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A VIRTUAL ELEMENT METHOD FOR THE ELASTICITY SPECTRAL
PROBLEM ALLOWING SMALL EDGES

DANILO AMIGO, FELIPE LEPE, AND GONZALO RIVERA

ABSTRACT. In this paper we analyze a virtual element method for the two dimensional elasticity
spectral problem allowing small edges. Under this approach, and with the aid of the theory of
compact operators, we prove convergence of the proposed VEM and error estimates, where the
influence of the Lamé constants is presented. We present a series of numerical tests to assess the
performance of the method where we analyze the effects of the Poisson ratio on the computation
of the order of convergence, together with the effects of the stabilization term on the arising of
spurious eigenvalues.

1. INTRODUCTION

The virtual element method (VEM), introduced in [6] as an alternative to solve partial dif-
ferential equations, has proved through time several applications to approximate accurately the
solutions of different problems. In [3] we find recent advances in the applications of VEM, which
have been possible thanks to several works developed in fluid problems [9], elasticity problems

[7, 211 22], eigenvalue problems [12] [16 17, [18] [19], among others.

The VEM results to be attractive since its nature allows to discretize with different polygonal
meshes, domains that can be difficult to mesh, for example, domains with cracks or nonconvex
domains. Despite the fact that some methods as the discontinuous Galerkin method (DG) allow to
consider hanging nodes, those methods consider a triangle of the mesh, for instance, as a triangle
but with an extra point that is a vertex of other triangle, whereas VEM considers this fact a
vertex of a new polygon, allowing a new treatment and discretization for the geometrical domain.
Of course, VEM is simple to implement and reduces computational costs compared with some
classic FEM, as for example, the discretization of fourth order elliptic problem. Although these
interesting advantages, the research on VEM is in ongoing process, and more general methods
involving virtual spaces have emerged.

One of the hypotheses that [6] show to perform the VEM analysis is that the polygons on the
mesh must have sides (or faces) which are not allowed to be arbitrary small. This assumption has
been relaxed in [8, [10] where, according to the theory developed in these references, it is sufficient
to require the star-shapedness of the polygonal elements of the mesh. This is clearly an important
advantage for the VEM, bust there is a cost to pay, since for the best of the author’s knowledge,
not any problem can be discretized with this new approach.

In first place, the VEM allowing small edges are constructed for subspaces of H! and for second
order elliptic differential operators. The second is related to the regularity of the functions, since
according to [8], to use only star-shaped polygons, the regularity of the solution in order to obtain
approximation properties must be such that H'** with s > 1/2. This is an essential restriction
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to use in a clean way the small edges approach. In this same line, the regularity will depend on
the differential operator, the geometry of the domain, boundary conditions, etc.. Let us remark
that the VEM allowing small edges has been applied in some problems as [2| [T} 16} 20], and the
research is in progress.

In particular we are interested in the application of VEM allowing small edges on the linear
elasticity equations. This research begun with the load problem analyzed in [2], where the two
dimensional elasticity problem is analyzed in a convex domain with Lipschitz boundary. The
convexity of the domain is a key ingredient for the analysis, since the regularity of the solution
lies precisely in the requirements of [§]. Let us remark that if mixed boundary conditions are
considered, the solution has less regularity due to the reentrant angles that may appear (see [13])
and the small edges framework still hold, but it is necessary to assume a further condition on the
geometry, which is that the number of edges of the polygons must be bounded (see [8, [10]). Here
the price to pay is more expensive and is reflected in the error estimate of the solution, which will
depend strongly on a constant depending on the mesh size. A discussion on this subject can be
found in [§].

This is a drawback that cannot be avoided and strongly deteriorates the elasticity eigenvalue
problem, since it is not possible to ensure the convergence in norm of the respective solutions
operators and hence, the spectral convergence. This is the reason why only Dirichlet boundary
conditions (clamped conditions in particular) are considered to perform the analysis.

The paper is organized as follows: In section [2] we present the spectral problem of our interest
and summarize some important properties related to the solution. The continuous solution operator
is presented, the regularity of the eigenfunctions, and the corresponding spectral characterization.
The core of the manuscript begins in section [3] where the virtual element method is presented.
In this context, we introduce the necessary ingredients to perform the analysis for the small edges
scheme. We present the discrete eigenvalue problem and with the aid of the results proved in [2]
together with the classic theory of [5] we prove convergence in norm for the operators, spectral
convergence, and error estimates for eigenvalues and eigenfunctions. Finally, in section ] we
present a complete and rigorous computational analysis of the method. This section presents the
computation of eigenvalues, analysis of spurious eigenvalues with respect to the stabilization terms
and its influence, and computation order of convergence for the eigenvalues.

2. MODEL PROBLEM

Let 2 C R? be a open, bounded and convex domain with Lipschitz boundary 9. The model
problem is the following: Find x € R and the displacement w such that

div(o(w)) = —pkw in{,
(2.1) { w = 0 ono9,

A variational formulation for (21 is the following.

Problem 1. Find (k, w) € R x H{(Q) with w # 0 such that
a(w, v) = kb(w,v) Vv e H(Q),

where the symmetric and continuous bilinear forms a(-,-) and b(-,-) are defined by

a:HH(Q) x HY(Q) — R, a(u,v):= QU(u) re(v) Yu,veHQ),
and

b:HLQ) x HY(Q) — R,  b(u,v) := / ou-v Vu,veHQ).
Q
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From Korn’s inequality, the coercivity of a(-,-) on H§(£) is direct. This allows us to introduce
the solution operator T, defined by

T:H)(Q) — H{(Q), f— Tf=w,
where w € H} () is the solution of the following source problem
a(w,v) = b(f,v), VveH)Q),
which is well posed due Lax-Milgram’s lemma, implying that T is well defined and satisfies
I Tfl|1,.0 = [|W]|

where the hidden constant depends on 2. It is easy to check that T is selfadjoint with respect to
a(-,-). Moreover, from the compact embedding of H}(Q2) onto L*(Q) we have that T is compact.

Remark 2.1. Let (w, k) € HY(Q) x R be the solution of Problem[d. Then, if u € H{(Q) is such
that Tu = w, then for each v € H}(Q) there holds

1o < [Ifllo,0;

3=

a(w, v) = b(u,v) = gb(u, v) = %a(u, v) = a(nu,v), n:=

7

implying Tu = nu. Hence, (w, k) € Hy(Q) xR solves Problem[ if and only if
of T.

g

, 1) is an eigenpair

Let us recall the following regularity result (see [I3] for instance).

Lemma 2.1. Let Q C R? be an open, bounded, and conver domain. If (w,x) € H}(Q) x R solves
Problem [, then w € H?(Q) and the following estimate holds
w20 S lwlo.q,

where the hidden constant depends on the eigenvalue K.

We end this section with the spectral characterization of T

Theorem 2.1. The spectrum of T satisfies sp(T) = {0} U {ux }ren, where {pg}tren is a sequence
of positive eigenvalues such that pr — 0 as k — 4o00.

3. THE VIRTUAL ELEMENT METHOD

In the present section we introduce the virtual element method that we consider to approximate
the solution of Problem [l To do this task, we will consider a more relaxed conditions compared
with those introduced in [6] for the classic VEM, where there is not possible to assume more general
polygonal meshes allowing arbitrary edges, more precisely, small edges. Hence, and inspired in [g],
if {7n}n>0 represents a family of polygonal meshes to discretize 2, E € T}, is an arbitrary element

of the mesh, and h := Ena%( hg represents the mesh size, we assume the following assumption on
€Th
Th:

A1. There exists v € Rt such that each polygon E € {7}, }n~0 is star-shaped with respect to a
ball B with center xg and radius pg > vhg.

Let us write the bilinear form a(-,-) and the functional F(-) as follows

ala,v) = CLEuV WereaEuv:: ou) : v u,.v 1
(u,v) EZ; (u,v) where a®(u,v) /E<>e<> Vu,v e Hi(Q),

b(u,v) = Z bE(u, v), with b (u,v) = / ou-v Vu,veH}Q).
E€Ts E
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3.1. Virtual spaces. Now we introduce the virtual spaces of our interest. Following [I] and [§],
we introduce the following local spaces

Bog := {vi € C°(OE) : vi|.€ Pi(e) Ve C OE},
WE .= {v, e HY(E) : Avy, € [Pu(E)]?y Vilor € Bor}.

For each, E € {T,}n>0, we introduce the projection Il z : Wi — [Pi(E)]?, defined for every
vy, € WY as the solution of

/ (M pvi) : e(p) = / e(vi) :e(p) ¥pe [Pu(E)P
E

/ I‘Ot(Hk_’EVh) = frOt(Vh)v
E
/ Hk,EVh = f Vh.

OFE OFE

We define the local virtual space by
VE = {Vh S Wf : / p- (Vh — Hk,EVh) =0,Vpe [Pk(E)]Q/[]P)kQ(E)]Q},
E

where the space [Px(E)]?/[Pr—2(E)]? denotes the polynomials in [Px(E)]? in which are orthogonal
to [Pr_2(E)]? with respect to the L?(E) product. We choose the same degrees of freedom as those
in 6, Section 4.1] for the local virtual space defined above.

Now we are in position to introduce the global virtual space which we define by
V= {Vh S H(l)(Q) : Vh|E S Vf}

Let us introduce the following stabilization term S¥(-, ) defined for up, vy, € V), by

SE(up,vp) = hp dsup, - Osvp,
OFE

which corresponds to a scaled inner product between dsu; and dsvy, in L2(8E). Let us introduce
the discrete bilinear form ap(-,-) : Vi X YV, — R defined by

ap(up,vy) = Z [aE(Hk,Equ Iy gvi) + ST (w, — Iy pup, vi — Hk,EVh)]-
EeTy,

Now, the local discrete bilinear forms are the following
af (up, vy) = (g pup, My pvi) + ST (W, — Wy pup, vi, — My gvy)  Yup, vy, € VE,
and
bf(uh,vh) = bE(H%Euh, H%Evh) Yup, vy € VE,
Let us remark that b (-, ) is directly computable from the degrees of freedom.

Finally we introduce the global discrete bilinear forms as follows

ap(uap, vp) = Z af (ap,vy) and  by(up,vy) = Z bE (up, vi),
E€Th E€Th

which allows us to define the VEM discretization of Problem [II
Problem 2. Find (kp,wp) € R X V), with wy, # 0 such that

an(Wp, vn) = Kpbp(wp, vr) Yo € V.

To show that ap(+,-) is coercive, we recall some results (see [2] for details).
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Corollary 3.1. Assume that A1 holds. Then, the following estimate holds
onlr.e S max{Asus, 1} (h5 1ol s + 03 [9sonllo0m)  Von € Vi,
where the hidden constant depends on pg and k, and not on hg.

Lemma 3.1. The following estimate holds
lonlly g S he Y IMe—1.cvnll3,  You € Vi such that Iy, goy, = 0,
e€lR

where the hidden constant is independent on hg.
Lemma 3.2. The following estimate holds
vnllo,or S hellOsvnllo.or,
for all vy, € Byog that vanishes at some point of OF, and the hidden constant depends only on k.

Remark 3.1. Let v € HY(E) such that Iy gv = 0. Then, applying Corollary [31, Lemmas 3]
and 3.2, we derive

_ 1/2
[vh,5 S max{Aspg ', 12 [0:0]0,0m,
where the hidden constant is independent on hg. Combining this with the fact that TI; g(v —
II;, pv) = 0 and applying triangular inequality, we obtain for vy, € Vy,
lonl? 5 S Mk monl? g+ lvn — I ponl] g S max{AGud, pg', 1}ay (vn, vp).
Finally, taking summation over E € Ty, we obtain
|onl? .0 S max{\gug, us ', Lyan(vn, vn)-

This show that ap(-,-) is coercive in Vp,.

Now, thanks to the coercivity of a(-,) in V5, Problem 2l is well posed and hence, we are
allowed to introduce the discrete solution operator T}, defined by
Ty, : H{(Q) — V), fr— Thf = Wy,

such that wy, is the unique solution of the following discrete source problem: Given f € L2(f),
find wy, € V}, such that
ah(Vvh,vh) = bh(f, Vh) Vv € Vy,.

Observe that T}, is selfadjoint with respect to ap(-, ) and that is well defined by Lax-Milgram’s
lemma. Also, we observe that (wp,kp) € Vp, X R solves Problem 2 if and only if (wp,n,) is an
eigenpair of Ty, i.e.,

1
Tywp =npwp, with o, = —.
Kh

Finally we present the spectral characterization of T},.

Theorem 3.1. The spectrum of Ty consists in My, := dim(V},) eigenvalues with a certain multi-
plicity. Moreover, all these eigenvalues are real positive numbers.
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3.2. Technical results. Now we will summarize some technical results that allows us to perform
the analysis. All these results are available in [2] for the source problem, but are also valid for the
spectral problem. The relevance of the forthcoming results yields in the fact that all the estimates
show a clear dependence on the Lamé coefficient \g.

Lemma 3.3. Assume that u € H*(Q), 1 < ¢ < k. Then, there holds

> P (un = Wy pup, wy — Ty pup) S C(As, ps)h> |ulfyy g,
E€Th

where C(Ag, 1) is a positive constant depending on the Lamé coefficients, and is as in [2| Lemma
3.16].

Theorem 3.2. Assume that uw € H1(Q) for 1 < ¢ < k. Then, there holds
| — upl1,0 + [v— g pun|1n + |u— H%,hull,h S K(A57ﬂs)h’e|u|5+1,ﬂv

where K(Ag, us) is a positive constant depending on the Lamé coefficients, and is as in [2], Theorem
3.2].

Theorem 3.3. Assume that w € H1(Q), 1 < ¢ < k. Then

0.0 SR(As, 1s) e 0,

where R(Ag, ug) is a positive constant depending on the Lamé coefficients, which is defined in [2]
Theorem 3.3].

Theorem 3.4. Assume that uw € H(Q), for 1 < ¢ < k. Then there holds

lu =TI} junllo.0 + lu— M punllon S €(hs, ps)h™ ulei1,0,

[ — un|

where €(Ag, us) is a positive constant depending on the Lamé coefficients, which is defined in |2}
Theorem 3.4].

We begin with the following error estimate, which gives us an error estimate for eigenfunctions
in L2-norm. The proof of this result is based in a duality argument, which for our case, we adapt
from [4, Theorem 3.3]

Theorem 3.5. For all f€ &, if Tf= w and Thf= up, we have
0.0 S D(As, ps)h? | u|

where the hidden constant is independent of h and © (g, 1s) is a positive constant depending on
the Lamé coefficients.

lu— up 2,05

Proof. Let ® € H}(€2) the unique solution of the problem
a(®,v) =bu—uy,v) YveH Q).

Then, if we set v = u — uy, on the above problem, we have

ollu— uh||g7Q =a(u—up, ®)=alu—up, ® — Iy, ®) + a(u — up, I, P).
Our task is to estimate the two terms in the right-hand side. For the first term, we have
a(u—up, ® — I, ®) < max{Ag, us}u—up|1,0|® — I P10

S max{A\dug' As, ns}K (As, ps) b2 |[ull2,0]@|2,0,

where, in the first inequality, we use the continuity of a(-,-), Theorem 3.2 and [2, Lemma 3.10].

(3.2)

On the other hand, we have the following error equation
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a(u — Up, Ik7h(I>) = a(u, Ik7h‘I)) — a(uh, Ik)h‘I))
= ah(uh, Ik7h‘I)) — a(uh, Ik7h‘I)) + b(f, Ik)h(ﬁ) - bh(f, Ik7h‘I)) .
Bl B2
To estimate By, from the definition of ay(-,-), the continuity of a(-,-), |2, Lemmas 3.10, 3.15 and
3.16] and Theorem 3.2 we have
By =Y a(Iy pup — wp, Ty gl p® — T @) + > SP((I =Ty p)up, (I — Ty, p)Ti o)
Ee€T, EcTh

S max{As, ug} Z lup, — Iy gupli, 6|l g ® — i g1k 6|1 B
EeTy,

+max{Aspg’, 13€(\s, ps)'2h*|[ull2,0l|®||2.0
S max{Agug", As, s K (As, 1s)h* [ul|2.0]@|2,0 + max{Asug", 1}€(As, ps) /2 B2 ull2,0]®]2.0
< Z(As, s)h?|[ull2,0l @20,
where Z(\s, pus) := max{max{\3ug"', As, us } K (\s, ps), max{Aspg ', 1}€(Ag, us)/2}.

Now, to bound Bs, thanks to [2, Lemma 3.10] and the stability of H%E in L*(Q) norm, we
have

By =Y bP(£ 15 ®) — b7 (M) of T}, pTi 5 ®)

EeTy,

= ) WP(E-TI0) pf Lty ® — I 1, , @)
EeTy,

< Z If = II) pflloollen® — I gLk n®llo0 S max{Aspg’, 13213 ([ull2.0] @20
EeTy,

Finally, using the additional regularity for ® and the estimate
[®[l2.0 S l[u—unllo.q,
we conclude the result, where the constant D (Ag, ug) is defined by
D(As, ps) := max{max{Ngug", As, ps} K (As, pis), Z(As, ps), max{Aspg ', 132}
O

3.3. Spectral approximation and error estimates. In this section, our task will be to show
that the discrete operator T}, converges to T. With this aim, and taking advantage of the com-
pactness of T, we will prove that this convergence is precisely obtained in the norm | - ||; o in
order to apply the theory of [5]. We remark that the compact operator theory gives immediately
the convergence of eigenfunctions and eigenvalues.

Let us begin with the following result.

Lemma 3.4. The following estimate holds
(T~ Tw)fllie S KQs,ps)hlfle  Vfe Hy(),

where the hidden constant is independent h.

Proof. Note that, from Theorem with ¢ = 1 and applying Poincaré inequality, we deduce the
following error estimate in || - ||1, norm

(T — Tw)fll1,0 S K(As, us)h|Tfl2.0.
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Then, applying Lemma 2.1l and the continuity of T, we derive
ITfl2,0 < [Ifllo.e < [[fll1,0,
concluding the proof. O

Remark 3.2. As a consequence of the previous corollary we have that isolated parts of sp(T) are
precisely approzimate by isolated parts of sp(T'1,). This fact means that if k # 0 is an isolated eigen-
value of T, with multiplicity m and £ denotes the associated invariant space for the corresponding

eigenfunctions, then there exists m eigenvalues of T, which we denote by KS), .. .,Ii;lm), all of
them with their corresponding multiplicity and invariant space &, associated to the corresponding
discrete eigenfunctions, such that converge to k.

Now our aims is to obtain error estimates for the approximation of the eigenvalues and eigen-
functions. With this goal in mind, we recall the following definitions.

Definition 1. We define the gap 5 between two closed subspaces X e Y of H}(Q) by
3(X,Y) = max{5(X, ), 0¥, X)},

where

0(X,Y) = sup {inf |33_y|1,9}.

2eX:||zf|1,0=1 \YEY

The following result provides error estimates for the eigenfunctions and eigenvalues of the
elasticity spectral problem.

Theorem 3.6. The following estimates hold

~

1) 6(€,&n) S K(As, ps)n
11) ‘K’_K’S)‘ SK()\SMUJS)FWH 1= 15"'am
with

Yh = sup H(T_ Th).le,Q;
fe&:flle=1

and the hidden constants are independent of h.

Proof. Thanks to Lemma [3.4] since T}, converges to T in norm, the proof is a direct consequence
of the compact operators theory of Babugka-Osborn (see [5, Theorems 7.1 and 7.3]). 0

Theorem is a result with a preliminary error estimate for the eigenvalues. Nevertheless,
we are able to improve the linear order of convergence of this result, proving a quadratic order of
convergence for the eigenvalues. This is stated in the following result.

Theorem 3.7. The following estimate holds
Ik — ) | < F(Ns, ps)h2,
where the hidden constant is independent of h.

Proof. Let (ng),wh) € R x V), be the solution of Problem 2 with ||wy|l1,o = 1. Thanks to the
previous results, there exists (w, k) € H}(Q) x R solution of Problem [[ such that

1,0 S K()\Su /J'S)ha

where the hidden constant is independent of h.

[w — wa|
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On the other hand, the following algebraic identity is straightforward

(3.3) (ngj) — &)b(Wp,Wp) = a(W — W, W — Wp) — kb(W — Wp, W — W)

T

+ [ah(wh, Wh) - a(w, W)] +I€§li) [b(Wh, Wh) — bh(Wh, Wh)] .

T> Ts

Now our aim is to estimate each of the contributions on the right hand side of ([B3]). From
triangle inequality and the continuity of a(-,) and b(-, -) we have for the term Ty

(3.4) 71| < |a(w —wp, w — wp)| + kbW — wp,, w — wp,)|
S max{As, ps}w — wif o + rollw — wil3 o
S max{Ag, pus}|w — WhH%,Q + ko|lw — WhH%,Q
< max{As, ust|w — wali o < Fi(As, ps)h?,
with Fi(As, ps) := max{As, s} K (As, p1s)*.

On the other hand, invoking the definition of a(-, -), triangle inequality, Lemma and The-
orem [3.2] there holds for the term 15

3.5) [Ta| =

> [af (wh,wa) — a¥ (wh, wh)] |

EcTh

Z lar (Wn — Iy W, Wi, — I gwy) — a® (wy, — I gwi,, wy, — I, gw, )| ‘
EeTy,
<

Z SE(wy, — Iy, gwp, wi, — I, pwy) | +

EcTh

E
E a”(wp, — I gwp, wp, — Iy gwp,)
EeTy,

S C(As, us)h? + max{ s, ps Hwn — e nwal? ,
< C(As, ps)h® + max{As, ps} (jwn — wlia + [w — T ywal1.n)?
S C(As, ps)h? + max{Xs, ps}K (As, p1s)*h? < Fa(As, ps)h?,
where Fo(As, ps) := max{C(\s, us), max{ g, ps (K (\s, 1s))?}.

Now, from the definition of Hgyh, Theorem and Theorem [3.4] the term T3 is estimated as
follows

(3.6) [Ts] =

> (b8 (W wn) = 05 (wh, wi,)] |
EcTh

0
S Z llwh _Hk,EWhHg,E
E€7—h
S Y (lw = wallg g + [lw = T} swall§ 5) S Fs(As, ps)h?,
EcTy,
where F3(As, ps) := max{R(\s, us)?, €(\s, i1s)?}.
Finally, since /@S) — Kk as h — 0, then {“S)}h>0 is a bounded sequence and hence, together

with the coercivity of ay(-,-) on YV}, we obtain

Z bE(Wh - H%EW}L, WwWp — Hg)EWh)
E€Th

an(Wp, Wp) S Cllwhll1,0 =~ >0

(37) bh(Wh,Wh) =

po po
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Hence, gathering B4), B.3), (B-6), (B.7), and replacing these estimates in (83) we conclude the
proof. O

4. NUMERICAL EXPERIMENTS

In the following section we present a number of numerical tests in order to assess the per-
formance of the proposed method. The main goal is to observe the accuracy of the small edges
approach for the elasticity spectral problem in different computational domains and boundary
conditions. The results that we report have been obtained with a MATLAB code. Through this
section we will consider different polygonal meshes allowing small edges (i.e., satisfying only As-
sumption A1) and different values of the Poison ratio v. This last parameter is important since
the Lamé coefficients are computed with that aid of this parameter according to the following
definitions

A Av

— d ds=——F+——

21+v) ¢ T AT —2w)

where clearly A\g blows up when v — 1/2. This will lead to a loss of order of convergence, as we
expect.

Hs =

We begin our tests considering a convex domain.

4.1. Unit square. In this test the computational domain is = (0,1)? with null boundary
conditions on 9€2., i.e, w = 0. To discretize this domain we consider polygonal meshes as the ones
presented in Figure[Il

06

0.5

0.4

03

0.2

01F

0 01 02 03 04 05 06 07 08 09 1

FIGURE 1. Sample of meshes. Top left: 7,'; Top right: 7,%; bottom: 7,2.
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Observe that 7;! is such that the middle points allow to consider small edges, whereas 7,2 is the
standard triangular mesh. The values of the Poisson ration along this test are v € {0.35, 0.49}.

We have considered, for simplicity, Young’s modulus A = 1. Also we consider density o = 1.
Finally, the stabilization term for this test is

NEg
(4.8) Swn,va) =a Y SP(wn,va), SP(wn,vi) =Y wa(Vi)va(Vi),
E€Th i=1
where « := tr(ax(-,))/2. The following tables show approximate values for each of the frequencies
w; = /ki, © = 1,...,4, convergence orders and also the extrapolated frequencies, which are

adjusted by least-squares by
Whi X Wy + Cihai.
We will consider the mesh refinement N as the number of polygons on the boundary of the square.

[ v [wnm [N=64[N=128 [N =256 | N =512 ] Order | Ext. | [14 |
w1 | 4.20103 | 4.19522 | 4.19364 | 4.19324 | 2.07 | 4.19313 ] 4.19311
035 | @he | 4:20261 | 4.19540 | 4.19369 | 4.19325 | 2.06 | 4.19313 | 4.19311
2 | wag | 4.39728 | 4.37833 | 4.37373 | 4.37255 | 2.03 | 4.37220 | 4.37217
wha | 5.96461 | 5.94118 | 5.93518 | 5.93336 | 1.96 | 5.93309 | 5.93318
w1 | 4.32406 | 4.21865 | 4.19634 | 4.19030 | 2.19 | 4.18930 | 4.18858
whz | 5.79393 | 5.58095 | 5.53289 | 5.52130 | 2.13 | 5.51817 | 5.51758
whs | 5.81843 | 5.58834 | 5.53448 | 5.52161 | 2.09 | 5.51778 | 5.51758
wha | 7.08611 | 6.66311 | 6.57261 | 6.55020 | 2.19 | 6.54528 | 6.54337

0.49

TABLE 1. Four lowest approximated frequencies, convergence orders, and extrap-
olated frequencies, computed with 7;!, v € {0.35, 0.49}, and the stabilization term
defined in ([@.8)

[ v [wm [N=64[N=128 [N =256 | N =512 ] Order | Ext. | [14 |
wi1 | 4.20203 | 4.19549 | 4.19371 | 4.19326 | 2.05 | 4.19313 | 4.19311
035 | @h2 [4:20311 | 4.19553 | 4.19372 | 419326 | 2.05 | 4.19313 | 4.19311
2 | wg | 4.39907 | 4.37873 | 4.37385 | 4.37258 | 2.04 | 4.37222 | 4.37217
whs | 5.96675 | 5.94188 | 5.93535 | 5.93368 | 1.94 | 5.93308 | 5.93318
w1 | 4.32140 | 4.21722 | 4.19608 | 4.19017 | 2.23 | 4.18936 | 4.18858
040 | @h2 | B-T8TSL| 557972 | 5.53244 | 5.52112 | 213 | 551815 | 5.51758

whs | 5.80890 | 5.58319 | 5.53204 | 5.52116 | 2.16 | 5.51813 | 5.51758
wha | 7.08094 | 6.65902 | 6.57150 | 6.54973 | 2.23 | 6.54557 | 6.54337

TABLE 2. Four lowest approximated frequencies, convergence orders, and extrap-
olated frequencies, computed with 7,2, v € {0.35, 0.49}, and the stabilization term
defined in ([@.8)
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| v |whi|N=110|N:153|N:227|N:323|Order| Ext. | [14] |
wp1 | 4.20404 | 4.19810 | 4.19550 | 4.19433 2.56 | 4.19376 | 4.19311
0.35 whpa | 4.20423 | 4.19869 | 4.19567 | 4.19438 2.13 | 4.19330 | 4.19311
’ wps | 4.40139 | 4.38652 | 4.37913 | 4.37566 | 2.25 | 4.37335 | 4.37217
wp3 | 5.97081 | 5.95194 | 5.94205 | 5.93773 | 2.19 | 5.93441 | 5.93318
wh1 | 4.43393 | 4.31258 | 4.25035 | 4.21936 | 2.13 | 4.19703 | 4.18858
0.49 wro | 6.00585 | 5.76804 | 5.64825 | 5.58221 2.07 | 5.53589 | 5.51758
wp3 | 6.01995 | 5.77483 | 5.64980 | 5.58379 | 2.09 | 5.53682 | 5.51758
Wha | T7.45588 | 7.01811 | 6.78115 | 6.66172 | 2.00 | 6.56290 | 6.54337

TABLE 3. Four lowest approximated frequencies, convergence orders, and extrap-
olated frequencies, computed with 7;13, v € {0.35, 0.49}, and the stabilization term
defined in (@8]

From Tables [ and Bl we observe that the method is capable of compute the frequencies on
the square accurately. This is observed from the exotrapolated values that we present, which we
compare with those obtained in [I4] with a mixed finite element method. Also, the computed
frequencies for the both Poisson ratios under consideration converge to the ones on the aforemen-
tioned reference independent of the polygonal mesh. In both cases, the quadratic order is attained
by the method.

In Figures 2l and Bl we present plots of the first four eigenfunctions, which have been obtained
for v = 0.49 and stabilization term (@F]).

FiGURE 2. Plots of the first two eigenfunctions computed with v = 0.49 and
stabilization term ([@.8]). Left: wyy; right: wpa.
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FI1GURE 3. Plots of the third and fourth eigenfunctions computed with v = 0.49
and stabilization term ([L8]). Left: wps; right: wpg.

4.2. Comparison between the stabilizations. In order to observe the robustness of the VEM
with small edges, we repeat the previous experiments using the following stabilization term

(4.9) S(wp,vp) =« Z SE(wp,vi), SE(wp,vy) = hE/ OswWy, - sV,

EET E
where « := tr(ax(+,-))/2. In the following tables are reported approximated values of each one
of the frequencies w; = \/k;, ¢ = 1,...,4, convergence orders and extrapolated frequencies which,
once again, we compare with the extrapolated ones obtained by [I4] .

[ v [wm [N=64[N=128 [N =256 | N =512 ] Order | Ext. | [14 |
wi1 | 4.20599 | 4.19623 | 4.19390 | 4.19330 | 2.05 | 4.19313 ] 4.19311
whz | 4.20822 | 4.19680 | 4.19405 | 4.19334 | 2.04 |4.19313 | 4.19311

0-35 wp3 | 4.41110 | 4.38168 | 4.37461 | 4.37276 | 2.04 | 4.37225 | 4.37217
wha | 5.98094 | 5.94559 | 5.93631 | 5.93392 | 1.93 | 5.93303 | 5.93318
wp | 4.44484 | 4.24687 | 4.20374 | 4.19202 | 2.15 | 4.18978 | 4.18858
0.49 | “h2 6.04069 | 5.63787 | 5.54703 | 5.52479 | 2.13 | 5.51904 | 5.51758

wp3 | 6.09644 | 5.65738 | 5.55148 | 5.52583 | 2.05 | 5.51768 | 5.51758
wha | 7.52201 | 6.76970 | 6.60021 | 6.55686 | 2.12 | 6.54633 | 6.54337

TABLE 4. Four lowest approximated frequencies, convergence orders and extrap-
olated frequencies, computed with ’721, v € {0.35,0.49} and stabilization term
defined in (49)).
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| v Jwn [N=64[N=128]N=256 ]| N=512]Order | Ext. | [14] ]
wh1 | 4.20647 | 4.19609 | 4.19386 | 4.19329 | 2.06 |4.19313 | 4.19311
0.35 | “h2 4.20577 | 4.19614 | 4.19389 | 4.19330 | 2.07 | 4.19314 | 4.19311
wp3 | 4.40638 | 4.38040 | 4.37430 | 4.37268 | 2.06 | 4.37226 | 4.37217
wp3 | 5.97514 | 5.94417 | 5.93594 | 5.93382 | 1.92 | 5.93302 | 5.93318
wh1 | 4.36861 | 4.22781 | 4.19887 | 4.19074 | 2.22 | 4.18967 | 4.18858
0.49 | @h2 5.88070 | 5.60200 | 5.53775 | 5.52235 | 2.11 | 5.51804 | 5.51758
' wp3 | 5.91816 | 5.60777 | 5.53849 | 5.52240 | 2.16 | 5.51821 | 5.51758
wha | 7.26788 | 6.70126 | 6.58199 | 6.55196 | 2.21 | 6.54611 | 6.54337

TABLE 5. Four lowest approximated frequencies, convergence orders and extrap-

olated frequencies, computed with 7712, v € {0.35,0.49} and stabilization term

defined in ([€9).

[ v [wn [N=110[N=153 N = 227 | N = 323 | Order | Bxt. | [4] |

wp1 | 4.23044 | 4.21115 | 4.20240 | 4.19782 2.35 | 4.19539 | 4.19311

0.35 whpo | 4.23264 | 4.21402 | 4.20269 | 4.19790 1.91 | 4.19276 | 4.19311

' wp3 | 4.48507 | 4.42890 | 4.40000 | 4.38601 2.15 | 4.37590 | 4.37217

wr3 | 6.06226 | 6.00188 | 5.96658 | 5.95048 1.93 | 5.93472 | 5.93318

whp1 | 5.12641 | 4.68477 | 4.44556 | 4.31929 1.96 | 4.21479 | 4.18858

0.49 | wh2 7.23930 | 6.46664 | 6.03793 | 5.78512 1.80 | 5.55671 | 5.51758

) wp3 | 7.33431 | 6.51547 | 6.05240 | 5.79728 1.83 | 5.56155 | 5.51758

Wha | 9.61583 | 8.26681 | 7.46697 | 7.02478 1.73 | 6.56786 | 6.54337

TABLE 6. Four lowest approximated frequencies, convergence orders and extrap-
olated frequencies, computed with 72, v € {0.35, 0.49} and stabilization term
defined in (£9).

From Tables M and Bl we observe that there is no significant differences when the stabilization
(#3) is changed by [@3). In fact, the frequencies for the considered Poisson ratios and their ex-
trapolated values are similar. Moreover, the order of convergence is not affected, and the quadratic

order is attained perfectly.

4.3. Nonconvex domain. The aim of this test is to study the performance of the method in
a nonconvex domain. Clearly this geometrical particularity goes beyond from our theoretical as-
sumptions, where the theory is developed on a convex Lispchitz domain. However, computationally
we can study the method in order to compare our results with those provided by other numerical
methods. To do this task, we compute the four smallest frequencies wp;, @ = 1,...,4 for the L-
shaped domain defined by € := (0,2)? \ [1,2)2. A sample of the meshes to discretize this domain

is presented in Figure (]
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FIGURE 4. Sample of the meshes for the L-shaped domain. Left 7;' (deformed
triangles with middle points); right 7,2 (triangles with small edges).

In this test we consider the same physical parameters of the previous test, whereas the com-
puted frequencies have been computed with the stabilization term (€8], which we scale with the
parameter « := tr(ap(-,-))/2. Let us remark that N represents the number of polygons on the edge
of the domain.

| v Jwn [N=64[N=128][N=256 ]| N=512]Order | Ext. | [14 ]
wh1 | 2.39539 | 2.38512 | 2.38095 | 2.37971 | 1.40 | 2.37871 | 2.37768

0.35 | @h2 2.81163 | 2.80183 | 2.79885 | 2.79805 | 1.75 | 2.79766 | 2.79726
wp3 | 3.33891 | 3.30138 | 3.28635 | 3.28221 | 1.43 | 3.27872 | 3.27876

wha | 3.67318 | 3.63581 | 3.62523 | 3.62262 | 1.85 | 3.62140 | 3.62146

wp1 | 3.60728 | 3.37831 | 3.30437 | 3.28291 | 1.66 | 3.27169 | 3.26734

0.49 | @h2 3.80074 | 3.58525 | 3.52727 | 3.51340 | 1.92 | 3.50750 | 3.50800
' wp3 | 4.06885 | 3.80272 | 3.73812 | 3.72280 | 2.05 | 3.71780 | 3.71731
wha | 4.52351 | 4.15809 | 4.06992 | 4.04923 | 2.06 | 4.04251 | 4.04256

TABLE 7. Four lowest four computed frequencies, convergence orders and extrap-

olated frequencies, computed with 7;! and the stabilization term (Z3).

| v Jwn [N=64[N=128]N=256 ]| N=512]Order | Ext. | [14 ]

wp1 | 2.39589 | 2.38554 | 2.38118 | 2.37983 | 1.35 | 2.37870 | 2.37768

0.35 | @h2 2.81250 | 2.80218 | 2.79898 | 2.79809 | 1.72 | 2.79765 | 2.79726

' wps | 3.34109 | 3.30285 | 3.28711 | 3.28261 | 1.40 | 3.27885 | 3.27876
wha | 3.67592 | 3.63689 | 3.62556 | 3.62272 | 1.82 | 3.62137 | 3.62146

wp1 | 3.57514 | 3.37114 | 3.30296 | 3.28205 | 1.61 | 3.27102 | 3.26734

0.49 | @2 3.76980 | 3.57930 | 3.52619 | 3.51303 | 1.87 | 3.50720 | 3.50800
' wps | 4.04590 | 3.79714 | 3.73664 | 3.72242 | 2.05 | 3.71771 | 3.71731
wha | 4.49042 | 4.15356 | 4.06853 | 4.04891 | 2.01 | 4.04165 | 4.04256

TABLE 8. Four lowest computed frequencies, convergence orders and extrapolated

frequencies, computed with 7,2 and the stabilization term (ES]).

Again, we will repeat the previous experiments using the stabilization term (4.9), which will

be compared with the results obtained previously.
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| v |whi N=64|N=128|N=256|N=512|Order| Ext. | [14] |
wh1 | 2.40458 | 2.38790 | 2.38198 | 2.38014 1.54 | 2.37905 | 2.37768
0.35 wpo | 2.81958 | 2.80397 | 2.79949 | 2.79823 1.80 | 2.79769 | 2.79726
wh3 | 3.36860 | 3.31037 | 3.28963 | 3.28360 1.55 | 3.27977 | 3.27876
wha | 3.70036 | 3.64325 | 3.62715 | 3.62314 1.86 | 3.62137 | 3.62146
wp1 | 3.88680 | 3.45600 | 3.33252 | 3.29245 1.77 | 3.27835 | 3.26734
0.49 who | 4.06022 | 3.65189 | 3.54567 | 3.51791 1.94 | 3.50811 | 3.50800
’ wpy | 4.34083 | 3.87448 | 3.75788 | 3.72789 1.99 | 3.71805 | 3.71731
Wha | 4.71510 | 4.25546 | 4.09518 | 4.05553 1.61 | 4.02748 | 4.04256

TABLE 9. Four lowest computed frequencies, convergence orders and extrapolated
frequencies, computed with 7;' and the stabilization term (£9).

| v |whi N=64|N=128|N=256|N=512|Order| Ext. | [14] |
wp1 | 2.40061 | 2.38695 | 2.38171 | 2.38004 1.44 | 2.37889 | 2.37768
who | 2.81689 | 2.80343 | 2.79932 | 2.79819 1.74 | 2.79765 | 2.79726

0-35 wp3 | 3.35684 | 3.30749 | 3.28878 | 3.28329 | 1.48 | 3.27940 | 3.27876
wha | 3.69019 | 3.64083 | 3.62658 | 3.62300 | 1.83 | 3.62135 | 3.62146
wp1 | 3.66652 | 3.40006 | 3.31136 | 3.28502 | 1.62 | 3.27067 | 3.26734
0.49 | wh2 3.85633 | 3.60364 | 3.53214 | 3.51451 | 1.85 | 3.50625 | 3.50800

wp3 | 4.16307 | 3.82425 | 3.74311 | 3.72412 | 2.07 | 3.71807 | 3.71731
wha | 4.55870 | 4.19166 | 4.07763 | 4.05117 | 1.76 | 4.03554 | 4.04256

TABLE 10. Four lowest computed frequencies, convergence orders and extrapo-
lated frequencies, computed with 7,2 and the stabilization term (3.

Finally in Figures [] and [6] we present plots of the first four eigenfunctions obtained for the
L-shaped domain.

FIGURE 5. Plots of the first two eigenfunctions computed with v = 0.35 and the
stabilization term (@9). Left: wy; right: wps.
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FIGURE 6. Plots of the third and fourth eigenfunctions computed with v = 0.35
and the stabilization term ([@3]). Left: wps3; right: wpy.

4.4. Spurious analysis. The aim of this test is to analyze the influence of the stabilization
parameter of the VEM in the computation of the spectrum. Although the VEM is a robust method
to approximate eigenvalues and eigenfunctions, it is well know that the methods that depend on
some parameter may introduce spurious frequencies. We resort to the reader, for instance, to
[15] 17 [19] for methods that present this nature.

In order to observe more clearly the presence spurious frequencies, we will consider the elasticity
spectral problem with mixed boundary conditions. More precisely, the problem of this test reads
as follows: Find A € R and the displacement w such that

div(e(w)) = —pkw inQ,
(4.10) ocwin = 0 only,
w = 0 onlp,

where I'p := {(2,0) : z € (0,1)} and I'y is the part of the boundary that is not clamped. We
need to remark that this problem goes beyond the developed theory, since the regularity for the
eigenfunctions under this geometrical configuration is such that w € H***(Q) with s € (0, sq) and
sq > 0. Then, according to [8], we need the additional assumption on the mesh:

o A2 There exists C' € N such that N(E) < C, where N(E) represents the number of edges
of some polygon E € Ty,.

With this assumption, together with assumption A1, it is possible to perform the analysis but
depending on some constant that depends on the size of the mesh. More precisely, according to
[8], the error estimate has the form

lu—upli0S i(As,us)c(h)hs_1|u|s,Q, c(h) :=c(h) = gleaﬁ}’i log (1 + h:fE)) ,

where h,,(F) is the smallest edge of the polygon E and T(\g, ug) is a positive constant depending
on the Lamé coefficients. This estimate is not optimal since the constant c¢(h) defined above
does not allow to conclude the convergence in norm between the discrete and continuous solution
operators. For this reason, we consider the elasticity problem with mixed boundary conditions
only for computational purposes.
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To perform the test, we consider the stabilization term given by (L8] which we rescale with
the parameter 3 = 4¥, —3 < k < 3. The meshes are 7;} and 7;3, whereas v € {0.35, 0.45} and
N =238.

3 1/64 1/16 1/4 1 1 16 64 || w&r
wn1 || 0.6370 || 0.6637 || 0.6769 || 0.6851 || 0.6898 || 0.6916 || 0.7391 || 0.68283
whe || 1.6702 | 1.6877 || 1.6975 || 1.7049 || 1.7095 || 1.7114 || 1.7596 || 1.7015
whs || 17519 | 1.7964 || 1.8189 || 1.8341 || 1.8431 || 1.8467 || 2.0362 || 1.8250
wha || 2.7404 | 2.8807 || 2.9388 || 2.9793 || 3.0046 || 3.0148 || 3.4483 || 2.9549

Whs 2.7954 2.9438 || 3.0105 || 3.0512 || 3.0753 || 3.0852 || 3.5296 || 3.0271
Whe 3.2270 3.3851 || 3.4434 || 3.4770 || 3.4979 || 3.5068 || 3.9973 || 3.4503
wr7 || |3.4950 3.9342 || 4.1230 || 4.2311 || 4.2884 || 4.3101 || 5.2523 || 4.1621
Whs 4.0069 4.4639 || 4.6144 || 4.7122 || 4.7710 || 4.7949 || 5.7256 || 4.6502
Who 4.0666 4.5783 | || 4.7610 || 4.8677 || 4.9293 || 4.9539 || 6.2238 || 4.7831
wpio || [4.1824 4.6201 | || 4.7926 || 4.9005 || 4.9707 || 5.0011 || 6.2766 || 4.8130

TABLE 11. Computed eigenfrequencies for 7;}, N = 8 and v = 0.35.

B 1/64 1/16 1/4 1 4 16 64 wi®
wp1 || 0.6793 || 0.6812 || 0.6849 || 0.6972 || 0.7280 || 0.7912 0.8782 || 0.6828
wp2 || 1.7007 || 1.7020 || 1.7058 || 1.7170 || 1.7423 || 1.7908 1.8625 || 1.7015
wp3 || 1.8300 || 1.8337 || 1.8424 || 1.8686 || 1.9466 | 2.1412 2.5942 || 1.8250
wha || 2.9436 || 2.9478 || 2.9812 || 3.0773 || 3.2096 || 3.3744 3.8843 || 2.9549
wps || 3.0600 || 3.0703 || 3.0819 || 3.1232 || 3.3513 || 3.7429 4.3502 || 3.0271

whe || 3.4685 || 3.4745 || 3.5023 || 3.5915 || 3.8299 || 4.5374 5.1987 | || 3.4503
wrr || 4.2649 || 4.2668 || 4.3314 || 4.4319 || 4.6500 || 4.9312 6.2401 | || 4.1621
wrg || 4.6596 || 4.6742 || 4.7440 || 4.9272 || 5.2994 || 6.0221 6.5812 | || 4.6502
wro || 4.8101 || 4.8400 || 4.9257 || 5.1326 || 5.7235 || | 6.2680 7.6194 | || 4.7831
whio || 4.8684 || 4.8868 || 4.9392 || 5.2301 || 5.7377 || | 6.5411 8.5473 || 4.8130

TABLE 12. Computed eigenfrequencies for 7,2, N = 8 and v = 0.35.

3 1/64 1/16 1/4 1 1 16 64 we®
wn1 || 0.6434 | 0.6725 || 0.6880 || 0.6989 || 0.7069 || 0.7119 || 0.7138 || 0.6967
whe || 1.7398 | 1.7709 || 1.7897 || 1.8055 || 1.8186 || 1.8268 || 1.8300 || 1.7996
whs || 17759 | 1.8194 | 1.8414 || 1.8572 || 1.8698 || 1.8776 || 1.8806 || 1.8481
wha || 2.7400 | 2.8798 || 2.9433 || 2.9852 | 3.0182 || 3.0401 || 3.0493 || 2.9630
whs || 2.8094 | 2.9497 || 3.0039 || 3.0425 | 3.0732 || 3.0924 || 3.1001 || 3.0212

Whe 3.2658 3.4747 || 3.5656 || 3.6282 || 3.6817 || 3.7186 || 3.7342 || 3.5849
wrr || 3.4872 3.9152 || 4.0972 || 4.2019 || 4.2715 || 4.3122 || 4.3282 || 4.1386
Whs 4.0111 4.5186 || 4.7094 || 4.8230 || 4.9067 || 4.9571 || 4.9766 || 4.7379
Who 4.0763 | 4.5663| 4.7246 || 4.8361 || 4.9408 || 5.0152 || 5.0462 || 4.7485
whio || |4.2360 4.8963 || 5.1495 || 5.3143 || 5.4419 || 5.5252 || 5.5594 || 5.1977

TABLE 13. Computed eigenfrequencies for 7,', N = 8 and v = 0.45.
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B 1/64 || 1/16 || 1/4 64 we®
wn1 || 0.6910 || 0.6929 |[ 0.7009 || 0.7142 |[ 0.7459 || 0.8025 || 0.8671 || 0.6967
why || 1.7917 || 1.7955 || 1.8078 || 1.8319 || 1.8937 || 2.0212 || 2.2613 || 1.7996
whs || 1.8521 || 1.8547 || 1.8644 || 1.8938 || 1.9765 || 2.1973 | 2.5647 || 1.8481
wha || 2.9895 || 2.9931 || 3.0152 || 3.0608 || 3.1659 || 3.3688 || 3.9960 | 2.9630
whs || 3.0092 || 3.0218 || 3.0497 || 3.1410 || 3.4073 || 4.1418 | 5.0916 | 3.0212
whe || 3.6046 || 3.6167 || 3.6642 || 3.8176 || 4.1364 || 4.7753 | [5.3750] || 3.5849
whr || 4.2547 || 4.2695 || 4.3106 || 4.4130 || 4.5875 | 4.9213 | [6.4913] || 4.1386
whs || 4.7347 || 4.7525 || 4.8695 || 5.1082 || 5.7296 || 6.9605 || [8.5122] | 4.7379
who || 4.7961 || 4.8302 || 4.8863 || 5.1754 || 5.7952 || [7.0476] || [9.3058] || 4.7485
whio || 5.4019 || 5.4274 || 5.4936 || 5.6735 || 6.1776 || [7.2649] || [9.4293] || 5.1977

TABLE 14. Computed eigenfrequencies with 7,2, N = 8 and v = 0.45.
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In the case of 7;! mesh, note that the spurious appears when 8 = 1/64, while in the case
of T;? mesh, spurious appears when 8 = 64. In the following tables are report for each mesh,
approximated frequencies for each refinement, with the aim of analyzing the presence of spurious.
We denote N the number of polygons in one side of the square.

[V [wm [ N=8 [N=16 [N=32[N=061]

wp1 | 0.6370 | 0.6669 | 0.6759 | 0.6791
wp2 | 1.6702 | 1.6877 | 1.6940 | 1.6974
wps | 1.7519 | 1.7990 | 1.8159 | 1.8208
wpa | 2.7404 | 2.8854 | 2.9332 | 2.9442
0.35 | Whs |[2.7954]| 2.9472 | 2.9972 | 3.0118
whe | [3.22701| 3.3922 | 3.4292 | 3.4399
why | [3.4950(|13.9227| | 4.1007 | 4.1301
whg | [4.0069] | |4.4857|| 4.5878 | 4.6207
who | [4.0666|||4.5951 || 4.7167 | 4.7511
wpio | |4.1824] 1 4.6364 || 4.7458 | 4.7763
wp1 | 0.6434 | 0.6747 | 0.6854 | 0.6895
wpe | 1.7398 | 1.7700 | 1.7823 | 1.7889
wps | 1.7759 | 1.8221 | 1.8385 | 1.8433
wpa | 2.7400 | 2.8813 | 2.9278 | 2.9424
045 | Whs 2.8094 | 2.9515 | 2.9986 | 3.0094
whe | |3.26568 || 3.4786 | 3.5398 | 3.5597
whpy | [3.4872113.9011| | 4.0738 | 4.1024
whs | [4.0111]|(4.5386|| 4.6616 | 4.6990
who | [4.0763||4.5718]| | 4.6723 | 4.7012
whio | [4.2360] | {4.9083 || 5.0910 | 5.1417

TABLE 15. First ten approximated frequencies for 7, and 3 = 1/64.
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[V [wm [ N=8 [N=16 [N=32|[N=064]
wp1 | 0.8782 0.7867 | 0.7247 | 0.6966
Wh2 1.8625 1.7847 | 1.7376 | 1.7146
wr3 | 2.5942 2.1211 | 1.9213 | 1.8524
wpa | 3.8843 | 3.3080 | 3.1449 | 3.0641
whps | 4.3502 3.7277 | 3.3147 | 3.0691

0901 e | [5.1987] | [4.4208] | 37518 | 3.5443
wir | [6.2401] | [4.7142] | 4.4244 | 4.2589
wrs | [6.5812] | 5.9087 | 5.1695 | 4.8444
wry | [7.6194]| 6.1201 | 5.5569 | 4.9985
whio | |8.5473]|]6.4273] | 5.5702 | 5.1205
wp1 | 0.8671 | 0.8004 | 0.7436 | 0.7138
wpz | 2.2613 | 2.0133 | 1.8837 | 1.8285
wps | 2.5647 | 21753 | 1.9564 | 1.8777
wra | 3.9960 | 3.3243 | 3.0973 | 3.0092
045 | @hs | 50916 | 4.1074 | 3.3005 | 3.1247

wre | [5.3750] | [4.6784]| 4.0354 | 3.7370
whr | 6.4913]|[4.7309] | 4.3834 | 4.2245
wrs | [8.5122] | 6.6766 | 5.5418 | 4.9659
wro | [9.3058] | 6.9063 | 5.6267 | 5.0895
whio | 9.4293]]16.9771] | 5.8199 | 5.3521

TABLE 16. First ten approximated frequencies for 7,2 and 8 = 64.

Finally, for each stabilization parameter 3, we perform the analysis of convergence orders using
T,} mesh, with v = 0.45. Ee remark that the results for other Poisson ratios are similar, and hence
we do not include it. In the following tables we report approximated frequencies, convergence
orders and extrapolated frequencies. Once again, N denotes the number of polygons in one side of
the square.
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|ﬁ|w;“-|N=8|N:16|N=32|N=64|Orden|Extrap.|
wp1 | 0.6434 | 0.6747 | 0.6854 | 0.6895 | 1.51 0.6915
1 |wpe | 1.7398 | 1.7700 | 1.7823 | 1.7890 | 1.18 1.7933
64 | wps | 1.7759 | 1.8221 | 1.8385 | 1.8433 | 1.55 1.8463
wpa | 2.7400 | 2.8813 | 2.9278 | 2.9424 | 1.62 2.9497

wp1 | 0.6725 | 0.6850 | 0.6894 | 0.6911 | 1.47 | 0.6920
1 | wpo | 1.7709 | 1.7832 | 1.7886 | 1.7914 | 1.13 1.7935
16 | wns | 1.8194 | 1.8368 | 1.8426 | 1.8442 | 1.64 1.8451
wha | 2.8798 | 2.9256 | 2.9416 | 2.9469 | 1.54 | 2.9498

wp1 | 0.6880 | 0.6908 | 0.6918 | 0.6921 | 1.56 | 0.6923
1 | wpe | 1.7897 | 1.7913 | 1.7923 | 1.7928 | 0.79 1.7936
4 |wpz | 1.8414 | 1.8435 | 1.8444 | 1.8446 | 1.40 1.8448
wha | 2.9433 | 2.9469 | 2.9486 | 2.9493 | 1.14 | 2.9499

wp1 | 0.6989 | 0.6952 | 0.6936 | 0.6929 | 1.18 | 0.6923
wpa | 1.8055 | 1.7977 | 1.7950 | 1.7939 | 1.46 | 1.7933
wp3 | 1.8572 | 1.8478 | 1.8454 | 1.8449 | 2.01 1.8447
wha | 2.9852 | 2.9607 | 2.9532 | 2.9509 | 1.70 | 2.9499

wp1 | 0.7069 | 0.6987 | 0.6950 | 0.6934 | 1.17 | 0.6921
4 | wh2 1.8186 | 1.8032 | 1.7970 | 1.7947 | 1.35 1.7931
wpsz | 1.8698 | 1.8512 | 1.8463 | 1.8451 | 1.93 1.8446
wha | 3.0182 | 2.9720 | 2.9569 | 2.9522 | 1.63 | 2.9499

wp1 | 0.7119 | 0.7010 | 0.6959 | 0.6938 | 1.14 | 0.6918
16 | wh2 1.8268 | 1.8068 | 1.7983 | 1.7952 | 1.29 | 1.7928
wp3 | 1.8776 | 1.8534 | 1.8469 | 1.8453 | 1.90 | 1.8446
wha | 3.0401 | 2.9796 | 2.9593 | 2.9530 | 1.60 | 2.9497

wp1 | 0.7138 | 0.7019 | 0.6962 | 0.6939 | 1.12 | 0.6916
wp2 | 1.8300 | 1.8083 | 1.7988 | 1.7954 | 1.27 | 1.7926
wp3 | 1.8806 | 1.8543 | 1.8471 | 1.8453 | 1.89 1.8446
wha | 3.0493 | 2.9828 | 2.9604 | 2.9534 | 1.59 | 2.9496

64

TABLE 17. Lowest four approximated frequencies and convergence orders for 7!
and v = 0.45.

4.5. Orders of convergence. Now we are interested in the computation of convergence orders
for the eigenvalues of problem (LI0). For the computation of the spectrum we consider [@LJ]) as
stabilization term, which we have scaled with the parameter « := tr(ay(+,-))/2. The meshes for
this test are the following:

e 7,!: Deformed triangles with middle points,
e 7,2 Deformed squares.

For this test in particular we consider the physical parameters of steal: Young modulus A =
1.44 x10* Pa and density o = 7.7 x103 kg/m3. Also, as Poisson ratio we consider v = 0.35. On
the other hand, to perform the numerical method, we consider as N the number of polygons that
yield on the clamped side of the square.

In Table I8 we report the computed eigenfrequencies for 7;!, T;!, and different refinement

parameter, together with the corresponding extrapolated frequencies and the extrapolated values
obtained in [I8] for a standard VEM.
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| [Mesh| N=16 | N=32 [ N=64 [ N=128 [Order| Ext. | [§ |
Wh1 2957.193 | 2949.107 | 2946.023 | 2944.964 | 1.42 | 2944.259 | 2944.387
Wh2 7363.191 | 7354.174 | 7350.750 | 7349.555 | 1.42 | 7348.775 | 7348.674
wh3 | 71 7902.414 | 7885.866 | 7881.655 | 7880.587 | 1.98 | 7880.231 | 7879.746
Wha h 12805.665 | 12761.802 | 12750.971 | 12748.230 | 2.01 | 12747.348 | 12746.013
Whs 13119.363 | 13071.579 | 13057.764 | 13053.773 | 1.79 | 13052.114 | 13051.220
Whe 14948.578 | 1.4905.390 | 14894.439 | 14891.575 | 1.97 | 14890.626 | 14889.584
Wh1 2987.630 | 2960.174 | 2949.954 | 2946.460 | 1.45 | 2944.256 | 2944.387
Wh2 7394.495 | 7366.040 | 7355.148 | 7351.258 | 1.41 | 7348.770 | 7348.674
Whs | 72 7971.756 | 7904.912 | 7886.531 | 7881.835 | 1.88 | 7879.896 | 7879.746
Wha h 13041.333 | 12823.521 | 12766.678 | 12752.180 | 1.94 | 12746.809 | 12746.013
Whs 13256.318 | 13115.099 | 13071.314 | 13058.141 | 1.70 | 13052.125 | 13051.220
Whe 15185.872 | 14968.304 | 14910.842 | 14895.837 | 1.92 | 14890.267 | 14889.584

TABLE 18. Lowest six approximated frequencies and convergence orders for the
elasticity spectral problem with the parameters of steal.

Finally, in Figures [] and B we present plots that represent some of the eigenfunctions for the
elasticity eigenproblem with mixed boundary conditions.
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FIGURE 7. Plots of some approximated eigenfunctions. Left: wy1; right: wps.
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FI1GURE 8. Plots of some approximated eigenfunctions. Left: wys; right: wpe.
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