
ADAPTIVE DEEP DENSITY APPROXIMATION FOR FRACTIONAL
FOKKER-PLANCK EQUATIONS

A PREPRINT

Li Zeng ∗ Xiaoliang Wan † Tao Zhou ‡

October 27, 2022

ABSTRACT

In this work, we propose adaptive deep learning approaches based on normalizing flows for solving
fractional Fokker-Planck equations (FPEs). The solution of a FPE is a probability density function
(PDF). Traditional mesh-based methods are ineffective because of the unbounded computation
domain, a large number of dimensions and the nonlocal fractional operator. To this end, we represent
the solution with an explicit PDF model induced by a flow-based deep generative model, simplified
KRnet, which constructs a transport map from a simple distribution to the target distribution. We
consider two methods to approximate the fractional Laplacian. One method is the Monte Carlo
approximation. The other method is to construct an auxiliary model with Gaussian radial basis
functions (GRBFs) to approximate the solution such that we may take advantage of the fact that
the fractional Laplacian of a Gaussian is known analytically. Based on these two different ways
for the approximation of the fractional Laplacian, we propose two models, MCNF and GRBFNF,
to approximate stationary FPEs and MCTNF to approximate time-dependent FPEs. To further
improve the accuracy, we refine the training set and the approximate solution alternately. A variety
of numerical examples is presented to demonstrate the effectiveness of our adaptive deep density
approaches.

Keywords Fractional Fokker-Planck equation · Normalizing flow · Adaptive density approximation ·Monte Carlo
sampling · Gaussian radial basis functions

1 Introduction

The fractional Fokker-Planck equations (FPEs) describe the time evolution of the probability density function of
particles driven by Levy noise as well as Gaussian noise. Compared to integer-order FPEs whose associated stochastic
differential equations (SDEs) are only driven by Gaussian noise, the fractional FPEs have a much wider range of
applications in physics, biology, and other fields [30, 8, 10] since more than one kind of noise are often needed to
simulate complex systems in practice. However, it is very challenging to approximate the fractional FP equations due to
the following four obstacles:

(i) The solution is a probability density function requiring vanishing boundary, normality and non-negative
conditions.

(ii) The computational domain may be unbounded.

(iii) The fractional Laplacian operator is nonlocal.

∗LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, AMSS, Chinese Academy of Sciences,
Beijing, China. Email: zengli@lsec.cc.ac.cn.
†Department of Mathematics and Center for Computation and Technology, Louisiana State University, Baton Rouge 70803, USA.

Email: xlwan@lsu.edu.
‡LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, AMSS, Chinese Academy of Sciences,

Beijing, China. Email: tzhou@lsec.cc.ac.cn.

ar
X

iv
:2

21
0.

14
40

2v
1

 [
cs

.L
G

]
 2

6
O

ct
 2

02
2

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

(iv) The problem may have a large number of dimensions.

Traditional methods such as finite difference method, finite element method, spectral method as well as path integral
method[12, 1, 5, 42, 35] have been applied to approximate fractional FPEs. Most of these methods are limited to
problems of dimension one or two because the mesh-based discretization of high-dimensional problems induces
unaffordable computational cost. On the other hand, simulating the SDEs associated with the FPEs [39] needs a large
number of sample paths. Thus more efficient methods are still needed to approximate the fractional FPEs.

Recently, deep learning techniques have shown strong vitality in solving PDEs, e.g. deep Galerkin method [31], deep
Ritz method [9] and physics-informed neural networks (PINNs) [27]. These techniques have gained encouraging
performance in many applications [28, 2, 17, 40, 37, 26, 43, 18, 23]. Meanwhile, many deep generative models such as
generative adversarial networks (GANs) [14], variational autoencoder (VAE) [21] and normalizing flow (NF) [25, 29]
have been successfully applied to learn forward and inverse SDEs [4, 44, 38, 22]. For instance, a physics-informed
generative adversarial model was proposed in [36] to tackle high-dimensional SDEs. In [16], a normalizing field flow
was developed to build surrogate models for uncertainty quantification problems. The key issue of these methods
is to convert the PDE problem into an optimization problem constrained to physical laws where the loss function
is discretized by random training points. The training points here refer to space-time collocation points where the
equations are enforced through optimization. The choice of training points will significantly affect the final numerical
accuracy especially for unbounded problems. An adaptive sampling procedure was proposed in [33, 11] to solve
integer-order FPEs, where the training set is updated by the current approximate solution which will be subsequently
improved by the new training set. We will employ a similar adaptive procedure to deal with fractional FPEs.

To alleviate the difficulties induced by the constraints of a probability density function (PDF) we consider an explicit
PDF model given by the normalizing flow. A normalizing flow constructs an invertible mapping from a simple
distribution to the target distribution and results in an explicit PDF through the change of variable. We represent the
solution of the FPE via a normalizing flow. In particular, we employ KRnet [32], which has been successfully applied
to estimate high-dimensional density function and to approximate integer-order FPEs [33, 11].

Since KRnet yields a PDF explicitly, the first difficulty is avoided naturally. What’s more, as a generative model, KRnet
can generate exact random samples efficiently, which resolves the second obstacle because the commonly used uniform
samples cannot be applied to an unbounded domain and are not effective for a large truncated domain. Using KRnet, we
may update the training points by new samples from the current KRnet which automatically generates more samples in
the region of high density. It is well known that automatic differentiation brings great convenience to the approximation
of PDEs. However, it only works for the computation of integer-order derivatives. An effective method is needed to
tackle the fractional derivatives. Several approaches have been developed to discretize the fractional derivatives when
the PDE solution is modeled by neural networks. For example, a finite difference method is applied in [24], and a
directly Monte Carlo sampling approach was proposed in [15]. In [3], Gaussian radial basis functions (GRBFs) are used
to represent the solution of fractional PDEs based on the fact that the fractional Laplacian of GRBFs can be derived
analytically. In this work, we will employ the Monte Carlo sampling approach or auxiliary GRBFs to deal with the
fractional Laplacian operator in the nonlocal FPEs.

Integrating the PDF model from KRnet, automatic differentiation for integer-order derivatives and Monte Carlo
sampling/GRBFs approach for fractional Laplacian, we have developed two effective deep learning techniques to
address the approximation of nonlocal FPEs without requiring any labeled data. Following are the main features of our
approach:

• Our approach is based on the explicit PDF model given by KRnet, which satisfies naturally all the constraints
of a PDF. This is different from work [41] which handles the constraints via adding penalty terms to the loss
function.

• Our approach is an extension to the previous work [33, 11] where only FPEs with integer-order derivatives are
investigated. We have paid particular attention to how to improve both the accuracy and efficiency when the
fractional derivatives are involved.

• Being a machine learning scheme, the proposed approach is mesh-free and can be easily applied to high
dimensional problems.

The remainder of this paper is structured as follows. In Section 2, we present a brief description of the fractional FPEs.
Section 3 provides an adaptive density approximation scheme for stationary fractional FPEs. In Section 4, we generalize
the approach to deal with time-dependent fractional FPEs. We demonstrate the effectiveness and efficiency of our
adaptive sampling approach with several numerical experiments in Section 5 followed by some concluding remarks in
Section 6.

2

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

2 Problem setup

The main aim of this work is to solve the fractional FPEs. We first give a brief introduction to the fractional FPEs.

2.1 Fractional Fokker-Planck equations

Consider the state variableXt modeled by the following stochastic differential equation

dXt = µ(Xt, t) dt+ σ(Xt, t) dWt + dLαt , (2.1)

where Xt and µ(Xt, t) are d-dimensional random vectors, σ(Xt, t) is a d ×M matrix, Wt is an M -dimensional
standard Wiener process and Lαt is a α-stable Levy motion with α ∈ (0, 2). The probability density function (PDF)
p(x, t) forXt satisfies the time-dependent FPE:

∂p

∂t
= Lp− (−∆)α/2p, (2.2)

where

Lp = −∇ · (pµ) +
1

2
∇ · ∇ · (σσTp), (2.3)

is induced by the drift and the diffusion, and the following nonlocal Laplacian operator

(−∆)α/2p = Cd,α P.V.

ˆ
Rd\{0}

p(x)− p(y)

|x− y|d+α
2

dy, (2.4)

is induced by the Levy motion, where | · |2 indicates the `2 norm of a vector and P.V. denotes the principle value of the
integral and Cd,α is a constant given by

Cd,α =
2α−1αΓ(α+d

2)

πd/2Γ(1− α/2)
, (2.5)

with Γ(·) being the gamma function.

In general, equation (2.2) is defined on Rd with the following boundary condition

p(x)→ 0 as |x|2 →∞. (2.6)

Furthermore, the solution as a probability density function should be conservative and non-negative, i.e.,
ˆ
Rd
p(x, t)dx ≡ 1, and p(x, t) ≥ 0. (2.7)

In this work, we first address the numerical approximation of equation (2.2) when ∂tp = 0, i.e.,

(L − (−∆)α/2)p = 0, (2.8)

and then consider the time-dependent FPE, i.e., ∂tp 6= 0.

3 MCNF and GRBFNF for stationary fractional FPE

3.1 A bird’s-eye view of proposed approaches

As it is mentioned in Introduction, we resort to deep generative modeling to construct an explicit PDF model on Rd to
remove all the constraints of a PDF, which also alleviates the curse of dimensionality. Depending on how to approximate
the fractional Laplacian operator, we will develop two approaches to solve the fractional FPE (see Table 1). In MCNF
we approximate the fractional Laplacian by the Monte Carlo method while in GRBNF we introduce an auxiliary model
to represent the approximate solution with Gaussian radial basis functions such that we may take advantage of the fact
that the fractional Laplacian of a Gaussian is known explicitly. As for the time-dependent fractional FPEs, temporal
KRnet is considered as in [11], see Section 4 for the definition of MCTNF.

3

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

Notations methods

GRBFNF Normalizing flow + Gaussian radial basis function

MCNF Normalizing flow + Monte Carlo sampling

MCTNF Temporal normalizing flow + Monte Carlo sampling

Table 1: NF indicates how to obtain a solution model. GRBF and MC indicate how to deal with the fractional Laplacian
operator.

3.1.1 MCNF

Assume that the unknown PDF p(x) is modeled by KRnet as pKRnet,θ which will be specified in Section 3.2. We
adopt the idea of physics-informed neural network to deal with equation (2.8), where the overall residuals of equation
(2.8) on some prescribed collocation points in the computation domain will be minimized. For the given training data
S = {xi}NSi=1, we define the following loss function,

L(pKRnet,θ) :=
1

NS

NS∑
i=1

|Rθ(xi)|2, (3.1)

where Rθ(x) is the residual
Rθ(x) := (L − (−∆)α/2)pKRnet,θ(x). (3.2)

The optimal parameters θ∗ is given by the following optimization problem
θ∗ = arg min

θ
L(pKRnet,θ). (3.3)

The stochastic approximation proposed in [15] is used to compute the fractional Laplacian of pKRnet,θ, which will be
specify in Section 3.3. Another key component of our approach is the adaptive improvement of pKRnet,θ (see Section
3.5), where the training set S is updated by samples from the current optimal model pKRnet,θ∗ that will be subsequently
improved by the new training set. When the convergence is reached, we expect that the samples in S are distributed in
terms of the exact solution p(x).

3.1.2 GRBFNF

We rewrite equation (2.8) as {
LpKRnet,θ(x) = (−∆)α/2pGRBF,θ̃(x),

pKRnet,θ(x) = pGRBF,θ̃(x),
(3.4)

where pKRnet,θ(x) is the same as the model used for MCNF and pGRBF,θ̃(x) is an auxiliary model for p(x) (see Section
3.4). In other words,

p(x) ≈ pKRnetθ(x), p(x) ≈ pGRBF,θ̃(x).

For a set S = {xi}NSi=1 of collocations points on the computation domain, we consider the following optimization
problem:

(θ∗, θ̃∗) = arg min
θ,θ̃

L̃(pKRnet,θ, pGRBF,θ̃), (3.5)

where the tuple (θ∗, θ̃∗) is the minimizer of the loss function defined as

L̃(pKRnet,θ, pGRBF,θ̃) =
1

NS

NS∑
i=1

(
LpKRnet,θ(xi)− (−∆)α/2pGRBF,θ̃(xi)

)2

+
βm
NS

NS∑
i=1

(
pKRnet,θ(xi)− pGRBF,θ̃(xi)

)2

,

(3.6)

with 0 < βm < ∞ being a penalty parameter. The main difference of GRBFNF from MCNF is the introduction of
the auxiliary model pGRBF,θ̃(x), which will be mainly used to simplify the computation of the fractional Laplacian.
More specifically, pGRBF,θ̃(x) is a linear combination of the Gaussian radial basis functions with centers x̃i ∈ Scenter,
which corresponds to a neural network with one hidden layer. The fractional Laplacian of pGRBF,θ̃(x) can be computed
efficiently because the fractional Laplacian of a standard Gaussian is known analytically.

4

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

3.2 The density model pKRnet,θ

The constraints specified in equations (2.6) and (2.7) on p(x) bring essential difficulties to mesh-based numerical
schemes for the approximation of the fractional FPEs. To this end, we employ KRnet, a certain type of normalizing
flow, to build an effective approximator for FPEs [11, 33].

Normalizing flows seek an invertible mapping that corresponds to a transport map between a specified distribution
and an arbitrary one. Let Z ∈ Rd be a simple reference random variable with a known PDF pZ , e.g., Gaussian. Let
f : x → z be an invertible mapping defined by a normalizing flow. Then the PDF of X = f−1(Z) is given by the
change of variables, i.e.,

pX(x) = pZ(f(x))

∣∣∣∣det∇xf(x)

∣∣∣∣, (3.7)

where ∇xf(x) is the Jacobian matrix. Given observations ofX, the unknown invertible mapping can be learned via
the maximum likelihood estimations.

To construct a complex bijection f , a general idea is to stack a sequence of simple bijections, each of which is a shallow
neural network, in other words, the overall mapping is a deep neural network. Namely, the mapping f(·) can be written
in a composite form:

z = f(x) = f[L] ◦ f[L−1] ◦ · · · ◦ f[1](x). (3.8)
Its inverse and Jacobian determinants are given as

x = f−1(z) = f−1
[1] ◦ · · · ◦ f

−1
[L−1] ◦ f

−1
[L] (z), (3.9)

|det∇xf(·)| =
L∏
i=1

|det∇x[i−1]
f[i](·)|, (3.10)

where x[i−1] indicates the immediate variables with x[0] = x,x[L] = z. Many variants of f have been proposed to
enhance the expressive power and alleviate the computational cost of Jacobian determinants at the same time [20, 6, 7].
Among them, a successful example is KRnet [7]. We here employ a simplified KRnet, which includes affine coupling
layers with an invertible block-triangle structure and actnorm layers.

3.2.1 Actnorm layer: scale and bias layer

We adopt the Actnorm layer LActn,[i] with data dependent initialization proposed by Kingma and Dhariwal [20]:

y[i] = ai � x[i] + bi, (3.11)

where ai and bi are trainable parameters. When data are available, the parameters bi and ai can be initialized by the
statistical mean and standard deviation respectively from data. Otherwise, we may simply initialize bi and ai as bi = 0
and ai = 1d, where 1d denotes a d-dimensional vector whose components are all 1. After initialization, the scale and
bias are treated as regular trainable parameters that are independent of the data. The inverse can be easily obtained via

x[i] = (y[i] − bi)/ai, (3.12)

where the division here is operated on each corresponding component.

3.2.2 Affine coupling layer

Let x[i] = (x[i],1,x[i],2) be a partition with x[i],1 ∈ Rm and x[i],2 ∈ Rd−m. An affine coupling layer LAff,[i](·) is
defined as

x[i],1 = x[i−1],1,

x[i],2 = x[i−1],2 �
(
1d−m + β tanh(si(x[i−1],1))

)
+ eζi � tanh(qi(x[i−1],1)),

(3.13)

where |β| < 1 is a user-specified parameter (a commonly used choice is β = 0.6), si, qi : Rm → Rd−m are scaling
and translation depending only on x[i−1],1, and ζi ∈ Rd−m is a trainable variable. Notice that the inverse can be easily
computed via:

x[i−1],1 = x[i],1,

x[i−1],2 = (x[i],2 − eζi � tanh(qi(x[i],1)))�
(
1d−m + β tanh(si(x[i],1))

)−1
.

(3.14)

The Jacobian of x[i](·) is given by

∇x[i−1]
x[i](·) =

[
I 0

∇x[i−1],1
x[i],2 diag(1d−m + α tanh(si(x[i−1],1)))

]
. (3.15)

5

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

Furthermore, we can model si, bi via neural networks

(si, qi) = NN[i](x[i−1],1). (3.16)

Note that LAff,[i](·) only changes x[i−1],2, implying that in the next affine coupling layer we should exchange the
positions of x[i],1 and x[i],2 to ensure that each component of x[i] will be updated.

Based on the actnorm layer and affine coupling layer, our simplified KRnet can be represented by

z = fKRnet(x) = f[L] ◦ f[L−1] ◦ · · · ◦ f[1](x), (3.17)

f[i] = LAff,[i] ◦ LActn,[i], i = 1, . . . , L, (3.18)

where LAff,[i] is an affine coupling layer defined by (3.13) and LActn,[i] is an Actnorm layer defined by (3.11).

3.3 Stochastic approximation of the fractional operators

To compute the fractional Laplacian of the pKRnet,θ(x) with α ∈ (0, 2), we apply the stochastic approximation proposed
in [15].
Lemma 3.1. [15] Given a function u, its fractional Laplacian can be decomposed over a neighborhood Br0(x) =
{y | |y − x|2 ≤ r0} around x and its complement as

(−∆)α/2u(x) = Cd,α

(ˆ
y∈Br0 (x)

u(x)− u(y)

|x− y|d+α
2

dy +

ˆ
y/∈Br0 (x)

u(x)− u(y)

|x− y|d+α
2

dy

)
. (3.19)

which, if exists, takes the form

(−∆)
α/2

u(x) = Cd,α

∣∣Sd−1
∣∣ r2−α

0

2 (2− α)
Eξ∼U(Sd−1),r1∼fI(r)

[
2u(x)− u(x− r1ξ)− u(x+ r1ξ)

r2
1

]
+ Cd,α

∣∣Sd−1
∣∣ r−α0

2α
Eη∼U(Sd−1),r2∼fO(r)

[
2u(x)− u(x− r2η)− u(x+ r2η)

]
.

(3.20)

where ξ and η are uniformly distributed on the the unit (d− 1)-sphere Sd−1, |Sd−1| denotes the surface area of Sd−1,

fI(r) =
2− α
r2−α
0

r1−α · 1r∈[0,r0], fO(r) = αrα0 r
−1−α1r∈[r0,∞),

1Ω is a characteristic function and r1 and r2 can be sampled as

r1/r0 ∼ Beta(2− α, 1), r0/r2 ∼ Beta(α, 1). (3.21)

Notice that the first expectation in equation (3.20) may suffer the round-off error and give rise to numerical instability
for an extremely small r. Therefore, the following approximation is considered in practice

Eξ∼U(Sd−1),r1∼fI(r)

[
2u(x)− u(x− r1ξ)− u(x+ r1ξ)

r2
1

]
≈ Eξ∼U(Sd−1),r1∼fI(r)

[
2u(x)− u(x− rεξ)− u(x+ rεξ)

r2
ε

]
,

(3.22)
with rε = max{ε, r1}, where ε > 0 is a small positive number.

Combining the stochastic approximation for the fractional Laplacian operator and the physics-informed neural network
(3.1), along with the automatic differentiation for the integer-order derivative, we obtain the finial approximation for
L(pKRnet,θ) as follows

L(pKRnet,θ) ≈L̂(pKRnet,θ; rε, r0)

=
1

NS

NS∑
i=1

∣∣∣∣−∇ · (µpKRnet,θ)(xi) +
1

2
∇ · ∇ · (σσTpKRnet,θ)(xi)

− Cd,α

∣∣Sd−1
∣∣ r2−α

0

2 (2− α)
Eξ∼U(Sd−1),r1∼fI(r)

[
2pKRnet,θ(xi)− pKRnet,θ(xi − rεξ)− pKRnet,θ(xi + rεξ)

r2
ε

]

− Cd,α

∣∣Sd−1
∣∣ r−α0

2α
Eη∼U(Sd−1),r2∼fO(r)

[
2pKRnet,θ(xi)− pKRnet,θ(xi − r2η)− pKRnet,θ(xi + r2η)

]∣∣∣∣∣
2

.

(3.23)

6

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

In Lemma 3.1 we need samples from Beta distributions Beta(2− α, 1) and Beta(α, 1). It is well known that Beta(a, 1)
becomes concentrated on origin as a goes to zero, see Fig. 1. Thus when α increases, the samples of r1 in equation
(3.22) may concentrate on the area close to zero, which indicates a bigger rε is needed to guarantee numerical stability.

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5 B(0.5,1)
B(1.5,1)

(a) α = 1.5

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

7

8 B(0.2,1)
B(1.8,1)

(b) α = 1.8

Figure 1: Beta distribution

3.4 The auxiliary density model pGRBF,θ̃

The definition of the auxiliary density model pGRBF,θ̃ is based on the following lemma [3]:

Lemma 3.2. Let u be a Gaussian function of the form u(x) = exp(−σ−2|x − x0|22) for x,x0 ∈ Rd. Then the
fractional Laplacian of u is analytically given as

(−∆)
α
2 u(x) = cα,d|σ|−α1F1

(
d+ α

2
;
d

2
;−σ−2|x− x0|22

)
for x ∈ Rd, α ≥ 0, (3.24)

where 1F1 denotes the confluent hypergeometric function, and

cα,d =
2αΓ

(
d+α

2

)
Γ
(
d
2

) .

For a set Scenter = {x̃i}Mi=1, we let

pGRBF,θ̃(x) =

M∑
i=1

wiN (x̃i, σ
2
i I)(x), (3.25)

where 0 ≤ ωi ≤ 1 such that
∑M
i=1 ωi = 1, σi is the bandwidth at x̃i, and N denotes the Normal distribution,

N (x̃i, σ
2
i I)(x) = (2π)−d/2σ−di exp

(
−|x− x̃i|

2
2

2σ2
i

)
. (3.26)

Here both ωi and σi can be trainable parameters, which are included in θ̃. Using Lemma 3.2, we obtain that

(−∆)α/2pGRBF,θ̃(x) =

M∑
i=1

wi(−∆)α/2N (x̃i, σ
2
i I)(x)

= cα,dπ
−d/22−

d+α
2

M∑
i=1

wi|σi|−(d+α)
1F1

(
d+ α

2
;
d

2
;−|x− x̃i|

2
2

2σi2

)
.

(3.27)

7

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

Consequently, the loss function (3.6) can be rewrite by

L̃(pKRnet,θ, pGRBF,θ̃) =
1

N

N∑
i=1

LpKRnet,θ(xi)− cα,dπ−
d
2 2−

d+α
2

M∑
j=1

wj |σj |−(d+α)
1F1

(
d+ α

2
;
d

2
;−|x

i − x̃j |22
2σj2

)2

+
βm
N

N∑
i=1

pKRnet,θ(xi)−
M∑
j=1

wj(−∆)α/2N (x̃j , σ
2
j I)(x

i)

2

,

(3.28)

where the integer-order derivatives in operator L can be conducted via automatic differentiation.

It is seen that the factional Laplacian of pGRBF,θ̃ is determined by the confluent hypergeometric function 1F1(·). If we
allow σi to be a trainable parameter, we need the derivative of 1F1 which is

d

dx
1F1

(
d+ α

2
;
d

2
;x

)
=
d+ α

d
1F1

(
d+ α

2
+ 1;

d

2
+ 1;x

)
. (3.29)

In general it is computationally expensive to evaluate the confluent hypergeometric function. Fortunately, only the
one-dimensional hypergeometric function is needed. We then use piecewise Chebyshev polynomials to approximate the
one-dimensional confluent hypergeometric function up to a desired accuracy, which can be done once for all at the
preprocessing stage.

3.5 An adaptive strategy for the training process

3.5.1 Where do we need adaptivity

We pay particular attention to two components of the algorithm that are closely related to adaptivity: one is the training
set S and the other one is the auxiliary model pGRBF,θ̃. In MCNF, we only consider adaptivity for the training set S
while in GRBFNF we address the adaptivity for both S and the model pGRBF,θ̃.

If the modeling capability of pKRnet,θ is sufficient, the training set S determines the accuracy of pKRnet,θ∗ because it
defines the loss function for both MCNF and GRBFNF. For a fixed domain, the collocation points in S are often
sampled from a uniform distribution, which is obviously not optimal especially for a high-dimensional problem. Note
that without any prior knowledge it is not straightforward to define a properly truncated domain to generate samples for
S. For S with uniform samples, the loss function (3.1) of MCNF can be regarded as a Monte Carlo approximation of
the L2 norm of the residual in terms of a Lebesgue measure on the computation domain. The accuracy of such a Monte
Carlo approximation depends on the number of samples and the variance of residual Rθ(x). One way to reduce the
variance is to choose collocation points in terms of another measure instead of the Lebesgue measure such that the
residual Rθ(x) is more uniform in terms of x. For example, the loss function (3.1) can be regarded as

L(pKRnet,θ) :=
1

NS

NS∑
i=1

|Rθ(xi)|2 ≈
ˆ
Rd
R2
θ(x)ρ(x)dx, (3.30)

where xi are samples from a PDF ρ(x) with ρ(x) > 0 for any x ∈ Rd. A straightforward choice for the PDF ρ(x) is
the solution p(x) because the residual is large more likely in the region of high probability density. If more samples are
selected in the region of high density and less samples in the region of low density, the residual Rθ(x) would be more
evenly distributed such that the Monte Carlo approximation of the integral of R2

θ(x) in equation (3.30) would have a
smaller statistical error. By minimizing a better approximation of the integral of R2

θ(x), a better θ∗ would be obtained.
Since p(x) is unknown, we may sample its approximation pKRnet,θ∗ to form a new training set S. This suggests an
adaptive solver for pKRnet,θ, where we update S and pKRnet,θ∗ alternately.

The auxiliary model pGRBF,θ̃ as an alternative representation of pKRnet,θ can be regarded as a kernel density estimator
(KDE) since pKRnet,θ is a PDF. Given a set of samples {xi}, a general adaptive multivariate KDE takes the form [34],

p̂(x) =
1

N

N∑
i=1

KHi
(x− xi), (3.31)

where Hi is the bandwidth matrix and KHi
= |Hi|−1K(H−1

i x) rescales a kernel function K(x). Due to Lemma
3.2, we choose K(x) as a standard multivariate Gaussian and Hi = hiI with hi being the bandwidth shared by all

8

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

dimensions. An optimal bandwidth can be estimated either analytically or statistically. The main difference between
pGRBF,θ̃ and a kernel density estimator is that the points in Scenter may not be samples from the probability density
function to be approximated. This is why pGRBF,θ̃ in equation (3.25) has variable coefficients wi while the KDE in
equation (3.31) has a constant coefficient 1

N . Since pGRBF,θ̃∗ ≈ pKRnet,θ∗ , we expect that Scenter has a data distribution
that is consistent with pKRnet,θ∗ . When pKRnet,θ∗ is updated adaptively, the set Scenter should be updated accordingly for
a more effective representation of pGRBF,θ̃∗ . As N →∞, the KDE is simply the Monte Carlo simulation. However, for
a GRBF approximation with a relatively small number of basis functions, varying wi rather than the constant 1

N yield a
better performance. Once a new Scenter is specified, a straightforward idea to update the parameters of GRBFs is to
project pKRnet,θ∗ onto the new space spanned by the Gaussian radial basis functions with updated centers.

3.5.2 Adaptivity of MCNF

We propose the following adaptive sampling strategy to update the training set S. The initial collocation points in
S are drawn from a uniform distribution in an area determined by our prior knowledge of p(x). Then we solve the
optimization problem (3.24) via the Adam optimizer to obtain optimal θ∗, which corresponds to a NF mapping fθ∗,0
and a PDF pKRnet,θ∗,0(x). We subsequently update S using samples from pKRnet,θ∗,0(x). To be precise, we sample the
latent Gaussian random variable Z, and use the samples ofX =

(
fθ∗,0

)−1
(Z) to form the new training set S1. With

S1, we start a new round of training to update pKRnet,θ∗,0(x). We repeat this procedure until the maximum iteration
number is reached. Such a strategy can be concluded as follows.

1. Generate an initial training set with samples uniformly distributed in Ω0 ⊂ Rd:

S0 = {xi,0}NSi=1 ⊂ Ω0, xi,0 ∼ Uniform Ω0.

2. Train the KRnet by minimizing the loss function (3.23) with training data S0 and hyper-parameter rε, r0 to
obtain θ∗,0.

θ∗,0 = arg min
θ
L̂(pKRnet,θ; rε, r0).

3. Generate samples from pKRnet,θ∗,0(·) to get a new training set S1 = {xi,1}NSi=1, and set S0 = S1. Notice that
xi,1 can be obtained by transforming the prior Gaussian samples via the inverse temporal normalizing flow,

zi,1 ∼ N (0, I), xi,1 =
(
fθ∗,0

)−1
(zi,1).

4. Repeat steps 2-3 for Nadaptive times to get a convergent approximation.

The algorithm for MCNF is given in Algorithm 1 and the flow chart is given in figure 2. Mini batches are used
to accelerate the training process. Since the initial training points are uniformly distributed, we only expect that
pKRnet,θ∗,0(x) could capture the main behavior of the exact solution p(x), which implies that a relatively small number
of epochs is enough. As the convergence is being established by the adaptive procedure, we expect that pKRnet,θ∗,i(x)
could capture more details of p(x) as the iteration number i increases, which implies that the number of epochs may
increase accordingly. We introduce a hyper-parameter γ in Algorithm 1 to represent the growth rate of epoch number
for each adaptivity iteration.

Figure 2: Flow chart of MCNF.

9

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

Algorithm 1 MCNF
Input: maximum epoch number Ne, maximum iteration number Nadaptive, fractional order α, hyper-parameter
rε, r0, γ, initial training data S = {xi}NSi=1, tolerance ε1, ε2;
Lold = 0;
for k = 1, · · · , Nadaptive do

for j = 1, · · · , Ne do
Divide S into m batch {Sib}mib=1 randomly;
for ib = 1, · · · ,m do

Compute the loss function (3.23) L̂ib(pKRnet,θ; rε, r0) for mini-batch data Sib and order α;
Update θ by using the Adam optimizer;

Lnew = 1
m

∑m
ib=1 L̂

ib(pKRnet,θ; rε, r0);
if Lnew < ε1 or |Lold − Lnew| < ε2 then

Break;
else

Lold = Lnew;
Ne = γ ∗Ne;
Sample from pKRnet,θ(·) and update training set S;

Output: The predicted solution pKRnet,θ(x).

3.5.3 Adaptivity of GRBFNF

Compared to MCNF, we need to address the adaptivity for both S and the auxiliary model pGRBF,θ̃. The training
set S follows the same adaptive procedure as in the MCNF. We here focus on the adaptivity for the auxiliary model.
Depending on the prior knowledge, the initial center set Scenter will be formed by uniform samples in a certain area.
After pKRnet,θ∗,0 is obtained, Scenter will be updated by samples from pKRnet,θ∗,0 . To continue the training process with
the updated S and Scenter, we need to reinitialize the weights {wi} and the bandwidths {σi} for GRBFs of the auxiliary
model, which will be done by solving a least-square problem.

Reinitialization of the GRBFs. Once pKRnet,θ∗,k is obtained for the k-th adaptivity iteration, we sample it to update
the training set from Sk to Sk+1 and GBRF centers from Scenter,k to Scenter,k+1. The new auxiliary model is defined as

pGRBF,θ̃k+1(x) =

M∑
i=1

wiN(x̃k+1
i , σ2

i Id)(x), x̃k+1
i ∈ Scenter,k+1. (3.32)

and initialized as

{wnew,i, σnew,i}Mi=1 = arg min
wi,σi

Loss = arg min
wi,σi

1

NSk+1

NSk+1∑
j=1

(pGRBF,θ̃k+1(xj)− pKRnet,θ∗,k(xj))2, (3.33)

where the Adam optimizer is used to solve the above optimization problem. After initialization both the weights {wi}
and the bandwidths {σi} are trainable.

Such a strategy can be concluded as follows.

1. Generate initial training sets S and Scenter with samples uniformly distributed in a certain physical domain:

S0 = {xi,0}NSi=1 ⊂ Ω0, xi,0 ∼ Uniform Ω0,

Scenter,0 = {x̃0
i }Mi=1 ⊂ Ω0, x̃0

i ∼ Uniform Ω0.

2. Train the KRnet by minimizing the loss function (3.23) with training data S0 to obtain θ∗,0 and θ̃∗,0, i.e.,

{θ∗,0, θ̃∗,0} = arg min
θ,θ̃

L̃(pKRnet,θ, pGRBF,θ̃).

3. Generate samples with pKRnet,θ∗,0 to get a new training set S1 = {xi,1}Nri=1, and center set Scenter,1 = {x̃1
i }.

Notice that xi,1 and x̃1
j can be obtained by transforming the prior Gaussian samples via the inverse temporal

normalizing flow.

zi,1 ∼ N (0, I), xi,1 =
(
fθ∗,0

)−1
(zi,1),

z̃1
j ∼ N (0, I), x̃1

j =
(
fθ∗,0

)−1
(z̃1
j).

10

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

4. Project pKRnet,θ∗,0 onto the new GRBF space by solving problem (3.33). Set S0 = S1, Scenter,0 = Scenter,1.

5. Repeat steps 2-3 for Nadaptive times to get a convergent approximation.

The algorithm for GRBFNF is summarized in Algorithm 2 and a flow chart is given in figure 3.

Algorithm 2 GRBFNF
Input: maximum epoch number Ne, maximum iteration number Nadaptive, fractional order α, hyper parameter γ,
initial training data S = {xi}Ni=1, center set Scenter = {x̃i}Mi=1, tolerance ε1, ε2;
Lold = 0;
for k = 1, · · · , Nadaptive do

for j = 1, · · · , Ne do
Divide S into m batch {Sib}mib=1 randomly;
for ib = 1, · · · ,m do

Compute the loss function (3.28) L̃ib(pKRnet,θ, pGRBF,θ̃) for mini-batch data Sib and fractional order α;
Update θ, θ̃ by using the Adam optimizer;

Lnew = 1
m

∑m
ib=1 L̃

ib(pKRnet,θ, pGRBF,θ̃);

if Lnew < ε1 or |Lold − Lnew| < ε2 then
Break;

else
Lold = Lnew;

Ne = γ ∗Ne;
Sample from pKRnet,θ(·) and update training set S, Scenter;
Update pGRBF,θ̃ by solving optimization problem (3.33).

Output: The predicted solution pKRnet,θ(x).

Figure 3: Flow chart of GRBFNF.

4 MCTNF for time-dependent fractional FPEs

The procedure is overall similar to the stationary case if we can address the time-dependent problems on a space-time
domain. Considering that the update of GRBF centers cannot be straightforwardly generalized to the space-time domain,
we only generalize MCNF for time-dependent FPEs in this work.

Given training sets St = {(xi, ti)}Nti=1 and Sic = {(xiic, p0(xiic))}
Nic
i=1 with (x, t) ∈ Rd× [0, T], we define the following

loss function

LT (pKRnet,θ(x, t)) :=
1

Nt

Nt∑
i=1

∣∣Rθ(xi, ti)
∣∣2 +

βD
Nic

Nic∑
i=1

∣∣pKRnet,θ(xiic, 0)− p0(xiic)
∣∣2, (4.1)

11

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

where p0(·) is an initial distribution, βD is a weight parameter to balance the governing equation loss and the initial
condition loss, and the residual Rθ(x, t) is defined as

Rθ(x, t) := (∂t − L+ (−∆)α/2)pKRnet,θ(x, t). (4.2)

The optimal parameter θ∗ can be obtained via solving the following optimization problem

θ∗ = arg min
θ

LT (pKRnet,θ). (4.3)

Note that pKRnet,θ(x, t) depends on both x and t, meaning that the corresponding KRnet is a time-independent
normalizing flow.

4.1 Time-dependent density model

The time-dependent PDF pKRnet,θ(x, t) can be regarded as a conditional PDF pKRnet,θ(x|t), which can be achieved
by making the affine coupling layer time dependent. Let x[i] = (x[i],1,x[i],2) be a partition with x[i],1 ∈ Rm and
x[i],2 ∈ Rd−m. We define a time-dependent coupling layer TAff,[i](·, t) as follows:

x[i],1 = x[i−1],1,

x[i],2 = x[i−1],2 �
(
1d−m + β tanh(si,t(x[i−1],1, t))

)
+ eζi � tanh(qi,t(x[i−1],1, t)),

(4.4)

where the only difference from the affine coupling layer defined in Section 3.2.2 is that si,t and qi,t include t as their
inputs such that

(si,t, qi,t) = NN[i],t(x[i−1],1, t). (4.5)

Based on the Actnorm layer and time-dependent affine coupling layer, our simplified time-dependent KRnet can be
represented by

z = fKRnet,θ(x, t) = f[L] ◦ f[L−1] ◦ · · · ◦ f[1](x, t), (4.6)

f[i] = TAff,[i] ◦ LActn,[i], i = 1, . . . , L, (4.7)

where TAff,[i] is an time-dependent affine coupling layer defined by equation (4.4) and LActn,[i] is an Actnorm layer
defined by equation (3.11). For any t, we obtain an explicit condition PDF from equation (4.6)

pKRnet,θ(x, t) = pKRnet,θ(x|t) = pZ(fKRnet,θ(x, t)) |∇xfKRnet,θ(x, t)| . (4.8)

Also note that for any t, (−∆)α/2pKRnet,θ(x, t) can be approximated using the same procedure given in Section 3.3.

One commonly used strategy to enhance the effectiveness and robustness of the algorithm is to integrate some physical
constraints explicitly into the algorithm. We here propose a simple modification for the affine coupling layer such that
pKRnet,θ(x, t) may satisfy the initial condition exactly without introducing a penalty term in the loss function.

Modified affine coupling layer. To include the initial condition, we consider a modified affine coupling layer
TAff′,[i](·, t) as follows

x[i],1 = x[i−1],1,

x[i],2 = x[i−1],2 �
(
1d−m + β tanh(tsi,t(x[i−1],1, t))

)
+ eζi � tanh(tqi,t(x[i−1],1, t)).

where si,t, qi,t are modeled by neural network (4.5) and the only modification is the scaling of si,t and qi,t with time t.
Therefore TAff′,[i] is an identity when t = 0. Replacing f[i] with TAff′,[i] in equations (4.6) and (4.8) we obtain at t = 0,

z = fKRnet,θ(x, 0) = x or pKRnet,θ(x, 0) = pZ(x). (4.9)

If we choose the prior pZ(z) the same as the initial distribution p0(z), the initial condition is satisfied exactly.

4.2 Adaptive procedure of MCTNF

We initialize St,0 = {(xi,0, ti,0)} using uniform samples from a space-time domain Ω0 × [0, T], where the volume Ω0

is finite, and specify Sic,0 = {(xi,0ic , p0(xi,0ic))}. Then we solve the optimization problem (4.3) to obtain optimal θ∗,0.
After that we update training points St,0 and Sic,0 from pKRnet,θ∗,0(x, t). To be precise, we sample temporal points
{ti,1} from a uniform distribution on (0, T]. For each ti,1, we sample a latent normal random variable Z to obtain a
sample xi,1 of X = f−1

KRnet,θ∗,0(Z, ti,1). We then form St,1 = {(xi,1, ti,1)}. Sic,1 = {xi,1ic } can be obtained via the

same procedure by letting t = 0, i.e. xi,1ic = f−1
KRnet,θ∗,0(zi, 0). We then continue the training process with St,1 and

Sic,1. The procedure is repeated after the second training is done. Such a strategy can be concluded as follows.

12

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

1. Generate initial training sets using uniform samples on Ω0 × (0, T] where Ω0 ∈ Rd and |Ω0| <∞:

St,0 = {(xi,0, ti,0)}Nti=1, ti,0 ∼ Uniform(0, T], xi,0 ∼ Uniform Ω0,

Sic,0 = {(xi,0ic , p0(xi,0ic))}, xi,0ic ∼ Uniform Ω0.

2. Train the temporal KRnet by solving optimization problem (4.3) with training data St,0, Sic,0 to obtain optimal
parameters θ∗,0:

θ∗,0 = arg min
θ

LT (pKRnet,θ(x, t)).

3. Generate temporal samples from a uniform distribution on (0, T] and spatial samples from pKRnet,θ∗,0(x|t) to
obtain St,1, Sic,1.

St,1 = {(xi,1, ti,1)}Nti=1, ti,1 ∼ Uniform(0, T], xi,1 ∼ pKRnet,θ∗,0(x|t = ti,1),

Sic,1 = {(xi,1ic , p0(xi,1ic))}, xi,1ic ∼ pKRnet,θ∗,0(x|t = 0).

Set St,0 = St,1, Sic,0 = Sic,1.
4. Repeat steps 2-3 for Nadaptive times to get a convergent approximation.

Our algorithm for solving time-dependent fractional FPEs is given in Algorithm 3.

Algorithm 3 MCTNF
Input: maximum epoch number Ne, maximum iteration number Nadaptive, fractional order α, hyper-parameter
rε, r0, βD, initial training data St = {(xi, ti)}Nti=1, Sic = {(xiic, p0(xiic))}Nic

i=1, CT = {tir}
Nr
i=1 ∪ {0}

Nic
i=1, tolerance

ε1, ε2;
Lold = 0;
for k = 1, · · · , Nadaptive do

for j = 1, · · · , Ne do
Divide St, Sic into m batches {Sib

t }mib=1, {Sib
ic}mib=1 randomly;

for ib = 1, · · · ,m do
Compute the loss function LT (pKRnet,θ) for mini-batch data Sib

t , S
ic
ic and fractional order α;

Update θt by using the Adam optimizer;

Lnew = 1
m

m∑
ib=1

LT (pKRnet,θ);

if Lnew < ε1 or |Lold − Lnew| < ε2 then
Break;

else
Lold = Lnew;

Ne = γ ∗Ne;
Sample from t ∼ Uniform([0, T]) and pKRnet,θt(x|t) to update training sets St, Sic;

Output: The predicted solution pKRnet,θ(x, t).

5 Numerical experiments

In this section, we present a series of comprehensive numerical tests to demonstrate the effectiveness of the proposed
algorithms. To quantitatively evaluate the accuracy of the numerical solution pKRnet,θ , we shall consider both the relative
L2 error ‖p∗ − pKRnet,θ‖2/‖p∗‖2 and the relative Kullback-Leibler (KL) divergence given by

DKL(p∗||pKRnet,θ)

H(p∗)
=

Ep∗ [log(p∗/pKRnet,θ)]

−Ep∗ [log p∗]
,

where E denotes the expectation and p∗ the ground truth. We approximate the above relative L2 error by Monte Carlo
integration, namely,∥∥p∗ − pKRnet,θ

∥∥
2∥∥p∗∥∥

2

=

(´
(p∗(x)− pKRnet,θ(x))2dx

)1/2(´
(p∗(x))2dx

)1/2 ≈

(∑N
i=1(p∗(xi)− pKRnet,θ(xi))

24xi
)1/2

(∑N
i=1 p

∗(xi)24xi
)1/2

.

13

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

Similarly, we also approximate the above relative KL divergence by Monte Carlo integration, i.e.,

DKL(p∗||pKRnet,θ)

H(p∗)
≈
∑Nv
i=1

(
log(p∗(xi)− log pKRnet,θ(xi))

)
−
∑Nv
i=1 log p∗(xi)

.

Here xi are drawn from the ground truth p∗(x) and the amount of validation data is set to Nv = 106. An uniform
mesh is used to calculate the relative L2 error with mesh size 0.04 along each spatial dimension. For time-dependent
problems, we obtain the relative L2 error and the relative KL divergence according to the aforementioned formulas for
each given t.

We shall employ hyperbolic tangent function (tanh) as the activation function. For each i, NN[i] (see 3.16) is a feed
forward neural network with two hidden layers. We use a half-half partition x[i] = (x[i],1,x[i],2), x[i],1 ∈ Rbd/2c,
x[i],2 ∈ Rd−bd/2c unless specified. We initialize all trainable parameters using Glorot initialization [13]. For the
training procedure, we use the Adam optimizer [19]. All numerical tests are implemented with Pytorch.

5.1 FPE with only fractional Laplacian

We start with a toy example with only the fractional Laplacian term. Consider the following 2D equation
(−∆)α/2p(x) = f(x), x ∈ R2,ˆ

R2

p(x)dx = 1, p(x) ≥ 0,
(5.1)

where f(x) = − 1
2πB(2, α)2−

α
2 σ−(2+α)

1F1(2+α
2 ; 1;−‖x−µ‖

2
2

2σ2),B(d, α) = 2αΓ((α+d)/2)
Γ(d/2) . The true solution is p(x) =

1
2πσ2 exp(−‖x−µ‖

2
2

2σ2). We take α = 1,µ = (1, 1), σ = 2.

For the NF, we take 8 affine coupling layers with 32 hidden neurons. The initial training set is generated via the uniform
distributed points in [0, 6]2. Note that Ep[1[0,6]2] ≈ 0.5, meaning that we have only used about 50% information about
the effective domain of the targetX , where Ep indicates the expectation with respect to p(x) and 1Ω is an indicator
function for Ω ⊂ R2. The sample size is 5000 and the batch size is 1024. Both MCNF and GRBFNF are applied. For
the MCNF, the number of Monte Carlo samples used to approximate fractional Laplacian is 100, r0 = 4, rε = 0.01.
The initial learning rate is 0.001 with half decay each 100 steps. For the GRBFNF, the number of basis functions is 100
and the initial center points of basis function are generated from a uniform distribution on [0, 6]2. The learning rate is
0.01 with half decay each 300 steps.

0 500 1000 1500 2000 2500 3000
Epoch

10 7

10 6

10 5

10 4

10 3

tr
ai

ni
ng

 lo
ss

2d, = 1, MC num=100

50 100

2

3

4

5 1e 7

2000 2200 2400 2600 2800 3000
1.2

1.4

1.6

1.8 1e 7

Nadaptive = 600, Epoch=5
Nadaptive = 5, Epoch=600
Nadaptive = 10, Epoch=300
Nadaptive = 20, Epoch=150
Nadaptive = 120, Epoch=25

0 500 1000 1500 2000 2500 3000
Epoch

10 3

10 2

10 1

100

re
la

tiv
e

L 2
 e

rro
r

2d, = 1, MC num=100
Nadaptive = 600, Epoch=5
Nadaptive = 5, Epoch=600
Nadaptive = 10, Epoch=300
Nadaptive = 20, Epoch=150
Nadaptive = 120, Epoch=25

0 500 1000 1500 2000 2500 3000
Epoch

10 6

10 5

10 4

10 3

10 2

10 1

re
la

tiv
e

KL
 d

iv
er

ge
nc

e

2d, = 1, MC num=100
Nadaptive = 600, Epoch=5
Nadaptive = 5, Epoch=600
Nadaptive = 10, Epoch=300
Nadaptive = 20, Epoch=150
Nadaptive = 120, Epoch=25

(a) Different adaptive frequencies for MCNF.

0 500 1000 1500 2000 2500 3000
Epoch

10 9

10 8

10 7

10 6

10 5

10 4

10 3

tra
in

in
g

lo
ss

2d, = 1, basis num=100
Epoch=500, 1000, 1500
Nadaptive = 3, Epoch=1000
Nadaptive = 6, Epoch=300
Nadaptive = 30, Epoch=100
Nadaptive = 600, Epoch=5

0 500 1000 1500 2000 2500 3000
Epoch

10 2

10 1

100

re
la

tiv
e

L 2
 e

rr
or

2d, = 1, basis num=100

Epoch=500, 1000, 1500
Nadaptive = 3, Epoch=1000
Nadaptive = 6, Epoch=500
Nadaptive = 30, Epoch=100
Nadaptive = 600, Epoch=5

0 500 1000 1500 2000 2500 3000
Epoch

10 4

10 3

10 2

10 1

re
la

tiv
e

KL
 d

iv
er

ge
nc

e

2d, = 1, basis num=100

Epoch=500, 1000, 1500
Nadaptive = 3, Epoch=1000
Nadaptive = 6, Epoch=500
Nadaptive = 30, Epoch=100
Nadaptive = 600, Epoch=5

(b) Different adaptive frequencies for GRBFNF.

Figure 4: FPE with only fractional Laplacian. Left: Training loss. Middle: The relative L2 error. Right: The relative
KL divergence.

14

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

We first discuss the training strategy of MCNF and GRBFNF by adjusting the adaptive frequency of training. We
present the training loss, relative L2 error and relative KL divergence for different adaptive frequencies in Fig. 4. For
the MCNF method, increasing the adaptive frequency leads to better results because the MC approximation of the
fractional Laplacian is independent of the update of S. However, for the GRBFNF method, the adaptivity should not be
activated until the current models is well trained, otherwise, the loss may be stuck in the transition period induced by
the re-initialization of current models.

15 10 5 0 5 10 15 20
8

6

4

2

0

2

4

6

8

10

15 10 5 0 5 10 15 20
8

6

4

2

0

2

4

6

8

10

15 10 5 0 5 10 15 20
8

6

4

2

0

2

4

6

8

10

15 10 5 0 5 10 15 20
8

6

4

2

0

2

4

6

8

10

15 10 5 0 5 10 15 20
8

6

4

2

0

2

4

6

8

10

15 10 5 0 5 10 15 20
8

6

4

2

0

2

4

6

8

10

Figure 5: Distribution of training samples at different adaptivity iteration numbers in MCNF. From left to right and
from top to bottom, k = 1, 2, 3, 5, 30, 250.

15 10 5 0 5 10 15 20
8

6

4

2

0

2

4

6

8

10

15 10 5 0 5 10 15 20
8

6

4

2

0

2

4

6

8

10

15 10 5 0 5 10 15 20
8

6

4

2

0

2

4

6

8

10

(a) Training samples at different adaptive iterations. From left to right, k = 1, 2, 3.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
4

2

0

2

4

6

8

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
4

2

0

2

4

6

8

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
4

2

0

2

4

6

8

(b) Center points of GRBFs at different adaptive iterations.From left to right, k = 1, 2, 3.

Figure 6: Adaptivity of GRBFNF for the training set and the centers of GRBF basis functions.

Next, we focus on two experiments to investigate how adaptivity works. Specially, for the MCNF, we choose 600
adaptivity iterations with 5 epochs for each iteration. And for the GRBFNF, we choose 3 adaptivity iterations with
increasing epochs, 500 epochs in the first adaptivity iteration, 1000 epochs in the second adaptivity iteration and 2000
epochs in the last adaptivity iteration. The time cost of MCNF and GRBFNF is 64 minutes, 46 minutes respectively.

15

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

The training points as well as center points of the basis functions for different adaptivity iteration numbers are presented
in Fig. 5 and Fig. 6. One can clearly observe that the training points and center points of the basis functions become
increasingly closer to the ground truth as the iteration number increases, showing that adaptive sampling scheme is
effective.

0 500 1000 1500 2000 2500 3000
Epoch

10 7

10 6

10 5

10 4

10 3

tra
ini

ng
 lo

ss

2d, = 1

100 200

2

3 1e 7

1600 1800 2000 2200 2400 2600 2800 3000
1.2

1.3

1.4

1.5

1.6 1e 7

MCNF
MCNF without adaptivity

0 500 1000 1500 2000 2500 3000
Epoch

10 2

10 1

100

re
lat

ive
 L 2

 e
rro

r

2d, = 0.5
MCNF
MCNF without adaptivity

0 500 1000 1500 2000 2500 3000
Epoch

10 5

10 4

10 3

10 2

10 1

re
lat

ive
 K

L d
ive

rg
en

ce

2d, = 0.5
MCNF
MCNF without adaptivity

(a) MCNF, α = 1.

0 500 1000 1500 2000 2500 3000
Epoch

10 9

10 8

10 7

10 6

10 5

10 4

10 3

tra
ini

ng
 lo

ss adaptivity
adaptivity

2d, = 1
GRBFNF
GRBFNF without adaptivity

0 500 1000 1500 2000 2500 3000
Epoch

10 2

10 1

re
lat

ive
 L 2

 e
rro

r

adaptivity

adaptivity

2d, = 1
GRBFNF
GRBFNF without adaptivity

0 500 1000 1500 2000 2500 3000
Epoch

10 4

10 3

10 2

10 1

re
la

tiv
e

KL
 d

iv
er

ge
nc

e

adaptivity

adaptivity

2d, = 1
GRBFNF
GRBFNF without adaptivity

(b) GRBFNF, α = 1

Figure 7: Comparison between adaptive and non-adaptive methods. Top row: MCNF. Bottom row: GRBFNF. Left:
training loss. Middle: relative L2 error. Right: relative KL divergence.

What’s more, we compare our adaptive methods with non-adaptive methods in Fig. 7. It can be seen that, the accuracy
of adaptive algorithm is higher than that of the non-adaptive algorithm especially for GRBFNF. The computational
area of non-adaptive method is always [0, 6]2, which certainly affects the performance outside this area. That is to
say, the numerical solution can approximate the ground truth well inside predetermined area while fail to capture the
information outside this area especially when the prior knowledge is not enough to design a suitable computational
area. We drawn the ground truth in Fig. 8. The comparison between the predicted solution and the exact solution
are presented in Fig. 9, from where we can clearly observe that the non-adaptive methods show larger errors in the
area outside the computational area [0, 6]2. On the other hand, our methods update the training points adaptively,
which can effectively alleviate the limitation of a fixed computational area. Both the solutions of MCNF and GRBFNF
yield excellent agreement with the exact solution. The relative L2 error and the relative KL divergence with different
adaptivity iteration numbers are also provided in Fig.10. The relative L2 error of GRBFNF is smaller than MCNF while
the relative KL divergence of GRBFNF is larger than MCNF.

3 2 1 0 1 2 3 4 5
3

2

1

0

1

2

3

4

5
Exact

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1e 2

Figure 8: The reference solution of FFP with only the fractional Laplacian term.

16

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

3 2 1 0 1 2 3 4 5
3

2

1

0

1

2

3

4

5
Predicted

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1e 2

3 2 1 0 1 2 3 4 5
3

2

1

0

1

2

3

4

5
Absolute error

0.2

0.4

0.6

0.8

1.0

1.2
1e 4

(a) MCNF

3 2 1 0 1 2 3 4 5
3

2

1

0

1

2

3

4

5
Predicted

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1e 2

3 2 1 0 1 2 3 4 5
3

2

1

0

1

2

3

4

5
Absolute error

1

2

3

4

1e 4

(b) MCNF without adaptivity

3 2 1 0 1 2 3 4 5
3

2

1

0

1

2

3

4

5
Predicted

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1e 2

3 2 1 0 1 2 3 4 5
3

2

1

0

1

2

3

4

5
Absolute error

1

2

3

4

5

6

7

1e 5

(c) GRBFNF

3 2 1 0 1 2 3 4 5
3

2

1

0

1

2

3

4

5
Predicted

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1e 2

3 2 1 0 1 2 3 4 5
3

2

1

0

1

2

3

4

5
Absolute error

0.2

0.4

0.6

0.8

1.0

1.2
1e 2

(d) GRBFNF without adaptivity

Figure 9: Comparison between the predicted solutions and the reference solutions. Top row: numerical solution. Bottom
row: Absolute error between the numerical solution and the exact solution.

0 500 1000 1500 2000 2500 3000
Epoch

10 9

10 8

10 7

10 6

10 5

10 4

10 3

tr
ai

ni
ng

 lo
ss

2d, = 0.5
MCNF
GRBFNF

0 500 1000 1500 2000 2500 3000
Epoch

10 2

10 1

100

re
lat

ive
 L 2

 er
ro

r

2d, = 0.5
MCNF
GRBFNF

0 500 1000 1500 2000 2500 3000
Epoch

10 5

10 4

10 3

10 2

10 1

re
la

tiv
e

KL
 d

iv
er

ge
nc

e

2d, = 0.5
MCNF
GRBFNF

Figure 10: Convergence behavior of MCNF and GRBFNF. Left: training loss. Middle: relative L2 error. Right: relative
KL divergence.

Finally, we take [−3, 3]2 to replace the above initial sampling area [0, 6]2 and repeat the experiments to test the
performance of MCNF and GRBFNF for fractional FPEs with different fractional order α. The results are presented
in Fig. 11, where we also display the accuracy of Monte Carlo sampling method to compute associated fractional

Laplacian. The numerical error of approximating fractional Laplacian is defined by
∑
i |(−∆)

α
2 [p](xi)−M[p](xi)|2∑

i |(−∆)
α
2 [p](xi)|2

where

M[p] denotes numerical approximation. Both MCNF and GRBFNF arrive good agreement with the ground truth for
α = 0.5, 1, 1.5, 1.8.

5.2 Bimodal distribution

To test the performance of MCNF and GRBFNF with respect to a bimodal distribution, we consider
∇ · (g(x)p(x)) + 0.05∆p(x)− (−∆)α/2p(x) = f(x), x ∈ R2,ˆ

R2

p(x)dx = 1, p(x) ≥ 0,
(5.2)

where g(x) = 0.2x,

f(x) =
1

5π
∇·
(

exp(−2‖x−12‖22)
)
− 1

π
B(2, α)2

α
2

(
1F1

(
2 + α

2
; 1;−2‖x‖22

)
+ 1F1

(
2 + α

2
; 1;−2‖x− 12‖22

))
.

17

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

101 102 103

basis/MC num

10 6

10 5

10 4

10 3

10 2

10 1

2d, = 0.5
MC accuracy
GRBFNF, relative L2 error
GRBFNF, relative KL divergence
MCNF, relative L2 error
MCNF, relative KL divergence

101 102 103

basis/MC num

10 6

10 5

10 4

10 3

10 2

10 1

2d, = 1
MC accuracy
GRBFNF, relative L2 error
GRBFNF, relative KL divergence
MCNF, relative L2 error
MCNF, relative KL divergence

101 102 103

basis/MC num

10 5

10 4

10 3

10 2

10 1

2d, = 1.5
MC accuracy
GRBFNF, relative L2 error
GRBFNF, relative KL divergence
MCNF, relative L2 error
MCNF, relative KL divergence

101 102 103

basis/MC num

10 5

10 3

10 1

101

103

2d, = 1.8
MC accuracy
GRBFNF, relative L2 error
GRBFNF, relative KL divergence
MCNF, relative L2 error
MCNF, relative KL divergence

Figure 11: Error decay of MCNF and GRBFNF for different α in terms of the number of MC samples and GRBF basis
functions. Left: relative L2 error. Right: relative KL divergence.

The true solution is

p(x) =
1

π

(
exp

(
− 2‖x‖22

)
+ exp

(
− 2‖x− 12‖22

))
.

For the NF, we take L = 8 affine coupling layers with 32 hidden neurons. The initial training set is generated via
uniformly distributed points in [−3, 3]2. The sample size is 5000 and the batch size is set to be 1024. Both MCNF and
GRBFNF are applied. For the MCNF, the number of the samples used to approximate fractional Laplacian is 100,
r0 = 0.3, rε = 0.0001. 800 adaptivity iterations with 5 epochs for each adaptivity iteration are conducted. The initial
learning rate is 0.001 with 80% decay each 3000 steps. For the GRBFNF, the number of the basis functions is 100
and the initial center points of basis functions are generated from a uniform distribution in area [−3, 3]. 3 adaptivity
iterations with increasing epochs are conducted for this problem, i.e. 500 epochs for the first adaptivity iteration, 1000
epochs for the second adaptivity iteration, and 2500 epochs for the last adaptive iteration. The learning rate is 0.01 with
half decay every 300 steps and is reset to 0.005 after each adaptivity step.

We also apply MCNF and GRBFNF without adaptivity to solve this problem. The relative L2 error and the relative
KL divergence are provided in Fig. 12, which again verifies the strength of the adaptive methods. Although in this
example, the unknown PDF is mainly concentrated in the initial sampling area which is different from the previous
example, uniform samples used by non-adaptive methods fail to yield an accurate approximation and the adaptive
sampling may improve the results by at least one order of magnitude. The exact solution is presented in Fig. 13. The
comparison between the predicted solution and the exact solution are presented in Fig. 14. Both MCNF and GRBFNF
can approximate the exact solution well. The training loss, the relative L2 error and the relative KL divergence are
presented in Fig. 15. The GRBFNF shows better performance than MCNF in this example.

5.3 High dimensional fractional Fokker-Planck equations

In this part, we consider a high-dimensional FPE.
∇ · (g(x)p(x)) + ∆p(x)− (−∆)α/2p(x) = f(x), x ∈ Rd,ˆ

R2

p(x)dx = 1, p(x) ≥ 0.
(5.3)

18

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

0 500 1000 1500 2000 2500 3000 3500 4000
Epoch

10 4

10 3

10 2

tra
in

in
g

lo
ss

2d, = 0.5
MCNF
MCNF without adaptivity

0 500 1000 1500 2000 2500 3000 3500 4000
Epoch

10 2

10 1

re
lat

ive
 L 2

 er
ro

r

2d, = 0.5
MCNF
MCNF without adaptivity

0 500 1000 1500 2000 2500 3000 3500 4000
Epoch

10 2

10 1

re
la

tiv
e

KL
 d

iv
er

ge
nc

e

2d, = 0.5
MCNF
MCNF without adaptivity

(a) MCNF, α = 0.5.

0 500 1000 1500 2000 2500 3000 3500 4000
Epoch

10 6

10 5

10 4

10 3

10 2

tra
in

in
g

lo
ss

adaptivity

adaptivity

2d, = 0.5
GRBFNF
GRBFNF without adaptivity

0 500 1000 1500 2000 2500 3000 3500 4000
Epoch

10 2

10 1

100

re
lat

ive
 L 2

 e
rro

r
adaptivity

adaptivity

2d, = 0.5
GRBFNF
GRBFNF without adaptivity

0 500 1000 1500 2000 2500 3000 3500 4000
Epoch

10 3

10 2

10 1

100

re
la

tiv
e

KL
 d

iv
er

ge
nc

e

adaptivity

adaptivity

2d, = 0.5
GRBFNF
GRBFNF without adaptivity

(b) GRBFNF, α = 0.5

Figure 12: Convergence behavior of MCNF and GRBFNF with and without adaptive sampling. Left: training loss.
Middle: relative L2 error. Right: relative KL divergence.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Exact

0.5

1.0

1.5

2.0

2.5

3.0
1e 1

Figure 13: The ground truth of bimodal distribution.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Predicted

0.5

1.0

1.5

2.0

2.5

3.0
1e 1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Absolute error

1

2

3

4

5

1e 3

(a) MCNF

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Predicted

0.5

1.0

1.5

2.0

2.5

3.0
1e 1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Absolute error

2

4

6

8
1e 2

(b) MCNF without adaptivity

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Predicted

0.0

0.5

1.0

1.5

2.0

2.5

3.0
1e 1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Absolute error

0.5

1.0

1.5

2.0

2.5

1e 3

(c) GRBFNF

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Predicted

0.0

0.5

1.0

1.5

2.0

2.5

3.0
1e 1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Absolute error

2

4

6

8
1e 2

(d) GRBFNF without adaptivity

Figure 14: Comparison between the predicted solutions and the reference solutions. Top row: numerical solution.
Bottom row: Absolute error between the numerical solution and the exact solution.19

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

0 500 1000 1500 2000 2500 3000 3500 4000
Epoch

10 6

10 5

10 4

10 3

10 2

tra
in

in
g

lo
ss

2d, = 0.5
MCNF
GRBFNF

0 500 1000 1500 2000 2500 3000 3500 4000
Epoch

10 2

10 1

100

re
lat

ive
 L 2

 er
ro

r

2d, = 0.5
MCNF
GRBFNF

0 500 1000 1500 2000 2500 3000 3500 4000
Epoch

10 3

10 2

10 1

100

re
la

tiv
e

KL
 d

iv
er

ge
nc

e

2d, = 0.5
MCNF
GRBFNF

(a) α = 0.5

Figure 15: Convergence behavior of MCNF and GRBFNF for bimodal distribution. Left: training loss. Middle: relative
L2 error. Right: relative KL divergence. The unit of time is second.

where g(x) = x−µ
σ2 , the corresponding analytic solution is

p(x) = N (µ,Σ) =
1

(2π)d/2σd
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (5.4)

We take d = 4, 6, 8, µ = 1d and Σ = σ2Id, where Id is a d-dimensional identity matrix and σ = 2.

For high-dimensional problems, the PDF and the associated loss function may be too small, which results in numerical
underflow. For the sake of numerical stability, we magnify the solution by multiplying a large enough constant C. Thus
Cp satisfies

∂(Cp)

∂t
= L(Cp)− (−∆)α/2(Cp). (5.5)

Actually, the C used here is 1 for d = 4, 10 for d = 6 and 200 for d = 8.

4 2 0 2 4 6

4

2

0

2

4

6

Exact

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1e 3

4 2 0 2 4 6

4

2

0

2

4

6

Predicted

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1e 3

4 2 0 2 4 6

4

2

0

2

4

6

Absolute error

0.0

0.2

0.4

0.6

0.8

1.0

1e 5

Figure 16: MCNF for 4-dimensional problem, where the first two dimensions are plotted at x3 = x4 = 1. Predicted
solution versus the reference solution. Left: exact solution. Middle: prediction. Right: absolute error.

4 2 0 2 4 6

4

2

0

2

4

6

Exact

1

2

3

4

5

6
1e 5

4 2 0 2 4 6

4

2

0

2

4

6

Predicted

1

2

3

4

5

6
1e 5

4 2 0 2 4 6

4

2

0

2

4

6

Absolute error

0.2

0.4

0.6

0.8

1.0

1e 6

Figure 17: MCNF for 6-dimensional problem, where the first two dimensions are plotted at x3 = x4 = x5 = x6 = 1.
Predicted solution versus the reference solution. Left: exact solution. Middle: prediction. Right: absolute error.

For NF, we take L = 8 affine coupling layers with 64 hidden neurons. The initial training set is generated via the
uniform distributed points in [−3, 5]d. The sample size is 50000. The batch size is set to be 4096. We employ MCNF

20

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

4 2 0 2 4 6

4

2

0

2

4

6

Exact

0.5

1.0

1.5

2.0

2.51e 6

4 2 0 2 4 6

4

2

0

2

4

6

Predicted

0.5

1.0

1.5

2.0

1e 6

4 2 0 2 4 6

4

2

0

2

4

6

Absolute error

1

2

3

4

5

1e 8

Figure 18: MCNF for the 8-dimensional problem, where the first two dimensions are plotted at x3 = x4 = · · · = x8 = 1.
Predicted solution versus the reference solution. Left: exact solution. Middle: prediction. Right: absolute error.

in this problem. GRBFNF is harder to train in high dimensional case since its structure is more complex. The number
of samples used to approximate the fractional Laplacian is 200, r0 = 0.3, ε = 0.0001. We take half-half partition
here. For d = 4, 6, 100 adaptivity iterations with 20 epochs for each adaptivity iteration are conducted. The learning
rate is 0.001 with half decay each 300 steps. For d = 8, 20 adaptivity iterations with 200 epochs for each adaptivity
iteration are conducted. The learning rate is 0.001 with half decay each 1000 steps. The comparisons between the
MCNF solutions and the true solutions are presented in Fig. 16, Fig. 17, Fig. 18, which all show great performance of
our approach. We also present the relative L2 error and the relative KL divergence in Fig. 19.

0 20 40 60 80 100
Adaptivity iteration

10 6

10 5

10 4

10 3

10 2

10 1

d=4, = 1
relative KL divergence
relative L2 error

0 20 40 60 80 100
Adaptivity iteration

10 5

10 4

10 3

10 2

10 1

100

d=6, = 1
relative KL divergence
relative L2 error

3 6 9 12 15 18
Adaptivity iteration

10 5

10 4

10 3

10 2

10 1

100
d=8, = 1

relative KL divergence
relative L2 error

Figure 19: Convergence behavior of MCNF for high-dimensional FPEs. Left: d = 4. Middle: d = 6. Right: d = 8.

5.4 Time-dependent fractional FPE: Cauchy distribution

We consider the following stochastic process,
dXt = dLαt , α = 1. (5.6)

For d = 2, the corresponding fractional Fokker-Planck equation is
∂p

∂t
= −(−∆)α/2p, α = 1,

p(x, 0) = p0(x).
(5.7)

For the initial condition p0(x) = 1
2π(1+‖x‖22)3/2

, the solution of (5.7) is p(x, t) = t+1

2π
(

(t+1)2+‖x‖22
)3/2 , where x ∈ R2

and t ∈ [0, 1].

For the NF, we take L = 8 affine coupling layers with 32 hidden neurons. The initial spatial samples are drawn from a
uniform distribution in [−3, 3]2 and temporal samples are generated from a uniform distribution in [0, 1]. The sample
size is 100000 and the batch size is set to be 4096. For the MCNF, the number of samples used to approximate the
fractional Laplacian is 100, r0 = 1, rε = 0.01. 100 adaptivity iterations with 5 epochs for each adaptivity iteration are
conducted. The initial learning rate is 0.001 with half decay each 100 steps. One can observe a good agreement between
the predicted solutions and the ground truth from the Fig. 20. The relative L2 error and the relative KL divergence
against time t for different adaptive iterations are also provided in Fig.21, which indicates the efficiency of adaptivity.
We present the comparison of the relative error between the original MCTNF and modified MCTNF in Fig. 22. The
modified MCTNF indeed improve the approximation. It is worth mentioning that the numerical error seems to increase
as time evolves. We will explore this issue in the subsequent work.

21

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Exact

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1e 1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Predicted

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1e 1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Absolute error

1

2

3

4

5

1e 4

(a) t = 0

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Exact

1

2

3

4

5

6

71e 2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Predicted

1

2

3

4

5

6

71e 2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Absolute error

1

2

3

4
1e 4

(b) t = 0.5

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Exact

1.0

1.5

2.0

2.5

3.0

3.5

1e 2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Predicted

1.0

1.5

2.0

2.5

3.0

3.5

1e 2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Absolute error

1

2

3

4

1e 4

(c) t = 1

Figure 20: The predicted solutions versus the reference solutions for MCTNF at t = 0, 0.5, 1.

6 Conclusions

We have proposed flow-based adaptive algorithms for solving fractional FPEs. The core idea is to model the unknown
PDF by a normalizing flow which yields an explicit PDF model as well as the corresponding exact random samples. For
stationary FPEs, we proposed two methods: MCNF and GRBFNF. It is usually hard to choose a suitable computational
area for unbounded problems. Our methods alleviate this difficulty by adaptively updating the training points. We train
the MCNF model or GRBFNF model with current training points, and generate new training points using the current
approximate solution. Then the training sets and the solution approximation are updated alternately. For time-dependent
FPEs, we proposed MCTNF, where we modified the affine coupling layer to satisfy the initial condition exactly to
improve the accuracy. Our approaches are validated by numerical experiments for both stationary and time-dependent
FPEs. Compared to non-adaptive methods both MCNF and GRBFNF may improve the accuracy by at least one
order of magnitude. From the numerical results, GRBFNF appeals to be more suitable for low-dimensional problems
while MCNF demonstrates more flexibility for high-dimensional problems. The main difference between MCNF and
GRBFNF is how the fractional Laplacian is approximated. MCNF uses the Monte Carlo approximation while GRBFNF
relies on the GRBF approximation of the solution. GRBFNF is more effective for low-dimensional problems since the
GRBF approximation is a linear model. MCNF performs better for high-dimensional problems because of the weak
dependence of the Monte Carlo method on dimensionality. However, to further reduce the statistical error of the MC

22

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

0.0 0.2 0.4 0.6 0.8 1.0
Time

10 3

10 2

10 1

re
la

ti
ve

 L
2
 e

rr
or

2d, = 1

k=1
k=2
k=5
k=10
k=25
k=100

Figure 21: The relative L2 errors of MCTNF.

0 100 200 300 400 500
epoch

10 6

10 5

10 4

10 3

tra
in

in
g

lo
ss

2d, = 1
MCNF
MCNF and prior=p0

0.0 0.2 0.4 0.6 0.8 1.0
Time

10 4

10 3

10 2

re
la

tiv
e

L 2
 e

rr
or

2d, = 1

MCNF
MCNF and prior=p0

0.0 0.2 0.4 0.6 0.8 1.0
Time

10 6

10 5

10 4

10 3

re
lat

ive
 K

L d
ive

rg
en

ce

2d, = 1

MCNF
MCNF and prior=p0

Figure 22: Comparison between the original MCTNF and the modified MCTNF. Left: training loss. Middle: realtive
L2 error. Right panel: relative KL divergence.

approximation of the fractional Laplacian, we may consider variance reduction techniques, which will be left for future
study.

Acknowledgments

This work is supported by the National Key R&D Program of China (2020YFA0712000), the NSF of China (under
grant numbers 12288201 and 11731006), and the Strategic Priority Research Program of Chinese Academy of Sciences
(Grant No. XDA25010404). The second author is supported by NSF grant DMS-1913163.

References
[1] Nathalie Ayi, Maxime Herda, Hélène Hivert, and Isabelle Tristani. On a structure-preserving numerical method

for fractional Fokker-Planck equations. arXiv preprint arXiv:2107.13416, 2021.

[2] Steven L Brunton, Bernd R Noack, and Petros Koumoutsakos. Machine learning for fluid mechanics. Annual
Review of Fluid Mechanics, 52:477–508, 2020.

[3] John Burkardt, Yixuan Wu, and Yanzhi Zhang. A unified meshfree pseudospectral method for solving both
classical and fractional PDEs. SIAM Journal on Scientific Computing, 43(2):A1389–A1411, 2021.

[4] Xiaoli Chen, Liu Yang, Jinqiao Duan, and George Em Karniadakis. Solving inverse stochastic problems from
discrete particle observations using the Fokker–Planck equation and physics-informed neural networks. SIAM
Journal on Scientific Computing, 43(3):B811–B830, 2021.

[5] Weihua Deng. Finite element method for the space and time fractional Fokker–Planck equation. SIAM journal on
numerical analysis, 47(1):204–226, 2009.

[6] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components estimation. arXiv
preprint arXiv:1410.8516, 2014.

23

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

[7] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP. arXiv preprint
arXiv:1605.08803, 2016.

[8] Peter D Ditlevsen. Observation of α-stable noise induced millennial climate changes from an ice-core record.
Geophysical Research Letters, 26(10):1441–1444, 1999.

[9] Weinan E and Bing Yu. The deep Ritz method: A deep learning-based numerical algorithm for solving variational
problems. Communications in Mathematics and Statistics, 6(1), 2018.

[10] Michael B Elowitz, Arnold J Levine, Eric D Siggia, and Peter S Swain. Stochastic gene expression in a single cell.
Science, 297(5584):1183–1186, 2002.

[11] Xiaodong Feng, Li Zeng, and Tao Zhou. Solving time dependent Fokker-Planck equations via temporal normaliz-
ing flow. Commun. Comput. Phys., pages 401–423, 2022.

[12] Ting Gao, Jinqiao Duan, and Xiaofan Li. Fokker–Planck equations for stochastic dynamical systems with
symmetric lévy motions. Applied Mathematics and Computation, 278:1–20, 2016.

[13] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pages 249–256.
JMLR Workshop and Conference Proceedings, 2010.

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing systems, 27, 2014.

[15] Ling Guo, Hao Wu, Xiaochen Yu, and Tao Zhou. Monte Carlo fPINNs: Deep learning method for forward
and inverse problems involving high dimensional fractional partial differential equations. Computer Methods in
Applied Mechanics and Engineering, 2022.

[16] Ling Guo, Hao Wu, and Tao Zhou. Normalizing field flows: Solving forward and inverse stochastic differential
equations using physics-informed flow models. Journal of Computational Physics, 461:111202, 2022.

[17] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations using deep
learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

[18] Raban Iten, Tony Metger, Henrik Wilming, Lídia Del Rio, and Renato Renner. Discovering physical concepts
with neural networks. Physical review letters, 124(1):010508, 2020.

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[20] Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. arXiv preprint
arXiv:1807.03039, 2018.

[21] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
[22] Shu Liu, Wuchen Li, Hongyuan Zha, and Haomin Zhou. Neural parametric Fokker-Planck equations. SIAM

Journal on Numerical Analysis, 60(3):1385–1449, 2022.
[23] Xuhui Meng and George Em Karniadakis. A composite neural network that learns from multi-fidelity data:

Application to function approximation and inverse PDE problems. Journal of Computational Physics, 401:
109020, 2020.

[24] Guofei Pang, Lu Lu, and George Karniadakis. fPINNs: Fractional physics-informed neural networks. SIAM
Journal on Scientific Computing, 41:A2603–A2626, 01 2019.

[25] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshminarayanan.
Normalizing flows for probabilistic modeling and inference. Journal of Machine Learning Research, 22:1–64,
2021.

[26] Tong Qin, Zhen Chen, John D Jakeman, and Dongbin Xiu. Deep learning of parameterized equations with
applications to uncertainty quantification. International Journal for Uncertainty Quantification, 11(2), 2021.

[27] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of
Computational Physics, 378:686–707, 2019.

[28] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning velocity and
pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.

[29] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International conference
on machine learning, pages 1530–1538. PMLR, 2015.

[30] M.F. Shlesinger, G.M. Zaslavsky, and U. Frisch. Lévy Flights and Related Topics in Physics. 1995.

24

Adaptive deep density approximation for fractional Fokker-Planck equations A PREPRINT

[31] Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving partial differential
equations. Journal of computational physics, 375:1339–1364, 2018.

[32] Keju Tang, Xiaoliang Wan, and Qifeng Liao. Deep density estimation via invertible block-triangular mapping.
Theoretical and Applied Mechanics Letters, 10(3):143–148, 2020.

[33] Kejun Tang, Xiaoliang Wan, and Qifeng Liao. Adaptive deep density approximation for Fokker-Planck equations.
Journal of Computational Physics, 457:111080, 2022.

[34] George R Terrell and David W Scott. Variable kernel density estimation. The Annals of Statistics, pages
1236–1265, 1992.

[35] Yong Xu, Wanrong Zan, Wantao Jia, and Jürgen Kurths. Path integral solutions of the governing equation of SDEs
excited by Lévy white noise. Journal of Computational Physics, 394:41–55, 2019. ISSN 0021-9991.

[36] Liu Yang, Dongkun Zhang, and George Em Karniadakis. Physics-informed generative adversarial networks for
stochastic differential equations. SIAM Journal on Scientific Computing, 42(1):A292–A317, 2020.

[37] Liu Yang, Xuhui Meng, and George Em Karniadakis. B-PINNs: Bayesian physics-informed neural networks for
forward and inverse PDE problems with noisy data. Journal of Computational Physics, 425:109913, 2021.

[38] Yibo Yang and Paris Perdikaris. Adversarial uncertainty quantification in physics-informed neural networks.
Journal of Computational Physics, 394:136–152, 2019.

[39] Wanrong Zan, Yong Xu, Jürgen Kurths, Aleksei Chechkin, and Ralf Metzler. Stochastic dynamics driven by
combined Lévy-Gaussian noise: Fractional Fokker-Planck-Kolmogorov equation and solution. Journal of Physics
A: Mathematical and Theoretical, 53, 07 2020.

[40] Yaohua Zang, Gang Bao, Xiaojing Ye, and Haomin Zhou. Weak adversarial networks for high-dimensional partial
differential equations. Journal of Computational Physics, 411:109409, 2020.

[41] Hao Zhang, Yong Xu, Yongge Li, and Jürgen Kurths. Statistical solution to SDEs with α-stable Lévy noise via
deep neural network. International Journal of Dynamics and Control, 8(4):1129–1140, 2020.

[42] Hui Zhang, Xiaoyun Jiang, and Xiu Yang. A time-space spectral method for the time-space fractional
Fokker–Planck equation and its inverse problem. Applied Mathematics and Computation, 320:302–318, 2018.

[43] Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, and Weinan E. Deep potential molecular dynamics: a
scalable model with the accuracy of quantum mechanics. Physical review letters, 120(14):143001, 2018.

[44] Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-constrained deep
learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. Journal of
Computational Physics, 394:56–81, 2019.

25

	1 Introduction
	2 Problem setup
	2.1 Fractional Fokker-Planck equations

	3 MCNF and GRBFNF for stationary fractional FPE
	3.1 A bird's-eye view of proposed approaches
	3.1.1 MCNF
	3.1.2 GRBFNF

	3.2 The density model pKRnet,
	3.2.1 Actnorm layer: scale and bias layer
	3.2.2 Affine coupling layer

	3.3 Stochastic approximation of the fractional operators
	3.4 The auxiliary density model pGRBF,
	3.5 An adaptive strategy for the training process
	3.5.1 Where do we need adaptivity
	3.5.2 Adaptivity of MCNF
	3.5.3 Adaptivity of GRBFNF

	4 MCTNF for time-dependent fractional FPEs
	4.1 Time-dependent density model
	4.2 Adaptive procedure of MCTNF

	5 Numerical experiments
	5.1 FPE with only fractional Laplacian
	5.2 Bimodal distribution
	5.3 High dimensional fractional Fokker-Planck equations
	5.4 Time-dependent fractional FPE: Cauchy distribution

	6 Conclusions

