choice relies only on the difficulty to handle the stress contribution from a numerical point of view.
Despite this limitation, very promising results were obtained. In particular, it was possible to recover the parabolic shape
of the evolution of the front velocity with time while hydrostatic models failed to reproduce the initial front acceleration.
In that work, the influence of the coordinate system (local or Cartesian) was studied, showing that the non-hydrostatic
model in Cartesian coordinates produces roughly similar deposits than the hydrostatic model in local coordinates. This
was partially suggested previously by [29], where they considered a Cartesian model with a correction related to the
vertical acceleration.

Concerning non-hydrostatic models for multilayer systems, a hierarchy of such models for Euler equations was
introduced in [40], all of them verifying a dissipative energy balance. They are denoted as LDNHk models, where k
is the degree of approximation of the vertical velocity. This work presents the extension of the LDNH0 model to granular
flows with the µ(I)-rheology, obtaining a multilayer model with weakly non-hydrostatic pressure. It can be seen as the
extension of the shallow model in [42] to the multilayer framework, but also as the extension of the multilayer model
[36] to the non-hydrostatic framework. In particular, after the promising results of the one-layer model with a weakly
non-hydrostatic pressure [42], it is a natural question whether its multilayer version could improve the modelling of
granular flows, adding the advantages of improving the in-depth description of the flow shown in [36]. Our goal is to
present this weakly non-hydrostatic multilayer model. It is expected that this model recovers the good results of both
previous models [36, 42], and solves some of the drawbacks of each of them, being cheaper computationally than a fully
non-hydrostatic model.

The multilayer weakly non-hydrostatic µ(I)-model proposed in the paper verifies a dissipative energy balance. A
finite volume discretization is also introduced, being well-balanced for steady solutions at rest with non-constant free
surface. As expected, the prize to pay is the increase of the computational effort, mainly due to the need to solve the
non-hydrostatic pressure in multilayer systems, which is made via an iterative linear system solver. Concerning that, we
propose a simple strategy that allows us to notably reduce the computational cost.

This paper is organized as follows. In Section 2 the initial system is stated and the dimensional analysis is performed.
Section 3 is devoted to the multilayer approach of the system, presenting the final model. The numerical approximation
is described in Section 4 and some numerical tests are presented in Section 5. Concretely, we study the influence of
the coordinate system in the multilayer case, and compare with laboratory-scale granular collapse experiments. We also
perform convergence and well-balanced tests, and show the efficiency of the proposed strategy to speed up the iterative
solver for the linear system associated to the pressure unknowns. Finally, some conclusions are presented in Section 6.

2 Derivation of a non-hydrostatic µ(I)-model

In this section we derive the non-hydrostatic multilayer model that we propose. It is based on the dimensional analysis
made in [42], and the non-hydrostatic extension for multilayer systems introduced in [40]. Firstly, we write the governing
equations and the non-dimensional 2D Navier-Stokes system, under the assumption of a weakly non-hydrostatic pressure.
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2.1 Governing equations

Let us briefly summarize the governing equations describing these flows. We consider a 2D granular mass with constant
density ρ ∈ R and velocity u ∈ R2, whose dynamics is described by the 2D Navier-Stokes system{

∇ · u = 0,

ρ (∂tu+ (u · ∇)u) = ∇ · σ + ρg,

where σ = −pI+ τ is the total stress tensor, with p ∈ R the total (hydrostatic and non-hydrostatic) pressure and τ the
deviatoric tensor. This tensor is defined by (1), which can be written in the regime when the material flows (∥D∥ ̸= 0),
as

τ = ηD (u) ,

where η ∈ R is the viscosity coefficient and the stain-rate tensor D (u) = 1
2

(
∇u+ (∇u)′

)
. In the µ(I)-rheology,

introduced in [53], the viscosity is defined as (see details in [55, 36] among others)

η =
µ(I)p√

||D (u) ||2 + δ2
,

with δ > 0 a regularization parameter (see e.g. [45, 66]), ||D|| =
√
0.5D : D and µ(I) the friction coefficient defined by

µ(I) = µs +
µ2 − µs

I0 + I
I,

where I0 and µ2 > µs are constant parameters depending on the material, and

I =
2ds||D (u) ||√

p/ρs

is the inertial number, with ds and ρs the grain diameter and density, respectively. The grain density and the apparent
flow density (ρ) are related by ρ = φsρs with φs the solid volume fraction.

As boundary conditions, similarly to what is done in [36, 42], we consider:

• At the free surface: the usual kinematic condition and normal stress balance

Nt + u · n⃗b+h = 0, and p = 0,

with
(
Nt, n⃗

b+h
)
the downward time-space normal vector to the free surface.

• At the bottom: the non-penetration condition and a Coulomb friction law

u · nb = 0, and σ n⃗b −
((

σ n⃗b
)
· n⃗b

)
n⃗b =

(
−µ(I) p u

|u|
, 0

)′

,

with n⃗b the downward space vector normal to the bottom and u the first component of u.

2.2 Initial system and dimensional analysis

Let us start by establishing the notation used here. We consider local (or tilted) coordinates, as usually done in granular
flow models, that refer to a fixed inclined plane (a straight line in the 1D x−z case). Concretely, we consider a plane given

by b̃(x) = (xend − x) tan θ, with (x, z) the Cartesian coordinates, xend the final point of the domain, and θ > 0 a positive
slope angle. We adopt here the usual convention in geophysical flows, that considers positive angles θ for negative slopes.

Let (X,Z) be the local coordinates, measured in the direction along and normal to the inclined plane b̃, respectively,
and u = (u,w) the velocity vector, whose components are the downslope and normal velocities. We shall also consider a
local bottom, b(X), as the deviation from the reference plane, and h(X) the distance from b(X) to the free surface, both
measured in the normal direction (see Figure 1).
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Figure 1: Sketch of the Cartesian (blue) and local (red) reference system.

The dimensional analysis performed here is the same as in [42] (see also [36, 46] among others). Let us remind it
for the purpose of completeness. Defining H,L and U the characteristic height, length and velocity, we define the usual
shallowness parameter ε = H/L, and denoting with tildes (̃·) the non-dimensional variables, we obtain

(X,Z, t) = (LX̃,HZ̃, (L/U)t̃),

(u,w) = (Uũ, εUw̃),

h = Hh̃, ρ = ρ0ρ̃, p = ρ0U
2p̃,

(τXX , τXZ , τZZ) = ρ0U
2 (ετ̃XX , τ̃XZ , ετ̃ZZ) ,

with

τ̃XX = η̃∂X̃ ũ, τ̃XZ =
η̃

2

(
∂Z̃ ũ+ ε2∂X̃w̃

)
, τ̃ZZ = η̃∂Z̃w̃,

and therefore

D̃(ũ) =
U

H

1

2

 2ε∂X̃ ũ ∂Z̃ ũ+ ε2∂X̃w̃

∂Z̃ ũ+ ε2∂X̃w̃ 2ε∂Z̃w̃

 .

Note also that ∥D̃(ũ)∥ =
∣∣∂Z̃ ũ∣∣ /2 +O (ε). Finally, the Froude number is defined as Fr = U/

√
gH cos θ.

Following the asymptotic expansion performed in [42] for the pressure, and in particular for the non-hydrostatic
counterpart, we write

p̃ =
ρ0
Fr2

(
b̃+ h̃− Z̃

)
+ εp̃nh1 + ε2p̃nh, (2)

where the pressure is divided into a hydrostatic contribution, and the first and second order non-hydrostatic contributions

p̃nh1 , p̃nh. In that work, looking at the non-dimensional vertical momentum equation, these contributions are identified to
the stress tensor contributions and the normal acceleration, respectively. There, first order terms were neglected whereas
second order terms were kept. The reason is first that dealing with the terms coming from the stress tensor is notably more
difficult, especially from the numerical point of view. Furthermore, including the normal acceleration (in this sense, the
obtained model is called weakly non-hydrostatic) in [42] allowed to obtain very promising results for the depth-averaged
(e.g. one-layer) model. It is therefore interesting to extend this weakly non-hydrostatic model to its multilayer version.

To this aim, we follow the same approach here. Taking into account (2), the non-dimensional 2D Navier-Stokes system
reads (tildes are dropped for the sake of simplicity)

∂Xu+ ∂Zw = 0,

ρ0
(
∂tu+ u∂Xu+ w∂Zu

)
+ ∂Xp =

1

ε

ρ0
Fr2

tan θ + ε∂XτXX +
1

ε
∂ZτXZ ,

ρ0ε
2
(
∂tw + u ∂Xw + w ∂Zw

)
+ ε∂Zp

nh
1 + ε2∂Zp

nh = ε∂XτZX + ε∂ZτZZ .

(3a)

(3b)

(3c)
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This is the system that will be layer-averaged using the multilayer approach. Before, boundary conditions are written
in non-dimensional form as

∂th+ u|b+h
∂X (b+ h)− w|b+h

= 0, pnh|b+h
= 0,

at the free surface, and

u|b∂Xb− w|b = 0,
(η
2
∂Zu

)
|b
= µ(I|b)p|b

u|b∣∣u|b
∣∣ ,

at the bottom.

In next section, we develop the multilayer discretization and layer-averaging of system (3).

3 Multilayer system with the µ(I)-rheology and a weakly non-hydrostatic
pressure

In this subsection we apply the multilayer discretization introduced in [39] to system (3). We first recall the main aspects
of this approach and we focus later on the terms that differ from the previous work [36], where all the details of the
hydrostatic case are described.

Figure 2: Sketch of the multilayer discretization.

We first consider (lα)1≤α≤N strictly positive coefficients verifying
∑N

α=1 lα = 1. Then, for a positive height h(t,X) we

consider N shallow layers whose heights are hα(t,X) = lαh(t,X) (see Figure 2). Notice that then
∑N

α=1 hα = h holds.
Considering now the levels Zα+1/2 = b+

∑α
β=1 hβ , we denote the layers by

Ωα(t,X) = {(t,X,Z) : Zα−1/2 ≤ Z ≤ Zα+1/2}, for α = 1, . . . , N.

Note that
b = Z1/2 < · · · < Zα+1/2 < · · · < ZN+1/2 = b+ h

is a partition of [b, b+ h]. As notation, we define

fα =
1

hα

∫ Zα+1/2

Zα−1/2

f(t,X,Z) dZ,

the averaged value in the layer Ωα of the function f . In order to deal with possible discontinuities of f across the interface
defined by Z = Zα+1/2, we define

f−
α+1/2 = lim

Z→Zα+1/2

Z<Zα+1/2

f|Ωα(t)
, f+

α+1/2 = lim
Z→Zα+1/2

Z>Zα+1/2

f|Ωα+1(t)
,
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and [[f ]]α+1/2 = f+
α+1/2 − f−

α+1/2 denotes the jump of f across the interface. In case of a continuous function, then

[[f ]]α+1/2 = 0 and therefore f+
α+1/2 = f−

α+1/2 = fα+1/2.

In order to obtain the multilayer discretization of system (3), some assumptions on the unknowns (u,w, q) are needed.
Then, the mass and momentum equations are integrated on each layer Ωα, leading to 3 layer-integrated equations for
each layer.

In this paper, we present a generalization of the model denoted by LDNH0 in [40]. In this model, the two components
of the velocity u and w are approximated by constant functions in each layer:

u(t,X,Z) =

N∑
α=1

uα(t,X)1Ωα
(Z), w(t,X,Z) =

N∑
α=1

wα(t,X)1Ωα
(Z),

and the non-hydrostatic pressure pnh(t,X,Z), pnh|Ωα
∈ P1 by a continuous linear function. Note that in this case:

pnhα (t,X) = pnh(t,X,Zα) =
pnhα+1/2(t,X) + pnhα−1/2(t,X)

2
(4)

where Zα = Zα−1/2 + hα/2 is the midpoint of the layer Ωα. Actually, for each layer we have

pnh(Z) = pnhα +
pnhα+1/2 − pnhα−1/2

hα
(Z − Zα) , for Z ∈ [Zα−1/2, Zα+1/2].

Under these assumptions and by appropriately defining the jump conditions across the interfaces, the LDNH0 model
for the Euler equation is obtained in [40]. Here, the main novelty is to deal with the viscous term ∂ZτXZ , which involves
a complex viscosity, as detailed in the following sections.

3.1 Jump conditions at the interfaces

From an asymptotic analysis, we recover the following non-dimensional conditions when imposing the normal flux jump
condition for the mass and the momentum equations (all the details are presented in [36]):

The jump condition associated with the mass conservation equation leads to the definition of the mass transference
term at the interface Z = Zα+1/2, denoted by Gα+1/2 := G+

α+1/2 = G−
α+1/2 (corresponding to −Γα+1/2 in [40]), where

G±
α+1/2 = ∂tZα+1/2 + u±

α+1/2∂XZα+1/2 − w±
α+1/2.

Morover, from that condition we recover
[[u]]α+1/2 · n⃗α+1/2 = 0,

where n⃗α+1/2 =
(
∂XZα+1/2,−1

)
is the downward normal vector at the interface.

From the jump condition for the momentum equation, it follows that

ε2τ±XX,α+1/2∂XZα+1/2 − τ±XZ,α+1/2 = ε2τ̃XX,α+1/2∂XZα+1/2 − τ̃XZ,α+1/2 ±
1

2
ρ0εGα+1/2

(
u+
α+1/2 − u−

α+1/2

)
,

τ±ZX,α+1/2∂XZα+1/2 − τ±ZZ,α+1/2 = τ̃ZX,α+1/2∂XZα+1/2 − τ̃ZZ,α+1/2 ±
1

2
ρ0εGα+1/2

(
w+

α+1/2 − w−
α+1/2

)
,

where we recall that τXX = η∂Xu, τXZ = 1
2η
(
∂Zu+ ε2∂Xw

)
, τZZ = η∂Zw, and τ̃ is a consistent approximation of τ at

the Z = Zα+1/2 (see [36]).

3.2 Layer-averaging procedure

In this subsection we detail the layer-averaging of system (3) in the framework of the multilayer approach. We tackle the
mass and the momentum conservation equation separately.
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3.2.1 Mass conservation equation

The mass conservation equation (3a) is integrated along the normal direction in each layer, leading to

0 =

∫ Zα+1/2

Zα−1/2

(∂Xu+ ∂Zw) dZ = ∂X (hαuα)−
(
u−
α+1/2∂XZα+1/2 − w−

α+1/2

)
+
(
u+
α−1/2∂XZα−1/2 − w+

α−1/2

)
,

and therefore
lα (∂th+ ∂X (huα)) = Gα+1/2 −Gα−1/2, for α = 1, . . . , N.

Notice that combining previous equations, the explicit formula for Gα+1/2 is found (see [2])

Gα+1/2 =

α∑
β=1

lβ∂X (h (uβ − u)) , with u =

N∑
γ=1

lγuγ . (5)

In particular, by summing up all the equations we have the mass conservation equation

∂th+ ∂X (hu) = 0, (6)

where G1/2 = GN+1/2 = 0 have been assumed as boundary conditions.

3.2.2 Horizontal momentum conservation equation

We split in this case equation (3b) in convective, pressure, and viscous terms. The usual integration procedure gives∫ Zα+1/2

Zα−1/2

(∂tu+ u∂Xu+ w∂Zu) dZ = ∂t (hαuα) + ∂X
(
hαu

2
α

)
− u−

α+1/2Gα+1/2 + u+
α−1/2Gα−1/2.

Note that in the present approach (LDNH0 model) it holds that u−
α+1/2 = u+

α−1/2 = uα, since u|Ωα
∈ P0. Pressure terms

are now integrated within the layer in the normal direction, leading to∫ Zα+1/2

Zα−1/2

∂X

( ρ0
Fr2

(
b̃+ b+ h− z

)
+ εpnh1 + ε2pnh

)
dz = hα

ρ0
Fr2

∂X

(
b̃+ b+ h

)
+ ∂X

(
εhαp

nh
1,α + ε2hαp

nh
α

)
−
(
εpnh1 + ε2pnh

)
|Zα+1/2

∂XZα+1/2 +
(
εpnh1 + ε2pnh

)
|Zα−1/2

∂XZα−1/2,

where we have used b̃(X) = (Xend −X) sin θ. Finally, viscous terms are integrated, which yields∫ Zα+1/2

Zα−1/2

(
ε∂XτXX +

1

ε
∂ZτXZ

)
dz

= ε∂X

(∫ Zα+1/2

Zα−1/2

η∂Xu dz

)
+

1

ε

(
ε2τ+XX,α−1/2∂XZα−1/2 − τ+XZ,α−1/2

)
− 1

ε

(
ε2τ−XX,α+1/2 − τ−XZ,α+1/2

)
= ε∂X

(∫ Zα+1/2

Zα−1/2

η∂Xu dz

)
+

(
ετ̃XX,α−1/2∂XZα+1/2 −

1

ε
τ̃XZ,α−1/2

)
−
(
ετ̃XX,α+1/2∂XZα+1/2 −

1

ε
τ̃XZ,α+1/2

)

+
1

2
ρ0Gα−1/2

(
u+
α−1/2 − u−

α−1/2

)
+

1

2
ρ0Gα+1/2

(
u+
α+1/2 − u−

α+1/2

)
.

Defining now

K̃α+1/2 = ετ̃XX,α+1/2∂XZα+1/2 −
1

ε
τ̃XZ,α+1/2 and UH

Z α+1/2 =
uα+1 − uα

hα+1/2
,

we obtain that

K̃α+1/2 = Kα+1/2 +O (ε) , where Kα+1/2 = −1

ε

ηα+1/2

2
UH
Z α+1/2.

8



We can collect finally all the terms, keep terms up to first order and terms of order ε2, go to the dimensional variables,
and obtain the horizontal momentum equation

ρ
(
∂t (hαuα) + ∂X

(
hαu

2
α

)
+ g cos θhα∂X

(
b̃+ b+ h

))
+ ∂X

(
hαp

nh
α

)
= Kα−1/2 −Kα+1/2

+ pnhα+1/2∂XZα+1/2 − pnhα−1/2∂XZα−1/2 + uα+1/2ρGα+1/2 − uα−1/2ρGα−1/2, (7)

for α = 1, . . . , N and

uα+1/2 =
uα + uα+1

2
.

3.2.3 Vertical momentum conservation equation

Following the same procedure for equation (3c), we obtain the momentum conservation equation in the normal direction
for each layer. Let us just detail the viscous terms. We have∫ Zα+1/2

Zα−1/2

ε (∂XτZX + ∂ZτZZ) dz

= ε∂X

(∫ Zα+1/2

Zα−1/2

η
(
∂Zu+ ε2∂Xw

)
dz

)
+ ε

(
τ+ZX,α−1/2∂XZα−1/2 − τ+ZZ,α−1/2

)
− ε

(
τ−ZX,α+1/2∂XZα+1/2 − τ−ZZ,α+1/2

)
= ε∂X

(∫ Zα+1/2

Zα−1/2

η
(
∂Zu+ ε2∂Xw

)
dz

)
+ ε

(
τ̃ZX,α−1/2∂XZα−1/2 − τ̃ZZ,α−1/2

)
− ε

(
τ̃ZX,α+1/2∂XZα+1/2 − τ̃ZZ,α+1/2

)
+
1

2
ρ0ε

2Gα−1/2

(
w+

α−1/2 − w−
α−1/2

)
+

1

2
ρ0ε

2Gα+1/2

(
w+

α+1/2 − w−
α+1/2

)
.

It is observed that

ε∂X

(∫ Zα+1/2

Zα−1/2

η
(
∂Zu+ ε2∂Xw

)
dz

)
+ ε

(
τ̃ZX,α−1/2∂XZα−1/2 − τ̃ZZ,α−1/2

)
− ε

(
τ̃ZX,α+1/2∂XZα+1/2 − τ̃ZZ,α+1/2

)
is defined only by terms of order O(ε) and O(ε3).

Then, collecting all the terms and keeping also terms of order ε2, the vertical momentum equation in dimensional
variables is

ρ (∂t (hαwα) + ∂X (hαuαwα)) = pnhα−1/2 − pnhα+1/2 + wα+1/2ρGα+1/2 − wα−1/2ρGα−1/2, (8)

for α = 1, . . . , N , where wα+1/2 = (w+
α+1/2+w−

α+1/2)/2. Notice that here first order term in ε have been neglected whereas

second order terms are kept, similarly to the hypothesis made for the pressure (2). On the one hand, the discretization of
the neglected first order terms by non-hydrostatic multilayer models has not been tackled yet in the literature. It entails
important difficulties even in the case of a hydrostatic pressure (see [18]). On the other hand, including second order
terms gave promising results in [42].

3.3 Final multilayer non-hydrostatic model

Notice that we have 3N+1 unknowns (h, uα, wα, p
nh
α ) and 2N+1 equations till now. Then, the incompressibility condition

is used in each layer. Concretely, we integrate the incompressibility equation (3a) for Z ∈ [Zα−1/2, Zα] and, taking into

9



account equations (6), (7) and (8), the final weakly non-hydrostatic multilayer system reads

∂th+ ∂X (hu) = 0,

ρ
(
∂t (hαuα) + ∂X

(
hαu

2
α

)
+ g cos θhα∂X

(
b̃+ b+ h

))
+ ∂X

(
hαp

nh
α

)
= Kα−1/2

−Kα+1/2 + pnhα+1/2∂XZα+1/2 − pnhα−1/2∂XZα−1/2 + uα+1/2ρGα+1/2 − uα−1/2ρGα−1/2,

ρ (∂t (hαwα) + ∂X (hαuαwα)) = pnhα−1/2 − pnhα+1/2 + wα+1/2ρGα+1/2 − wα−1/2ρGα−1/2,

wα − uα∂XZα +

α−1∑
β=1

∂X (lβhuβ) +
∂X (lαhuα)

2
= 0, for α = 1, . . . , N

(9a)

(9b)

(9c)

(9d)

where Gα+1/2 and u are given by (5), b̃(X) = (Xend −X) sin θ is the reference plane, and the velocities at the interfaces
are

uα+1/2 =
uα+1 + uα

2
, wα+1/2 =

wα+1 + wα

2
,

since u|Ωα
, w|Ωα

∈ P0. The viscous terms are

Kα+1/2 = −1

2
ηα+1/2UH

Z α+1/2, with UH
Z α+1/2 =

uα+1 − uα

hα+1/2

and hα+1/2 = (hα+1 + hα)/2, for α = 1, . . . , N − 1. In the previous equation, the viscosity coefficients are

ηα+1/2 =
µ(Iα+1/2)pα+1/2√(
UH
Z α+1/2

)2
/4 + δ2

, (10)

with

pα+1/2 = ρg cos θh

N∑
β=α+1

lβ + pnhα+1/2 and Iα+1/2 =
ds

∣∣∣UH
Z α+1/2

∣∣∣√
pα+1/2/ρs

.

At the free surface we have KN+1/2 = 0, and at the bottom K1/2 is defined by the Coulomb friction law

K1/2 = −µ(I1/2)p1/2
u1

|u1|
. (11)

It can be easily proved that the previous model satisfies a dissipative energy balance as a consequence of the energy
balance associated to model LDNH0 [40]. Actually, the following result is obtained.

Theorem 1 Let Eα be the energy of layer Ωα that is defined by

Eα = hα

(
u2
α + w2

α

2
+ g cos θ

(
b̃+ b+

h

2

))
.

System (9) satisfies the dissipative energy inequality

ρ∂t

(
N∑

α=1

Eα

)
+ ρ∂X

[
N∑

α=1

uα

(
Eα + g cos θ hα

h

2
+

pnhα
ρ

)]
≤ −ρg cos θ h |u1|µ(I)−

N−1∑
α=1

ηα+1/2

2

(uα+1 − uα)
2

hα+ 1
2

.

10



The proof of the theorem can be deduced following [40] and [36]. For the sake of completeness we give the details in
Appendix B.

Concerning the steady states of system (9), we are interested in preserving steady states at rest where the slope of
the free surface is lower than the angle of repose of the granular material. Concretely, the solutions verifying

uα = wα = pnhα = 0, for α = 1, . . . , N, and
∣∣∣∂X (h+ b+ b̃

)∣∣∣ ≤ µs. (12)

Notice that these solutions are analogous to the steady states preserved by previous models: hydrostatic multilayer model
[36] and also its one-layer version, non-hydrostatic one-layer model [42], and even the classical Savage-Hutter model [79].

Remark 1 From system (9) one can recover previous models in [36, 42]. In particular, the non-hydrostatic monolayer
model [42] is obtained when fixing the number of layers N = 1 in (9), and the hydrostatic model [36] is recovered using
equations (9a), (9b) and vanishing non-hydrostatic pressure pnhα = 0.

4 Numerical approximation

In the literature, multilayer hydrostatic systems have been discretized by combining finite volume methods with a
splitting procedure (see, for instance, [3, 39]) where viscous terms are treated (semi-)implicitly. On the other hand,
some other numerical methods have been proposed for non-hydrostatic pressure models. For instance, in [42] a one-layer
non-hydrostatic pressure system for granular flows is discretized. In [33], a multilayer non-hydrostatic pressure without
viscous effects is discretized. In the latter cases, the presence of non-hydrostatic terms on the model demands solving an
elliptic problem implicitly. To our knowledge, it is the first time that a numerical scheme for a multilayer system with
non-constant viscosity and non-hydrostatic pressure has been exposed, and we will describe it in the following.

We perform a three-step numerical approximation following [42]. Firstly, we deal with the hyperbolic counterpart (18)
in an explicit way, including also some non-hydrostatic contributions. It is worth mentioning that these non-hydrostatic
terms result from considering the pressure written in an incremental form (see (15)), as explained later. This step is based
on an explicit path-conservative finite volume method, with a hydrostatic reconstruction, taking care of the well-balanced
property. Secondly, the viscous effects are implicitly discretized by solving system (23). In this step, the viscous terms
are linearized in order to not solve an implicit nonlinear problem. Finally, system (26) is implicitly solved to compute
the non-hydrostatic pressure unknown, and then we appropriately correct the velocity and pressure fields.

The computational cost of this multilayer non-hydrostatic pressure system notably increases with the number of
vertical layers, mainly because of the elliptic problem associated with the non-hydrostatic pressure. Then, designing some
strategies to make these methods more efficient when a fine vertical resolution is needed is convenient. In this sense, we
propose a new and very efficient procedure to solve the elliptic problem. It will be analyzed in the numerical tests (see
Subsection 5.1). In what follows, we shall describe each step in detail.

System (9) can be written in compact form as
∂tU + ∂XF (U) +B(U)∂XU + S(U)∂X

(
b̃+ b+ h

)
= E(U ,P ) + T (U ,P , ∂XU , ∂XP , ∂XZ) ,

C (U , ∂XU , ∂XZ) = 0,

(13a)

(13b)

where U = (h, hu1, . . . , huN , hw1, . . . , hwN )
′ ∈ R2N+1 and P =

(
pnh1/2, . . . , p

nh
N+1/2

)′
∈ RN+1 denote the conserved

variables and non-hydrostatic unknowns (at the interfaces), and

F (U) =



hu

hu2
1
...

hu2
N

hu1w1

...
huNwN


, S(U) =



0

g cos θh
...

g cos θh

0
...
0


, E(U ,P ) =

1

ρ



0(
K1−1/2 −K1+1/2

)
/l1

...(
KN−1/2 −KN+1/2

)
/lN

0
...
0
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are the convective flux, hydrostatic pressure, and viscous terms, respectively. B(U)∂XU contains the non-conservative
products involving the momentum transfer across the interfaces

B(U)∂XU =



0(
u1+1/2G1+1/2 − u1−1/2G1−1/2

)
/l1

...(
uN+1/2GN+1/2 − uN−1/2GN−1/2

)
/lN(

w1+1/2G1+1/2 − w1−1/2G1−1/2

)
/l1

...(
wN+1/2GN+1/2 − wN−1/2GN−1/2

)
/lN


.

Concerning non-hydrostatic terms, the vector

T =
1

ρ



0(
−∂X(hpnh1 ) + pnh1+1/2∂XZ1+1/2 − pnh1−1/2∂XZ1−1/2

)
/l1

...(
−∂X(hpnhN ) + pnhN+1/2∂XZN+1/2 − pnhN−1/2∂XZN−1/2

)
/lN(

pnh1−1/2 − pnh1+1/2

)
/l1

...(
pnhN−1/2 − pnhN+1/2

)
/lN


,

contains the non-hydrostatic corrections for each momentum equation, where Z =
(
Z1/2, . . . , ZN+1/2

)′ ∈ RN+1 is the
vector containing the internal interfaces. Finally, C (U , ∂XU , ∂XZ) describes the incompressibility constraints (9d), which
will be rewritten and better described in Step 3 of the description of this numerical algorithm.

We consider a set of Nx control volumes Ωi = [xi−1/2, xi+1/2], with constant length ∆x as usual in the framework of
finite volume methods. We denote by xi = (xi−1/2 + xi+1/2)/2 the center of each volume cell. For any time tn ∈ [0, tf ]
we consider the cell averages

Un
i =

1

∆x

∫
Ωi

U(x, tn) dx.

For convenience, the non-hydrostatic unknowns are located at the half-integer locations xi+1/2, i = 0, . . . , Nx. Then, we
denote the non-hydrostatic pressure unknowns at time tn by

P n =
(
P n

1/2, . . . ,P
n
Nx+1/2

)′
∈ R(Nx+1)·(N+1),

where

P n
i+1/2 =

(
pnh1/2(xi+1/2, t

n), . . . , pnhN+1/2(xi+1/2, t
n)
)′
∈ RN+1,

that corresponds with a second-order approximation of the cell averages of the non-hydrostatic pressure on the staggered
grid [xi, xi+1].

Concerning the time discretization, the interval [0, tf ] is discretized in time steps ∆tn = tn+1−tn, which are computed
satisfying the usual stability condition

∆tn = min
i=1,...,Nx

∆tni , with ∆tni =
CFL∆x

max
i=1,...,Nx

(λn
i )

, (14)

where CFL ∈ (0, 1), and λn
i = |un

i |+
√
g cos θhn

i is an upper bound of the system’s eigenvalues.

12



Before describing each step of the scheme, let us mention that we consider an incremental decomposition of the
non-hydrostatic unknowns to increase the order of accuracy of the projection method for the elliptic problem (see [50]).
Thus, we define the fluctuation of the non-hydrostatic pressure from time tn to tn+1 as follows:

P̃
n+1

i+1/2 = P n+1
i+1/2 − P n

i+1/2, (15)

that is P̃
n+1

= P n+1 − P n. Note that this approach makes non-hydrostatic contribution P n+1
i+1/2, at time tn+1, to be

written as sum of two terms:

P n+1 = P n + P̃
n+1

, (16)

and therefore, we can split the non-hydrostatic contribution at the horizontal momentum equation as follows

T
(
U ,P n+1, ∂XU , ∂XP n+1, ∂XZ

)
= T (U ,P n, ∂XU , ∂XP n, ∂XZ) + T

(
U , P̃

n+1
, ∂XU , ∂XP̃

n+1
, ∂XZ

)
.

(17)

We will discretize the first terms explicitly in time at step 1 of the scheme, whereas the second terms will be considered
implicitly in step 3.

We then propose a numerical scheme based on three steps described in what follows. Let us previously remark that,

as usually in splitting procedures, the outputs of first and second steps are denoted by Un+1/3 and Un+2/3 respectively.
The results of step 3 is Un+1,P n+1.

Step 1: hydrostatic problem

The first step focuses on solving explicitly the underlying system obtained when viscous and non-hydrostatic terms related

to P̃
n+1

are removed from system (13):

∂tU + ∂XFC(U) +B(U)∂XU + S(U)∂X

(
b̃+ b+ h

)
= T (U ,P , ∂XU , ∂XP , ∂XZ) , (18)

where T will be evaluated explicitly at time tn as suggested in (17).
Here, we consider the extension to the multilayer case of the scheme presented in [42] for the one-layer case, where the

main difference is the presence of non-conservative terms coming from the mass transference between the vertical layers.
Thus, the finite volume method is described as

U
n+1/3
i = Un

i +
∆t

∆x

(
Fn

i−1/2 −F
n
i+1/2 +

1

2

(
Bni−1/2 + B

n
i+1/2 + S

n
i−1/2 + S

n
i+1/2

))
+ T (Un

i ,P
n
i , (∂XUn)i, (∂XP n)i, (∂XZ)i) , (19)

with

Bi+1/2 =
1

2
(B(U i) +B(U i+1)) (U i+1 −U i) ,

and

Si+1/2 =
1

2
(S(U i) + S(U i+1))

(
h+
i+1/2 − h−

i+1/2

)
,

where h±
i+1/2 are the reconstructed states

h−
i+1/2 = max

(
0, hi − (∆bi+1/2)+

)
,

h+
i+1/2 = max

(
0, hi+1 − (−∆bi+1/2)+

)
,

with (∆bi+1/2)+ = max (0, bi+1 − bi) . (20)

The numerical flux Fn
i+1/2 is defined as

Fn
i+1/2 =

1

2

(
FC(U

n
i+1) + FC(U

n
i )
)
− 1

2
Dn

i+1/2,

13



being Dn
i+1/2 the numerical diffusion of the scheme, which will be defined within the framework of Polynomial Viscosity

Methods (PVM) introduced in [22] for non-conservative hyperbolic systems. Concretely, we use the HLL method for
non-conservative systems, which reads

Di+1/2 = α0

(
Ũ

+

i+1/2 − Ũ
−
i+1/2

)
+ α1

(
FC(U

n
i+1)− FC(U

n
i ) + Bni+1/2 + S̃

n
i+1/2

)
, (21)

with

S̃ni+1/2 =
1

2

(
S(Un

i+1) + S(Un
i )
) (

h̃+,n
i+1/2 − h̃−,n

i+1/2

)
,

and Ũ
±
i+1/2 the reconstructed states defined in (20). These reconstructed states are essential to satisfy the well-balanced

property for the set of steady solutions defined by (12). In (21), the parameter αi are

α0 =
SR|SL| − SL|SR|

SR − SL
, α1 =

|SR| − |SL|
SR − SL

,

defined in terms of the minimum (SL) and maximum (SR) wave speeds. These values are

SL = min
(
ūi −

√
g cos θ hi, ūi+1/2 −

√
g cos θ hi+1/2

)
,

SR = max
(
ūi+1 +

√
g cos θ hi+1, ūi+1/2 +

√
g cos θ hi+1/2

)
,

with hi+1/2, ūi+1/2 the usual Roe’s averaged states.
The main difficulty in this first step consists of preserving steady states defined by (12), where not only classical

lake-at-rest solutions (uα = 0 and ∂X

(
b̃+ b+ h

)
= 0) are involved, but also others with non-constant free surface. The

latter case corresponds with those steady states where friction is greater than pressure forces. In that case, the usual
hydrostatic reconstruction must be modified, accounting for the friction term, in order to preserve those steady states.

To this aim, following [9] (see also [37, 42]), we define h̃±
i+1/2 as in (20) by replacing (∆bi+1/2)+ by

(∆̃bi+1/2)+ = max
(
0, bi+1 − bi +∆Ci+1/2

)
,

accounting for the Coulomb friction. Concretely, the term ∆Ci+1/2 is responsible for balancing friction and pressure
forces and vanishing the numerical diffusion when it is necessary to obtain ∂th = 0. This term is defined as ∆Ci+1/2 =
−fi+1/2∆x/(g cos θ) with

fi+1/2 = − proj
g cos θµ(I|1/2 )

(
ūi+1/2

∆t
− g cos θ (hi+1 + bi+1 − hi − bi)

∆x

)
,

being

proj
g cos θµ(I|1/2 )

(X) =


X, if |X| ≤ g cos θµ(I|1/2),

g cos θµ(I|1/2)
X

|X|
, if |X| > g cos θµ(I|1/2).

Finally, the reconstructed states Ũ
±
i+1/2 in (21) are

Ũ
−
i+1/2 =

(
h̃−
i+1/2, h̃

−
i+1/2u1,i, . . . , h̃

−
i+1/2uN,i, h̃

−
i+1/2w1,i, . . . , h̃

−
i+1/2wN,i

)′
,

Ũ
+

i+1/2 =
(
h̃+
i+1/2, h̃

+
i+1/2u1,i+1, . . . , h̃

+
i+1/2uN,i+1, h̃

+
i+1/2w1,i+1, . . . , h̃

+
i+1/2wN,i+1

)′
.

Once we have discretized the hydrostatic system, the explicit contributions of the non-hydrostatic pressure T in (19)
are added. To this aim, let us recall that pnhα is given by (4). Moreover we write ∂X

(
hpnhα

)
in terms of h, pnhα and its

derivatives by using the product rule, and

P i =
P i+1/2 + P i−1/2

2
, (∂XP )i =

P i+1/2 − P i−1/2

∆x
, (∂XU)i =

U i+1 −U i−1

2∆x
. (22)
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as second-order point-values approximations of the averaged values. Finally, note that Zi can be written as

Zi = (bi, bi + l1hi, bi + (l1 + l2)hi, . . . , bi + hi)
′
.

Note that the previous vector components describe the vertical interfaces Γα+1/2, α = 0, . . . , N, and the derivative of a
given component Zα−1/2 is discretized as follows:

(∂xZα−1/2)i =
bi+1 − bi−1

2∆x
+

hi+1 − hi−1

2∆x

α−1∑
β=1

lβ .

Step 2: Viscous terms

In this step the viscous terms are accounted, by solving the system

∂tU = E(U ,P ). (23)

First, the heights are no longer modified along the scheme due to the form of vectors E and T . Then, we trivially have

hn+1
i = h

n+2/3
i = h

n+1/3
i . To introduce the viscous terms, we consider an implicit method, where the viscous terms

are linearized by freezing the viscosity coefficients at time tn, as in [37], in order to avoid the resolution of a non-linear
system. It leads to a N ×N tridiagonal linear system at each cell Ωi. Concretely, the new values at this second step for
the horizontal discharges (the vertical ones are not involved in E(U ,P )) are given by

U
n+2/3
i = U

n+1/3
i +∆tE(Un

i ,U
n+1/3
i ,U

n+2/3
i ,P n

i ).

The previous equation is written by components, as

ĥ
n+2/3
i u

n+2/3
α,i = (hu)

n+1/3
α,i +

∆t

2 ρ lα

(
ηα+ 1

2
(Un

i ,P
n
i )

u
n+2/3
α+1,i − u

n+2/3
α,i

lα+ 1
2
hn+1
i

− ηα− 1
2
(Un

i ,P
n
i )

u
n+2/3
α,i − u

n+2/3
α−1,i

lα− 1
2
hn+1
i

)
, (24)

with ηα+1/2 given by (10), and

ĥ
n+2/3
i =

 h
n+2/3
i +

1

2

(
h
n+2/3
i−1 + h

n+2/3
i+1

)
if

∣∣∣hi+1 + bi+1 + b̃i+1 −
(
hi−1 + bi−1 + b̃i−1

)∣∣∣ ≤ 2∆xµs

h
n+2/3
i otherwise.

(25)

a reconstruction of hn+2/3 in the cell Ωi. This definition, that is similar to the one used in [42], is essential to the
well-balanced property of the scheme, as it is shown in the numerical tests (see Subsection 5.3). Notice that first

condition in (25) holds in the steady state case
∣∣∣∂X (h+ b+ b̃

)∣∣∣ ≤ µs. Let us remark that equation (24) must be

accordingly modified for according with the boundary conditions KN+1/2 = 0, and K1/2 in (11). Eq. (24) leads to
Nx tridiagonal linear systems, whose dimension is N × N , which are solved using the Thomas’ algorithm. Notice that
nonlinear systems would be obtained in case of considering a fully implicit scheme in this step.

Remark 2 In these steps, two numerical aspects should be noticed. First, in order to be able to deal with wet/dry areas:
(i) in Step 1, a standard wet/dry treatment (see [21]) is used to avoid the appearance of negative height values in case of
emerging bottom situations. It consist of detecting the emerging bottom (for instance hi > 0, hi+1 = 0 and hi+ bi < bi+1)

and using the modified state Ũ i = (hi, 0, ..., 0)
′ to compute the numerical fluxes (the symmetric case is analogous); (ii) in

Step 2, when the total height is lower than a given tolerance, then the viscous terms are discretized as a Coulomb friction
term for a one-layer model (see [37] for details). In practice, we set this tolerance as 10−6. Thus, a one-layer system with
Coulomb friction is solved in those cells satisfying hi < 10−6 for i = 1, ..., Nx, instead of the linear system (24), which
removes the vertical (multilayer) structure in these cells. Second, we cannot obtain uα = 0 because of the regularization
method, but minimal velocities. In practice, we reach velocities uα ∼ 10−6, 10−7 for δ = 10−5 (see Subsection 5.3).
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Step 3: Non-hydrostatic pressure correction

In the last step, the non-hydrostatic effects are added using the momentum equations (9b)-(9c) together with the
incompressibility constraints (9d). Thus, we implicitly solve the following system:{

∂tU = T (U ,P , ∂XU , ∂XP , ∂XZ) ,

C (U , ∂XU , ∂XZ) = 0,
(26)

where T is evaluated at time tn+1 corresponding to the last term in (17). As usual, we will use an implicit projection
correction method that will lead us to solve a linear system.

Let us recall the constraint at the layer α by

Eα = 0, ∀α = 1, . . . , N, where Eα = wα − uα∂XZα +

α−1∑
β=1

∂X (lβhuβ) +
∂X (lαhuα)

2
.

As it can be seen, the imposition of the constraint for α = 2, . . . , N involves variables from the layer β = 1 to β = α− 1.
To simplify the set of constraints (9d), and to improve the diagonal dominance of the linear operator to be inverted, we
equivalently consider

Nα = 0, ∀α = 1, . . . , N, where N1 = E1, N2 = E2 − E1, . . . , Nα = EN − EN−1.

For clarity, we will assume in what follows that lα = 1/N . Then, we define the vector C in (13b) by

C (U , ∂XU , ∂XZ) = 2hN (N1, . . . , NN )
′
, (27)

that reads

C =


2Nhw1 − 2Nhu1∂xZ1 + h∂x(hu1)

2N (hw2 − hw1)− 2N (hu2∂xZ2 − hu1∂xZ1) + h∂xhu2 + h∂xhu1

...
2N (hwN − hwN−1)− 2N (huN∂xZN − huN−1∂xZN−1) + h∂xhuN + h∂xhuN−1

 , (28)

where we recall that Zα = Zα+1/2 − 1
2N h. We consider now a projection method, taking into account the fluctuation

P̃
n+1

defined in (15). To do that, we will impose the incompressibility constraints on the staggered mesh xi+1/2

C
(
Un+1

i+1/2, (∂XUn+1)i+1/2, (∂XZ)i+1/2

)
= 0, (29)

where

Un+1
i+1/2 = U

n+2/3
i+1/2 +∆tT

(
Un+1

i+1/2, P̃
n+1

i+1/2, (∂XUn+1)i+1/2, (∂XP̃
n+1

)i+1/2, (∂XZ)i+1/2

)
, (30)

and the conserved variables and their derivatives on the staggered mesh are approximated from the averaged values

U
n+2/3
i+1/2 =

U
n+2/3
i +U

n+2/3
i+1

2
, Un+1

i+1/2 =
Un+1

i +Un+1
i+1

2
, (∂XUn+1)i+1/2 =

Un+1
i+1 −Un+1

i

∆x
.

Similarly, the component (∂XZα−1/2) of (∂XZ) is given by

(∂XZα−1/2)i+1/2 =
h+
i+1/2 − h−

i+1/2 − (hi+1 − hi)

∆x
+

α− 1

N
· hi+1 − hi

∆x
,

where the first addend is an approximation of ∂xb using the hydrostatic reconstruction (20). Finally, the derivatives of
the fluctuation of the non-hydrostatic pressures are approximated by

(∂XP̃
n+1

)i+1/2 =
P̃

n+1

i+3/2 − P̃
n+1

i−1/2

2∆x
.
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Remark 3 Notice that the factor h in the definition of C in (27) leads to a rewriting of the incompressibility constraints
in terms of solely conserved variables (see (28)). That gives a more efficient and stable numerical implementation since
no division by h must be performed when computing C.

Now, putting Eqs. (30) into (29) yields a linear system

A ·P =
1

∆t
R, (31)

where P is a vector that contains a rearrangement of the non-hydrostatic pressure fluctuations unknowns

P =

P1

...
PN

 , Pα =


p̃nh,n+1
α,1/2

...

p̃nh,n+1
α,Nx+1/2

 , α = 1, . . . , N,

A is a block tridiagonal matrix of dimension N · (Nx + 1)×N · (Nx + 1) given by

A =


M1,1 M1,2

M2,1 M2,2 M2,3

M3,2
. . .

. . .
. . .

. . . MN−1,N

MN,N−1 MN,N

 , (32)

being Mi,j tridiagonal matrices of dimension (Nx+1)× (Nx+1) (see details in Appendix A). Finally, R is the right-hand
side of the linear system that is given by

R =

R1

...
RN

 , Rα =


Cα

(
U

n+2/3
1/2 , (∂XUn+2/3)1/2, (∂XZ)1/2

)
...

Cα

(
U

n+2/3
Nx+1/2, (∂XUn+2/3)Nx+1/2, (∂XZ)Nx+1/2

)

 , α = 1, . . . , N, (33)

where the sub-index α in Cα denotes the α−th component of the vector (28).
To numerically approximate the solution of the linear system (31), we consider the following block Gauss-Seidel solver:

Algorithm

1: P(0) ← I.C.
2: s← 1
3: Er ← 0
4: do
5: for α = 1, 2, . . . , N do

6: Solve the tridiagonal system: Mα,αP(s)
α =

1

∆t
Rα −Mα,α−1P(s−1)

α−1 −Mα,α+1P(s−1)
α+1 ,

7: Er ← Er +∆x||P(s−1)
α −P(s)

α ||p
8: P(s−1)

α ← P(s)
α

9: end for
10: while Er ≥ ϵptol.

In line 1 of the algorithm, I.C. denotes the initial condition for the iterative solver. In practice, we take as initial condition

the fluctuation at the previous time step P̃
n
= P n − P n−1, although other choices are possible. As stated in line 6 of
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the algorithm, a tridiagonal linear system must be solved for each layer and at each loop of the iterative method, which
is carried out with the efficient Thomas’ algorithm. The Error variable Er is used to compute the lp norms for p = 1, or
p = 2, used as the stopping criteria and given by

||P(s−1)
α −P(s)

α ||p =
1

N

Nx∑
i=0

hi+1/2

∣∣∣p̃nh,(s−1)
α,i+1/2 − p̃

nh,(s)
α,i+1/2

∣∣∣p , for p = 1, 2.

Alternative, the l∞ norm can be considered, and therefore Er in line 7 is updated as

Er ← max

{
Er, max

i=0,...,Nx

{∣∣∣p̃nh,(s−1)
α,i+1/2 − p̃

nh,(s)
α,i+1/2

∣∣∣}} ‘

whereas the stopping condition in line 10 is given by Er ≥ ϵptol. The influence of the choice of that different norms will be
studied in Subsection 5.1.1. Finally, ϵptol will be set in the numerical experiments.

Remark 4 The proposed linear solver has shown the ability to converge for a few iterations (less than 62 for 5 layers,
as shown in Table 2) considering the strategy described in Subsection 4.1, that can be improved.

One could use other linear solvers, such as LU factorizations or Krylov gradient-based methods. The first one is
discarded since the matrix to be inverted (32) depends on the time step, increasing the computational effort. Krylov-based
methods converge rapidly, especially if a convenient preconditioner is adopted and a matrix-free version of the algorithm to
maintain low storage of the final implementation is considered (see, for instance [64]). In general, matrix-free linear solvers
make the algorithm more convenient for future GPU implementations for 3D domains where memory is an important
issue.

The methodology employed here follows similar ideas presented in [31, 59], where the resulting linear systems are
solved using iterative Jacobi methods combined with a scheduled relaxation parallelized for 3D domains that show excellent
computational performance. Some other authors have employed similar methods. For instance, in ([31, 33]), different
ad-hoc implementations of the Gauss-Seidel iterative procedures were employed for 2D domains.

Once the non-hydrostatic pressure fluctuations P̃
n+1

i+1/2 have been computed, the discharges Un+1
i can be updated

from

Un+1
i = U

n+2/3
i +∆tT

(
Un+1

i , P̃
n+1

i , (∂XUn+1)i, (∂XP̃
n+1

)i, (∂XZ)i

)
,

where similarly, a second order point value approximation in the center of the cell will be used using (22). Finally, the
non-hydrostatic unknowns are updated to P n+1

i+1/2 by (16).

Remark 5 Since non-hydrostatic terms appear only in the momentum equations, the final numerical scheme is
well-balanced for the water at rest solutions thanks to the hydrostatic reconstruction performed in step 1 and the definition
(25), as we prove numerically in Subsection 5.3. It is positive preserving for the water height. It is a consequence of the
nonnegativity of the HLL scheme for a flat bottom ([9]) and the numerical treatment for wet/dry areas [21] (see Remark
2). Moreover, the final numerical scheme is linearly L∞−stable under the usual CFL condition given in (14) (see [22]).

Remark 6 Concerning boundary conditions, here we use standard methods for wall/free-outflow boundary conditions as
in [31]. Concretely, we use a ghost-cell technique that duplicates the height and the pressures at the boundaries, and either
duplicates or takes the opposite value for the discharges, depending on whether free-outflow or wall boundary conditions are
considered. That is, a discretization of homogeneous Neumann boundary conditions are used for the height and pressures,
and homogeneous Neumann (free-outflow case) or Dirichlet (wall case) boundary conditions are used for the discharges.
In addition, the matrix A (32) for the pressure resolution is modified according to (37).

4.1 Strategy to speed up non-hydrostatic multilayer simulations

As commented at the beginning of Section 4, the computational cost associated with non-hydrostatic multilayer systems
becomes high, especially when increasing the number of vertical layers. Most of this effort is due to the third step in the
scheme, that is, the elliptic problem solving the non-hydrostatic contributions. For this reason, any strategy to speed up
this step is appreciated. We propose a straightforward strategy that allows us to significantly reduce the computational
cost when using many layers. This strategy will be analyzed from the numerical point of view in Subsection 5.1.

18



The goal is to reduce the number of iterations in the non-hydrostatic iterative solver, or at least when considering a

high number of vertical layers. We achieve it by improving the initial guess P(0), taking the solution provided by the
linear system at the previous time step.

The main idea is to solve the elliptic problem related to dispersive effects in a coarse vertical mesh, with a lower
number of layers Nini guess < N , so that its solution is a better initial guess for the original system with N layers. In
this way, we would solve the dispersive linear system twice: firstly with Nini guess layers, whose resolution is much faster
than the original problem; secondly the full system with an improved initial guess, so that less iterations are needed to
converge to the solution Pn+1.

In order to be able to build the first linear system in the coarse vertical discretization, we assume a conformal mesh
as follows. We define Ngr = N/Nini guess ∈ N representing the number of layers that merge into a single layer. Then, the
domain is divided along the normal direction into layers Ωβ,red, where

Ωβ,red =

Ngr⋃
j=1

ΩNgr(β−1)+j for β = 1, . . . Nini guess.

Now, we need to define auxiliary vector variables with size Nini guess for this domain subdivision. Those are given from
the original vector variables by simply computing appropriate averaged values with the data of the merged layers. For
instance, for the horizontal velocities, we define

uβ,red =
1

Ngr

Ngr∑
j=1

uNgr(β−1)+j for β = 1, . . . Nini guess,

and analogously for all the variables involved in resolving the elliptic problem (30). Concretely, it is done to define U red,

P red and P̃ red, which are the input variables for the first stage where the linear system for the reduced elliptic operator

is solved. Once we have the solution for the non-hydrostatic variable P̃ red, it is used to generate the initial guess for the
second stage, where the full linear system with N layers is solved. Thus, we define, for α = 1, . . . , N ,

p̃
nh,(0)
α+1/2 = p̃nhβ+1/2,red

with 1 ≤ β ≤ Nini guess such that Zβ−1/2 ≤ Zα−1/2 < Zβ+1/2, and p̃
nh,(0)
N+1/2 = 0. These variables define the iterative

algorithm’s initial condition P(0). It is expected that the number of iterations needed in this case for the full system
is lower than the original one, where the solution at the previous time step is taken. Therefore, the elliptic problem’s
computational time is also reduced, despite solving two linear systems. In Subsection 5.1.2 we will see that this strategy is
effective for a granular collapse problem and different vertical discretizations. Let us remark that, although this strategy
is effective for the numerical experiments performed here, other strategies could be used to speed up the iterative solver.

5 Numerical tests

We perform here some numerical tests with the proposed multilayer model and compare the results to those obtained
with precedent models, namely the multilayer hydrostatic [36] and the one-layer weakly non-hydrostatic [42] models. The
goal is to show that the multilayer model with weakly non-hydrostatic pressure combines some of the strengths of these
previous models. In particular, we will quantify the influence of the multilayer and of the non-hydrostatic approaches in
several practical cases. It will be shown in Subsection 5.5. In particular, we recover important results of both models,
although the prize is a higher computational cost. Before, concerning this computational effort, it will be evaluated in
Subsection 5.1, together with the efficiency of the proposed numerical strategy to speed up the non-hydrostatic step of
the numerical scheme presented in Section 4. Next, in Subsection 5.4, we will quantify the influence of the coordinate
system (Cartesian or local) in the multilayer model in order confirm the results obtained with the one-layer model (see
[42]). Note that this cannot be done by simulating granular collapse experiments since the associated initial conditions
cannot be defined in a Cartesian reference system. We then move to the comparison with laboratory granular collapses
experiments.

In all the tests, we consider the material properties given in Table 1. In particular, the µ(I) coefficients are increased
by 0.1 to account for sidewall friction, following the approach of [52].

For the numerical parameters, unless otherwise is specified, we consider ϵptol = 10−6 as tolerance for the iterative solver
finding the non-hydrostatic pressure (see line 10 of the algorithm in Section 4), and δ = 10−5 as regularization parameter
in the viscosity coefficient (equation (10)). Note that this choice of δ is in agreement with other works for viscoplastic
fluids, as [41, 25, 58].
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µs µ2 ds (mm) I0 φs

tan(25.5◦) ≃ 0.48 tan(36◦) ≃ 0.73 0.7 0.279 0.62

Table 1: Values of the rheological parameters used in the numerical tests.

5.1 Analysis of the computational efforts for non-hydrostatic simulations

We investigate here the computational efforts associated to the non-hydrostatic multilayer model. The computation of
the non-hydrostatic pressure described in Section 4 is based on an iterative solver to solve a linear system whose size
is N × (Nx + 1), where N is the number of layers in the normal direction and Nx the number of cells in the horizontal
discretization. Then, the computational time could grow dramatically when increasing the number of normal layers. This
fact motivates the following attempt to reduce the computational effort.

We first study the influence of changing the norm used in the stopping criterion of the iterative solver for the
non-hydrostatic pressure, and secondly we evaluate the proposed strategy in Subsection 4.1 to speed up non-hydrostatic
simulations.

We consider here a computational domain [−0.2, 3] m and 640 cells for the horizontal discretization, and the dam
break problem given by the initial conditions

b̃(X) = (3−X) sin θ, b(X) = 0, h0(X) =

{
0.14 + hi if x ≤ 0,
hi otherwise,

(34)

with hi = 1.82 mm and θ = 22◦. We choose a high slope case since the multilayer framework is more appropriate for large
values of the slopes, as it will be concluded in 5.5. The material parameters are in Table 1. A wall boundary condition
is employed upstream while a free-outflow condition is used downstream. Finally, we use CFL = 0.7 and tf = 3 s.

5.1.1 Influence of the choice of the stopping criterion in the iterative solver

As explained in Section 4, the computation of the non-hydrostatic pressure is based on an iterative solver to find the
solution of a linear system of size N × (Nx + 1). Therefore, the computational time is sensitive to the norm used in the
stopping criterion for this solver.

Layers l2 - Nº Iter l2 - tcomp l∞ - Nº Iter l∞ - tcomp

20 431 779.7 693 1096.7
10 145 84.8 211 197.7
8 101 58.8 142 114.3
5 46 18.1 62 36.4
2 10 4.2 14 5.2

Table 2: Computational times tcomp (s) and maximum number of iterations made in a single time step by the iterative
solver for different number of normal layers N and norms l2, l∞.

We have measured the computational time and the number of iterations made by the solver for different number of
vertical layers. Table 2 shows the computational times and the maximum number of iterations needed in a time step
for N = 20, 10, 8, 5, 2 normal layers, and Figure 3 shows the iterations needed at each time step for N = 5, 10, 20 layers
(Figure 3a) and the computational times for both norms (Figure 3b). When using the l2 norm the computational effort
is lower than with the l∞ norm for all cases, as expected. In particular, for N = 20, the simulation needs 46% less time.
It is due to the fact that the number of iterations needed with the l∞ norm is always greater than with the l2 norm (see
Figure 3a). In particular, we see the difference in the number of iterations needed when using the different norms in the
stopping criterion, after a small time. Note that when using the l1 norm, the results are similar to the l2 norm.

In addition, we have checked that there are no significant differences in the results when using the different norms in
the iterative solver. Then, the l2-norm is used from now on in the simulations, also in subsections 5.4 and 5.5.

Most of the computational cost is spent in the Step 3, that is, the elliptic problem related to the non-hydrostatic
pressure. In Table 3 we show the percentage of the computational time that the algorithm spends in this step and also
for Step 2 (viscous terms) for different number of layers. We see that it is 28% for the one-layer model, but it increases
quickly with the number of layers. For 5 layers it is 81%, and it reaches 98% for 20 layers. In the non-hydrostatic case,
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Figure 3: (a): Number of iterations needed for N = 5, 10, 20 layers with the l2 and l∞ norms. (b): Computational time
in minutes for different number of layers with norms l2, l∞.

we see that Step 2 does not spend a significant amount of resources. We also see that Step 2 spends approximately 10%
of the computational time for N = 1, 2, ..., 20 in the hydrostatic case.

Layers 1 2 5 10 20
tcomp Step 3/tcomp (NH) 28% 58% 81% 92% 98%
tcomp Step 2/tcomp (NH) 5% 4% 2% 0.6% 0.2%
tcomp Step 2/tcomp (H) 9% 11% 11% 10% 9%

Table 3: Percentage of computational time spent by steps 2 (viscous terms resolution) and 3 (elliptic problem associated
to the pressure) of the scheme in Section 4 in the non-hydrostatic case (NH). We also show this percentage for Step 2 in
the hydrostatic case (H).

5.1.2 Speed-up strategy for non-hydrostatic simulations

We investigate in this subsection the efficiency of the algorithm to speed up the numerical scheme for non-hydrostatic
simulations that has been proposed in Subsection 4.1.

(a) N = 8 layers (b) N = 10 layers

Nini guess - 4 2
tcomp (s) 47.3 44.6 77.46
Speed-up - 1.06 0.61

Nini guess - 5 2
tcomp (s) 84.8 56.5 128.2
Speed-up - 1.5 0.66

(c) N = 20 layers

Nini guess - 10 5 4 2
tcomp (s) 594.2 183.2 166.8 215.2 564.6
Speed-up - 3.24 3.56 2.76 1.05

Table 4: Computational times and speed-ups for non-hydrostatic simulations with (a) 8 (b) 10, (c) 20 vertical layers,
reducing to Nini guess layers for the first step of the algorithm to solve the non-hydrostatic pressure.
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Figure 4: (a): Computational time in minutes for different number of layers used to the precomputing of the initial guess
for the pressure solver for N = 8, 10, 20 layers. (b): Number of iterations needed by the iterative solver in the case
N = 20 for the simulation without using a precomputed guess (FS 20 layers, dashed black line) and when an initial guess
is precomputed with 10 layers (first step with reduced system with 10 layers - RS-20-10 - solid cyan line and second step
with the full system - FS-20-10 - dashed red line). Dotted gray line is the total of iterations (step 1 and step 2) in the
case of precomputing the initial guess.

In Table 4 we show the computational times when reducing to Nini guess layers in the first step of the algorithm to
compute a good initial guess for the pressure iterative solver for simulations with 8, 10 and 20 layers. We see that the
proposed algorithm is effective, especially when using a large number of normal layers. Actually, there is no significant
gain in computational effort when using 8 layers. However, it is useful for 10 and 20 layers. When the vertical resolution is
increased to 20 layers, the proposed strategy allows us to significantly reduce the computational cost with an appropriate
choice of Nini guess. In this case, when reducing to Nini disp = 10 layers for the first step of the pressure computation, the
speed-up is 3.24, which means that with the proposed strategy the scheme is faster by 69% than the scheme without using
the precomputed initial guess. For Nini guess = 5 the speed-up is 3.56 (72% faster) and for Nini guess = 5 the speed-up
is 2.76 (64% faster). When using Nini guess = 2 there is no significant gain in computational time (it is only 5% faster).
However, this strategy is not effective for all the choices. For instance, when using Nini disp = 2 with 10 or 8 layers, the
computational time increases. It is clear that in the case of 20 layers the optimal choice is to use Nini disp = 5.

In Figure 4 we study the case of 20 layers and Nini disp = 10 in more detail. Figure 4a shows the computational
times needed for different choices of Nini disp, while in Figure 4b we see an analysis when Nini disp = 10 in terms of the
number of iterations needed. The more expensive part of the scheme is the resolution of the non-hydrostatic pressure as
it is shown in Table 3, where the iterative solver is used. We see that the fact of solving a first system with a reduced
number of layers (10 layers in this case) gives us a good initial guess for the resolution of the full system with 20 layers.
It makes that the scheme with the proposed strategy needs much less iterations to converge than the scheme without the
precomputing of the initial guess. Actually, by solving directly the full system, the maximum number of iterations is 431,
whereas with the proposed strategy, the maximum number of iterations needed for the full system is 71.

In summary, the proposed strategy is effective, especially when using a large number of layers, and it allows us to
significantly reduce the computational time. The key is to reduce the number of iterations needed to solve the full linear
system, even making a previous resolution with a smaller linear system at any time step.

5.2 Convergence test

We perform here a convergence test showing the first order accuracy of the proposed numerical method. We consider
the same test configuration as in [42]. Concretely, we consider a granular mass at rest with a smooth free surface, which
flows over a slope, and measure the order at an intermediate time t = 0.15 s. The computational domain is [−0.5, 1.5] m,
CFL = 0.7 and free-outflow boundary conditions are assumed. The bottom and initial conditions are given by

b̃(X) = (1.5−X) sin 20◦, b(X) = 0, h0(X) = 0.02 + 0.4e−5(x−0.25)2 .
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The same material properties as in previous test are used (see Table 1).
We measure here the order of accuracy for the height and the velocity field in both directions by increasing N and

Nx at the same time. That is, we refine the mesh in both directions (x, z). Here, L1 absolute errors are computed, which
are given by

∥h− href∥1 = ∆x

M∑
i=1

∣∣∣hi − h̃ref
i

∣∣∣, ∥v − vref∥1 = ∆x

Nx∑
i=1

hi

N

N∑
α=1

∣∣∣vα,i − ṽrefα,i

∣∣∣ , (35)

where href , ṽref must be understood as the projections of the reference solutions onto the spaces of the local solutions.
In previous equation, v(z) denotes the horizontal (u(z)) or vertical velocity (w(z)). Here the solution of the multilayer
model with Nx = 6400 and N = 128 will be the reference solution.

(Nx, N) Error h Order h Error u(z) Order u(z) Error w(z) Order w(z)
(100,2) 1.59×10−2 - 4.14×10−2 - 1.59×10−2 -
(200,4) 1.22×10−2 0.39 2.62×10−2 0.66 1.22×10−2 0.68
(400,8) 6.40×10−3 0.93 1.16×10−2 1.18 6.40×10−3 1.29
(800,16) 3.06×10−3 1.06 5.58×10−3 1.05 3.06×10−3 1.22
(1600,32) 1.35×10−3 1.18 2.65×10−3 1.07 1.35×10−3 1.18

Table 5: L1 errors and related orders for the height (h) and the velocity fields (u(z), w(z)) for the solution at time t = 0.15 s.

Table 5 shows the L1 errors and numerical convergence rates for the height (h), horizontal velocity (u(z)) and vertical
velocity (w(z)) at time t = 0.15. We measure the errors at a short time by two main reasons: first, solutions with
shocks and overshooting may appear for longer times; second, the computational cost associated to the reference solution
considered here (Nx, N) = (6400, 128) is huge. We see that the proposed scheme is first order accurate for all the variables,
as expected.

5.3 Well-balanced test

We perform now a test to check the well-balancing of the scheme for non flat steady states defined by (12). Let us
consider the domain [−3, 1] m with 300 cells and free-outflow boundary conditions. The initial conditions (see figure 5)

are b̃(X) = 0,

b(X) =
2

X + 4
− 1

2
+ e−10(X+3/2)2 + 0.15RAND(X), h0(X) = 0.8− µs(X − 2)− b(X),

being RAND(X) ∈ [0, 1] a random value generated at run time, and the flow is assumed at rest (hu)α = (hw)α = 0 for
α = 1, ..., N . We take the rheological parameter in Table 1 except for µs = tan(20◦). CFL = 0.7 is used here and the
final time simulation is tfin = 1 s.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

0

1

2

3

Figure 5: Bottom topography and initial free surface the well-balanced test.

The L1 errors for all the variables are measured, as in (35), where in this case the reference solution ṽref is the initial
state. Table 6 shows the maximum along the simulated time of these errors for different values of the regularization
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parameter δ. We show these errors for the scheme described in Section 4 with the definition of ĥ
n+2/3
i given by (25)

(Table 6a) and by considering ĥ
n+2/3
i = h

n+2/3
i (Table 6b), in order to show its influence. We see here that the definition

(25) is essential to get the well-balanced property of the scheme. As commented before, it is not possible to obtain zero
velocity or null variation of the variables because of the regularization parameter. In fact, there is a relation between δ
and the order of magnitude of the variations (and the residual velocities). Actually, they are of the same order. A similar
behaviour was observed in [38] for a hydrostatic multilayer model for viscoplatic (Herschel-Bulkley) fluids.

(a) WB: ĥ
n+2/3
i (25) (b) No WB: ĥ

n+2/3
i = h

n+2/3
i

Error h Error u(z) Error w(z)
δ = 10−5 5.34×10−5 5.38×10−5 4.21×10−5

δ = 10−10 5.34×10−10 5.39×10−10 4.21×10−10

δ = 10−15 2.99×10−16 5.39×10−15 4.21×10−15

Error h Error u(z) Error w(z)
δ = 10−5 5.22×10−4 1.20×10−3 7.42×10−4

δ = 10−10 1.76×10−4 1.93×10−4 3.48×10−4

δ = 10−15 4.62×10−5 6.06×10−5 1.87×10−4

Table 6: Maximum along the time of L1 errors for the height (h) and the velocity fields (u(z), w(z)) with respect to the initial state by

considering the definition of ĥ
n+2/3
i given by (a) eq. (25) (well-balanced scheme); (b) h

n+2/3
i (no well-balanced scheme).

Let us remark that, since in Step 3 of the scheme we solve the non-hydrostatic pressure, which in this test is of the
order of δ, we must use ϵptol < δ. Then, we use here ϵptol = δ/100. Notice that we recover the expected well-balanced

property of the scheme even in the limit case ∂X

(
b̃+ b+ h

)
= µs.

In addition, if we change the slope of the initial condition by tan(20.01◦) (i.e., 0.01◦ greater than the angle of repose),
then we recover that the error between the initial and final height is of order 10−5 for any value of δ = 10−5, 10−12, 10−15.
That is, the material is not at rest in this case.

We must also remark that we are able to use very small values of δ in this test because it is a steady at rest solution.
In general transient problem we use a large value (δ = 10−5) for stability and convergence reasons (see [58]).

In the following, we move to tests evaluating the ability of the model to recover some important physical behaviours.
We first study the influence of the coordinate system and then compare the our results with dam break laboratory
experiments.

5.4 Influence of the coordinate system

Let us recall the differences between the local and Cartesian models. In thin-layer landslide models, the downslope velocity
should be computed in the direction parallel to the topography and curvature effects should be added (see [14, 60, 70]).
A reasonable approach, with the advantage of being much simpler conceptually and from the practical point of view, is to
take a reference plane with a slope θ corresponding to the mean slope of the topography, and then consider variations of the
bottom with respect to this reference plane (see e.g. Figure 1). It is actually the local coordinate system considered in this

work. In this approach, the downslope velocity is tangent to the reference plane b̃ and the equations are depth-averaged
in the direction normal to the plane. In this model, the flow is considered thin in the normal direction compared to its
extension parallel to the reference plane. On the contrary, in Cartesian models, the velocity is computed in the horizontal
x-direction, the flow is assumed thin in the vertical direction compared to the horizontal one, and depth-averaging is
performed in the vertical direction. When the slope is not small, it is well known that these models are less accurate than
local models. Actually, Cartesian models overestimate the velocity. Another difference between these reference systems in
the particular case of non-hydrostatic models, is the influence of the bottom in the terms pnhα±1/2Zα±1/2 in the horizontal

momentum equations (9b). Concretely, Zα±1/2 is defined in terms of the local bottom bottom b and not b̃ in the local
coordinates case, contrary to the Cartesian case.

5.4.1 Numerical set-up

To compare the results in Cartesian and local coordinate systems, we consider a test with an initial granular mass having
a smooth shape so that its thickness can be defined in both systems. We take the initial condition as in [42]. It consists
of a granular mass flowing in a complex topography with a bump located in the middle of the domain.

We consider a Cartesian domain x ∈ [−3, 3] m and 640 nodes. The material is initially at rest, and we set a final
time tf = 10 s and CFL = 0.5. In this case we use free-outflow conditions at both boundaries. Figure 6 shows the initial
conditions for the bottom and the mass thickness in both coordinates system. In the Cartesian case, they are

bCart(x) = 1− tanh(x) + κe−10(x−1)2 + 0.5e−10(x−3)2 ,
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and

hCart(x) = max(η(x)− bCart(x), 0) + hi, with η(x) =

{
y0 − 1 + e−0.5(x−x0)

8

, if x ≤ 0,
0, otherwise,

with κ = 0.3, hi = 10−4 m, x0 = −1.53 m and y0 = 1.91 m. In that (Cartesian) case, we fix θ = 0◦ and b̃Cart(x) = 0.
Note also that a small thickness hi has been added in order to avoid dealing with wet/dry areas and remove the influence
of the treatment for such cases. In order to define these functions in the local coordinate system, the reference plane

b̃loc = −0.7− tan θ (x− 3), with θ = 25◦, is considered. Now the local bottom bloc(X) is the distance from b̃loc(x) to the

bottom measured in the direction normal to the plane b̃loc(x). Analogously, hloc(X) is measured as the distance from
bloc(X) to the free surface.

Figure 6: Sketch of the initial conditions in both Cartesian and local coordinates. κ = 0.3. The variables defined in the
Cartesian system are in blue and those in the Local system are in red.

5.4.2 Local/Cartesian and hydrostatic/non-hydrostatic model comparison

The goal here is to study two main aspects. We will investigate (i) the influence of the Coordinate system, which
should be smaller for non-hydrostatic (NH) models than for hydrostatic (H) ones and (ii) the similarity between the
non-hydrostatic Cartesian and the hydrostatic local models. Concerning (ii), [29] suggested that a Cartesian model with
a correction associated to the normal acceleration produces similar results than a hydrostatic local model. In [42] we
found that it is only true for the final deposit but not at intermediate times.

Figure 7 shows the final deposits for the local and Cartesian models with a hydrostatic and weakly non-hydrostatic
pressure, and 10 vertical layers. The slope angle of the bottom bCart is also represented and varies from −15◦ to 50◦ (we
recall that positive angles correspond to negative slopes). We see that, qualitatively, the hydrostatic local model gives a
deposit similar to the non-hydrostatic Cartesian model, except near the initial location of the mass.

In Figure 8a we show the time evolution of the relative errors between the mass thicknesses simulated with these two
models. We see that, for the multilayer cases (5, 10 and 20 layers), the error is around 20% at final times whereas higher
errors are obtained at intermediate times. These results are in agreement with [42] and contradicts what was assumed in
[29]. In addition, we see that the differences are smaller in the multilayer case than in the one-layer case.

In Figure 8b we show the influence of the coordinate system (Cartesian versus Local) on the simulations for both
hydrostatic and non-hydrostatic models. This comparison is performed for the one-layer and the multilayer (5, 10
and 20 layers) cases. We see that, as expected, non-hydrostatic models are less dependent on the coordinate system.
Interestingly, the influence of the coordinate system is smaller in the multilayer case than in the one-layer case. Moreover,
in the hydrostatic case, the differences strongly decrease when increasing with the number of layers, whereas for the
non-hydrostatic case the results for 5, 10 and 20 layers are almost identical.

In order to show how the differences in the models could affect practical applications, we consider a bottom with a
higher bump in the middle of the domain (at x = 1). Namely, we use κ = 0.45 here. Figure 9 shows the deposits for
all models. Interestingly, the simulated mass does not overcome the bump for the NH-Local model, whereas the other
models predict that a significant amount of material is flowing further down to the valley. Such situation is usual in real
applications where hazard assessment requires to estimate if a given landslide will overcome a topography relief such as
this bump and eventually reach a town located in a valley [68, 71, 69]. The NH-Local model would predict that such
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Figure 7: Deposit (at t = 10 s) for the hydrostatic (H) and non-hydrostatic (NH) models in both Cartesian and local
coordinates with κ = 0.3. Upper figure (a): General view and slope of the bottom bCart(x) (positive angles correspond
to negative slopes). Lower figures: Zooms ((b): zone located around the position of the initial mass; (c): zone located
downslope before and after the bump).

town would be safe, while the H-Cartesian model would indicate that this town would be largely affected. Notice that
this is an academic test showing the importance of having a model as accurate as possible in order to act against natural
hazards. In any case, it is expected than NH- models are more accurate than H- models since they incorporate this
very relevant physical contribution. It can be seen in Subsection 5.5 when comparing with laboratory experiments for
a simpler configuration. In addition, local models are more accurate than Cartesian models in these situations (strong
topography gradients) since they compute the velocity in the downslope/normal direction to the reference plane, and
not in the (x, z)-Cartesian directions. A more accurate approach would be to consider curvilinear coordinates where the
velocity vector in measured in the downslope/normal direction to the topography at every location (see [14, 35]).

In the rest of the paper, we only consider local models, with both hydrostatic and weakly non-hydrostatic pressure.

5.5 Comparison with granular collapse experiments

We use here the proposed model to simulate laboratory experiments of granular column collapse performed in [61] and
compare numerical and experimental results.

Notation Model description

NH-k l. Non-hydrostatic pressure, k vertical layers
H-k l. Hydrostatic pressure, k vertical layers
NH-µw-k l. Non-hydrostatic pressure, k vertical layers, sidewalls friction (36)

Table 7: Summary of notation of the models considered in this section, all of them in local coordinates.

All the models considered in this section are summarized in Table 7. We remind that all the models are considered
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Figure 8: (a) Differences between the hydrostatic local (H-Local) and the non-hydrostatic Cartesian (NH-Cartesian)
models, and (b) influence of the coordinate system for hydrostatic (H) and non-hydrostatic (NH) models, measured in
l2-norm. Results for the model with 1 layer (squares), 5 (crosses), 10 (circles) and 20 (no symbols) layers.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Figure 9: Deposit at rest (t = 10 s) for the hydrostatic (H) and non-hydrostatic (NH) models in both Cartesian and local
coordinates, and for a higher bump (κ = 0.45).

in local coordinates in this subsection. The experimental setup consists of a granular column, whose thickness is h0 = 14
cm, length 20 cm and width W = 10 cm. The flow is confined between two walls and initially at rest, on a plane inclined
at a slope θ, which in practice takes the values θ = 0◦, 9.78◦, 16◦, 19◦, 22◦. Once the gate is opened, the material flows
until it forms a deposit.

We take the computational domain and initial conditions as in Subsection 5.1, that is X ∈ [−0.2, 3] m with 640
horizontal cells and the initial height and bottom defined by (34), where hi is the thickness of a possible erodible bed
made of the same material that could cover the plane. For the discretization in the direction normal to the reference
plane, we consider 10 layers. We will see later that we have certain layer-independence of the results for large and small
slopes with this number of vertical layers (see Table 9). The stability condition is set to CFL = 0.1. We need to use this
small value in order to recover the correct behaviour in the influence of the erodible bed over the runout for small slopes,
as it is explained later. Here a wall boundary condition is used upstream and free-outflow condition downstream. Note
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that the topography is an inclined plane and there is no deviation from this reference frame.

5.5.1 Comparison of hydro/non-hydrostatic and mono/multilayer models

Figures 10, 11 and 12 show the evolution of the granular mass and the final deposits for all the slopes considered and
for the rigid case (hi = 0 mm). We show the results of four different models: the hydrostatic one-layer, hydrostatic
multilayer, non-hydrostatic one-layer and non-hydrostatic multilayer models, denoted H-1 l., H-10 l., NH-1 l. and NH-10
l., respectively (see Table 7). We see that the non-hydrostatic approach allows to be closer to the experiment during the
first instants of the collapse for all slopes, as expected. This is because at short times, when the material starts flowing,
the non-hydrostatic effects are important. We see that for small values of the slope, there is no significant difference
between the multilayer and the one-layer models, whereas these models differ more clearly for θ = 19◦, 22◦. This suggests
that in-depth variations solved with the multilayer model have more influence for large slopes while non-hydrostatic effects
are more important at smaller slopes. Concerning the deposits, we see an excellent agreement of the NH-10l. model with
the experiments for θ = 0◦, 9.78◦, 16◦. For θ = 19◦ the NH-1 l. model is the most accurate, and for θ = 22◦ it is the H-10
l. model. In general, the final runout is too short with the NH-10 l. model for θ = 19◦, 22◦.

We have also computed the errors (measured in l2-norm) made by all the models, for all the slopes and for rigid
(hi = 0 mm) and erodible (hi > 0) beds, when compared with the laboratory experiments. Figure 13 shows the results
for the final deposits and also at a time close to the initial mass release. At this time, we see that the non-hydrostatic
models produce smaller errors in all cases, and the non-hydrostatic multilayer model always has a smaller associated
error. Concerning the deposits, the error depends on the slope, as discussed above. In general, for small slopes the NH-10
l. model gives smaller errors, but it is not the case for large slopes, mainly because the final run-out is underestimated
with this model. This can be observed, for example, for high hi high and high slopes, where the 1 layer models are better
since the simulated runouts are larger. Nevertheless, it is also possible that other effects are involved in the evolution of
granular flows such as the release of the initial gate or wall effects, see for example [10] as discussed below.

In the experiments, it was observed that the runout distance rf increases when the thickness of the erodible bed hi

increases for θ ≥ 16◦. In [36] it was shown that the combination of the multilayer approach and the variable friction
coefficient µ(I) allows to recover this behaviour, contrary to one-layer models. Figure 14 shows that this behaviour is
qualitatively reproduced by both the NH-10 l. and H-10 l multilayer models. On the contrary, Figure 11a shows that the
runout distance decreases with increasing hi for simulations with the one-layer models H-1 l. and NH-1 l. for θ = 16◦.
We must remark that this behaviour of the multilayer models is not achieved for θ = 16◦ if a value CFL =0.5 is used.

The main advantage of multilayer models is to recover the in-depth variations of the flow and in particular the flow/no
flow transition as illustrated in Figure 15. Indeed, during the collapse an upper layer of material is flowing over a lower
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Figure 10: Time evolution of the granular mass thickness over a plane of slope θ = 0◦ for laboratory experiments
(solid-circle blue line), and the hydrostatic (H) and non-hydrostatic (NH) models when considering 1 or 10 layers.
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(a) Slope angle θ = 9.78◦
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(b) Slope angle θ = 16◦

-20 0 20 40 60
0

5

10

15

0 10 20
0

5

-20 0 20 40 60
0

5

10

15

15 20 25 30 35
0

5

-20 0 20 40 60
0

5

10

15

25 30 35 40 45
0

1

2

3

-20 0 20 40 60
0

5

10

15

55 60 65 70
0

1

2

3

Figure 11: Time evolution of the granular mass thickness over a plane of slope (a) θ = 9.78◦ and (b) 16◦, for laboratory
experiments (solid-circle blue line), and the hydrostatic (H) and non-hydrostatic (NH) models when considering 1 or 10
layers.

layer of static materials. Obviously, this behaviour cannot be reproduced by one-layer models. Figure 16 illustrate the
ability of multilayer models to recover the different shapes of the normal velocity profiles from Bagnold-type to S-shape
profiles, as also shown in [36]. The flow/no-flow interface has a similar shape with the hydrostatic and non-hydrostatic
models at θ = 22◦. They are more different at θ = 0◦, again suggesting that non-hydrostatic effects have more influence
for flows on smaller slopes. At certain times, we have also represented the results of [63] obtained by solving the full
Navier-Stokes equations. We see both hydrostatic and non-hydrostatic multilayer models do not reproduce very well the
flow/no-flow interface. Concretely, the thickness of static layer is underestimated. This may result from the fact that
viscous contributions in the non-hydrostatic pressure are not accounted for.

Non-hydrostatic models much better reproduce the acceleration phase of the front than hydrostatic models as shown
in Figure 17 for all the slopes and when considering a rigid bed (hi = 0). From a qualitative analysis we see how the
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(a) Slope angle θ = 19◦
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(b) Slope angle θ = 22◦
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Figure 12: Time evolution of the granular mass thickness over a plane of slope (a) θ = 19◦ and (b) θ = 22◦, for laboratory
experiments (solid-circle blue line), and the hydrostatic (H) and non-hydrostatic (NH) models when considering 1 or 10
layers.

front velocity Indeed, with hydrostatic models (one-layer and multilayer), the initial velocity is much too high and the
front has a maximal velocity at the initial instant and then the front decelerate until is stops, contrary to lab-experiments
where a first acceleration phase is observed before the deceleration phase. These acceleration/deceleration phases are
qualitatively reproduced with non-hydrostatic models. This is an important advantage of the NH-10 l. model compared
to the H-10 l. model.

5.5.2 Sidewall effects

It is well-known that sidewall friction has a strong influence on the flow dynamics in narrow channels. To roughly
account for these effects, the coefficients of the µ(I)-rheology have been increased by 0.1 (Table 1), following [52]. We
now investigate if adding non-hydrostatic effects makes it possible to obtain reasonable results when accounting more
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appropriately sidewall friction as in [37], without having to increase the friction coefficients by 0.1. In practice, it consists
of adding the term

Mα = −lαh
2

W
µwpα

uα

|uα|
(36)

to the right-hand side term in the momentum equation (9b), where W in the channel width, µw the friction coefficient
at the lateral walls, and pα the total pressure in the middle of the layer Ωα. This term is discretized in Step 2 together
with the other viscous terms as in [37]. Concretely, we add the contribution

−2∆t

Wρ
µwh

n+1
i pnα,i

u
n+2/3
α,i√

|un
α,i|2 + δ2

(a) Rigid case: (b) hi high:
5.0, 5.3, 4.6 mm (θ = 16◦, 19◦, 22◦)
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Figure 13: Relative l2-errors on the height along the domain computed with the hydrostatic (H) and non-hydrostatic
(NH) models. Square-symbols lines correspond to the errors at final deposits, while cross-symbols lines are the errors at
small times tini = 0.24 (0◦), 0.32 (22◦) s.
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Figure 14: Influence of the thickness hi of the erodible bed on the final runout rf for slopes θ = 16◦, 19◦, 22◦ observed in
the experiments (solid-circle blue line) and obtained with different simulations using hydrostatic (H) and non-hydrostatic
(NH) models.
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W (cm) model µs µ2 µw

10 NH-µw tan(20.9◦) ≃ 0.38 tan(32.76◦) ≃ 0.64 tan(10.5◦)
20 NH tan(23.4◦) ≃ 0.43 tan(34.74◦) ≃ 0.69 0
20 NH-µw tan(20.9◦) ≃ 0.38 tan(32.76◦) ≃ 0.64 tan(10.5◦)

Table 8: Modified rheological parameters considered when adding sidewalls friction in the simulations. Data for NH
model with W = 10 m are in Table 1.

to right-hand side of equation (24). Notice that, in practice, just the diagonal element of the linear system defined by (24)
is modified. The models without the correction in the coefficients (but adding the term (36)) are denoted by NH − µw,
and the rheological parameters used are summarized in Table 8 for the widths W = 10, 20 cm.

Figure 18 shows the mass thickness at an intermediate time and when the material is at rest (deposit)computed with
the non-hydrostatic models with and without the correction of the friction coefficients, for slopes θ = 0◦, 16◦, 22◦ and
W = 10 cm. We see that for θ = 0◦ the results are similar in both cases. However, for large values of the slope, in
particular for θ = 22◦, the final deposits are dramatically overestimated without the extra 0.1 in the friction coefficients.
Actually, for this slope the flow is not at rest yet. Note that in this case the slope is higher than the friction angle
arctan(µs) = 20.9◦. As a consequence, for large values of the slope, it is not possible to remove the correction in the
friction coefficients. Interestingly, for the intermediate time the results are similar in all cases. The models NH-µw

slightly improve the results in the initial part of the horizontal domain. Figure 19 shows the front velocity in these cases
in addition to the results for a channel width W = 20 cm. We see that for high slopes, friction including sidewall effects
is not enough to stop the material, and for θ = 0◦ there is no significant difference between the results with or without
the sidewall friction term.

Figure 15: Flow/no-flow interface at different times at θ = 9.78◦ (left-hand side) and θ = 22◦ (right-hand side) and
hi = 0 mm for the multilayer models with non-hydrostatic (dashed green lines) and hydrostatic (dashed magenta lines)
pressure. Orange dash-dotted lines are results in [63].
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Figure 16: Normal profiles of the downslope normalized velocity (10uα,i/(maxβ,j |uβ,j |), β = 1, ..., N, j = 1, ..., Nx)
obtained with the NH-20 l. model for θ = 22◦ and hi = 1.82 mm during granular collapse at different positions, at (a)
t = 0.60 s and (b) t = 1.60 s. Dashed green lines are flow/no-flow interfaces.

(a) θ = 0◦, hi = 1 mm (b) θ = 22◦, hi = 1.82 mm

Model Err(%) Err(%) tcomp

(tini) (tfin) (s)
NH-20 l. - - 1096.7 (19.08 min)
NH-10 l. 0.30 0.33 368.2 (6.1 min)
NH-8 l. 0.45 0.47 197.7 (3.3 min)
NH-5 l. 0.79 0.88 60.1 (1.0 min)
NH-2 l. 1.68 1.93 14.2
NH-1 l. 3.05 2.30 6.4
H-20 l. 10.01 8.32 56.1
H-10 l. 10.41 8.58 28.8
H-1 l. 11.65 11.25 4.7

Model Err(%) Err(%) tcomp

(tini) (tfin) (s)
NH-20 l. - - 1517.4 (25.3 min)
NH-10 l. 0.92 1.92 544.6 (9.1 min)
NH-8 l. 1.31 2.87 290.6 (4.8 min)
NH-5 l. 2.19 5.58 89.2 (1.5 min)
NH-2 l. 4.70 14.18 21.0
NH-1 l. 6.47 22.80 9.7
H-20 l. 7.36 11.21 79.4
H-10 l. 8.23 12.90 41.0
H-1 l. 11.78 31.93 7.1

Table 9: l2-errors made in the height by the different models compared to the reference solution corresponding to the
non-hydrostatic model with 20 layers at intermediate times tini = 0.24 s (θ = 0◦), 0.32 s (θ = 22◦), and at final time tfin
1.5 s (θ = 0◦), 3 s (θ = 22◦). tcomp is the computational time needed to reach tfin.

5.5.3 Quantification of model differences

By comparing the NH-10 l., NH-1 l. and H-10 l. models, we have shown that the proposed NH-10 l. model could be seen
as a good compromise between the NH-1 l. and H-10 l. models. However, the price to pay is a higher computational
effort. We have also concluded that multilayer effects have more influence for large slopes (at least for current models),
while non-hydrostatic effects are more important for small slopes. Let us now quantify the improvement made using
the multilayer model with a different number of layers. In Table 9 we give the difference between the mass thickness
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Figure 17: Time evolution of the normalized velocity of the front computed with hydrostatic (H) and non-hydrostatic
(NH) models, and experimental data (solid-circle blue lines) for hi = 0 mm. Here h0 = 0.14 m, v0 =

√
g cos θh0 m/s and

τc =
√
h0/(g cos θ) s.

calculated with the hydrostatic and non-hydrostatic models at an intermediate time and for the mass deposit for granular
collapse on θ = 0◦ and θ = 22◦, taking as reference the solution of the non-hydrostatic model with 20 vertical layers. We
see that for θ = 0◦, if one uses 2 layers in the non-hydrostatic model the error in the thickness is below 2%, whereas we
need at least 10 layers for θ = 22◦ to have the same result. It is clear then that the multilayer approach is needed for large
slopes, but it can be simplified for short values of θ if one does not need additional information on in-depth variations
of the flow. One should note that this fact (the influence of multilayer effects) could vary if the approximation of the
flow/no-flow interface is improved, since its size is currently overestimated (see Figure 15). Improving the approximation
of the flow/no-flow interface would make the multilayer approach more decisive for small slope values, where a wide static
layer of material is expected to be recovered. Let us remark that we have also performed this quantitative analysis in the
case of a rigid bed (hi = 0 mm) and with a smooth initial condition instead of the abrupt granular collapse, obtaining
similar results to Table 9. Notice also that these differences shows the layer-independence of the results for N = 10 for
large and small slopes, that is the number of layers used in the comparisons with experimental data.

Concerning the computational times shown in Table 9, the non-hydrostatic model is more expensive than the
hydrostatic one, as expected. Namely, we pay the prize of solving the elliptic operator associated to the non-hydrostatic
pressure, which is coupled for all cells and layers, as seen in Section 4 and analyzed in Subsection 5.1.

6 Conclusions

In this work, we have introduced a multilayer model including the µ(I)-rheology and a weakly non-hydrostatic pressure
to simulate dry granular flows. It is called a weakly non-hydrostatic model, in the sense that after a dimensional analysis,
non-hydrostatic first-order terms related to the rheology are neglected, whereas second order terms related to normal
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Figure 18: Granular mass over a plane of slope θ = 0◦ (hi = 0 mm), 16◦ (hi = 1.4 mm), 22◦ (hi = 1.82 mm), at
an intermediate time and when the mass has stopped (deposit) for the laboratory experiments (solid-circle blue line), and
non-hydrostatic models with and without the sidewall friction term of equation (36) (see Tables 1 and 8). Note that at
θ = 22◦, the granular mass it is not at rest yet.

acceleration are kept.
A well-balanced numerical discretization is also proposed, based on a three-step splitting procedure to deal with

viscosity effects and non-hydrostatic pressure. The scheme is well-balanced for those steady states at rest where the slope
of the free surface is lower than the angle of repose of the material. This is achieved thanks to a hydrostatic reconstruction
technique involving the Coulomb friction term at the bottom.

Thus, the proposed model can be seen as an extension of previous works. Concretely, it generalizes the hydrostatic
multilayer model [36] to the non-hydrostatic framework and the one-layer non-hydrostatic model [42] to the multilayer
framework. Then, all the good results associated with the discretization in the direction normal to the slope in [36] are
present in this model. In particular, we show the ability of the model to reproduce changes in the shape of the velocity
profiles and to approximate the flow/no-flow interface, which is not possible with one-layer models. In addition to the
multilayer approach, the main achievements of the one-layer non-hydrostatic model of [42] are also present in this model.
In particular, the simulation of the mass thickness at short times is improved, and the acceleration/deceleration of the
front velocity is recovered, contrary to hydrostatic models where the first acceleration phase is not captured.

Concerning the influence of the coordinate system, we have reinforced two of the results given in [42]: (i)
non-hydrostatic models are less dependent on the coordinate system than hydrostatic models. Moreover, this dependence
is even smaller when a normal discretization is considered; (ii) the non-hydrostatic model in Cartesian coordinates
produces deposits similar to the hydrostatic model in local coordinates, but the simulation differ at intermediate times.
Furthermore, the differences between the deposits are smaller when the multilayer approach is used.

Thus, on the one hand, the novel model combines the strengths of both previous models, solving some of their
drawbacks. On the other hand, the computational cost of this model is higher than for the previous ones, mainly due
to the resolution of the linear system associated with the non-hydrostatic pressure, whose size is (M + 1) × N , being
M the number of cells and N the number of normal layers. In order to speed up the scheme, we have proposed a first
precomputing of the initial guess for the iterative solver. This strategy allows us to reduce around 70% the computational
time when N = 20 layers.
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In summary, the proposed model could be a reasonable compromise between efficiency and accuracy, recovering the
good results of previous works at the same time. However, the results here suggest that an important improvement of
these models would be to consider the viscous contributions of the momentum equation in the direction normal to the
slope, which are neglected here. It corresponds to solving the full Navier-Stokes system in the layer-averaged (multilayer)
framework. That is a difficult task that will be tackled in the future.
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Figure 19: Time evolution of the normalized velocity of the front computed with non-hydrostatic models with and without
the correction in the µ(I) coefficients accounting for the sidewall friction, and experimental data (solid-circle blue lines),

for W = 10, 20 cm. Here h0 = 0.14 m, v0 =
√
g cos θh0 m/s and τc =

√
h0/(g cos θ) s.
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A Coefficients of the linear system associated to dispersive effects

Here we describe the coefficients appearing in (32) where we will assume free-outflow boundary conditions for simplicity.
Therefore, the right-hand side vector in (33) is modified as follows

R =

R1

...
RN

 , Rα =



0

0

Cα

(
U

n+2/3
5/2 , (∂XUn+2/3)5/2, (∂XZ)5/2

)
...

Cα

(
U

n+2/3
Nx−5/2, (∂XUn+2/3)Nx−5/2, (∂XZ)Nx−5/2

)
0

0



, α = 1, . . . , N.

The tridiagonal matrices Mα,α−1, Mα,α, and Mα,α+1 for α = 2, . . . , N in (32) are described, for i, j = 3, . . . , Nx − 2, by

(Mα,α−1)i,j =



h2
i+1/2

∆x2
− hi+1/2

ξα,i+1/2 + ξα+1/2,i+1/2

∆x
+N2, for j = i− 1,

−2
h2
i+1/2

∆x2
+ 4ξ2α,i+1/2 + 2hi+1/2∂xξα,i+1/2 + 2N2, for j = i,

h2
i+1/2

∆x2
+ hi+1/2

ξα,i+1/2 + ξα+1/2,i+1/2

∆x
+N2, for j = i+ 1,

(Mα,α)i,j =



2
h2
i+1/2

∆x2
− hi+1/2

ξα,i+1/2 + ξα+3/2,i+1/2 − ξα+1,i+1/2 − ξα−1/2,i+1/2

∆x
− 2N2, for j = i− 1,

−4
h2
i+1/2

∆x2
− 4

(
ξ2α,i+1/2 + ξ2α+1,i+1/2

)
− 2hi+1/2

(
∂xξα,i+1/2 + ∂xξα+1,i+1/2

)
− 4N2, for j = i,

2
h2
i+1/2

∆x2
+ hi+1/2

ξα,i+1/2 + ξα+3/2,i+1/2 − ξα+1,i+1/2 − ξα−1/2,i+1/2

∆x
− 2N2, for j = i+ 1

(Mα,α+1)i,j =



h2
i+1/2

∆x2
+ hi+1/2

ξα+1,i+1/2 + ξα+1/2,i+1/2

∆x
+N2, for j = i− 1,

−2
h2
i+1/2

∆x2
+ 4ξ2α+1,i+1/2 − 2hi+1/2∂xξα+1,i+1/2 + 2N2, for j = i,

h2
i+1/2

∆x2
− hi+1/2

ξα+1,i+1/2 + ξα+1/2,i+1/2

∆x
+N2, for j = i+ 1,

with MN,N+1 = 0, and

ξα,i+1/2 = (α− 1/2)
hi+1 − hi

∆x
+N

h+
i+1/2 − h−

i+1/2 − (hi+1 − hi)

∆x
,

that is proportional to the derivative of the midpoint of the layer Zα, and we approximate their second order derivatives
as follows

∂xξα,1+1/2 =
1

∆x
minmod

(
ξα,i+3/2 − ξα,i+1/2, ξα,i+1/2 − ξα,i−1/2,

1

2

(
ξα,i+3/2 − ξα,i−1/2

))
,

minmod being the usual slope limiter function.
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The special cases of M1,1, and M1,2, corresponds to the discretization at the lowest layer, where the constraint (27) is
simply given by 2hNN1 = 2hNE1, and reads

(M1,1)i,j =



h2
i+1/2

∆x2
− hi+1/2

ξα+3/2,i+1/2 − ξα+1,i+1/2

∆x
−N2, for j = i− 1,

−2
h2
i+1/2

∆x2
− 4ξ2α+1,i+1/2 + 2hi+1/2∂xξα+1,i+1/2 − 2N2, for j = i,

h2
i+1/2

∆x2
+ hi+1/2

ξα+3/2,i+1/2 − ξα+1,i+1/2

∆x
−N2, for j = i+ 1

(M1,2)i,j =



h2
i+1/2

∆x2
+ hi+1/2

ξα+1,i+1/2 + ξα+1/2,i+1/2

∆x
+N2, for j = i− 1,

−2
h2
i+1/2

∆x2
+ 2N2, for j = i,

h2
i+1/2

∆x2
− hi+1/2

ξα+1,i+1/2 + ξα+1/2,i+1/2

∆x
+N2, for j = i+ 1.

Regarding the horizontal wall/free-outflow boundary conditions along the independent variable x, we consider, for
α = 1, 2, . . . N ,

(Mα,α)1,1 = (Mα,α)2,2 = (Mα,α)Nx−1,Nx−1 = (Mα,α)Nx,Nx
= 1,

(Mα,α)1,2 = (Mα,α)2,3 = (Mα,α)Nx−1,Nx−2 = (Mα,α)Nx,Nx−1 = −1, (37)

and for the rest of matrices, Mα,α±1, they are given as usually when applying ghost cells techniques for all the variables.

B Proof of Theorem 1

This appendix gives detailed proof of Theorem 1 concerning the energy balance for model (9). Some of the steps of this
proof are similar to the proof of the energy inequality verified by LDNH0 model in [40]. However, we give here all the
details for the sake of completeness.

Proof:
Using the horizontal momentum equation (9b) as well as the layer height evolution equation (9a), we obtain

hα

(
∂tuα + ∂x

(
u2
α

2

))
+ uα (Gα+1/2 −Gα−1/2) + ∂x

(
hαp

nh
α

ρ

)
+ g cos θhα∂x(̃b+ b+ h)

=
1

ρ

(
Kα−1/2 −Kα+1/2

)
+

pnhα+1/2

ρ
∂xzα+1/2 −

pnhα−1/2

ρ
∂xzα−1/2 + uα+1/2Gα+1/2 − uα−1/2Gα−1/2.

(38)

Now, we sum up (38) multiplied by uα with the equation obtained by multiplying the mass conservation equation by

u2
α/2 + g cos θ(̃b+ b+ h), getting

∂t

(
hα

u2
α

2

)
+ g cos θ(̃b+ b+ h)∂thα + ∂x

(
hαuα

(
u2
α

2
+ g cos θ(̃b+ b+ h)

))
−g cos θ(̃b+ b+ h)

(
Gα+1/2 −Gα−1/2

)
+

1

ρ
uα∂x

(
hαp

nh
α

)
− 1

ρ
uα

(
pnhα+1/2∂xzα+1/2 − pnhα−1/2∂xzα−1/2

)
−Gα+1/2

(
u2
α

2
− uαuα+1/2

)
+Gα−1/2

(
u2
α

2
− uαuα−1/2

)
+

1

ρ
uα

(
Kα−1/2 −Kα+1/2

) (39)

Similar steps are followed for the equations of the vertical velocity (9c), and using the mass equation, we get

∂t

(
hα

w2
α

2

)
+ ∂x

(
hαuα

w2
α

2

)
+

1

ρ
wα

(
pnhα+1/2 − pnhα−1/2

)
=

−Gα+1/2

(
w2

α

2
− wαw̃α+1/2

)
+Gα−1/2

(
w2

α

2
− wαw̃α−1/2

)
.

(40)
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By defining

Eα = hα

(
u2
α + w2

α

2
+ g cos θ

(
b̃+ b+

h

2

))
,

and summing up equations (39) and (40), after some straightforward computations we obtain

∂tEα + ∂x

(
Eαuα + g cos θhα

h

2
uα

)
+

1

ρ
PNH,α = MTα +

1

ρ
uα

(
Kα−1/2 −Kα+1/2

)
+

g cos θ

2
(hα∂th− h∂thα) , (41)

where we have used that

g cos θ(̃b+ b+ h)∂thα = ∂t

(
hαg cos θ

(
b̃+ b+

h

2

))
+

g cos θ

2
(h∂thα − hα∂th) .

In equation (41), PNH,α andMTα collect the terms related to non-hydrostatic pressure and mass transference, respectively,
in the layer Ωα. The non-hydrostatic contributions are

PNH,α = uα∂x
(
hαp

nh
α

)
+ pnhα+1/2

(
−uα∂xzα+1/2 + wα

)
− pnhα−1/2

(
−uα∂xzα−1/2 + wα

)
= ∂x

(
hαuαp

nh
α

)
− pnhα+1/2

α∑
β=1

∂x (hβuβ) + pnhα−1/2

α−1∑
β=1

∂x (hβuβ)

where we have used restriction (4) and (9d). Notice that in the particular cases α = 1 and α = N , using the
non-penetration condition and pnh|b+h

= 0, we have

PNH,1 = ∂x
(
h1u1p

nh
1

)
− pnh3/2∂x (h1u1) , PNH,N = ∂x

(
hNuNpnhN

)
+ pnhN−1/2

N−1∑
β=1

∂x (hβuβ) .

It leads to a conservative contribution since the terms on pnhα±1/2 vanish when summing up from α = 1, . . . , N :

N∑
β=1

PNH,β =

N∑
β=1

∂x
(
hβp

nh
β uβ

)
.

Concerning the mass transfer terms, they are

MTα = g cos θ
(
b̃+ b+ h

) (
Gα+1/2 −Gα−1/2

)
+

Gα+1/2

2

[
uαuα+1 + wαwα+1

]
−

Gα−1/2

2

[
uαuα−1 + wαwα−1

]
.

It is easy to see that, since we have set G1/2 = GN+1/2 = 0, it holds

N∑
β=1

MTβ = 0, and
g

2

N∑
β=1

(hα∂tH −H∂thα) = 0,

and thus, summing up (41) in all the layers, the proof is finished.
Finally, by using the definitions of Kα+1/2 for α = 0, . . . , N , the viscous terms satisfy

N∑
β=1

uα

(
Kβ−1/2 −Kβ+1/2

)
= u1K1/2 − uNKN+1/2 +

N−1∑
β=1

Kβ+1/2 (uβ+1 − uβ)

= −µ(I1/2)p1/2
u2
1

|u1|
−

N−1∑
β=1

ηβ+1/2

2

(uβ+1 − uβ)
2

hβ+1/2
,

that is then a dissipative contribution, as expected.
□
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