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Abstract

This work presents an adaptive superfast proximal augmented Lagrangian (AS-PAL) method
for solving linearly-constrained smooth nonconvex composite optimization problems. Each it-
eration of AS-PAL inexactly solves a possibly nonconvex proximal augmented Lagrangian (AL)
subproblem obtained by an aggressive/adaptive choice of prox stepsize with the aim of substan-
tially improving its computational performance followed by a full Lagrangian multiplier update.
A major advantage of AS-PAL compared to other AL methods is that it requires no knowledge
of parameters (e.g., size of constraint matrix, objective function curvatures, etc) associated with
the optimization problem, due to its adaptive nature not only in choosing the prox stepsize but
also in using a crucial adaptive accelerated composite gradient variant to solve the proximal AL
subproblems. The speed and efficiency of AS-PAL is demonstrated through extensive compu-
tational experiments showing that it can solve many instances more than ten times faster than
other state-of-the-art penalty and AL methods, particularly when high accuracy is required.

1 Introduction

The main goal of this paper is to present the theoretical analysis and the excellent computational per-
formance of an adaptive superfast proximal augmented Lagrangian method, referred to as AS-PAL,
for solving the linearly-constrained smooth nonconvex composite optimization (SNCO) problem

φ∗ := min{φ(z) := f(z) + h(z) : Az = b}, (1)

where A : ℜn → ℜl is a linear operator, b ∈ ℜl, h : ℜn → (−∞,∞] is a closed proper convex
function which is Mh-Lipschitz continuous on its compact domain, and f : ℜn → ℜ is a real-valued
differentiable nonconvex function which is mf -weakly convex and whose gradient is Lf–Lipschitz
continuous. AS-PAL is essentially an adaptive version of the IAIPAL method and the NL-IAIPAL
method studied in [15, 16], but, in contrast to these methods, it does not require knowledge of the
above parameters mf , Lf , and Mh.

An iteration of AS-PAL has a similar pattern to the ones of the methods in [15, 16] and is also
based on the augmented Lagrangian (AL) function Lc(z; p) defined as

Lc(z; p) := f(z) + h(z) + 〈p,Az − b〉+ c

2
‖Az − b‖2. (2)
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More specifically, its rough description is as follows: given (zk−1, pk−1) ∈ H × ℜl and a pair of
positive scalars (λk, ck), it computes zk as a suitable approximate solution of the possibly nonconvex
proximal subproblem

min
u

{

λkLck(u; pk−1) +
1

2
‖u− zk−1‖2

}

, (3)

and pk according to the full Lagrange multiplier update

pk = pk−1 + ck(Azk − b). (4)

Based on the fact that (3) is strongly convex whenever the prox stepsize λk is chosen in (0, 1/mf ),
the methods of [15, 16] set λk = 0.5/mf for every k and solve each strongly-convex subproblem
using an accelerated composite gradient (ACG) method (see [12, 27]).

Our contributions: Since it is empirically observed that the larger λk is, the faster the proce-
dure outlined above in (3)-(4) approaches a desired approximate solution of (1), AS-PAL adaptively
chooses the prox stepsize λk to be a scalar which is usually much larger than 0.5/mf . As (3) may
become nonconvex with such a choice of λk, a standard ACG method applied to (3) may fail to
obtain a desirable approximate solution of (3). To remedy this situation, AS-PAL uses a new adap-
tive ACG method for solving (3) which accounts for the fact that (3) may be nonconvex and the
Lipschitz constant of the objective function of (3) may be unknown. Thus, in contrast to the meth-
ods of [15, 16], AS-PAL has the interesting feature of requiring no knowledge of the parameters mf ,
Lf and Mh underlying (3) in view of its ability to adaptively generate the prox stepsize λk and the
estimate of the Lipschitz constant of the objective function of (3) within the adaptive ACG method.
Moreover, as was shown for the method of [15], under the assumption that a Slater point exists, it
is also shown that, for any given tolerance pair (ρ̂, η̂) ∈ ℜ2

++, AS-PAL finds a (ρ̂, η̂)-approximate
stationary solution of (3), i.e., a triple (z, p, w) satisfying

w ∈ ∇f(z) + ∂h(z) +A∗p, ‖w‖ ≤ ρ̂, ‖Az − b‖ ≤ η̂, (5)

in at most O(η̂−1/2ρ̂−2 + ρ̂−3) iterations (up to logarithmic terms). Finally, a major advantage of
AS-PAL is that it substantially improves the computational performance of the methods in [15, 16],
whose performance was already substantially better than other existing methods for solving (1).
Our extensive computational results of section 4 show that AS-PAL can efficiently compute highly
accurate solutions for all problems tested, while the other methods can fail to do so in many of
these problems. AS-PAL can often find such solutions in just a few seconds or minutes while all the
other methods may take several hours to do so.

Literature review. We only focus on relatively recent papers dealing with the iteration com-
plexity of augmented Lagrangian (AL) type methods. In the convex setting, AL-based methods
have been widely studied for example in [1, 2, 19, 20, 24, 25, 28, 31, 34].

We now discuss AL type methods in the nonconvex setting of (1). Various proximal AL methods
for solving both linearly and nonlinearly constrained SNCO problems have been studied in [6, 15,
16, 17, 26, 33, 36, 37, 38]. More specifically, [6, 17, 26] present proximal AL methods based on a
perturbed augmented Lagrangian function and an under-relaxed multiplier update. Papers [15, 16]
present an accelerated proximal AL method based off the classical augmented Lagrangian function
and a full multiplier update. The method in [33] is an AL-based method which reverses the direction
of the multiplier update. Papers [36, 37, 38] study AL type variants based on the Moreau envelope.
Finally, non-proximal AL methods for solving SNCO problems are studied in [21, 32].

We now discuss papers that are tangentially related to this work. Penalty methods for SNCO
problems have been studied in [13, 14, 18, 23]. It is worth mentioning that AS-PAL extends the
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methods in [15, 16] by allowing for an adaptive prox stepsize, similar to the way the method of [14]
extends the one in [13]. Finally, paper [9] studies a penalty-ADMM method that solves an equivalent
reformulation of (1) while the paper [22] presents an inexact proximal point method applied to the
function defined as φ(z) if z is feasible and +∞ otherwise.

Organization of the paper. The paper is laid out as follows. Subsection 1.1 presents basic
definitions and notation used throughout the paper. Section 2 contains two subsections. The first
describes the problem of interest and the assumptions made on it. The second formally states the
AS-PAL method and its main complexity result. Section 3 is dedicated to proving the main complex-
ity result. Section 4 presents extensive computational experiments which demonstrate the efficiency
of AS-PAL. The Appendix contains two subsections. Appendix A presents the ADAP-FISTA al-
gorithm which is used to solve possibly nonconvex unconstrained subproblems while Appendix B
presents technical results which are used to prove that the sequence of the Lagrange multipliers
generated by AS-PAL is bounded.

1.1 Basic Definitions and Notations

This subsection presents notation and basic definitions used in this paper.
Let ℜ+ and ℜ++ denote the set of nonnegative and positive real numbers, respectively. We

denote by ℜn an n-dimensional inner product space with inner product and associated norm denoted
by 〈·, ·〉 and ‖ · ‖, respectively. We use ℜl×n to denote the set of all l×n matrices and S

+
n to denote

the set of positive semidefinite matrices in ℜn×n. The smallest positive singular value of a nonzero
linear operator Q : ℜn → ℜl is denoted by ν+Q . For a given closed convex set Z ⊂ ℜn, its boundary
is denoted by ∂Z and the distance of a point z ∈ ℜn to Z is denoted by dist(z, Z). The indicator
function of Z, denoted by δZ , is defined by δZ(z) = 0 if z ∈ Z, and δZ(z) = +∞ otherwise. For any
t > 0 and b ≥ 0, we let log+b (t) := max{log t, b}, and we define O1(·) = O(1 + ·).

The domain of a function h : ℜn → (−∞,∞] is the set domh := {x ∈ ℜn : h(x) < +∞}.
Moreover, h is said to be proper if domh 6= ∅. The set of all lower semi-continuous proper convex
functions defined in ℜn is denoted by Conv ℜn. The ε-subdifferential of a proper function h : ℜn →
(−∞,∞] is defined by

∂εh(z) := {u ∈ ℜn : h(z′) ≥ h(z) + 〈u, z′ − z〉 − ε, ∀z′ ∈ ℜn} (6)

for every z ∈ ℜn. The classical subdifferential, denoted by ∂h(·), corresponds to ∂0h(·). Recall that,
for a given ε ≥ 0, the ε-normal cone of a closed convex set C at z ∈ C, denoted by N ε

C(z), is

N ε
C(z) := {ξ ∈ ℜn : 〈ξ, u− z〉 ≤ ε, ∀u ∈ C}.

The normal cone of a closed convex set C at z ∈ C is denoted by NC(z) = N0
C(z). If ψ is a

real-valued function which is differentiable at z̄ ∈ ℜn, then its affine approximation ℓψ(·, z̄) at z̄ is
given by

ℓψ(z; z̄) := ψ(z̄) + 〈∇ψ(z̄), z − z̄〉 ∀z ∈ ℜn. (7)

2 The AS-PAL method

This section consists of two subsections. The first one precisely describes the problem of interest
and its assumptions. The second one motivates and states the AS-PAL method and presents its
main complexity result.
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2.1 Problem of Interest

This subsection presents the main problem of interest and discusses the assumptions underlying it.
Consider problem (1) where A : ℜn → ℜl, b ∈ ℜl and functions f, h : ℜn → (−∞,∞] satisfy the

following assumptions:

(A1) h ∈ Conv(ℜn) is Mh-Lipschitz continuous on H := domh and the diameter

Dh := sup{‖z − z′‖ : z, z′ ∈ H}

of H is finite;

(A2) A is a nonzero linear operator and there exists z̄ ∈ int (H) such that Az̄ = b;

(A3) f is nonconvex and differentiable on ℜn, and there exists Lf ≥ mf > 0 such that for all
z, z′ ∈ ℜn,

‖∇f(z′)−∇f(z)‖ ≤ Lf‖z′ − z‖, (8)

f(z′)− ℓf (z′; z) ≥ −
mf

2
‖z′ − z‖2. (9)

2.2 The AS-PAL method

This subsection motivates and states the AS-PAL method and presents its main complexity result.
Before presenting the method, we give a short but precise outline of its key steps as well as a

description of how its iterates are generated. Recall from the introduction that the AS-PAL method,
whose goal is to find a (ρ̂, η̂)-approximate stationary solution as in (5), is an iterative method which,
at its k-th step, computes its next iterate (zk, pk) according to (3) and (4). We are now ready to
provide a complete description of the AS-PAL method.

AS-PAL Method

Input: functions (f, h), scalars σ ∈ (0, 1/2), χ ∈ (0, 1), and β > 1, an initial λ̄ > 0, an initial point
z0 ∈ H, p0 = 0, a penalty parameter c1 > 0, and a tolerance pair (ρ̂, η̂) ∈ ℜ2

++.
Output: a triple (z, p, w) satisfying (5).

0. set k̂ = 1, k = 1, and

λ = λ, Cσ =
2(1− σ)2
1− 2σ

; (10)

1. let Mk
0 ∈ [1, λ(Lf + ck‖A‖2)+1] and call the ADAP-FISTA method described in Appendix A

with inputs

x0 = zk−1, (µ,L0, χ, β, σ) = (1/2,Mk
0 , χ, β, σ), (11)

ψs = λ[Lck(·, pk−1)− h] +
1

2
‖ · −zk−1‖2, ψn = λh; (12)

2. if ADAP-FISTA fails or its output (z, u) (if it succeeds) does not satisfy the inequality

λLck(zk−1, pk−1)−
[

λLck(z, pk−1) +
1

2
‖z − zk−1‖2

]

≥ 〈u, zk−1 − z〉, (13)
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then set λ = λ/2 and go to step 1; else, set (zk, uk) = (z, u), λk = λ, and

wk : =
uk + zk−1 − zk

λk
, (14)

pk : = pk−1 + ck(Azk − b), (15)

and go to step 3;

3. if ‖wk‖ ≤ ρ̂ and ‖Azk − b‖ ≤ η̂, then stop with success and output (z, p, w) = (zk, pk, wk);
else, go to step 4;

4. if k ≥ k̂ + 1 and

∆k :=
1

∑k
i=k̂+1

λi

[

Lck(zk̂, pk̂−1
)− Lck(zk, pk)−

‖pk‖2
2ck

]

≤ max

{
∑k

i=k̂+1
λi‖wi‖2

2Cσ
∑k

i=k̂+1
λi
,
ρ̂2

2Cσ

}

,

(16)
then set ck+1 = 2ck and k̂ = k + 1; otherwise, set ck+1 = ck;

5. set k ← k + 1 and go to step 1.

AS-PAL makes two types of iterations, namely, the outer iterations indexed by k and the ACG
iterations performed during its calls to the ADAP-FISTA method in step 1.

We now make some remarks about AS-PAL. First, it follows from Proposition A.1 (see Ap-
pendix A) that the total number of resolvent evaluations 1 made by ADAP-FISTA is on the same
order of magnitude as its total number of ACG iterations. Second, noting that the sum of the func-
tions ψs and ψn in (12) is equal to the objective function of (3), it follows from Proposition A.1 in
Appendix A that the pair (zk, uk) in step 2 of AS-PAL is an approximate solution of (3) in the sense
of (51). Third, it will be shown in Proposition 3.1(b) below that the triple (zk, pk, wk) computed in
step 2 satisfies the inclusion in (5) for every k ≥ 1. As a consequence, if AS-PAL terminates in step
3, then the triple (z, p, w) output in this step is a (ρ̂, η̂)-approximate solution of (1). Finally, step
4 provides a test, namely, inequality (16), to determine when to increase the penalty parameter ck.

Define the l-th cycle Cl as the l-th set of consecutive indices k ≥ 1 for which ck remains constant,
i.e.,

Cl := {k ≥ 1 : ck = c̃l := 2l−1c1} ∀l ≥ 1. (17)

For every l ≥ 1, let kl denote the smallest index in Cl. Hence,

Cl = {kl, . . . , kl+1 − 1} ∀l ≥ 1. (18)

Clearly, the different values of k̂ that arise in step 4 are exactly the indices in {kl : l ≥ 1}. Moreover,
in view of the test performed in step 4, we have that kl+1 − kl ≥ 2 for every l ≥ 1, or equivalently,
every cycle contains at least two indices. While generating the indices in the l-th cycle, if an index
k ≥ kl + 2 satisfying (16) is found, k becomes the last index kl+1 − 1 in the l-th cycle and the
(l+ 1)-th cycle is started at iteration kl+1 with the penalty parameter set to c̃l+1 = 2c̃l, where c̃l is
as in (17).

In the remaining part of this section, we state the main complexity result for AS-PAL, whose
proof is the main focus of Section 3. Before stating the main result, we first introduce the following
quantities:

φ∗ := inf
z∈ℜn

φ(z), d̄ := dist(z̄, ∂H), λ := min{λ, 1/(4mf )} (19)

1A resolvent evaluation of h is an evaluation of (I + γ∂h)−1(·) for some γ > 0.
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∇f := sup
z∈H
|∇f(z)|, κp :=

2Dh(Mh +∇f + λ−1(1 + σ)Dh)

d̄ν+A
, ĉ(ρ̂, η̂) :=

18Cσκ
2
p

λρ̂2
+

2κp
η̂

(20)

S := sup
z∈H
|φ(z)|, κd := S +

4κ2p
c1
− φ∗, (21)

where λ, c1, and σ are input parameters for AS-PAL, (mf , Lf ) are as in (A3), z̄ is as in (A2), Mh is
as in (A1), Dh is as in (A1), ν+A is as in Subsection 1.1, and Cσ is as in (10). Note that assumptions
(A1) and (A3) imply that S and ∇f are finite.

The following result describes the ACG iteration/resolvent evaluation complexity for AS-PAL.

Theorem 2.1. Let a tolerance pair (ρ̂, η̂) ∈ ℜ2
++ be given and assume that c1 ≤ 4ĉ(ρ̂, η̂) and λ is

such that λ = Ω(m−1

f ) and log+0 (mfλ) ≤ O(1 + κd/(λρ̂
2)), where c1 and λ are the initial penalty

parameter and prox stepsize of AS-PAL, respectively, mf is as in (A3), ĉ(ρ̂, η̂) is as in (20), and κd
is as in (21). Then, AS-PAL outputs a (ρ̂, η̂)-approximate stationary solution of (1) in

O
(

[

1 +
mfκd
ρ̂2

]

√

M(ĉ)

[

log

(

M(ĉ) +
ĉ

c1

)]2
)

(22)

ACG iterations/resolvent evaluations, where ĉ := ĉ(ρ̂, η̂) and

M(c) := λ(Lf + c‖A‖2) + 1 ∀c ∈ ℜ. (23)

It follows from the definitions of ĉ(·, ·) andM(·) in (20) and (23), respectively, that the iteration
complexity bound (22) in terms of the tolerance pair (ρ̂, η̂), up to a logarithmic term, is

O
(

1√
η̂ · ρ̂2 +

1

ρ̂3

)

.

3 Proof of Theorem 2.1

The result below describes properties of the loop consisting of steps 1 and 2 of AS-PAL.

Proposition 3.1. Let k ∈ Cl for some l ≥ 1 be given. Then, the following statements hold:

(a) every ACG call in step 1 of the k-th iteration of AS-PAL performs

O1

(

√

M(c̃l) logM(c̃l)
)

(24)

ACG iterations/resolvent evaluations;

(b) during the k-th iteration of AS-PAL, the loop consisting of steps 1 and 2 eventually ends with
a quintuple (zk, uk, wk, pk, λk) satisfying

‖uk‖ ≤ σmin

{

‖zk − zk−1‖ ,
‖λkwk‖
1− σ

}

; (25)

λkLck(zk−1, pk−1)−
[

λkLck(zk, pk−1) +
1

2
‖zk − zk−1‖2

]

≥ 〈uk, zk−1 − zk〉; (26)

wk ∈ ∇f(zk) + ∂h(zk) +A∗pk, ‖λkwk‖ ≤ (1 + σ)‖zk − zk−1‖; (27)

λ ≥ λk ≥ λ, (28)

where λ is the initial prox stepsize and λ is as in (19); moreover, every prox stepsize λ generated
in the loop consisting of steps 1 and 2 of AS-PAL is in [λ, λ].
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Proof. (a) Using the definition of Lck(·; pk−1) in (2) and assumption (8), we easily see that its smooth
part, namely, Lck(·; pk−1) − h(·), has (Lf + ck‖A‖2)-Lipschitz continuous gradient everywhere on
ℜn. This observation together with the facts that λ ≤ λ, ck = c̃l, and the definition ofM(·) in (23),
then imply that the function ψs in (12) has M(c̃l)-Lipschitz continuous gradient. Noting that Mk

0

in step 1 is chosen so that Mk
0 ≤ M(ck) =M(c̃l) and that each call to ADAP-FISTA in step 1 is

made with (µ,L0) = (1/2,Mk
0 ), we then conclude that (a) follows directly from Proposition A.1(a)

with L̄ =M(c̃l) and µ = 1/2.
(b) We first claim that if the loop consisting of steps 1 and 2 of the k-iteration of AS-PAL stops,

then (25), (26), and (27) hold. Indeed, assume that the loop consisting of steps 1 and 2 of the k-th
iteration of AS-PAL stops. It then follows that ADAP-FISTA with inputs given by (11) and (12)
stops successfully and (z, u, λ) = (zk, uk, λk) satisfies (13). These two conclusions, identities (12)
and (14), and Proposition A.1(b) with (ψs, ψn) as in (12), x0 = zk−1, and (y, u) = (zk, uk) then
imply that (26), the first inequality in (25), and the inclusion in (27) hold. Now, using the definition
of wk in (14), the triangle inequality, and the first inequality in (25), we have:

1

σ
‖uk‖− ‖uk‖

(25)

≤ ‖zk − zk−1‖ − ‖uk‖ ≤ ‖uk + zk−1− zk‖
(14)
= ‖λkwk‖

(25)

≤ (1 + σ)‖zk − zk−1‖, (29)

from which the second inequality in (25) and the inequality in (27) follow.
We now claim that if step 1 is performed with a prox stepsize λ ≤ 1/(2mf ) in the k-th iteration,

then for every j > k, we have that λj−1 = λ and the j-th iteration performs step 1 only once.
To show the claim, assume that λ ≤ 1/(2mf ). Using this assumption, the definition of Lc in (2),
and the assumption (9) that f is mf -weakly convex, we see that the function ψs in (12) is strongly
convex with modulus 1− λmf ≥ 1/2. Since each ACG call is performed in step 1 of AS-PAL with
µ = 1/2, it follows immediately from Proposition A.2 with (ψs, ψn) as in (12) that ADAP-FISTA
terminates successfully and outputs a pair (z, u) satisfying u ∈ ∂(ψs + ψn)(z). This inclusion, the
definition of (ψs, ψn), and the definition of subdifferential in (6), then imply that (13) holds. Hence,
in view of the termination criteria of step 2 of AS-PAL, it follows that λk = λ. It is then easy to
see, by the way λ is updated in step 2 of AS-PAL, that λ is not halved in the (k + 1)-th iteration
or any subsequent iteration, hence proving the claim.

It is now straightforward to see that the above two claims, the fact that the initial value of the
prox stepsize is equal to λ, and the way λk is updated in AS-PAL, imply that the lemma holds.

The subsequent technical result characterizes the change in the augmented Lagrangian function
between consecutive iterations of the AS-PAL method.

Lemma 3.2. For every k ≥ 1, we have:

Lck(zk, pk)− Lck(zk, pk−1) =
1

ck
‖pk − pk−1‖2, (30)

and

λk
Cσ
‖wk‖2 ≤ Lck(zk−1, pk−1)− Lck(zk, pk) +

1

ck
‖pk − pk−1‖2 (31)

where Cσ is as in (10).

Proof. Identity (30) follows immediately from the definition of the Lagrangian in (2) and relation
(15). Now, using relation (26), the second inequality in (25), and the definitions of Cσ and wk in
(10) and (14), respectively, we conclude that:

λkLck(zk−1, pk−1)− λkLck(zk, pk−1)
(26)

≥ 1

2
‖zk − zk−1‖2 + 〈uk, zk−1 − zk〉

7



=
1

2
‖zk−1 − zk + uk‖2 −

1

2
‖uk‖2

(14)
=

1

2
‖λkwk‖2 −

1

2
‖uk‖2

(25)

≥ 1

2
‖λkwk‖2 −

σ2

2(1 − σ)2 ‖λkwk‖
2 =

1− 2σ

2(1− σ)2 ‖λkwk‖
2 (10)

=
‖λkwk‖2
Cσ

. (32)

Inequality (31) now follows by dividing (32) by λk and combining the resulting inequality with
(30).

The result below, which establishes boundedness of the sequence of Lagrange multipliers, makes
use of a technical result in the Appendix, namely Lemma B.3.

Proposition 3.3. The sequence {pk} generated by AS-PAL satisfies

‖pk‖ ≤ κp, ∀k ≥ 0, (33)

where κp is defined in (20).

Proof. Using the inequality in (27), the triangle inequality, the second inequality in (28), and the
definitions of Dh and ∇f in (A1) and (20), respectively, we conclude that

‖wk −∇f(zk)‖
(27)

≤ 1

λk
(1 + σ)‖zk − zk−1‖+∇f

(28)

≤ Dh(1 + σ)

λ
+∇f . (34)

Now, using the inclusion in (27), the relation in (34), Lemma B.3(b) with (z, q, r) = (zk, pk, wk −
∇f(zk)) and q− = pk−1, and the definition of κp in (20), we conclude that for every k ≥ 1:

‖pk‖
(87)

≤ max

{

‖pk−1‖,
2Dh(Mh + ‖wk −∇f(zk)‖)

d̄ν+A

}

(34)

≤ max {‖pk−1‖, κp} . (35)

Now, the conclusion of the proposition follows from the above relation, the fact that p0 = 0, and a
simple induction argument.

Recall that the l-th cycle Cl of AS-PAL is defined in (17). The following result shows that the
sequence {‖‖wk‖}k∈Cl is bounded and can be controlled by {∆k}k∈Cl plus a term which is of O(1/c̃l).
Lemma 3.4. Consider the sequences {(zk, pk, wk)}k∈Cl and {∆k} generated by AS-PAL. Then, for

every k ∈ Cl such that k ≥ k̂ + 1, we have:

∑k
i=k̂+1

λi‖wi‖2
∑k

i=k̂+1
λi

≤ Cσ
(

∆k +
9κ2p
λc̃l

)

(36)

where Cσ, λ, and κp are as in (10), (19), and (20), respectively and k̂ is the first index in Cl.
Proof. We have by relation (33) and the bound ‖pj − pj−1‖2 ≤ 2‖pj‖2 + 2‖pj−1‖2 ≤ 4κ2p, that it
follows that for any k ∈ Cl,

‖pk‖2
2

+
k
∑

i=k̂

‖pi − pi−1‖2 ≤
κ2p
2

+ 4(k − k̂ + 1)κ2p =
(1 + 8(k − k̂ + 1))κ2p

2
≤ 9(k − k̂)κ2p. (37)

Hence, relations (30), (31), and (37) and the fact that ck = c̃l for every k ∈ Cl, imply that for any
k ∈ Cl such that k ≥ k̂ + 1,

1− 2σ

2(1− σ)2
k
∑

i=k̂+1

λi‖wi‖2
(31)

≤
k
∑

i=k̂+1

[

Lci(zi−1, pi−1)− Lci(zi, pi) +
1

ci
‖pi − pi−1‖2

]
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j∈Cl=

k
∑

i=k̂+1

[

Lc̃l(zi−1, pi−1)− Lc̃l(zi, pi) +
1

c̃l
‖pi − pi−1‖2

]

= Lc̃l(zk̂, pk̂)− Lc̃l(zk, pk) +
1

c̃l

k
∑

i=k̂+1

‖pi − pi−1‖2

(30)
= Lc̃l(zk̂, pk̂−1

)− Lc̃l(zk, pk) +
1

c̃l

k
∑

i=k̂

‖pi − pi−1‖2

(37)

≤ Lc̃l(zk̂, pk̂−1
)− Lc̃l(zk, pk)−

‖pk‖2
2c̃l

+
9(k − k̂)κ2p

c̃l

=





k
∑

i=k̂+1

λi



∆k +
9(k − k̂)κ2p

c̃l
,

where the last equality follows from the definition of ∆k in (16). Now, using the above bound and
(28) we have:

∑k
i=k̂+1

λi‖wi‖2
∑k

i=k̂+1
λi

≤ Cσ
(

∆k +
9(k − k̂)κ2p
c̃l
∑k

i=k̂+1
λi

)

(28)

≤ Cσ

(

∆k +
9κ2p
λc̃l

)

.

The result follows immediately from the above bound.

The next result establishes bounds on ‖Azk − b‖ and on the quantity ∆k defined in (16).

Lemma 3.5. Consider the sequence of iterates {(zk, ck, pk)}k∈Cl generated during the l-th cycle of
AS-PAL and let ∆k be as in (16). Then, for every k ∈ Cl,

(a) we have

‖Azk − b‖ ≤
2κp
c̃l

; (38)

(b) if additionally k ≥ k̂ + 1, then

∆k ≤
κd

∑k
i=k̂+1

λi
, (39)

where κd is as in (21) and k̂ denotes the first index in Cl.

Proof. (a) Let k ∈ Cl. Using the update for pk in (15), triangle inequality, and the bound on pk in
(33), we have:

‖Azk − b‖
(15)
=
‖pk − pk−1‖

ck

k∈Cl≤ ‖pk‖+ ‖pk−1‖
c̃l

(33)

≤ 2κp
c̃l

which immediately proves (38).
(b) Recall from (17) that Cl := {k : ck = c̃l := 2l−1c1}. Then, using the Cauchy-Schwarz

inequality, the definition of the Lagrangian function in (2), the definition of S in (21), relations (33)
and (38), and the fact that c̃l ≥ c1, we have

Lc̃l(zk̂, pk̂−1
) ≤ S + ‖pk̂−1

‖‖Azk̂ − b‖+
c̃l
2
‖Azk̂ − b‖2

(38)

≤ S + ‖pk̂−1
‖
(

2κp
c̃l

)

+
2κ2p
c̃l

(33)

≤ S +
4κ2p
c1
.

(40)
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Let k ∈ Cl be such that k ≥ k̂+1. Using the definition of φ∗ in (19) and completing the square, we
have:

Lc̃l(zk, pk)− φ∗ ≥ Lc̃l(zk, pk)− (f + h)(zk) =
1

2

∥

∥

∥

∥

pk√
c̃l

+
√

c̃l(Azk − b)
∥

∥

∥

∥

2

− ‖pk‖
2

2c̃l
≥ −‖pk‖

2

2c̃l
. (41)

Hence, it follows from the definition of ∆k in (16) and relations (40) and (41) that

∆k =
1

∑k
i=k̂+1

λi

(

Lc̃l(zk̂, pk̂−1
)− Lc̃l(zk, pk)−

‖pk‖2
2c̃l

)

≤ 1
∑k

i=k̂+1
λi

(

S +
4κ2p
c1
− φ∗

)

.

Thus, (39) immediately follows from the definition of κd in (21).

The following result establishes bounds on the number of ACG and outer iterations performed
during an AS-PAL cycle and shows that AS-PAL outputs a (ρ̂, η̂)-approximate stationary solution
of (1) within a logarithmic number of cycles.

Proposition 3.6. The following statements about AS-PAL hold:

(a) every cycle performs at most
⌈

2 +
2Cσκd
λρ̂2

⌉

(42)

outer iterations, where λ, κd, and Cσ are as in (19), (21), and (10) respectively; moreover, if
λ is such that λ = Ω(m−1

f ) and log+0 (mfλ) ≤ O(1+ κd/(λρ̂
2)), then the number of ACG calls

within an arbitrary cycle is O(1 +mfκd/ρ̂
2);

(b) for any cycle l of AS-PAL, its penalty parameter satisfies c̃l ≤ max{c1, 2ĉ} where ĉ := ĉ(ρ̂, η̂)
and ĉ(ρ̂, η̂) is as in (20); as a consequence, the number of cycles of AS-PAL is bounded by

log+1

(

4ĉ

c1

)

(43)

where c1 is the initial penalty parameter for AS-PAL.

Proof. (a) Fix a cycle l and let k̂ = kl denote the first index in Cl (see (18)). If some k ∈ Cl is such
that

k > k̂ +
2Cσκd
λρ̂2

(44)

then

∆k

(39)

≤ κd
∑k

i=k̂+1
λi

(28)

≤ κd

λ(k − k̂)
(44)

≤ ρ̂2

2Cσ
(45)

which clearly implies that ∆k satisfies inequality (16) and hence that the l-th cycle ends at or before
the k-th iteration. Hence, the first part of (a) follows immediately from this conclusion. To prove
the second part, first note that the number of times λ is divided by 2 in step 2 of AS-PAL is at
most ⌈log+0 (λ/λ)/ log 2⌉, in view of the last conclusion of Proposition 3.1(b). This observation, the
conclusion of the first part, the two conditions imposed on λ, and the definition of λ in (19), then
imply that the number of ACG calls within an arbitrary cycle is O(1 +mfκd/ρ̂

2).
(b) Assume by contradiction that c̃l > max{c1, 2ĉ}. Since c̃1 = c1 in view of (17), this implies

that l > 1 and c̃l > 2ĉ and hence that c̃l−1 > ĉ in view of the fact that c̃l = 2c̃l−1. Hence, it follows
from the definition of ĉ := ĉ(ρ̂, η̂) in (20) and Lemma 3.5(a) with l = l − 1 that for every k ∈ Cl−1,

‖Azk − b‖
(38)

≤ 2κp
c̃l−1

<
2κp
ĉ

< η. (46)
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This implies that mini∈Cl−1
‖wi‖ > ρ̂ in view of the termination criterion of step 3 and the fact that

AS-PAL has not stopped in the (l − 1)-th cycle. Letting k̂ := kl−1, this conclusion together with
Lemma 3.4 with l = l − 1 then imply that

ρ̂2 <

∑k
i=k̂+1

λi‖wi‖2
∑k

i=k̂+1
λi

≤ Cσ
(

∆k +
9κ2p
λc̃l−1

)

< Cσ

(

∆k +
9κ2p
λĉ

)

≤ Cσ∆k +
ρ̂2

2

where the third inequality follows from the fact that c̃l−1 > ĉ and the fourth one follows the
definition of ĉ := ĉ(ρ̂, η̂) in (20). Using this last conclusion, we can easily see that (16) is violated
for every k ∈ Cl−1 such that k ≥ k̂ + 1, a conclusion that contradicts the fact that the (l − 1)-th
cycle terminated.

We are now ready to prove Theorem 2.1.

of Theorem 2.1. First, note that the assumptions that λ = Ω(m−1

f ), log+0 (mfλ) ≤ O(1+κd/(λρ̂2)),
the definition of λ in (19), and the second conclusion of Proposition 3.6(a) imply that every cycle
of AS-PAL performs O(1 +mfκd/ρ̂

2) ACG calls. Second, the assumption that c1 ≤ 4ĉ and Propo-
sition 3.6(b) imply that c̃l ≤ 4ĉ and hence thatM(c̃l) ≤M(ĉ) in view of the definition of M(c) in
Theorem 2.1. The result then immediately follows from the above observations, Proposition 3.1(a),
and the bound (43) on the number of cycles performed by AS-PAL.

4 Numerical Experiments

This section showcases the numerical performance of AS-PAL, nicknamed ASL, against five other
benchmark algorithms for solving five classes of linearly-constrained SNCO problems. It contains five
subsections. Each subsection reports the numerical results on a different class of linearly-constrained
SNCO problems.

We have implemented a more aggressive variant of ASL, whose details we now describe. First,
the variant differs from ASL in that it allows the prox stepsize to be doubled in step 5 of any iteration
if it has not been halved in step 2 and the number of iterations performed by its ACG call in step
1 has not exceeded a pre-specified number. Second, since the prox stepsize is allowed to increase
in this variant, the initial prox stepsize is taken to be relatively small. Third, our implementation
chooses the following values for the input parameters of ASL:

σ = 0.1, µ = 1/4, χ = 0.5005, β = 1.25, p0 = 0.

Finally, for k ≥ 1, if Lk is the last estimated Lipschitz constant generated by ADAP-FISTA at the
end of step 2 of the kth iteration of ASL, then we take Mk+1

0 = Lk.
Now, we describe the implementation details of the five benchmark algorithms which we compare

our algorithm with. We consider the iALM method of [21], two variants of the S-prox-ALM of
[37, 38] (nicknamed SPA1 and SPA2), the inexact proximal augmented Lagrangian method of
[16] (nicknamed IPL), and the relaxed quadratic penalty method of [14] (nicknamed RQP). The
implementation of iALM chooses the parameters σ, β0, w0, y0, and γk as

σ = 5, β0 = 1, w0 = 1, y
0 = 0, γk =

(log 2) ‖Ax1‖
(k + 1) [log(k + 2)]2

,

for every k ≥ 1. Furthermore, the implementation of iALM uses the ACG subroutine called APG.
The starting point for the kth APG call is the prox center for the kth prox subproblem. The
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implementations of SPA1 and SPA2 also choose the parameters α, p, c, β, y0, and z0 as

α =
Γ

4
, p = 2(Lf + Γ‖A‖2), c =

1

2(Lf + Γ‖A‖2) , β = 0.5, y0 = 0, z0 = x0,

where Γ = 1 in SPA1 and Γ = 10 in SPA2. The implementation of IPL sets σ = 0.3, initial penalty
parameter c1 = 1, and constant prox parameter λ = 1/(2mf ). RQP uses the AIPPv2 variant in
[14] with initial prox stepsize λ = 1/mf , σ = 0.3, and parameters (θ, τ) = (4, 10 [λLf + 1]). Finally,
note that IPL and RQP solve each prox subproblem using the ACG variant in [27] with an adaptive
line search for the ACG variant’s stepsize parameter as described in [10].

We describe the type of solution each of the methods aims to find. That is, given a linear
operator A, functions f and h satisfying assumptions described in Subsection 2.1, an initial point
z0 ∈ H, and tolerance pair (ρ̂, η̂) ∈ ℜ2

++, each of the methods aims to find a triple (z, p, w) satisfying:

w ∈ ∇f(z) + ∂h(z) +A∗p,
‖w‖

1 + ‖∇f(z0)‖
≤ ρ̂, ‖Az − b‖

1 + ‖Az0 − b‖
≤ η̂, (47)

where ‖ · ‖ signifies the Euclidean norm when solving vector problems and the Frobenius norm
when solving matrix problems. Note that SPA1 and SPA2 are only included for comparison in the
experiments of Subsection 4.1 and Subsection 4.2 since they are only guaranteed to converge when
h is the indicator function of a polyhedron.

The tables below report the runtimes and the total number of ACG iterations needed to find
a triple satisfying (47). The bold numbers in the tables of this section indicate the algorithm that
performed the best for that particular metric (i.e. runtime or ACG iterations). It will be seen in
the following subsections that the two adaptive methods ASL and RQP are the most consistent
ones among the six considered. More specifically, within the specified time limit for each problem
class, ASL converged in all instances considered in our experiments while RQP converged in 90%
of them. To compare these two methods on a particular problem class more closely, we also report
in each table caption the following average time ratio (ATR) between ASL and RQP defined as

ATR =
1

N

N
∑

i=1

ai/ri, (48)

where N is the number of class instances that both methods were able to solve and ai and ri are
the runtimes of ASL and RQP for instance i, respectively.

Finally, we note that all experiments were performed in MATLAB 2020a and run on a Macbook
Pro with 8-core Intel Core i9 processor and 32 GB of memory. All codes for these experiments are
also available online2.

4.1 Nonconvex QP

Given a pair of dimensions (ℓ, n) ∈ N
2, a scalar pair (τ1, τ2) ∈ ℜ2

++, matrices A,C ∈ ℜℓ×n and
B ∈ ℜn×n, positive diagonal matrix D ∈ ℜn×n, and a vector pair (b, d) ∈ ℜℓ ×ℜℓ, we consider the
problem

min
z

[

f(z) := −τ1
2
‖DBz‖2 + τ2

2
‖Cz − d‖2

]

s.t. Az = b, z ∈ ∆n,

where ∆n := {x ∈ ℜn+ :
∑n

i=1
xi = 1}.
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Parameters Iteration Count Runtime (seconds)

mf Lf iALM IPL RQP ASL SPA1 SPA2 iALM IPL RQP ASL SPA1 SPA2

100 101 176005 11202 3905 4762 * * 4410.98 373.54 111.11 232.89 * *

100 102 109988 5382 6065 1884 * * 1878.44 155.70 198.38 64.50 * *

100 103 57869 1210 11216 645 * * 1607.23 55.25 384.88 20.39 * *

101 101 236655 3958 3171 1236 * * 4785.86 144.45 88.10 39.36 * *

101 102 195714 2319 6701 1051 * * 3582.34 84.14 217.43 34.07 * *

101 103 98865 1171 7583 644 * * 2073.41 41.98 234.67 20.55 * *

101 104 87595 6506 15637 924 * * 3272.03 280.97 403.79 29.51 * *

102 103 366178 * 7647 778 92872 * 6637.79 * 207.66 25.22 3290.91 *

102 104 248673 * 10421 1375 120882 257973 4329.35 * 283.96 45.27 5363.80 10644.96

102 105 130351 19887 16250 2410 205483 213369 2310.50 561.16 447.53 80.98 9317.19 7548.79

103 103 363915 * 4589 2001 * * 8111.85 * 136.56 71.45 * *

103 104 344723 * 6023 4055 * 158622 6949.95 * 596.66 168.01 * 6136.37

103 105 291006 16455 10067 3007 * 286333 5714.73 495.64 279.27 107.44 * 10761.87

103 106 141115 21586 15991 2208 269687 175752 2527.15 610.60 423.22 89.73 9718.92 6267.26

Table 1: Iteration counts and runtimes (in seconds) for the Nonconvex QP problem in Subsection 4.1.
The tolerances are set to 10−4. Entries marked with * did not converge in the time limit of 10800
seconds. The ATR metric is 0.3644.

Parameters Iteration Count Runtime (seconds)

mf Lf iALM RQP ASL iALM RQP ASL

100 101 591803 23935 8276 9779.56 599.52 419.69
100 102 698270 62409 2474 11336.43 1579.43 87.09
100 103 551623 84314 959 9146.99 2232.40 31.16

101 101 * 25312 1628 * 703.17 66.27
101 102 * 53161 1793 * 3386.99 77.04
101 103 * 54172 927 * 1438.63 34.01
101 104 * 108376 1477 * 3482.75 79.91

102 103 * 92292 1251 * 2475.48 61.80
102 104 * 78775 1992 * 2116.42 110.03
102 105 * 137886 3940 * 3875.34 219.18

103 103 * 47491 2238 * 1280.58 130.45
103 104 * 49708 6035 * 596.66 168.01
103 105 * 52883 3863 * 1481.81 220.99
103 106 * 108743 3396 * 4083.58 179.08

Table 2: Iteration counts and runtimes (in seconds) for the Nonconvex QP problem in Subsection 4.1.
The tolerances are set to 10−6. Entries marked with * did not converge in the time limit of 21600
seconds. The ATR metric is 0.1173.

For our experiments in this subsection, we choose dimensions (l, n) = (20, 1000) and generate
the matrices A, B, and C to be fully dense. The entries of A, B, C, and d (resp. D) are generated
by sampling from the uniform distribution U [0, 1] (resp. U [1, 1000]). We generate the vector b as
b = A(e/n) where e denotes the vector of all ones. The initial starting point z0 is generated as
z∗/

∑n
i=1

z∗i , where the entries of z∗ are sampled from the U [0, 1] distribution. Finally, we choose

2See https://github.com/asujanani6/AS-PAL
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(τ1, τ2) ∈ ℜ2
++ so that Lf = λmax(∇2f) and mf = −λmin(∇2f) are the various values given in the

tables of this subsection.
We now describe the specific parameters that ASL, RQP, and iALM choose for this class of

problems. Both ASL and RQP choose the initial penalty parameter, c1 = 1. ASL allows the prox
stepsize to be doubled at the end of an iteration if the number of iterations by its ACG call does
not exceed 75. ASL also takes M1

0 defined in its step 1 to be 100 and the initial prox stepsize to be
20/mf . Finally, the auxillary parameters of iALM are given by:

Bi = ‖ai‖, Li = 0, ρi = 0 ∀i ≥ 1,

where ai is the ith row of A.
The numerical results are presented in two tables, Table 1 and Table 2. The first table, Table 1,

compares ASL with all five benchmark algorithms namely, iALM, IPL, RQP, SPA1, and SPA2.
The tolerances are set as ρ̂ = η̂ = 10−4 and a time limit of 10800 seconds, or 3 hours, is imposed.
Table 2 presents the same exact instances as Table 1 but now with tolerances set as ρ̂ = η̂ = 10−6

and a time limit of 21600 seconds, or 6 hours. Table 2 only compares ASL with iALM and RQP
since these were the only two other algorithms to converge for every instance with tolerances set at
10−4. Entries marked with * did not converge in the time limit.

4.2 Nonconvex QP with Box Constraints

Given a pair of dimensions (ℓ, n) ∈ N
2, a scalar triple (r, τ1, τ2) ∈ ℜ3

++, matrices A,C ∈ ℜℓ×n and
B ∈ ℜn×n, positive diagonal matrix D ∈ ℜn×n, and a vector pair (b, d) ∈ ℜℓ ×ℜℓ, we consider the
problem

min
z

[

f(z) := −τ1
2
‖DBz‖2 + τ2

2
‖Cz − d‖2

]

s.t. Az = b,

− r ≤ zi ≤ r, i ∈ {1, ..., n}.

For our experiments in this subsection, we choose dimensions (l, n) = (20, 100) and generate the
matrices A, B, and C to be fully dense. The entries of A, B, C, and d (resp. D) are generated
by sampling from the uniform distribution U [0, 1] (resp. U [1, 1000]). We generate the vector b
as b = A(u) where u is a random vector in U [−r, r]n. The initial starting point z0 is generated
as a random vector in U [−r, r]n. We vary r across the different instances. Finally, we choose
(τ1, τ2) ∈ ℜ2

++ so that Lf = λmax(∇2f) and mf = −λmin(∇2f) are the various values given in the
tables of this subsection.

We now describe the specific parameters that ASL and RQP choose for this class of problems.
Both ASL and RQP choose the initial penalty parameter, c1 = 1. ASL also allows the prox stepsize
to be doubled at the end of an iteration if the number of iterations by its ACG call does not exceed
75. Finally, ASL takes M1

0 defined in its step 1 to be 100 and the initial prox stepsize to be 20/mf .
The numerical results are presented in Table 3. Table 3 compares ASL with all five of the

benchmark algorithms namely, iALM, IPL, RQP, SPA1, and SPA2. The tolerances are set as
ρ̂ = η̂ = 10−5 and a time limit of 3600 seconds, or 1 hour, is imposed. Entries marked with * did
not converge in the time limit.
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Parameters Iteration Count Runtime (seconds)

r mf Lf iALM IPL RQP ASL SPA1 SPA2 iALM IPL RQP ASL SPA1 SPA2

5 100 101 203310 11274 49512 7247 205576 1943184 226.93 17.93 92.43 1.69 335.91 2879.25

10 100 101 221433 9170 70736 7043 128567 1176352 334.57 14.29 132.59 1.76 240.07 2139.45

20 100 101 192970 8363 58980 5469 154035 1403641 307.75 14.59 144.06 1.31 374.16 2295.86

1 101 102 465159 * 326336 4509 133522 303003 858.38 * 1156.69 1.17 213.68 524.57

2 101 102 862136 * 399982 8453 64280 447451 1141.23 * 814.19 2.01 107.55 693.07

5 101 102 1857919 * 174005 8320 106715 488965 2476.33 * 394.47 2.11 238.12 879.75

1 101 103 351468 * 47007 8438 47583 123195 510.028 * 81.74 2.00 65.33 166.48

2 101 103 368578 * 69875 6200 96971 161433 481.14 * 129.77 1.58 123.39 198.84

5 101 103 280346 * 116988 5218 272448 161327 329.16 * 232.13 1.24 361.41 216.67

1 102 103 727587 * 104411 4200 * 112604 908.05 * 205.03 1.15 * 154.60

2 102 103 964734 21472 130903 6432 * 53266 1225.22 44.19 253.02 1.56 * 74.85

5 102 103 705884 11709 117945 5137 * 47237 890.93 25.93 226.21 1.29 * 65.84

1 102 104 576627 255622 100193 7796 155586 183307 864.79 575.34 200.17 1.98 232.28 274.50

2 102 104 1028921 29123 165257 7048 158192 196930 1477.99 57.82 314.62 1.79 256.01 308.35

5 102 104 652822 65523 86597 9471 144334 181157 1032.59 116.36 169.88 2.22 223.96 274.79

5 103 103 * 142961 225865 26333 * * * 253.35 439.62 5.93 * *

10 103 103 2474551 * 168397 14213 * * 3522.28 * 330.62 3.27 * *

1 103 104 435881 71369 * 4724 * * 667.19 154.75 * 1.21 * *

2 103 104 476462 23931 64649 8971 * * 584.73 39.52 100.27 2.21 * *

5 103 104 521072 9829 * 5943 * * 649.28 17.02 * 1.51 * *

1 103 105 * 347105 * 8952 * 142702 * 696.61 * 2.18 * 231.41

2 103 105 1436029 * * 9013 * 163317 2222.25 * * 2.20 * 397.06

5 103 105 * 106935 * 11629 * 145047 * 276.73 * 2.81 * 192.72

Table 3: Iteration counts and runtimes (in seconds) for the Nonconvex QP problem with box
constraints in Subsection 4.2. The tolerances are set to 10−5. Entries marked with * did not
converge in the time limit of 3600 seconds. The ATR metric is 0.0102.

4.3 Nonconvex QSDP

Given a pair of dimensions (ℓ, n) ∈ N
2, a scalar pair (τ1, τ2) ∈ ℜ2

++, linear operators A : Sn+ 7→ ℜℓ,
B : Sn+ 7→ ℜn, and C : Sn+ 7→ ℜℓ defined by

[A(Z)]i = 〈Ai, Z〉 , [B(Z)]j = 〈Bj, Z〉 , [C(Z)]i = 〈Ci, Z〉 ,

for matrices {Ai}ℓi=1, {Bj}nj=1, {Ci}ℓi=1 ⊆ ℜn×n, positive diagonal matrix D ∈ ℜn×n, and a vector

pair (b, d) ∈ ℜℓ × ℜℓ, we consider the following nonconvex quadratic semidefinite programming
(QSDP) problem:

min
Z

[

f(Z) := −τ1
2
‖DB(Z)‖2 + τ2

2
‖C(Z)− d‖2

]

s.t. A(Z) = b, Z ∈ Pn,

where Pn = {Z ∈ S
n
+ : trace (Z) = 1}.

For our experiments in this subsection, we choose dimensions (l, n) = (30, 100). The matrices
Ai, Bj , and Ci are generated so that only 5% of their entries are nonzero. The entries of Ai,
Bj, Ci, and d (resp. D) are generated by sampling from the uniform distribution U [0, 1] (resp.
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Parameters Iteration Count Runtime (seconds)

mf Lf iALM IPL RQP ASL iALM IPL RQP ASL

100 101 230272 27345 9887 9647 1772.75 322.82 91.62 85.38

100 102 91421 4575 7085 1498 516.42 53.13 73.65 13.28

100 103 113405 1403 9486 960 587.24 19.54 112.42 8.32

100 104 393953 3140 10019 1824 1794.35 31.54 91.49 15.98

100 105 1938432 16282 15719 9883 9473.18 166.02 145.12 85.50

101 102 347506 * 15971 4417 1556.07 * 140.53 38.31

101 103 177264 * 10945 2151 750.97 * 96.93 18.98

101 104 129617 1296 9838 1273 2008.28 15.58 93.88 11.14

101 105 287924 3410 8040 2262 1305.24 35.51 75.28 19.91

101 106 1473676 15855 12696 10305 7865.52 164.07 120.96 92.97

102 104 182388 * 10803 1261 844.88 * 99.14 11.55

102 106 450561 4503 10804 2990 2612.55 59.18 128.30 25.63

102 107 1034041 20235 14622 11893 4612.17 207.29 137.38 104.67

103 104 552738 * 18530 1368 2435.47 * 172.45 12.42

103 105 220303 * 14929 3543 937.05 * 138.71 31.34

103 107 371617 5969 11230 5121 1791.77 56.92 96.31 44.50

103 108 1634409 23075 13465 17371 7250.46 245.84 133.86 149.43

104 105 450523 54984 18981 4756 1908.97 529.99 168.37 42.61

104 106 248709 * 15876 6293 1055.40 * 143.12 54.94

104 108 491118 7959 13184 7187 2230.07 83.00 125.98 63.00

Table 4: Iteration counts and runtimes (in seconds) for the Nonconvex QSDP problem in Subsec-
tion 4.3. The tolerances are set to 10−5. Entries marked with * did not converge in the time limit
of 10800 seconds. The ATR metric is 0.3831.

U [1, 1000]). We generate the vector b as b = A(E/n), where E is the diagonal matrix in ℜn×n with
all ones on the diagonal. The initial starting point z0 is generated as a random matrix in S

+
n . The

specific procedure for generating it is described in [17]. Finally, we choose (τ1, τ2) ∈ ℜ2
++ so that

Lf = λmax(∇2f) and mf = −λmin(∇2f) are the various values given in the tables of this subsection.
We now describe the specific parameters that ASL, RQP, and iALM choose for this class of

problems. Both ASL and RQP choose the initial penalty parameter, c1 = 1. ASL allows the prox
stepsize to be doubled at the end of an iteration if the number of iterations by its ACG call does
not exceed 75. ASL also takes M1

0 defined in its step 1 to be 100 and the initial prox stepsize to be
1/(20mf ). Finally, the auxillary parameters of iALM are given by:

Bi = ‖Ai‖F , Li = 0, ρi = 0 ∀i ≥ 1.

The numerical results are presented in two tables, Table 4 and Table 5. The first table, Table 4,
compares ASL with three of the benchmark algorithms namely, iALM, IPL, and RQP. The tolerances
are set as ρ̂ = η̂ = 10−5 and a time limit of 10800 seconds, or 3 hours, is imposed. Table 5 presents
the same exact instances as Table 4 but now with tolerances set as ρ̂ = η̂ = 10−6 and a time limit
of 14400 seconds, or 4 hours. Table 5 only compares ASL with iALM and RQP since these were
the only two other algorithms to converge for every instance with tolerances set at 10−5. Entries
marked with * did not converge in the time limit.
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Parameters Iteration Count Runtime (seconds)

mf Lf iALM RQP ASL iALM RQP ASL

100 101 555086 35311 15699 2257.85 333.79 138.34
100 102 268608 27247 2130 1091.32 237.73 18.24
100 103 355922 26981 2073 1497.22 243.00 17.59
100 104 1317510 60908 2453 5523.22 563.85 21.21
100 105 * 70646 10479 * 699.03 91.90

101 102 1297322 68257 7114 5529.71 676.14 61.71
101 103 526262 41340 24596 2254.62 381.20 212.61
101 104 370204 35879 2098 1565.84 322.52 18.06
101 105 998029 42708 3848 4212.47 387.52 32.55
101 106 * 36575 10710 * 325.00 90.22

102 104 689898 39912 1847 2954.75 377.93 15.83
102 106 1345701 49506 3658 5725.54 448.12 31.57
102 107 * 43571 12300 * 399.37 111.21

103 104 1714445 64949 1611 7243.63 594.67 13.94
103 105 596094 40706 3769 2740.11 363.31 32.95
103 107 1625487 57454 7867 6691.03 511.35 68.70
103 108 * 45759 18245 * 399.79 163.00

104 105 1376159 * 5030 6145.45 * 43.15
104 106 995529 51540 6552 4392.18 489.43 56.81
104 108 1309587 72323 8096 5634.84 659.91 71.30

Table 5: Iteration counts and runtimes (in seconds) for the Nonconvex QSDP problem in Subsec-
tion 4.3. The tolerances are set to 10−6. Entries marked with * did not converge in the time limit
of 14400 seconds. The ATR metric is 0.1616.

4.4 Sparse PCA

We consider the sparse principal components analysis problem studied in [5]. That is, given integer
k, positive scalar pair (ϑ, b) ∈ ℜ2

++, and matrix Σ ∈ Sn+, we consider the following sparse principal
component analysis (PCA) problem:

min
Π,Φ

〈Σ,Π〉F +

n
∑

i,j=1

qϑ(Φij) + ϑ

n
∑

i,j=1

|Φij|

s.t. Π− Φ = 0, (Π,Φ) ∈ Fk ×ℜn×n

where Fk = {M ∈ Sn+ : 0 � M � I, trM = k} denotes the k–Fantope and qϑ is the minimax
concave penalty (MCP) function given by

qϑ(t) :=

{

−t2/(2b), if |t| ≤ bϑ,
bϑ2/2− ϑ|t|, if |t| > bϑ,

∀t ∈ ℜ.

For our experiments in this subsection, we choose ϑ = 100 and allow b to vary. Observe that the
curvature parameters are mf = Lf = 1/b. We also generate the matrix Σ according to an eigenvalue
decomposition Σ = PΛP T , based on a parameter pair (s, k), where k is as in the problem description
and s is a positive integer. Specifically, we choose Λ = (100, 1, ..., 1), the first column of P to be
a sparse vector whose first s entries are 1/

√
s, and the other entries of P to be sampled randomly
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from the standard Gaussian distribution. For our experiments, we fix s = 5 and allow k to vary.
Also, for every problem instance, the initial starting point is chosen as (Π0,Φ0) = (Dk, 0) where Dk

is a diagonal matrix whose first k entries are 1 and whose remaining entries are 0.

Parameters Iteration Count Runtime (seconds)

k mf Lf iALM IPL RQP ASL iALM IPL RQP ASL

5 125 125 * 1438 375618 428 * 14.84 2776.15 2.32

10 125 125 * 1559 40342 546 * 8.33 216.42 2.87

20 125 125 * 1400 13440 442 * 7.02 67.92 2.39

5 200 200 * 6555 21868 773 * 43.98 146.79 4.25

10 200 200 * 7470 10219 894 * 47.53 64.34 5.70

20 200 200 * 20132 60369 612 * 118.99 312.28 4.25

5 250 250 * 10391 19365 622 * 44.25 79.76 3.96

10 250 250 211991 32566 143192 827 574.91 175.81 690.92 5.10

20 250 250 236490 199353 * 558 628.55 985.49 * 3.22

5 1000 1000 * 567358 63633 1818 * 2873.66 312.34 11.97

10 1000 1000 * * * 932 * * * 14.59

20 1000 1000 * * * 1581 * * * 12.62

Table 6: Iteration counts and runtimes (in seconds) for the Sparse PCA problem in Subsection 4.4.
The tolerances are set to 10−5. Entries marked with * did not converge in the time limit of 3600
seconds. The ATR metric is 0.0306.

We now describe the specific parameters that ASL, RQP, and iALM choose for this class of
problems. Both ASL and RQP choose the initial penalty parameter, c1 = 1. ASL allows the prox
stepsize to be doubled at the end of an iteration if the number of iterations by its ACG call does
not exceed 4. ASL also takes M1

0 defined in its step 1 to be 1 and the initial prox stepsize to be
1/(2mf ). Finally, the auxillary parameters of iALM are chosen as:

Bi = 1, Li = 0, ρi = 0 ∀i ≥ 1,

based off the relaxed, but unverified assumption that its iterates lie in Fk ×Fk.
The numerical results are presented in Table 6. Table 6 compares ASL with three of the bench-

mark algorithms namely, iALM, IPL, and RQP. The tolerances are set as ρ̂ = η̂ = 10−5 and a time
limit of 3600 seconds, or 1 hour, is imposed. Entries marked with * did not converge in the time
limit.

4.5 Bounded Matrix Completion (BMC)

We consider the bounded matrix completion problem studied in [35]. That is, given a dimension
pair (p, q) ∈ N

2, positive scalar triple (υ, τm, θ) ∈ ℜ3
++, scalar pair (u, l) ∈ ℜ2, matrix Q ∈ ℜp×q,

and indices Ω, we consider the following bounded matrix completion (BMC) problem:

min
X

1

2
‖PΩ(X −Q)‖2 + τm

min{p,q}
∑

i=1

[κ(σi(X))− κ0σi(X)] + τmκ0‖X‖∗

s.t. l ≤ Xij ≤ u ∀(i, j) ∈ {1, ..., p} × {1, ..., q},
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where ‖ · ‖∗ denotes the nuclear norm, the function PΩ is the linear operator that zeros out any
entry not in Ω, the function σi(X) denotes the ith largest singular value of X, and

κ0 :=
υ

θ
, κ(t) := υ log

(

1 +
|t|
θ

)

∀t ∈ ℜ.

Parameters Iteration Count Runtime (seconds)

θ τm mf Lf RQP ASL RQP ASL

1/2 0.5 2 2 130 79 209.07 139.52

1/2 1 4 4 128 119 207.21 189.75

1/2 2 8 8 1233 457 2075.16 931.91

1/3 0.5 4.5 4.5 384 51 1229.60 61.22

1/3 1 9 9 513 76 1360.69 101.04

1/3 2 18 18 * 494 * 1001.82

1/4 0.5 8 8 601 66 928.01 85.28

1/4 1 16 16 680 90 1077.89 147.76

1/5 0.5 12.5 12.5 488 193 1653.75 313.51

1/5 1 25 25 859 227 1494.94 475.09

1/6 0.5 18 18 838 96 1359.45 137.72

1/6 1 36 36 617 221 962.52 358.25

1/7 0.5 24.5 24.5 770 142 1232.90 195.66

1/7 1 49 49 789 355 1213.75 580.04

Table 7: Iteration counts and runtimes (in seconds) for the BMC problem in Subsection 4.5. The
tolerances are set to 10−3. Entries marked with * did not converge in the time limit of 7200 seconds.
The ATR metric is 0.3079.

We first describe the parameters considered for the above problem and some of its properties.
First, the matrix Q is the user-movie ratings data matrix of the MovieLens 100K dataset3. Second,
υ is chosen to be 0.5 and τm and θ are allowed to vary. Third, the curvature parameters are
mf = 2υτm/θ

2 and Lf = max {1,mf}. Fourth, the bounds are set to (l, u) = (0, 5) and the initial
starting point is chosen as X0 = 0. Finally, the above optimization problem can be written in the
form:

min
X

f(X) + h(X)

s.t. A(X) ∈ S,

where

f(X) =
1

2
‖PΩ(X −Q)‖2 + τm

min{p,q}
∑

i=1

[κ(σi(X))− κ0σi(X)] , h(X) = τmκ0‖X‖∗,

A(X) = X, S =
{

Z ∈ ℜp×q : l ≤ Zij ≤ u, (i, j) ∈ {1, ..., p} × {1, ..., q}
}

.

3See the MovieLens 100K dataset containing 610 users and 9724 movies which can be found in
https://grouplens.org/datasets/movielens/

19



To deal with the more generalized constraints A(X) ∈ S, our method, ASL, considers the
following augmented Lagrangian function and Lagrange multiplier update:

Lc(z, p) := f(z) + h(z) − ‖p‖
2

2c
+
c

2
‖(Az + p

c
)−ΠS(Az +

p

c
)‖2;

pk := pk−1 + ck(Azk −ΠS(Azk +
pk−1

ck
)),

where ΠS denotes the projection onto the set S. We only compare ASL to the RQP method since
RQP was the only other method developed and coded to deal with these generalized constraints.

We now describe the specific parameters that ASL and RQP choose for this class of problems.
Both ASL and RQP choose the initial penalty parameter, c1 = 500. ASL allows the prox stepsize to
be doubled at the end of an iteration if the number of iterations by its ACG call does not exceed 4.
Finally, ASL also takes M1

0 defined in its step 1 to be 1 and the initial prox stepsize to be 10/(mf ).
The numerical results are presented in Table 7. Table 7 compares ASL with RQP. The tolerances

are set as ρ̂ = η̂ = 10−3 and a time limit of 7200 seconds, or 2 hours, is imposed. Entries marked
with * did not converge in the time limit.

4.6 Comments about the numerical results

Overall, the two adaptive methods ASL and RQP were the most reliable and consistent, converging
in almost every instance. ASL was clearly the most efficient, often converging much faster than
RQP particularly when the required accuracy was high. As demonstrated by the results in Tables
1 and 2, and the ones in Tables 4 and 5, the ATR metric improves (decreases) as the required
accuracy increases. Finally, ASL worked extremely fast on the problem classes of Subsections 4.2
and 4.4 as demonstrated by the results in Tables 3 and 6, respectively.

A ADAP-FISTA algorithm

A.1 ADAP-FISTA method

This subsection presents an adaptive ACG variant, called ADAP-FISTA, which is an important tool in the develop-
ment of the AS-PAL method. We first introduce the assumptions on the problem it solves. ADAP-FISTA considers
the following problem

min{ψ(x) := ψs(x) + ψn(x) : x ∈ ℜn} (49)

where ψs and ψn are assumed to satisfy the following assumptions:

(I) ψn : ℜn → ℜ∪ {+∞} is a possibly nonsmooth convex function;

(II) ψs : ℜn → ℜ is a differentiable function and there exists L̄ ≥ 0 such that

‖∇ψs(z′)−∇ψs(z)‖ ≤ L̄‖z′ − z‖ ∀z, z′ ∈ ℜn. (50)

We now describe the type of approximate solution that ADAP-FISTA aims to find.

Problem A: Given ψ satisfying the above assumptions, a point x0 ∈ domψn, a parameter σ ∈ (0,∞), the problem
is to find a pair (y, u) ∈ domψn × ℜn such that

‖u‖ ≤ σ‖y − x0‖, u ∈ ∇ψs(y) + ∂ψn(y). (51)

We are now ready to present the ADAP-FISTA algorithm below.

ADAP-FISTA Method

0. Let initial point x0 ∈ domψn and scalars µ > 0, L0 > µ, χ ∈ (0, 1), β > 1, and σ > 0 be given, and set
y0 = x0, A0 = 0, τ0 = 1, and j = 0;
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1. Set Lj+1 = Lj ;

2. Compute

aj =
τj +

√

τ 2j + 4τjAj(Lj+1 − µ)
2(Lj+1 − µ)

, x̃j =
Ajyj + ajxj
Aj + aj

, (52)

yj+1 := argmin
u∈domψn

{

qj(u; x̃j , Lj+1) := ℓψs
(u; x̃j) + ψn(u) +

Lj+1

2
‖u− x̃j‖2

}

, (53)

If the inequality

ℓψs
(yj+1; x̃j) +

(1− χ)Lj+1

2
‖yj+1 − x̃j‖2 ≥ ψs(yj+1) (54)

holds go to step 3; else set Lj+1 ← βLj+1 and repeat step 2;

3. Compute

Aj+1 = Aj + aj , τj+1 = τj + ajµ, (55)

sj+1 = (Lj+1 − µ)(x̃j − yj+1), (56)

xj+1 =
1

τj+1
[µajyj+1 + τjxj − ajsj+1] ; (57)

4. If the inequality

‖yj+1 − x0‖2 ≥ χAj+1Lj+1‖yj+1 − x̃j‖2, (58)

holds, then go to step 5; otherwise, stop with failure;

5. Compute
uj+1 = ∇ψs(yj+1)−∇ψs(x̃j) + Lj+1(x̃j − yj+1). (59)

If the inequality
‖uj+1‖ ≤ σ‖yj+1 − x0‖ (60)

holds then stop with success and output (y, u) := (yj+1, uj+1); otherwise, j ← j + 1 and go to step 1.

We now make some remarks about ADAP-FISTA. First, usual FISTA methods for solving the strongly convex
version of (49) consist of repeatedly invoking only steps 2 and 3 of ADAP-FISTA either with a static Lipschitz
constant, namely, Lj+1 = L for all j ≥ 0 for some L ≥ L̄, or by adaptively searching for a suitable Lipschitz Lj+1

(as in step 2 of ADAP-FISTA) satisfying a condition similar to (54). Second, the pair (yj+1, uj+1) always satisfies
the inclusion in (51) (see Lemma A.3 below) so if ADAP-FISTA stops successfully in step 5, or equivalently (60)
holds, the pair solves Problem A above. Finally, if condition (58) in step 4 is never violated, ADAP-FISTA must stop
successfully in step 5 (see Proposition A.1 below).

We now discuss how ADAP-FISTA compares with existing ACG variants for solving (49) under the assumption
that ψs is µ-strongly convex. Under this assumption, FISTA variants have been studied, for example, in [3, 11, 12, 27,
29], while other ACG variants have been studied, for example, in [7, 8, 30]. A crucial difference between ADAP-FISTA
and these variants is that: i) ADAP-FISTA stops based on a different relative criterion, namely, (60) (see Problem
A above) and attempts to approximately solve (49) in this sense even when ψs is not µ-strongly convex, and ii)
ADAP-FISTA provides a key and easy to check inequality whose validity at every iteration guarantees its successful
termination. On the other hand, ADAP-FISTA shares similar features with these other methods in that: i) it has a
reasonable iteration complexity guarantee regardless of whether it succeeds or fails, and ii) it successfully terminates
when ψs is µ-strongly convex (see Propositions A.1-A.2 below). Moreover, like the method in [3], ADAP-FISTA
adaptively searches for a suitable Lipschitz estimate Lj+1 that is used in (53).

We now present the main convergence results of ADAP-FISTA, which is invoked by AS-PAL for solving the
sequence of subproblems (3). The first result, namely Proposition A.1 below, gives an iteration complexity bound
regardless if ADAP-FISTA terminates with success or failure and shows that if ADAP-FISTA successfully stops,
then it obtains a stationary solution of (49) with respect to a relative error criterion. The second result, namely
Proposition A.2 below, shows that ADAP-FISTA always stops successfully whenever ψs is µ-strongly convex.

Proposition A.1. The following statements about ADAP-FISTA hold:

(a) if L0 = O(L̄), it always stops (with either success or failure) in at most

O1





√

L̄

µ
log+0 (L̄)





iterations/resolvent evaluations;

21



(b) if it stops successfully, it terminates with a pair (y, u) ∈ domψn × ℜn satisfying

u ∈ ∇ψs(y) + ∂ψn(y); (61)

‖u‖ ≤ σ‖y − x0‖. (62)

Proposition A.2. If ψs is µ-convex, then ADAP-FISTA always terminates with success and its output (y, u), in
addition to satisfying (61) and (62), also satisfies the inclusion u ∈ ∂(ψs + ψn)(y).

The rest of this section is broken up into two subsections which are dedicated to proving Proposition A.1 and
Proposition A.2, respectively.

A.2 Proof of Proposition A.1

This subsection is dedicated to proving Proposition A.1. The first lemma below presents key definitions and inequal-
ities used in the convergence analysis of ADAP-FISTA.

Lemma A.3. Define
ω = β/(1− χ), ζ := L̄+max{L0, ωL̄}. (63)

Then, the following statements hold:

(a) {Lj} is nondecreasing;

(b) for every j ≥ 0, we have

τj = 1 +Ajµ,
τjAj+1

a2j
= Lj+1 − µ; (64)

L0 ≤ Lj ≤ max{L0, ωL̄}; (65)

uj+1 ∈ ∇ψs(yj+1) + ∂ψn(yj+1), ‖uj+1‖ ≤ ζ‖yj+1 − x̃j‖. (66)

Proof. (a) It is clear from the update rule in the beginning of Step 1 that {Lj} is nondecreasing.
(b) The first equality in (64) follows directly from both of the relations in (55). The second equality in (64)

follows immediately from the definition of aj in (52) and the first relation in (55).
We prove (65) by induction. It clearly holds for j = 0. Suppose now (65) holds for j ≥ 0 and let us show that

it holds for j + 1. Note that if Lj+1 = Lj , then relation (65) immediately holds. Assume then that Lj+1 > Lj . It
then follows from the way Lj+1 is chosen in step 1 that (54) is not satisfied with Lj+1/β. This fact together with the
inequality (50) at the points (yj+1, x̃j) imply that

ℓψs
(yj+1; x̃j) +

(1− χ)Lj+1

2β
‖yj+1 − x̃j‖2 < ψs(yj+1)

(50)

≤ ℓψs
(yj+1; x̃j) +

L̄

2
‖yj+1 − x̃j‖2. (67)

The relation in (65) then immediately follows from the definition of ω in (63).
Now, by the definition of uj+1 in (59), triangle inequality, (50), the bound (65) on Lj+1, and the definition of ζ

we have
‖uj+1‖

‖yj+1 − x̃j‖
(59)

≤ ‖∇ψs(yj+1)−∇ψs(x̃j)‖
‖yj+1 − x̃j‖

+ Lj+1

(50)

≤ L̄+ Lj+1

(65)

≤ ζ

which immediately implies the inequality in (66). It follows from (53) and its associated optimality condition that
0 ∈ ∇ψs(x̃j) + ∂ψn(yj+1) − Lj+1(x̃j − yj+1), which in view of the definition of uj+1 in (59) implies the inclusion in
(66).

The result below gives some estimates on the sequence {Aj}, which will be important for the convergence analysis
of the method.

Lemma A.4. Define

Q := 2

√

max{L0, ωL̄}
µ

(68)

where ω is as in (63). Then, for every j ≥ 1, we have

AjLj ≥ max

{

j2

4
,
(

1 +Q−1
)2(j−1)

}

. (69)
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Proof. Let integer j ≥ 1 be given. Define ξj = 1/(Lj − µ). Using the first equality in (55) and the definition of aj in
(52), we have that for every i ≤ j,

Ai
(55)
= Ai−1 + ai−1

(52)

≥ Ai−1 +

(

τi−1ξi
2

+
√

τi−1ξiAi−1

)

≥
(

√

Ai−1 +
1

2

√

τi−1ξi

)2

.

Passing the above inequality to its square root and using Lemma A.3(a) and the fact that (64) implies that τi−1 ≥
max{1, µAi−1}, we then conclude that for every i ≤ j,

√
Ai −

√

Ai−1 ≥
1

2

√

ξi ≥
1

2

√

ξj (70)
√

Ai
Ai−1

≥ 1 +
1

2

√

µξi ≥ 1 +
1

2

√

µξj ≥ 1 +Q−1 (71)

where the last inequality in (71) follows from the definition of ξj , the relation in (65), and the definition of Q
in (68). Adding the inequality in (70) from i = 1 to i = j and using the fact that A0 = 0, we conclude that
√

Aj ≥ j
√

ξj/2 and hence that the first bound in (69) holds in view of the fact that ξj ≥ 1/Lj . Now, multiplying
the inequality in (71) from i = 2 to i = j and using Lemma A.3(a) and the fact that A1 = ξ1, we conclude that
√

Aj ≥
√
ξ1(1+Q−1)j−1 ≥

√

ξj(1+Q−1)j−1, and hence that the second bound in (69) holds in view of the fact that
ξj ≥ 1/Lj .

Proposition A.5. Let ζ and Q be as in (63) and (68), respectively. ADAP-FISTA always stops (with either success
or failure) and does so by performing at most

⌈

(1 +Q) log+
0

(

ζ2

χσ2

)

+ 1

⌉

+

⌈

log+0 (L̄/((1− χ)L0))

log β

⌉

(72)

iterations/resolvent evaluations.

Proof. Let l denote the first quantity in (72). Using this definition and the inequality log(1+α) ≥ α/(1+α) for any
α > −1, it is easy to verify that

(

1 +Q−1)2(l−1) ≥ ζ2

χσ2
. (73)

We claim that ADAP-FISTA terminates with success or failure in at most l iterations. Indeed, it suffices to show that
if ADAP-FISTA has not stopped with failure up to (and including) the l-th iteration, then it must stop successfully
at the l-th iteration. So, assume that ADAP-FISTA has not stopped with failure up to the l-th iteration. In view of
step 4 of ADAP-FISTA, it follows that (58) holds with j = l − 1.

This observation together with the inequality in (66) with j = l − 1, (69) with j = l, and (73), then imply that

‖yl − x0‖2
(58)

≥ χAlLl‖yl − x̃l−1‖2
(66)

≥ χ

ζ2
AlLl‖ul‖2

(69)

≥ χ

ζ2
(

1 +Q−1
)2(l−1) ‖ul‖2

(73)

≥ 1

σ2
‖ul‖2, (74)

and hence that (60) is satisfied. In view of Step 5 of ADAP-FISTA, the method must successfully stop at the end
of the l-th iteration. We have thus shown that the above claim holds. Moreover, in view of (65), it follows that the
second term in (72) is a bound on the total number of times Lj is multiplied by β and step 2 is repeated. Since
exactly one resolvent evaluation occurs every time step 2 is executed, the desired conclusion follows.

We are now ready to give the proof of Proposition A.1.

of Proposition A.1. (a) The result immediately follows from Proposition A.5 and the assumption that L0 = O(L̄).
(b) This is immediate from the termination criterion (60) in step 5 of ADAP-FISTA and the inclusion in (66).

A.3 Proof of Proposition A.2

This subsection is dedicated to proving Proposition A.2. Thus, for the remainder of this subsection, assume that ψs is
µ-strongly convex. The first lemma below presents important properties of the iterates generated by ADAP-FISTA.
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Lemma A.6. For every j ≥ 0 and x ∈ ℜn, define

γj(x) := ℓψs
(yj+1, x̃j) + ψn(yj+1) + 〈sj+1, x− yj+1〉+ µ

2
‖yj+1 − x̃j‖2 + µ

2
‖x− yj+1‖2, (75)

where ψ := ψs + ψn and sj+1 are as in (49) and (56), respectively. Then, for every j ≥ 0, we have:

yj+1 = argmin
x

{

γj(x) +
Lj+1 − µ

2
‖x− x̃j‖2

}

; (76)

xj+1 = argmin
x∈ℜn

{

ajγj(x) + τj ‖x− xj‖2 /2
}

. (77)

Proof. Since ∇γj(yj+1) = sj+1, it follows from (56) that yj+1 satisfies the optimality condition for (76), and thus the
relation in (76) follows. Furthermore, we have that:

aj∇γj(xj+1) + τj(xj+1 − xj) = ajsj+1 + ajµ(xj+1 − yj+1) + τj(xj+1 − xj)
(55)
= ajsj+1 − µajyj+1 − τjxj + τj+1xj+1

(57)
= 0

and thus (77) follows.

Before stating the next lemma, recall that if a closed function Ψ : ℜn → ℜ ∪ {+∞} is ν-convex with modulus
ν > 0, then it has an unique global minimum z∗ and

Ψ(z∗) +
ν

2
‖ · −z∗‖2 ≤ Ψ(·). (78)

Lemma A.7. For every j ≥ 0 and x ∈ ℜn, we have

Ajγj(yj) + ajγj(x) +
τj
2
‖xj − x‖2 − τj+1

2
‖xj+1 − x‖2

≥ Aj+1ψ(yj+1) +
χAj+1Lj+1

2
‖yj+1 − x̃j‖2. (79)

Proof. Using (77), the second identity in (55), and the fact that Ψj := ajγj(·) + τj‖ · −xj‖2/2 is (τj + µaj)-convex,
it follows from (78) with Ψ = Ψj and ν = τj+1 that

ajγj(x) +
τj
2
‖x− xj‖2 − τj+1

2
‖x− xj+1‖2 ≥ ajγj(xj+1) +

τj
2
‖xj+1 − xj‖2 ∀x ∈ ℜn.

Using the convexity of γj , the definitions of Aj+1 and x̃j in (55) and (52), respectively, and the second equality in
(64), we have

Ajγj(yj) + ajγj(xj+1) +
τj
2
‖xj+1 − xj‖2

≥ Aj+1γj

(

Ajyj + ajxj+1

Aj+1

)

+
τjA

2
j+1

2a2j

∥

∥

∥

∥

Ajyj + ajxj+1

Aj+1
− Ajyj + ajxj

Aj+1

∥

∥

∥

∥

2

(52)

≥ Aj+1 min
x

[

γj (x) +
τjAj+1

2a2j
‖x− x̃j‖2

]

(64)
= Aj+1 min

x

{

γj(x) +
Lj+1 − µ

2
‖x− x̃j‖2

}

(76)
= Aj+1

[

γj(yj+1) +
Lj+1 − µ

2
‖yj+1 − x̃j‖2

]

(75)
= Aj+1

[

ℓψs
(yj+1; x̃j) + ψn(yj+1) +

Lj+1

2
‖yj+1 − x̃j‖2

]

(54)

≥ Aj+1

[

ψ(yj+1) +
χLj+1

2
‖yj+1 − x̃j‖2

]

.

The conclusion of the lemma now follows by combining the above two relations.

Lemma A.8. For every j ≥ 0, we have γj ≤ ψ.
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Proof. Define:

γ̃j(x) := ℓψs
(x; x̃j) + ψn(x) +

µ

2
‖x− x̃j‖2. (80)

It follows immediately from the fact that ψs is µ-convex that γ̃j ≤ ψ. Furthermore, immediately from the definition
of yj+1 in (53), we can write:

yj+1 = argmin
x

{

γ̃j(x) +
Lj+1 − µ

2
‖x− x̃j‖2

}

. (81)

Now, clearly from (81) and the definition of sj+1 in (56), we see that sj+1 ∈ ∂γ̃j(yj+1). Furthermore, since γ̃j is
µ-convex, it follows from the subgradient rule for the sum of convex functions that the above inclusion is equivalent
to sj+1 ∈ ∂

(

γ̃j(·)− µ

2
‖ · −yj+1‖2

)

(yj+1). Hence, the subgradient inequality and the fact that γ̃j(x) ≤ ψ(x) imply
that for all x ∈ ℜn:

ψ(x) ≥ γ̃j(x) ≥ γ̃j(yj+1) + 〈sj+1, x− yj+1〉+
µ

2
‖x− yj+1‖2 = γj(x)

and thus the statement of the lemma follows.

Lemma A.9. For every j ≥ 0 and x ∈ domψn, we have

ηj(x)− ηj+1(x) ≥
χAj+1Lj+1

2
‖yj+1 − x̃j‖2

where
ηj(x) := Aj [ψ(yj)− ψ(x)] +

τj
2
‖x− xj‖2.

Proof. Subtracting Aj+1ψ(x) from both sides of the inequality in (79) and using Lemma A.8 we have

Ajψ(yj)+ajψ(x)− Aj+1ψ(x) +
τj
2
‖xj − x‖2 − τj+1

2
‖xj+1 − x‖2

≥ Aj+1ψ(yj+1)− Aj+1ψ(x) +
χAj+1Lj+1

2
‖yj+1 − x̃j‖2.

The result now follows from the first equality in (55) and the definition of ηj(x).

We now state a result that will be important for deriving complexity bounds for ADAP-FISTA.

Lemma A.10. For every j ≥ 0 and x ∈ domψn, we have

Aj [ψ(yj)− ψ(x)] + τj
2
‖x− xj‖2 ≤ 1

2
‖x− x0‖2 − χ

2

j−1
∑

i=0

Ai+1Li+1‖yi+1 − x̃i‖2. (82)

Proof. Summing the inequality of Lemma A.9 from j = 0 to j = j − 1, using the facts that A0 = 0 and τ0 = 1, and
using the definition of ηj(·) in Lemma A.9 gives us the inequality of the lemma.

We are now ready to give the proof of Proposition A.2.

of Proposition A.2. Since ψs is µ-convex, Lemma A.10 holds. Thus, using (82) with x = yj , it follows that for all
j ≥ 0:

‖yj − x0‖2
(82)

≥ χ

j
∑

i=1

AiLi‖yi − x̃i−1‖2 ≥ χAjLj‖yj − x̃j−1‖2. (83)

Hence, for all j ≥ 0, relation (58) in step 4 of ADAP-FISTA is always satisfied and thus ADAP-FISTA never
fails. In view of this observation and Proposition A.1, it follows that if ψs is µ-convex then ADAP-FISTA always
terminates successfully with a (y, u) satisfying relations (61) and (62) in a finite number of iterations. The inclusion
u ∈ (ψs + ψn)(y) then follows immediately from the inclusion in (61) and the subgradient rule for the sum of convex
functions.
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B Technical Results for Proof of Lagrange Multipliers

The following basic result is used in Lemma B.3. Its proof can be found, for instance, in [4, Lemma A.4]. Recall that
ν+A denotes the smallest positive singular value of a nonzero linear operator A .

Lemma B.1. Let A : ℜn → ℜl be a nonzero linear operator. Then,

ν+A‖u‖ ≤ ‖A∗u‖, ∀u ∈ A(ℜn).

The following technical result, whose proof can be found in Lemma 3.10 of [16], plays an important role in the
proof of Lemma B.3 below.

Lemma B.2. Let h be a function as in (A1). Then, for every δ ≥ 0, z ∈ H, and ξ ∈ ∂δh(z), we have

‖ξ‖dist(u, ∂H) ≤ [dist(u, ∂H) + ‖z − u‖]Mh + 〈ξ, z − u〉+ δ ∀u ∈ H (84)

where ∂H denotes the boundary of H.

Lemma B.3. Assume that h is a function as in condition (A1) and A : ℜn → ℜl is a linear operator satisfying
condition (A2). Assume also that the triple (z, q, r) ∈ ℜn × A(ℜn)×ℜn satisfy r ∈ ∂h(z) + A∗q. Then:

(a) there holds
d̄ν+A‖q‖ ≤ 2Dh (Mh + ‖r‖) − 〈q,Az − b〉; (85)

(b) if, in addition,
q = q− + χ(Az − b) (86)

for some q− ∈ ℜl and χ > 0, then we have

‖q‖ ≤ max

{

‖q−‖, 2Dh(Mh + ‖r‖)
d̄ν+A

}

. (87)

Proof. (a) The assumption on (z, q, r) implies that r − A∗q ∈ ∂h(z). Hence, using the Cauchy-Schwarz inequality,
the definitions of d̄ and z̄ in (19) and (A2), respectively, and Lemma B.2 with ξ = r − A∗q, u = z̄, and δ = 0, we
have:

d̄‖r − A∗q‖ −
[

d̄+ ‖z − z̄‖
]

Mh

(84)

≤ 〈r −A∗q, z − z̄〉 ≤ ‖r‖‖z − z̄‖ − 〈q,Az − b〉. (88)

Now, using the above inequality, the triangle inequality, the definition of Dh in (A1), and the facts that d̄ ≤ Dh and
‖z − z̄‖ ≤ Dh, we conclude that:

d̄‖A∗q‖+ 〈q,Az − b〉
(88)

≤
[

d̄+ ‖z − z̄‖
]

Mh + ‖r‖
(

Dh + d̄
)

≤ 2Dh (Mh + ‖r‖) . (89)

Noting the assumption that q ∈ A(ℜn), inequality (85) now follows from the above inequality and Lemma B.1.
(b) Relation (86) implies that 〈q,Az − b〉 = ‖q‖2/χ − 〈q−, q〉/χ, and hence that

d̄ν+A‖q‖+
‖q‖2
χ
≤ 2Dh(Mh + ‖r‖) + 〈q

−, q〉
χ

≤ 2Dh(Mh + ‖r‖) + ‖q‖
χ
‖q−‖, (90)

where the last inequality is due to the Cauchy-Schwarz inequality. Now, letting K denote the right hand side of (87)
and using (90), we conclude that

(

d̄ν+A +
‖q‖
χ

)

‖q‖
(90)

≤
(

2Dh(Mh + ‖r‖)
K

+
‖q‖
χ

)

K ≤
(

d̄ν+A +
‖q‖
χ

)

K, (91)

and hence that (87) holds.
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