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Abstract

In this paper we consider from two different aspects the proximal alternating direction method
of multipliers (ADMM) in Hilbert spaces. We first consider the application of the proximal
ADMM to solve well-posed linearly constrained two-block separable convex minimization
problems in Hilbert spaces and obtain new and improved non-ergodic convergence rate
results, including linear and sublinear rates under certain regularity conditions. We next
consider the proximal ADMM as a regularization method for solving linear ill-posed inverse
problems in Hilbert spaces. When the data is corrupted by additive noise, we establish, under
a benchmark source condition, a convergence rate result in terms of the noise level when the
number of iterations is properly chosen.

Keywords Proximal alternating direction method of multipliers - Linearly constrained
convex programming - Linear inverse problems - Convergence rates

1 Introduction

The alternating direction method of multipliers (ADMM) was introduced and developed in
the 1970s by Glowinski and Marrocco [16] and Gabay and Mercier [15] for the numerical
solutions of partial differential equations. Due to its decomposability and superior flexibility,
ADMM and its variants have gained renewed interest in recent years and have been widely
used for solving large-scale optimization problems that arise in signal/image processing,
statistics, machine learning, inverse problems and other fields, see [5, 17, 21]. Because of
their popularity, many works have been devoted to the analysis of ADMM and its variants, see
[5, 8, 10, 14, 19, 26, 33] for instance. In this paper we will devote to deriving convergence
rates of ADMM in two aspects: its applications to solve well-posed convex optimization
problems and its use to solve linear ill-posed inverse problems as a regularization method.
In the first part of this paper we consider ADMM for solving linearly constrained two-
block separable convex minimization problems. Let X', ) and Z be real Hilbert spaces with
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possibly infinite dimensions. We consider the convex minimization problem of the form

minimize H(x,y) := f(x)+ g(y)

. (1.1)
subjectto Ax + By =,

where c € Z,A: X — Zand B : ) — Z are bounded linear operators, and f : X —
(—oo0,00] and g : YV — (—o00, o0] are proper, lower semi-continuous, convex functions.
The classical ADMM solves (1.1) approximately by constructing an iterative sequence via
alternatively minimizing the augmented Lagrangian function

P
Zp(x,y,2) = F () +80) + (b, Ax + By —¢) + ZllAx + By — cl]®

with respect to the primal variables x and y and then updating the dual variable A; more pre-
cisely, starting from an initial guess y* € ) and A° € Z, an iterative sequence {(x¥, y¥, 1K)}
is defined by

x*1 = arg min lf(x) + Ak, Ax) + B||Ax + Byk — c||2} ,
xex 2

YA = argmin {200 + (04, By) + ZiAX 4 By — el (12)
ye

)\'k-‘rl — )\k +p(Axk+1 + Byk+1 —C),

where p > 0 is a given penalty parameter. The implementation of (1.2) requires to deter-
mine x**! and y**! by solving two convex minimization problems during each iteration.
Although f and g may have special structures so that their proximal mappings are easy to be
determined, solving the minimization problems in (1.2) in general is highly nontrivial due to
the appearance of the terms || Ax |1 and || By 1. In order to avoid this implementation issue,
one may consider to add certain proximal terms to the x-subproblem and y-subproblem in
(1.2) to remove the terms || Ax || and || By||. For any bounded linear positive semi-definite
self-adjoint operator D on a real Hilbert space H, we will use the notation

lul? = (z. Du), Yu e™H.

By taking two bounded linear positive semi-definite self-adjoint operators P : X — X
and Q : YV — ), we may add the terms %Hx — xk ||%, and %Hy — yk||2Q to the x- and
y-subproblems in (1.2) respectively to obtain the following proximal alternating direction
method of multipliers ([4, 9, 19, 20, 22, 33])

2 1
Xkl = argmin § f(x) + (kk,Ax)+£ HAx+Byk—cH +f||x—xk||%o )
xeX 2 2

. 14 21 1.3
YA+ = argmin {g(y) + 04, By + 2 [ axrk By — |+ Sy - y"||2Q} C U

The advantage of (1.3) over (1.2) is that, with wise choices of P and Q, it is possible to
remove the terms ||Ax|? and ||By||2 and thus make the determination of x**! and yk"'1
much easier.

In recent years, various convergence rate results have been established for ADMM and
its variants in either ergodic or non-ergodic sense. In [19, 25] the ergodic convergence rate

o 1 _ ) 1
|H&*, 5% — Hy = 0 (%) and |[AX* 4+ By —¢c| =0 (E) (1.4)
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has been derived in terms of the objective error and the constraint error, where H, denotes
the minimum value of (1.1), k denotes the number of iterations, and

k k
1 : L1 4
W= p 2ol and =g )y
j=1 j=1

denote the ergodic iterates of {x*} and {y¥} respectively; see also [4, Theorem 15.4]. A crit-
icism on ergodic result is that it may fail to capture the feature of the sought solution of
the underlying problem because ergodic iterate has the tendency to average out the expected
property and thus destroy the feature of the solution. This is in particular undesired in spar-
sity optimization and low-rank learning. In contrast, the non-ergodic iterate tends to share
structural properties with the solution of the underlying problem. Therefore, the use of non-
ergodic iterates becomes more favorable in practice. In [20] a non-ergodic convergence rate
has been derived for the proximal ADMM (1.3) with Q = 0 and the result reads as

1
e = F IR I BGAT = YR 4 R = k2 =0 (%) ' (-

By exploiting the connection with the Douglas-Rachford splitting algorithm, the non-ergodic
convergence rate

k Lk 1 k k 1

|H(x", y*) — Hy| 0(\/];> and ||Ax" 4+ By" —c|| 0<\/l€> (1.6)
in terms of the objective error and the constraint error has been established in [8] for the
ADMM (1.2) and an example has been provided to demonstrate that the estimates in (1.6) are
sharp. However, the derivation of (1.6) in [8] relies on some unnatural technical conditions
involving the convex conjugate of f and g, see Remark 2.1. Note that the estimate (1.5)
implies the second estimate in (1.6), however it does not imply directly the first estimate in
(1.6). In Sect. 2 we will show, by a simpler argument, that similar estimate as in (1.5) can be
established for the proximal ADMM (1.3) with arbitrary positive semi-definite Q. Based on
this result and some additional properties of the method, we will further show that the non-
ergodic rate (1.6) holds for the proximal ADMM (1.3) with arbitrary positive semi-definite
P and Q. Our result does not require any technical conditions as assumed in [8].

In order to obtain faster convergence rates for the proximal ADMM (1.3), certain regularity
conditions should be imposed. In finite dimensional situation, a number of linear convergence
results have been established. In [9] some linear convergence results of the proximal ADMM
have been provided under a number of scenarios involving the strong convexity of f and/or
g, the Lipschitz continuity of V f and/or Vg, together with further full row/column rank
assumptions on A and/or B. Under a bounded metric subregularity condition, in particular
under the assumption that both f and g are convex piecewise linear-quadratic functions, a
global linear convergence rate has been established in [32] for the proximal ADMM (1.3)
with

P:=11—-pA*A >0 and Q:=1] —pB*B >0, (1.7)

where A* and B* denotes the adjoints of A and B respectively; the condition (1.7) plays an
essential role in the convergence analysis in [32]. We will derive faster convergence rates
for the proximal ADMM (1.3) in the general Hilbert space setting. To this end, we need
first to consider the weak convergence of {(xk, yk, Ak)} and demonstrate that every weak
cluster point of this sequence is a KKT point of (1.1). This may not be an issue in finite
dimensions. However, this is nontrivial in infinite dimensional spaces because extra care is
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required to dealing with weak convergence. In [6] the weak convergence of the proximal
ADMM (1.3) has been considered by transforming the method into a proximal point method
and the result there requires restrictive conditions, see [6, Lemma 3.4 and Theorem 3.1].
These restrictive conditions have been weakened later in [31] by using machinery from the
maximal monotone operator theory. We will explore the structure of the proximal ADMM
and show by an elementary argument that every weak cluster point of {(x, y¥, 1%)} is indeed
a KKT point of (1.1) without any additional conditions. We will then consider the linear
convergence of the proximal ADMM under a bounded metric subregularity condition and
obtain the linear convergence for any positive semi-definite P and Q; in particular, we obtain
the linear convergence of |H (xk, yk) — H,|and |Ax*+ B yk — c||. We also consider deriving
convergence rates under a bounded Holder metric subregularity condition which is weaker
than the bounded metric subregularity. This weaker condition holds if both f and g are semi-
algebraic functions and thus a wider range of applications can be covered. We show that,
under a bounded Holder metric subregularity condition, among other things the convergence
rates in (1.6) can be improved to

IAx* + By* —cll = 0k ) and |HE*, Y5 - H = 0(k™F)

for some number 8 > 1/2; the value of 8 depends on the properties of f and g. To further
weaken the bounded (Ho6lder) metric subregularity assumption, we introduce an iteration
based error bound condition which is an extension of the one in [27] to the general proximal
ADMM (1.3).Itis interesting to observe that this error bound condition holds under any one of
the scenarios proposed in [9]. Hence, we provide a unified analysis for deriving convergence
rates under the bounded (Ho6lder) metric subregularity or the scenarios in [9]. Furthermore,
we extend the scenarios in [9] to the general Hilbert space setting and demonstrate that some
conditions can be weakened and the convergence result can be strengthened; see Theorem
2.11.

In the second part of this paper, we consider using ADMM as a regularization method to
solve linear ill-posed inverse problems in Hilbert spaces. Linear inverse problems have a wide
range of applications, including medical imaging, geophysics, astronomy, signal processing,
and more [12, 18, 28]. We consider linear inverse problems of the form

Ax =b, xe€eC, (1.8)

where A : X — 'H is a compact linear operator between two Hilbert spaces X and H, C
is a closed convex set in X, and b € Ran(A), the range of A. In order to find a solution of
(1.8) with desired properties, a priori available information on the sought solution should
be incorporated into the problem. Assume that, under a suitable linear transform L from X
to another Hilbert spaces ) with domain dom(L), the feature of the sought solution can be
captured by a proper convex penalty function f : ) — (—00, 0o]. One may consider instead
of (1.8) the constrained optimization problem

min{ f(Lx) : Ax =b, x € C, x € dom(L)}. (1.9)

A challenging issue related to the numerical resolution of (1.9) is its ill-posedness in the
sense that the solution of (1.9) does not depend continuously on the data and thus a small
perturbation on data can lead to a large deviation on solutions. In practical applications, the
exact data b is usually unavailable, instead only a noisy data b® is at hand with

I16° — bl <8
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for some small noise level § > 0. To overcome ill-posedness, regularization methods should
be introduced to produce reasonable approximate solutions; one may refer to [7, 12, 23, 29]
for various regularization methods.

The common use of ADMM to solve (1.9) with noisy data b® first considers the variational
regularization

1
min{fHAx—b‘Sllz—l—af(Lx)}, (1.10)
xeC |2

then uses the splitting technique to rewrite (1.10) into the form (1.1), and finally applies
the ADMM procedure to produce approximate solutions. The parameter o« > 0 is the so-
called regularization parameter which should be adjusted carefully to achieve reasonable
good performance; consequently one has to run ADMM to solve (1.10) for many different
values of «, which can be time consuming.

In [21, 22] the ADMM has been considered to solve (1.9) directly to reduce the compu-
tational load. Note that (1.9) can be written as

min f(y) + tc(x)
subjectto Az=b, Lz—y =0, z—x =0, z € dom(L),

where ¢ denotes the indicator function of C. With the noisy data b® we introduce the aug-
mented Lagrangian function

L1326 Y, X, A, 1, v) 1= () +ie(x) + (A, Az — b‘s) +(u,Lz—y)+ v,z —x)
P1 52, P2 2, P3 2
+ —||Az = b°|| + =Lz — + =z — ,
2 Az I 2 Lz =yl 3 llz — x|

where p1, p2 and p3 are preassigned positive numbers. The proximal ADMM proposed in
[22] for solving (1.9) then takes the form

. 1
1l =arg  min {Zplmm (2 Y5 Ak o + Sz = Zk||2Q} ;

zedom(L)

¥ = arg min {fm,pz,m Ty, Xk 0k, vk)} ;
yey

okl argmig [fm,pz,ps(zkﬂv VL xRk vk)} , (1.11)
Xe

M Z k4o (AR — b,

W5 = b g (LR — R,

PRFL kg (kL k)
where Q is a bounded linear positive semi-definite self-adjoint operator. The method
(1.11) is not a 3-block ADMM. Note that the variables y and x are not coupled in
Lot o2.03(Z5 ¥y X, Ay i, v). Thus, y**1 and x**! can be updated simultaneously, i.e.
K+l k)

=arg min {Jpl,pzm(zk*l,y,x,Ak,uk,vk)}.

(y yeY,xeX

This demonstrates that (1.11) is a 2-block proximal ADMM.

It should be highlighted that all well-established convergence results on proximal ADMM
for well-posed optimization problems are not applicable to (1.11) directly. Note that (1.11)
uses the noisy data b°. If the convergence theory for well-posed optimization problems could
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be applicable, one would obtain a solution of the perturbed problem
min | f(Lx) : Ax =b°, x € C, x € dom(L)} (1.12)

of (1.9). Because A is compact, it is very likely that b® ¢ Ran(A*) and thus (1.12) makes
no sense as the feasible set is empty. Even if b® € Ran(A*) and (1.12) has a solution, this
solution could be far away from the solution of (1.9) because of the ill-posedness.

Therefore, if (1.11) is used to solve (1.9), better result can not be expected even if larger
number of iterations are performed. In contrast, like all other iterative regularization methods,
when (1.11) is used to solve (1.9), it shows the semi-convergence property, i.e., the iterate
becomes close to the sought solution at the beginning; however, after a critical number of
iterations, the iterate leaves the sought solution far away as the iteration proceeds. Thus,
properly terminating the iteration is important to produce acceptable approximate solutions.
One may hope to determine a stopping index ks, depending on § and/or b°, such that || x* —x ||
is as small as possible and lxk — xT| — 0as 8 — 0, where xT denotes the solution
of (1.9). This has been done in our previous work [21, 22] in which early stopping rules
have been proposed for the method (1.11) to render it into a regularization method and
numerical results have been reported to demonstrate the nice performance. However, the
work in [21, 22] does not provide convergence rates, i.e. the estimate on [x* — x| in
terms of §. Deriving convergence rates for iterative regularization methods involving general
convex regularization terms is a challenging question and only a limited number of results
are available. In order to derive a convergence rate of a regularization method for ill-posed
problems, certain source condition should be imposed on the sought solution. In Sect. 3, under
a benchmark source condition on the sought solution, we will provide a partial answer to this
question by establishing a convergence rate result for (1.11) if the iteration is terminated by
an a priori stopping rule.

We conclude this section with some notation and terminology. Let V be a real Hilbert
spaces. We use (-, -) and || - || to denote its inner product and the induced norm. We also use
“—"and “—" to denote the strong convergence and weak convergence respectively. For a
function ¢ : V — (—o00, 00] its domain is defined as dom(p) = {x € V : ¢(x) < oo}
If dom(g) # @, ¢ is called proper. For a proper convex function ¢ : V — (—o00, 00], its
modulus of convexity, denoted by o, is defined to be the largest number ¢ such that

ptx + (1L =0y +ct(1 = Dx — y|* < tox) + (1 — De(y)

for all x,y € dom(gp) and 0 < ¢ < 1. We always have o, > 0. If 0, > 0, ¢ is called
strongly convex. For a proper convex function ¢ : V — (—00, oo], we use d¢ to denote its
subdifferential, i.e.

dpx) ={EeV:p(y)=px)+ (&, y—x)forally e V}, x e V.
Let dom(d¢) := {x € V : dp(x) # A}. It is easy to see that
9(y) — () — (£, y —x) = oIy — x|

forall y € V, x € dom(d¢) and & € d¢(x) which in particular implies the monotonicity of
dp, i.e.

(E—n,x —y) > 20,llx — y|?

for all x, y € dom(d¢), & € dp(x) and n € dp(y).
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2 Proximal ADMM for Convex Optimization Problems

In this section we will consider the proximal ADMM (1.3) for solving the linearly constrained
convex minimization problem (1.1). For the convergence analysis, we will make the following
standard assumptions.

Assumption 1 X, Y and Z are real Hilbert spaces, A : X — Zand B : ) — Z are bounded
linear operators, P : X — X and Q : ) — Y are bounded linear positive semi-definite
self-adjoint operators, and f : X — (—oo,00] and g : ) — (—00, o0] are proper, lower
semi-continuous, convex functions.

Assum_ption 2 The problem (1.1) has a Karush-Kuhn-Tucker (KKT) point, i.e. there exists
(X,¥,A) € X x Y x Z such that

—A*A € df(X), —B*Aedg(y), AX+ By=c.

It should be mentioned that, to guarantee the proximal ADMM (1.3) to be well-defined,
certain additional conditions need to be imposed to ensure that the x- and y-subproblems do
have minimizers. Since the well-definedness can be easily seen in concrete applications, to
make the presentation more succinct we will not state these conditions explicitly.

By the convexity of f and g, it is easy to see that, for any KKT point (x, y, A) of (1.1),
there hold

0<f(x)—f@+ (AKX —1X), VxeX,
0<g(y)—g@+ (A Bly—7), Vyel.
Adding these two equations and using Ax 4+ By — ¢ = 0, it follows that
0<H(x,y)—HE ) + (k, Ax+ By —c), Y(x,y) € X x Y. 2.1)

This in particular implies that (x, y) is a solution of (1.1) and thus H, := H(x, y) is the
minimum value of (1.1).

Based on Assumptions 1 and 2 we will analyze the proximal ADMM (1.3). For ease of
exposition, we set @ := pB*B + Q and define

Gu = (Px, 0y, /p), Yu:=(x,y, 1) EX x Y x Z
which is a bounded linear positive semi-definite self-adjoint operator on X x ) x Z. Then,
forany u := (x,y, 1) € X x Y x Z we have
1
lullg = {u. Gu) = Il + Iy I + I

For the sequence {u¥ := (x*, y*, 2¥)} defined by the proximal ADMM (1.3), we use the
notation
Axk = b kT ARk kel Ak gk kel ARk ke

k

We start from the first order optimality conditions on x**! and y**! which by definition can

be stated as
—A*)Lk _ pA*(Axk+1 + Byk _C) _ P(xk+l _xk) c af(xk+l),

2.2)
— Bk — pBH (AR 4 ByRFL o) — oM — 3K € ag (R,
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By using A¥T1 = AF 4+ p(Ax*t! 4+ Byktl — ¢) we may rewrite (2.2) as
—AFOF — pBAYMHY — PAXM € 9 F(xF T, 03
—B*)\.k+1 _ QAyk+1 = ag(yk+1) :

which will be frequently used in the following analysis. We first prove the following important
result which is inspired by [19, Lemma 3.1] and [4, Theorem 15.4].

Proposition 2.1 Let Assumption 1 hold. Then for the proximal ADMM (1.3) there holds

k+1 k+1

—yl?
< H(x,y) _ H(xk+1,yk+l)+ (Ak+1 —,OBAy]Hl,Ax +By _C>

op I = x| + aglly

1
= O A By =) (I -l — e = )
1, 1 1
AR B A2 — D A2 S Ak 2
2 pBAYI2 = ZIAXHE - S1ay G,

forallu :=(x,y,A) € X x Y x Z, where oy and o denote the modulus of convexity of f
and g respectively.

Proof Let Jf+1 := Ak*1 — p BAy**+1 By using (2.3) and the convexity of f and g we have
for any (x, y,A) € X x ) x Z that

k+1 k1 _ 2

—x*+oglly vl
< f(x) _ f(xk-H) + ()\k+1 _ ,oBAyk+1, A(x _xk+1)> + (PAxk_H,x _xk+l>
+g(y) — g + WL B(y — Y ) + QA y — YR
= H(x,y) — H&* yH ) 4+ GFFL A — 24 + By — yFh)
+ (PAxk+1,x —xk+1) + (@Ayk+l, y— yk+1>
= H(x,y) — H* Y 4 G5 Ax 4+ By — ¢)
— (h, AxkH 4 Byk+1 —O) 4 (= AR Ak g Byk+1 —¢)
+(PAXFTT = xR+l 4 <Q\Ayk+l’ y — ykHy,

orllx

Since p(Ax*t! 4+ Byk+1 — ¢y = AXK*! we then obtain

k+1 k+1

—yI?
< H(x,y) _ H(.Xk+1, yk+]) 4 (ik-'rl’ Ax + By _ C> _ (A,Axk+] 4 Byk-‘r] —C)

oflx* Tt — |17 + aglly

P P
F(PAXMT x — xRy (DAY y — yRETy,

By using the polarization identity and the definition of G, it follows that

k+1 k+1

—yI?
< H(.X,y) _ H(Xk+1,yk+l) + (ik'H,Ax +By —C> _ <)\" Axk+1 4 Byk+1 —C>

o lx* T — x| + o lly

1
+ 5 (IR =217 = = 217 — ask 1 P)
1 ~ ~
5 (”Ak — RRELZ kel Rk 2 ”A)LkH”z)
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1
k 2 k+1 2 k+1,2
5 (I =l = I =l — )

Lk 2 k1 2 k12
+ 5 (I5* =15 = 1M =315 =18y 15)
= H(x,y) — HM ykhy 4 G Ax + By — ¢) — (b, AxKT1 4 ByKH —¢)

1 1 ~ -
+ E (”Mk _ M”%} _ ||uk+1 _ l/l”%}) _ % (”A'k _ )\,k+] ”2 _ ||)\.k+1 _ )\k-‘rl”Z)

1 1
= S hAax G = J1ay .
Using the definition of AA*! gives
MR o AR g BAYKTT kT kL Ak

Therefore

k+1 k+1

—yl?
< H(x,y) — HGM Y0 4 G Ax + By — ¢) — (A, AxKTL 4 BykHL — )

orlx* Tt — |17 + aglly

1 1
5 (I =l = 1 = wl) = AR = pB Ay
2 2p
=Dz - Liaye o 2 ypayp
2 P IaY g T Ay
Since p|| BAy**T1||2 — || AyFH] ||2Q = —|AykH! ||2Q, we thus complete the proof. ]

Corollary 2.2 Let Assumptions 1 and 2 hold and let it := (X, 3, 1) be any KKT point of (1.1).
Then for the proximal ADMM (1.3) there holds

1 _ _
+ 5 (I =g — 1 - ) 2.4)
for all k > 0. Moreover, the sequence {Ilu* — ﬁ||26} is monotonically decreasing.

Proof By taking u = i in Proposition 2.1 and using Ax + By — ¢ = 0 we immediately
obtain (2.4). According to (2.1) we have

H(Xk+l,yk+l) _ H* + ()_\', Axk+l 4 Byk+1 —C) > 0.
Thus, from (2.4) we can obtain
_ _ 1 _ _
oplt ! =R oy 5P = 5 (e - @y -t —ag) @)
which implies the monotonicity of the sequence {lu* — i ||ZG}. m]

We next show that [|Au¥||Z = o(1/k) as k — oco. This result for the proximal ADMM
(1.3) with Q = 0 has been established in [20] based on a variational inequality approach. We
will establish this result for the proximal ADMM (1.3) with general bounded linear positive
semi-definite self-adjoint operators P and Q by a simpler argument.

Lemma 2.3 Let Assumption 1 hold. For the proximal ADMM (1.3), the sequence (Il Auk ||2G}
is monotonically decreasing.
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Proof By using (2.3) and the monotonicity of d f and dg, we can obtain
0< <—A*(Akk+1 — pBAYH 4 pBAYK) — PAXKT! 4 PAXK, Axk+l>
n <—B*Akk“ . QAyk“ + QAyk, Ayk+1>
— _(A)\k-‘rl’ AAX/(-‘FI + BAyk-‘rl) +,0<B(Ayk+l _ Ayk),AAxk'H)
Note that
1
0
We therefore have
1
0= —;(Axk“, AMFE = ARK) = p(B(AYT! — AYF), BAYHH)
4 <B(Ayk+l _ Ayk), A)\’k-i-l _ A)\,k>

By the polarization identity we then have
1
0= o (HARH? = ARk P — Ak — aak+)?)
0
P
+ 2 (IBAY I = 1BAY P = By — aysh)?)
1
+ 5 (18413 = 1ax G — At — ad )
1
+ 5 (1851 = 18y 411G — 18yt — ay*+11p)
+ (B(AYFTT — AyR), AXKFL — ARy,

With the help of the definition of G, we obtain

0 < lAu|Ig — 1A TG — | Ax* — AX S — (lay* — ay* 15,

2
_8’

2

1

which completes the proof. O

Lemma 2.4 Let Assumptions 1 and 2 hold and let it := (%, 3, 1) be any KKT point of (1.1).
For the proximal ADMM (1.3) there holds

lau g < (e = @l + 1805 — (et — g +1ay11%)
forallk > 1.

Proof We will use (2.3) together with —A*A € 3 f(¥) and —B*A € dg(y). By using the
monotonicity of d f and dg we have

0< <—A*(kk“ — R — pBAYKYy — p Ak k1 x)
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_ (PAxk+],xk+1 —)E) _ (QAyk+1, yk-H _ y)
By virtue of p(Ax¥*t1 4+ By¥*+1 — ¢) = AX*1 we further have
1 -

—(PAXF XKL f) —(QAyRHL yRL gy
By using the second equation in (2.3) and the monotonicity of dg we have
0= (~B AN = QAYT 4+ oAy, Ay H)
— (AN BAYEFDY — (0(AYKTT — AyK), AyRF
which shows that
(AKHL BAYFFLY < (0(AYKH! = AYK), AyFTTy.
Therefore

D=

— (@AY = AYH, Ayt
By using the polarization identity we then obtain
1

0<
-2

(= 212 = A5 = 212 = ars2)

+ 5 (I = 505 = 14T = 515 = 1ay113)

+ 5 (I = 713 — 1 = 1% - axt3)
1
+ 5 (1851 = 18y 411 — 18! = Ay*1).

— =D

Recalling the definition of G we then complete the proof.

[m}

Proposition 2.5 Let Assumptions 1 and 2 hold. Then for the proximal ADMM (1.3) there

holds || Au*||%, = o(1/k) as k — oo.

Proof Let u be a KKT point of (1.1). From Lemma 2.4 it follows that

k k
Sonaw g = 30 ((d = @l + 1ay71%) = (1l = alg + 12y ) )
j=1 j=1

2.6)

< lu' —alg + 12y
forall k > 1. By Lemma 2.3, {lAu/t! ||%;} is monotonically decreasing. Thus

k

k .
(§+1) lau* g < > law g,
j=lk/2]

2.7
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where [k/2] denotes the largest integer < k/2. Since (2.6) shows that

S .

D IAu T < oo,

j=1
the right hand side of (2.7) must converge to 0 as k — oo. Thus (k + DAkt ||G =o(1)
and hence || Au ||2 =o(l/k) ask — oo. ]

As a byproduct of Proposition 2.5 and Corollary 2.2, we can prove the following non-
ergodic convergence rate result for the proximal ADMM (1.3) in terms of the objective error
and the constraint error.

Theorem 2.6 Let Assumptions 1 and 2 hold. Consider the proximal ADMM (1.3) for solving
(1.1). Then

|H(x*, y*) — Hil =0 (i (2.8)

) and ||Axk—i-Byk—c||:0<L
vk

%)

as k — oo.
Proof Since
p(Ax* 4+ By —¢) = Axk and ||AAK)? < pllau % (2.9)

we may use Proposition 2.5 to obtain the estimate || Axk + Byk —c|l = 0(1/\/%) as k — oo.
In the following we will focus on deriving the estimate of |H (x*, y¥y — H,|. Let it :=
(x, ¥, 2) be a KKT point of (1.1). By using (2.4) we have

- 1 _ _ _
HOH ) = Hy < =0 A 4 By — o)+ 5 (4! =g — 1 — @)

1 - 1

= —— (&, A0 — @ — i, Gadky — | Auk )2

G
P 2

7l
. AR+ W =gl Adk 6. (2.10)

I/\

By virtue of the monotonicity of {llu* — i ||ZG} given in Corollary 2.2 we then obtain

2] i
H(xk,y%) — H*<7||Axk||+||u°—u||c||Auk||G

I
(nu ||G+ﬁ>||A g

On the other hand, by using (2.1) we have
_ 1 -
H Y5 — Hy = — (0, AxF + ByK —¢) = == (&, Ax)
P

[

1A
> =AM = === Aufg.
o NG
Therefore
_ I
HGM M) — H < (nuo illg+ = ) laut|. @.11)
Jp
Now we can use Proposition 2.5 to conclude the proof. O
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Remark 2.1 By exploiting the connection between the Douglas-Rachford splitting algorithm
and the classical ADMM (1.2), the non-ergodic convergence rate (2.8) has been established
in [8] for the classical ADMM (1.2) under the conditions that

zero(ddy + ddg) # ¥ (2.12)
and
ddy =A*0df* 0 A, dd, = B*0dg" o B —c, (2.13)

where dy (L) = f*(A*A) and d, (1) := g*(B*L) — (A, c) with f* and g* denoting the
convex conjugates of f and g respectively. The conditions (2.12) and (2.13) seems strong
and unnatural because they are posed on the convex conjugates f* and g* instead of f
and g themselves. In Theorem 2.6 we establish the non-ergodic convergence rate (2.8) for
the proximal ADMM (1.3) with any positive semi-definite P and Q without requiring the
conditions (2.12) and (2.13) and therefore our result extends and improves the one in [8].

Next we will consider establishing faster convergence rates under suitable regularity con-
ditions. As a basis, we first prove the following result which tells that any weak cluster
point of {u*} is a KKT point of (1.1). This result can be easily established for ADMM in
finite-dimensional spaces, however it is nontrivial for the proximal ADMM (1.3) in infinite-
dimensional Hilbert spaces due to the required treatment of weak convergence; Proposition
2.1 plays a crucial role in our proof.

Theorem 2.7 Let Assumptions 1 and 2 hold. Consider the sequence {u* := (x*, yk, 1%)}
generated by the proximal ADMM (1.3). Assume {u*} is bounded and let u’ := (xT, yT, A7)
be a weak cluster point of {u*}. Then u™ is a KKT point of (1.1). Moreover, for any weak
cluster point u* of {u*} there holds |u* — u'||g = 0.

Proof We first show that ' is a KKT point of (1.1). According to Propositon 2.5 we have
||Auk||%; — 0 which means

AN 50, PAXY >0, BAY >0, Q0AY =0 (2.14)
as k — oo. According to Theorem 2.6 we also have
Ax¥ + By* —¢ -0 and H(x*, y*) - H, ask — oco. (2.15)

Since uT is a weak cluster point of the sequence {1}, there exists a subsequence {u*/ :=
(xki ,y ki, 2kiyY of {u*} such that uki —ut as Jj — oo. By using the first equation in (2.15)
we immediately obtain

AxT+ By —¢c=0. (2.16)
By using Proposition 2.1 with k = k; — 1 we have for any u := (x, y, A) € X x Y x Z that
0< H(x,y) = H&M, yb) + 08 — pBAYY, Ax + By —¢)

_ _ . _
= (AN 4 BYY — ) 4 5 (Ilukf D) — i — u||%;) @17

According to Corollary 2.2, {||u¥||g} is bounded. Thus we may use Proposition 2.5 to con-
clude

kj—1 kj—1 kj kj
s~ =l = b — | = (1" = wlg + 1 = ullG ) 14u g — 0
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as j — oo. Therefore, by taking j — 0o in (2.17) and using (2.14), (2.15) and A%i =17 we
can obtain

0<H(x,y) — H, + (A7, Ax + By —¢) (2.18)

for all (x,y) € X x Y. Since f and g are convex and lower semi-continuous, they are also
weakly lower semi-continuous (see [11, Chapter 1, Corollary 2.2]). Thus, by using x*/ —x
and y*i —~yT we obtain

Hx' yh) = £ 4+ ¢ < liminf £(x%) + lim inf g(y*/)
]—)OO J—)OO
= liminf (f(*) + g(*™)
]*)OO

= liminf H (x*/, y) = H,.
_]—)OO
Since (xT, yT) satisfies (2.16), we also have H(x", y*) > H,. Therefore H(x", y") = H,
and then it follows from (2.18) and (2.16) that

0<Hx,y)—HE" yH+ 0" A —xH + By —y"))

for all (x,y) € & x Y. Using the definition of H we can immediately see that —A*AT €
df(x") and —B*A" € dg(y). Therefore u is a KKT point of (1.1).

Let u* be another weak cluster point of {u*}. Then there exists a subsequence {uli} of
{u*} such that u'i —~u* as j — oo. Noting the identity

20k, G —u®)) = luk —u ) — Nt — % — a1+ et (2.19)

Since both u* and u" are KKT points of (1.1) as shown above, it follows from Corollary 2.2
that both {|[uf — uf ||%;} and {|ju* — u* ||2G} are monotonically decreasing and thus converge
as k — oo. By taking k = k; and k = [; in (2.19) respectively and letting j — o0 we can
see that, for the both cases, the right hand side tends to the same limit. Therefore

W*, Gw* —u")) = lim (W, Gu* —u")

J—> 00

= lim ", Gw* —u'))

]—00

= (', Gu* —u)
which implies [lu* — u"[|Z = 0. O

Remark 2.2 Theorem 2.7 requires {u*} to be bounded. According to Corollary 2.2, {||u*|| G}
is bounded which implies the boundedness of {kk} In the following we will provide sufficient
conditions to guarantee the boundedness of {(x*, y k1.

(i) From (2.5) it follows that {o f ||l x k2 +0o, %1% + [k ||2 }is bounded By the definition of
G, this in particular 1mphes the boundedness of {A¥} and { By¥}. Consequently, it follows
from ALK = p(Axk + By — ¢) that {Ax*} is bounded. Putting the above together we
can conclude that both {(o71 + P + A*A)x*} and {(041 + QO + B*B)y} are bounded.
Therefore, if both the bounded linear self-adjoint operators

ofl+P+A"A and o, + Q+ B*B
are coercive, we can conclude the boundedness of {x*} and { yk}. Here a linear operator

L : V — H between two Hilbert spaces V and H is called coercive if ||Lv|| — oo
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whenever ||v|| — oo. It is easy to see that L is coercive if and only if there is a constant
¢ > O such that c||lv|| < ||Lv]| forall v € V.
(ii) If there exist 8 > H, and o > 0 such that the set

{(x,y) e X xY:H(x,y) <Band ||[Ax + By —c|| < o}

is bounded, then {(xk, y")} is bounded. In fact, since H(xk, yk) — H, and Axk+ Byk —
¢ — 0 as shown in Theorem 2.6, the sequence {(xk, yk)} is contained in the above set
except for finite many terms. Thus {(x*, y*)} is bounded.

Remark 2.3 1t is interesting to investigate under what conditions {1} has a unique weak
cluster point. According to Theorem 2.7, for any two weak cluster points u* := (x*, y*, A*)
and ut := (x¥, y7, AT) of {u*} there hold

lu* —u'|2 =0, Ax*+ By*=c, —A*A* €df(x*), —B*A* € dg(y"),
AxT+ By =¢, —A*AT cafixh), —B*ATedg(yh).
By using the definition of G and the monotonicity of d f and dg we can deduce that
=2t Pe*—xH=0, 00" -yH=0, BG*-yH=0,
AT —x) =0, opllx* =212 =0, oy —y'12=0.
Consequently
(0l + P+ A" A)*—x")=0 and (5,0 +Q+ B*B)(y* —y") =0.

Therefore, if both ¢/ + P + A*A and 0,1 + Q + B*B are injective, then x* = x¥ and
y* = y' and hence {u*} has a unique weak cluster point, say u; consequently u¥—u as
k — oo.

Remark 2.4 In [31] the proximal ADMM (with relaxation) has been considered under the
condition that

P+ pA*A+0f and Q + pB*B + dg are strongly maximal monotone. (2.20)

which requires both (P + pA*A + 3 )~ and (Q + pB*B + dg)~! exist as single valued
mappings and are Lipschitz continuous. It has been shown that the iterative sequence con-
verges weakly to a KKT point which is its unique weak cluster point. The argument in [31]
used the facts that the KKT mapping F(u), defined in (2.21) below, is maximal monotone
and maximal monotone operators are closed under the weak-strong topology [2, 3]. Our
argument is essentially based on Proposition 2.1, it is elementary and does not rely on any
machinery from the maximal monotone operator theory.

Based on Theorem 2.7, we now devote to deriving convergence rates of the proximal
ADMM (1.3) under certain regularity conditions. To this end, we introduce the multifuncton
F:Xx)YxZ=Xx) x Zdefined by

af(x)+ A*A
Fw):=10d0gy)+B*A |, YVu=(x,y,A\) e X XY X Z. 2.21)
Ax+ By —c¢

Then u is a KKT point of (1.1) means 0 € F(u) or, equivalently, u € F~10), where F~!
denotes the inverse multifunction of F. We will achieve our goal under certain bounded
(Holder) metric subregularity conditions of F'. We need the following calculus lemma.
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Lemma 2.8 Let {Ay} be a sequence of nonnegative numbers satisfying
AL < C(Ak—1 — Ay) (2.22)

forall k > 1, where C > 0 and 6 > 1 are constants. Then there is a constant C > 0 such
that

Ar = CU+ k)7
forallk > 0.
Proof Please refer to the proof of [1, Theorem 2]. O

Theorem 2.9 Let Assumptions 1 and 2 hold. Consider the sequence {uF = (xk, yF, Ay
generated by the proximal ADMM (1.3). Assume {1k} is bounded and let u™ = (x7, y%, V)
be a weak cluster point of {uk). Let R be a number such that |u* — u®|| < R for all k and
assume that there exist k > 0 and o € (0, 1] such that

d(u, F~'(0)) < «[d(0, F@))]*, Yu e Bru"). (2.23)
(1) Ifa =1, then there exists a constant 0 < q < 1 such that
=+ 1A, < g (- a1 1AK1E) 24
for all k > 0 and consequently there exist C > 0 and 0 < q < 1 such that
lu* —ulig, Iaut]c < Cq*,
|Ax* + By* — || < Cq*, (2.25)
|H (¥, %) — Hy| < Cq*

forallk > 0.
(i1) Ifa € (0, 1) then there is a constant C such that

I — 1% + 1Ay 1% < Clk+ 1) (2.26)
and consequently
lAu g < Clk+ 1),
JAXE + By* — c|) < Clk+ )T, 2.27)
\HG V5 — H| < Clk+ 1) 10
forallk > 0.

Proof According to Theorem 2.7, u™ is a KKT point of (1.1). Therefore we may use Lemma
2.4 with it = u' to obtain

I =t )G + 1Ay G < et —uTIG + 1ay8 15 — 1A G
= [lu* — u" |G + 1AYIG — nllAukTE
— A =nlAadktE, (2.28)
where n € (0, 1) is any number. According to (2.3),

pA*BAyk+l — PAxkH1
—QAykt! € F@urh.
Axk+1 + Byk+l —c
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Thus, by using AAFH = p(Ax**T! + By — ¢) we can obtain
d*(0, Fu"™)) < |pA*BAY™ — PAXMT12 4+ — oAy 12
4 ||Axk+1 + Byk+1 _ C||2
< 2| PAXMTY2 1202 A BAYTY?
1
+loAay 2 + ;nAx"“ |1
< ylaukth)Z, (2.29)

where
1
y ‘= max {2IIPII, 20lA1%, 1101, ;} .

Combining this with (2.28) gives
A =t + 1Ay G < e —utIG 4+ 1ay8 G — nl At TG

1 —
— 20, Fukthy).
y

Since ||uF — uT|| < R for all k and F satisfies (2.23), one can see that
dW*, FY0)) < k[d(0, Fu*))*, vk > 0.
Consequently
l* T — w1 + 1Ay < et = uTIE 4+ 1ayk G — nll At TG

I—n

_ yKZ/a [d(uk+l, F*](o))]z/(x

Foranyu = (x,y,A) € X x Y x Z let
do(u, F7'(0)) := inf Jlu—ilg
ieF=1(0)

which measures the “distance" from u to F~!(0) under the semi-norm || - ||g. It is easy to
see that

d%w, F~1(0)) < IGlld*u, F~'(0)),
where ||G || denotes the norm of the operator G. Then we have
" =t NG + 1Ay G < e —utIG + 11ayk G — nllad* g

1 —n

gyl GG AN (O

Now let i € F~!(0) be any point. Then

k+1

k+1 - Tz
[t —uTllg < 1T —dllg + lu’ —illg.

Since u' is a weak cluster point of {u*}, there is a subsequence {u*/} of {u*} such that

uki ~yu*. Thus

lu — il = lim (u* — i, G’ — @)y <liminf u* —i|gllu’ — i
j—o0 Jj—oo
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which implies [|u” — ii|lg < lim inf ;o0 llu*i — ii||g. From Corollary 2.2 we know that
{ ||uk —u ||%;} is monotonically decreasing. Thus

k! — k+1 k+1

u'llg < llu —ﬁllc-l-lijrgio%fllukj—ﬁ||c§2||bt —illg.

Since it € F~1(0) is arbitrary, we thus have
" — w6 < 2de @, F71(0)).
Therefore
I — T 1E + 1AYG < et = IG + 1AV — nlAu TG
l—n k+1 T2/
— e ||U — U .
S @G| o

By using the fact || Au¥||g — 0 established in Proposition 2.5, we can find a constant C > 0
such that

2
A2 = Cllauk .
Note that | AufT1|Z > [[Ay<+H! ||%2. Thus

2
1 — w1+ 1AV < = a1+ 1AV — Culay e

1—n k+1 2/
“y@eopre T Tl
Choose 7 such that

1
1+ Cy@e?|Ghe:

n
Then
I T —u1E + 1Ay G
=l = I + 18551 — Cn (1AYH 1G4+ It — )
Using the inequality (a + b)?P < 2P=L(aP + bP) fora, b > 0 and p > 1, we then obtain
"+ =TI + 1Ay IG
<l = 1 + 1 AyH I — 27 en (1t - i + ||Ay"“||2Q)”“ . (230)
(i) If « = 1, then we obtain the linear convergence
(O (1 = a1 + 1Ay 1G) < ek — a1+ 185E 15

whichis (2.24) withg = 1/(14Cn). By using Lemma 2.4 and (2.24) we immediately obtain
the first estimate in (2.25). By using (2.9) and (2.11) we then obtain the last two estimates in
(2.25).

(i) If @ € (0, 1), we may use (2.30) and Lemma 2.8 to obtain (2.26). To derive the first
estimate in (2.27), we may use Lemma 2.4 to obtain

k
112 [ 2 12
Do law g < e —u g + 1815
j=l+1
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for all integers 1 < | < k. By using the monotonicity of {|| A/ |IZG} shown in Lemma 2.3
and the estimate (2.26) we have

(k= Dauk)% < c+1) T,
Taking [ = [k/2], the largest integers < k/2, gives
||Auk||%; <Clk+ 1)—ﬁ—1 — Clk+ 1)‘&

with a possibly different generic constant C. This shows the first estimate in (2.27). Based
on this, we can use (2.9) and (2.11) to obtain the last two estimates in (2.27). The proof is
therefore complete. O

Remark 2.5 Let us give some comments on the condition (2.23). In finite dimensional
Euclidean spaces, it has been proved in [30] that for every polyhedral multifunction
W R™ = R” there is a constant x > 0 such that for any y € R” there is a number
& > 0 such that

d(x, ¥~ (y)) < kd(y, ¥(x)), Vx satisfyingd(y, ¥(x)) < .

This result in particular implies the bounded metric subregularity of W, i.e. for any » > 0
and any y € R” there is a number C > 0 such that

d(x, ¥~ (y)) < Cd(y, ¥(x)), Vx € B,(0).

Therefore, if 9 f and dg are polyhedral multifunctions, then the multifunction F defined by
(2.21) is also polyhedral and thus (2.23) with @ = 1 holds. The bounded metric subregularity
of polyhedral multifunctions in arbitrary Banach spaces has been established in [34].

On the other hand, if X', ) and Z are finite dimensional Euclidean spaces, and if f and g are
semi-algebraic convex functions, then the multifunction F satisfies (2.23) forsome o € (0, 1].
Indeed, the semi-algebraicity of f and g implies that their subdifferentials d f and dg are
semi-algebraic multifunctions with closed graph; consequently F is semi-algebraic with
closed graph. According to [24, Proposition 3.1], F' is bounded Holder metrically subregular
at any point (i1, £) on its graph, i.e. for any » > 0 there exist ¥ > 0 and & € (0, 1] such that

d(u, F~'(&)) < k[d(&, F@)]®, Yu € By (i)
which in particular implies (2.23).

By inspecting the proof of Theorem 2.9, it is easy to see that the same convergence rate
results can be derived with the condition (2.23) replaced by the weaker condition: there exist
k > 0and o € (0, 1] such that

kg1 k||®
dgW", F~ (0))§KHAu HG Vk > 1. (2.31)
Therefore we have the following result.

Theorem 2.10 Let Assumptions 1 and 2 hold. Consider the sequence {u* = (x*, y*, AF)}
generated by the proximal ADMM (1.3). Assume {u*} is bounded. If there exist k > 0 and
o € (0, 1] such that (2.31) holds, then, for any weak cluster point u' of {(uk}, the same
convergence rate results in Theorem 2.9 hold.
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Remark 2.6 Note that the condition (2.31) is based on the iterative sequence itself. Therefore,
it makes possible to check the condition by exploring not only the property of the multifunc-
tion F but also the structure of the algorithm. The condition (2.31) with « = 1 has been
introduced in [27] as an iteration based error bound condition to study the linear convergence
of the proximal ADMM (1.3) with Q = 0 in finite dimensions.

Remark 2.7 The condition (2.31) is strongly motivated by the proof of Theorem 2.9. We
would like to provide here an alternative motivation. Consider the proximal ADMM (1.3).
We can show that if IIAu ||G = 0 then u* must be a KKT pointof (1.1). Indeed, | Auk ||G =0
implies PAxk =0, QAy = 0 and AX* = 0. Since Q =0+ pBTB with Q positive
semi-definite and AAF = p(Axk + ByF — ¢), we also have BAy* = 0, QAy* = 0 and
Ax* + By¥ — ¢ = 0. Thus, it follows from (2.3) that

—A Ak ear®y, —B*AFeag(yt), Axt+Byf=¢

which shows that uf = (xk, yk, kk) is a KKT point, i.e., uk e F_l(O). Therefore, it is
natural to ask, if | AuX| g is small, can we guarantee dg @k, F~1(0)) to be small as well?
This motivates us to propose a condition like

dew®, F71(0)) < o(|au*|lg), Vk=>1

for some function ¢ : [0, 00) — [0, co) with ¢(0) = 0. The condition (2.31) corresponds to
¢(s) = ks* for some « > 0 and o € (0, 1].

In finite dimensional Euclidean spaces some linear convergence results on the proximal
ADMM (1.3) have been established in [9] under various scenarios involving strong convexity
of f and/or g, Lipschitz continuity of V f and/or Vg, together with further conditions on
A and/or B, see [9, Theorem 3.1 and Table 1]. In the following theorem we will show that
(2.31) with @ = 1 holds under any one of these scenarios and thus the linear convergence in
[9, Theorem 3.1 and Theorem 3.4] can be established by using Theorem 2.10. Therefore, the
linear convergence results based on the bounded metric subregularity of F or the scenarios
in [9] can be treated in a unified manner.

Actually our next theorem improves the results in [9] by establishing the linear convergence
of {u*} and {H (x¥, yk)} and relaxing the Lipschitz continuity of gradient(s) to the local
Lipschitz continuity. Furthermore, Our result is established in general Hilbert spaces. To
formulate the scenarios from [9] in this general setting, we need to replace the full row/column
rank of matrices by the coercivity of linear operators. We also need the linear operator
M : X x Y — Z defined by

M(x,y) :=Ax+ By, V(x,y)e X x)Y

which is constructed from A and B.Itis easy to see that the adjointof M is M*z = (A*z, B*z)
forany z € Z.

Theorem 2.11 Ler Assumptions 1 and 2 hold. Let {u*} be the sequence generated by the
proximal ADMM (1.3). Then {u*} is bounded and there exists a constant C > 0 such that

dg W, F~1(0)) < Clladt | (232)
forall k > 1, provided any one of the following conditions holds:
(i) oy > 0, A and B* are coercive, g is differentiable and its gradient is Lipschitz contin-

uous over bounded sets;
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(ii) oy > 0, 0g > 0, B* is coercive, g is differentiable and its gradient is Lipschitz
continuous over bounded sets;

(iii) 20 =0, o >0, 0, > 0, M* restricted on /\/(M*)J- is coercive, both f and g are
differentiable and their gradients are Lipschitz continuous over bounded sets;

@iv) A9 =0, o, > 0, A is coercive, M* restricted on N(M*)L is coercive, both f and g
are differentiable and their gradients are Lipschitz continuous over bounded sets;

where N'(M*) denotes the null space of M*. Consequently, there exist C > 0and0 < g < 1
such that

It —u'll < Cq* and |HGF Y — Hil < Cq*
forallk > 0, where u’ := (x*, y¥, 1) is a KKT point of (1.1).

Proof We will only consider the scenario (i) since the proofs for other scenarios are similar.
In the following we will use C to denote a generic constant which may change from line to
line but is independent of k.

We first show the boundedness of {u*}. According to Corollary 2.2, {[|«*||%} is bounded
which implies the boundedness of {1¥}. Since og > 0, it follows from (2.5) that {y*} is
bounded. Consequently, it follows from ANk = p(Axk + Byk — ¢) that {Ax*} is bounded.
Since A is coercive, {x¥} must be bounded.

Next we show (2.32). Let u” := (xT, y, AT) be a weak cluster point of {u*} whose
existence is guaranteed by the boundedness of {u*}. According to Theorem 2.7, u' is a KKT
point of (1.1). Let (§, 1, 7) € F k) be any element. Then

E— AN edfh, n—BFeaghh, v=axk+By —c.
By using the monotonicity of d f and dg we have
o llxt = XTI+ oglly* — yTI1?
< (g — A AT XK —xTy 4 (i — B 4+ BT, yk — yTy
= =)+ oy =D+ 0T =2k At 1T+ BOR = yT)
=& —xD+ iy =y + " =0k, (2.33)
Since o, > 0, it follows from (2.33) and the Cauchy-Schwarz inequality that
1% =y 12 = € (I + Nl = &1+ e = 217 (2.34)
Note that A(x¥ — xT) = —B(Y* — yT) + %A)Lk. Since A is coercive, we have

ot = IP < clack =P o (I =TI+ 1AM ). @39)

By the differentiability of g we have —B*AT = Vg(y") and —B*AF — QAY* = Vg(yb).
Since B* is coercive and Vg is Lipschitz continuous over bounded sets, we thus obtain

A = AT2 < CIB* Wk = ADI1P = 10AY* + Ve (") — Ve DII?
= (1A% + Iy =¥ 1?). (2.36)
Adding (2.35) and (2.36) and then using (2.34), it follows

ok — 12 138 = 2712 < € (I + 1AuC0E + g s = &)+ A = A1)
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which together with the Cauchy-Schwarz inequality then implies

Ik =12 4 125 = 2T < € (NI + Il + 120 + A1) (2.37)
Combining (2.34) and (2.37) we can obtain

Ik =TI 1E = T2 15 = AT < (N2 + Il + e + DA )
Since (£, 1, 7) € Fu¥) is arbitrary, we therefore have
I — w2 = € (140, Fab )P + 1 Au 1)
With the help of (2.29), we then obtain
lu* — ™ < Cllaut|E. (2.38)
Thus
[de (u*, F~HO) < Cld@*, F~H 0N < Cllu* —u™|I* < Cllau|g

which shows (2.32).
Because {uX} is bounded and (2.32) holds, we may use Theorem 2.10 to conclude the
existence of a constant g € (0, 1) such that

1autllg < Cq* and |HGH ¥ — Hil < Cq.
Finally we may use (2.38) to obtain lu* —uf| < qu. O
Remark 2.8 1f Z is finite-dimensional, the coercivity of M* restricted on A (M*)* required

in the scenarios (iii) and (iv) holds automatically. If it is not, then there exists a sequence
{2} € N (M*)1\{0} such that

I8 = klIM*ZE), k=1,2,---.

By rescaling we may assume ||z¥|| = 1 for all k. Since Z is finite-dimensional, by taking a
subsequence if necessary, we may assume z¥ — z for some z € Z. Clearly z € N (M*)*
and ||z|| = 1. Note that | M*zX| < 1/k for all k, we have || M*z|| = limi_ o | M*Z¥|| = 0
which means z € A'(M*). Thus z € N(M*) N N (M*)+ = {0} which is a contradiction.

3 Proximal ADMM for Linear Inverse Problems

In this section we will consider the method (1.11) as a regularization method for solving (1.9)
and establish a convergence rate result under a benchmark source condition on the sought
solution. Throughout this section we will make the following assumptions on the operators
0, L, A, the constraint set C and the function f:

Assumption3 (i) A : X — H is a bounded linear operator, Q : X — X is a bounded
linear positive semi-definite self-adjoint operator, and C C X’ is a closed convex subset.
(ii) L is a densely defined, closed, linear operator from X" to )) with domain dom(L).
(iii) There is a constant ¢y > O such that

[ Ax|I* + [ILx]|* > collx|?,  Vx € dom(L).

@iv) f:)Y — (—o00, 00] is proper, lower semi-continuous, and strongly convex.
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This assumptions is standard in the literature on regularization methods and has been used
in [21, 22]. Based on (iii), we can define the adjoint L* of L which is also closed and densely
defined; moreover, z € dom(L*) if and only if (L*z, x) = (z, Lx) forall x € dom(L). Under
Assumption 3, it has been shown in [21, 22] that the proximal ADMM (1.11) is well-defined
and if the exact data b is consistent in the sense that there exists x € X such that

x edom(L)NC, Lx edom(f) and Ax =b,

then the problem (1.9) has a unique solution, denoted by x. Furthermore, there holds the
following monotonicity result, see [22, Lemma 2.3]; alternatively, it can also be derived from
Lemma 2.3..

Lemma3.1 Let {zk, yk, xk, Ak, ,uk, vk} be defined by the proximal ADMM (1.11) with noisy
data and let

1 1 1
Ep = s— AP + s Ap! P + s—lavk)?
2p1 202 2p3
P2 3 1
+ AV P+ ZlAx 1> + 1AM, 3.1)
2 2 2
Then {Ey} is monotonically decreasing with respect to k.

In the following we will always assume the exact data b is consistent. We will derive a
convergence rate of x* to the unique solution x™ of (1.9) under the source condition

It e af@Lx")Nndom(L*) and v € dic(x) such that L* " + 17 € Ran(4*).  (3.2)
Note that when L = I and C = X, (3.2) becomes the benchmark source condition
3 f(x") NRan(A*) # 0
which has been widely used to derive convergence rate for regularization methods, see [7,

13, 23, 29] for instance. We have the following convergence rate result.

Theorem 3.2 Let Assumption 3 hold, let the exact data b be consistent, and let the sequence
(25, vk, xk, Ak pk vKY be defined by the proximal ADMM (1.11) with noisy data b® satisfying
6% — b|| < 8. Assume the unique solution xf of (1.9) satisfies the source condition (3.2).
Then for the integer ks chosen by ks ~ 8~ there hold

I —xfl = 06", 1y8 — Lt = 06" and 112 — x| = 0"
asd — 0.
In order to prove this result, let us start from the formulation of the algorithm (1.11) to
derive some useful estimates. For simplicity of exposition, we set
AxkHl = k1 gk AR gkl kAL kel ok
AN gkl gk Ak kel ke AL Tk

k+1 k+1 5

According to the definition of z¥*!, y**1 and x¥*1 in (1.11), we have the optimality conditions

0= A" A + 05 4 pi A¥ (AT —B0) + L*(uF + po(LFT! = y5))
+ o3 = x5 + 0 = N, (3.3)
0€dfO ) — uk — pp(L*H! — ykth, (3.4)
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k+l) _ Vk _ )O3(Zk+1 _ xk+l). (35)

0e€dic(x
By using the last two equations in (1.11), we have from (3.4) and (3.5) that
e a f(* Y and VA e e (6. (3.6)

Letting y© = LxT. From the strong convexity of f, the convexity of tc, and (3.6) it follows
that

oIy =312 < FON = FOMY — (b T — Y
+ (vk+1,xk+1 _x"'>' (37)

where oy denotes the modulus of convexity of f; we have oy > 0 as f is strongly convex.
By taking the inner product of (3.3) with zX*! — xT we have

0= (W + p1 (AT — %), AT = xT))
+ 1k pa (LT — 30, L - xTy)
+ (vk + ,03(Zk+1 —xk), K+l —xT)
+ (Q(Zk+1 _ Zk)’szrl —XT).

Therefore we may use the definition of A¥+1, u*+1 vk+1in (1.11) and the fact AxT = b to
further obtain

0= (kk+1, Azk“ —b) + (Mk+1 _}_pszkH, sz+1 _ y’r)
+ (W 4 pyAxATE A )
+ (QAZFHL KT Ty, (3.8)
Subtracting (3.7) by (3.8) gives
orlly =y < 1) = M — O AT — by (AT R - LA
_ ,02(Ayk+l, LZk—H _ yT> + (Uk+1,xk+l _ Zk-H)

_ p3(Axk+l,zk+l —xT) _ (QAZkH, Zk+1 —xT).

Note that under the source condition (3.2), there exist ,uT, v and AT such that

wedaryh, viedwen and L*u"+0"+ AT =0. (3.9)
Thus, it follows from the above equation and the last two equations in (1.11) that
aply* =y

< O = FOMH = AT AT — by — (uf, LA — ) — F
_ ()\.k+1 _ )\'?7 Azk+1 _ b5 +b5 _ b)
1 . .
_ EWH] —M}, Apﬂ“”) —pz(Ayk+1,sz+] _yI>
1 .
_ E(kar] _ UT, A\)k+1> _ p3(Axk+l,Zk+l _xi)
_ (QAzk+1, ot —xh.

By using (3.9), b = AxT and the convexity of f, we can see that
FON = £ = 0, A —b) — (uF, LT — ) - F AR
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= fON = FOMD + AT ) 4+ (uf, Y + 0 2T

= fON = FOMD) + (AT xT) 4+ (uf, Y 4+ o X
=N = FOMY = (L * >+ (wh Yy 4 f - 1)
= FON = O + (Y =y + 0f A -y <o

Consequently, by using the fourth equation in (1.11), we have

1
oy = T2 < I AT B8 — by — — (T T, AdkE
' p1
_ i<'uk+l b Ak — i(vk—t-l — v AV
P2 03

o (AR YR L E kL ke
_ p3(Axk+1 kL T +zk+1 —xk+1)
_ <QAZk+l Zk—H _x?>.

By using the polarization identity and the last two equations in (1.11) we further have

oyt =y 2 < = AT B0 — b)

+ 2—;1 (I35 = TI2 = IFT =012 = arke?)
b (I = 0 = 1 = TP = AR
30 (I = VT = A TR = a1 )
+ % I = 5T — 12 = <1 - 141
+ 2 (k=TI =t =T = 1Ay )
+ 2 (I =TI = 1 =T - a?)

- <Ay"“, A — (AxHL AV,

Let
1 1 1
P = —— |3 = ATE it = TR = =T
2p 22 2p3
[ 2 P2k 2, P3 k 12
+ = —X + = - + —[x" —x'|".
2IIZ o 2 ly* — 'l ) Il Il
Then

VT2 < @ — gy — KT =27 60 — b) — Egg
_ (Ayk+l, AM/(-‘FI) _ (Aka, Avk+1),

orlly

where Ej is defined by (3.1).

Lemma3.3 Forallk =0,1, --- there hold
oIy — 312 < @ — Dt — = AT B0 — b) — Epy,

Eiy1 < O — Ppy1 + /201 D110

(3.10)

(3.11)
(3.12)
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and
k+1
Dpy1 < Do+ [ Y 20195 | 6. (3.13)
j=1

Proof By using (3.6) and the monotonicity of the subdifferentials d f and d¢c we have
0<oy IAYFI2 < (AFHY AYRHLY o (AVKHL Ak,
This together with (3.10) implies (3.11). From (3.11) it follows immediately that
Epy1 < @ — D — KT =27, 6% — b)

< P — Ppyr + 2 = 2T

< O — Dpp1 + /201 Ppp1 8
which shows (3.12). By the non-negativity of E;; we then obtain from (3.12) that

i1 < B + /201 @418, Yk =0

which clearly implies (3.13). O

In order to derive the estimate on ®; from (3.13), we need the following elementary result.

Lemma 3.4 Let {ar} and {by} be two sequences of nonnegative numbers such that
k
af <bi+cy aj, k=01,
j=1

where ¢ > 0 is a constant. If {by} is non-decreasing, then
ay <by+ck, k=0,1,---.

Proof We show the result by induction on k. The result is trivial for k = 0 since the given
condition with k = 0 gives ag < bg. Assume that the result is valid for all 0 < k < [ for some
[ > 0. We show it is also true for k =1 + 1. If @1 < max{ag, --- , a;}, thena; | < a; for
some 0 < j < [. Thus, by the induction hypothesis and the monotonicity of {b;} we have

aiy1 <aj <bj+cj <b1+cl+1).

If aj41 > max{ag, - - - , a;}, then
1+1
a12+1 < b12+1 + Czaj < b12+1 + C(l + l)al+l
j=1

which implies that
1 ? 2 1, 2
a1 — Ec(l +1) =a —cl+Da41 + Zc (I+1)
1
<bj, + Zc2(l +1)?
1 2

< <b1+1 + EC(l + 1)) .

Taking square roots shows a;+1 < bj+1 + c¢(I + 1) again. O
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Lemma 3.5 There hold

2 <al*+/2p1ks, Vk=0 (3.14)
and
200 5
Ep < TO + 5plkaz, vk > 1. (3.15)

Proof Based on (3.13), we may use Lemma 3.4 with a; = CD,I/Z, by = <I> Zand ¢ =
(202)'/28 to obtain (3.14) directly. Next, by using the monotonicity of {Ek} (3.12) and
(3.14) we have

k k
< ZEj < Z(qu*l —®; +\/2,01CD]'8)
=1 =1
k
< &y — g +Z\/2Pl¢j5
j=1

k
s¢o+2\/ﬂ(@+/ﬂj8)8
=1

= D¢ + /201 Pokd + prk(k + 1)5°
<2d) + gplkzéz
which shows (3.15). O
Now we are ready to complete the proof of Theorem 3.2.

Proof (Proof of Theorem 3.2) Let ks be an integer such that ks ~ §~1. From (3.14) and (3.15)
in Lemma 3.5 it follows that

Ek5 < Cpé and P < Cj forall k < kg, (3.16)
where Co and C| are constants independent of k and §. In order to use (3.11) in Lemma 3.3
to estimate ||yka - y* I, we first consider ®; — Py for all K > 0. By using the definition
of @ and the inequality |[u||> — ||v]|> < (]l + ||v]})|lu — v||, we have for k > O that
1
B = Dppr = 5 (125 = 2T+ =T ) anke
2p1
1
+ g5y (I = 1 = ) ey
1
- 2— (IF =TI+ Rt =T ) vk
P3
(||z =l +12% = xTlg) a2

+
+ 2 (I =y I+ I =y ) 1Ayt
+

B (1o =l ! =) ax.
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By virtue of the Cauchy-Schwarz inequality and the inequality (a + b)*> < 2(a? + b?) for
any numbers a, b € R we can further obtain

O — Opp1 < V2(Pp + Pry1)Eryr, Yk > 0.

This together with (3.16) in particular implies
Dps—1 — Py < V4CoCys.
Therefore, it follows from (3.11) that
arlly" = yTI7 < Pryor — Dy, + 125 — 27|18
< /4CoC18 + /201Dy, 8
< /4CoC16 + 201Cy8.

Thus
Iy = 117 < €282,
where C; is a constant independent of § and k. By using the estimate Ey; < Coé in (3.16),
the definition of Ej,, and the last three equations in (1.11), we can see that
1 2 2C
1Az —bP)2 = Sl1Aark ) < 2By, < =2,
Py P1 L1

1 2 2Co
1% — 35|17 = S 1AuS 1> < =By < =6,
123 02 P2
1 2 2C
125 =017 = A < = B, < =2,
)03 P3 P3

Therefore

N 4C
ILG = DI = 2 (1L =212 4+ 155 = yT)1?) < 201",
2

: 2C
lAGH —x? <2 (1A% =B + 16— bI1?) <2 (—“ + 1) 5.
o1

By virtue of (iii) in Assumption 3 on A and L we thus obtain
coll —xTIP < JAGES =D+ ILE - 2D

20, 2C
<2 (—0 + =0 1) 5420582
P1 £1

This means there is a constant C3 independent of é and k such that
12 —xT|? < C381/2.
Finally we obtain
I =12 = 2 (1 02 4 12t - xTR) = 205 200812
The proof is thus complete. O

Remark 3.1 Under the benchmark source condition (3.2), we have obtained in Theorem 3.2
the convergence rate O (8'/4) for the proximal ADMM (1.11). This rate is not order optimal.
It is not yet clear if the order optimal rate O (8'/?) can be achieved.
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Remark 3.2 When using the proximal ADMM to solve (1.9) with L = I, i.e.
min{f(x): Ax =bandx € C}, (3.17)

it is not necessary to introduce the y-variable as is done in (1.11) and thus (1.11) can be
simplified to the scheme

= arg 221/{{1 {.Zm,pz(z, x4+ %HZ - Zk||2Q} ;
1 = arg min [.Zp,,pz(zkﬂ,x, Ak, Uk)] ,

xeX
WALk 4 o (AR Z by,
PRl ok pz(zk+1 _xk+1)’ (3.18)
where

Lo (2o X, 4, v) 1= f(2) +1e(x) + (A, Az — bP)

v,z = x) + 2HAz = BIP + gz — 2,
The source condition (1.9) reduces to the form
Iutedfx" and v’ € dic(x") such that u¥ + vT € Ran(A™). (3.19)

If the unique solution xT of (3.17) satisfies the source condition (3.19), one may follow the
proof of Theorem 3.2 with minor modification to deduce for the method (3.18) that

Ix% —xT| = 0" and |25 — x| = 0@'*)
whenever the integer ks is chosen such that k5 ~ § -1

We conclude this section by presenting a numerical result to illustrate the semi-
convergence property of the proximal ADMM and the convergence rate. We consider finding a
solution of (1.8) with minimal norm. This is equivalent to solving (3.17) with f(y) = % Iyl
With a noisy data b° satisfying ||b° — b|| < 8, the corresponding proximal ADMM (3.18)
takes the form

F = (A4 o1 + 0+ pa*A) ! (1A% + pxt + 02F — Ak = o)),
= pe (zk“ + vk/pz) :
S CICAMUEE AL N (3.20)

v

where Pc denotes the orthogonal projection of X" onto C. The source condition (3.19) now
takes the form

' € die(x") such that x + v € Ran(A™) (3.21)
which is equivalent to the projected source condition x' e Po(Ran(4™)).

Example 3.6 In our numerical simulation we consider the first kind integral equation

1
(Ax) (1) ::/ k(s,t)x(s)ds =b(t), te][0,1] (3.22)
0
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(a) The true solution " I
0.4 g g T 00 (b) relative error versus number of iterations: ¢ = 0.01 " (c) relative error versus number of iterations: § = 0.0001
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Fig. 1 a Plots the true solution xf,b, ¢ plot the relative errors versus the number of iterations for the method
(3.20) using noisy data with noise level § = 1072 and 1074 respectively

Table 1 Numerical results for the ] . ] 812 sl/4
method (3.20) using noisy data ST min iteTmin  €TTmin/d T Tmin/d
with diverse noise levels, where . | 49307, 5 | 0.155922 0.087681
errmip and iterpj, denote
respectively the the smallest le=2  13255¢-2 2 0.132553 0.041917
relative error and the required le-3 5.2985e—3 19 0.167552 0.029796
number of iterations le—4  2.1196e—3 501 0211957 0.021196
le=5  7.2638e—4 2512 0229702 0.012917
le—6  2.7450e—4 31447 0.274496 0.008680
le=7  7.4693¢—5 329,542  0.236199 0.004200

on L2[0, 1], where the kernel « is continuous on [0, 1] x [0, 1]. Such equations arise naturally
in many linear ill-posed inverse problems, see [12, 18]. Clearly A is a compact linear operator
from L2[0, 1] to itself. We will use

k(s ) =d (d>+ (s —?)*

with d = 0.1. The corresponding equation is a 1-D model problem in gravity surveying.
Assume the equation (3.22) has a nonnegative solution. We will employ the method (3.20)
to determine the unique nonnegative solution of (3.22) with minimal norm in case the data
is corrupted by noise. Here C := {x € L?[0,1] : x > O a.e.} and thus Pc(x) = max{x, O}.

In order to investigate the convergence rate of the method, we generate our data as follows.
First take o™ € L2[0, 1], set x™ := max{A*w', 0} and define b := Ax". Thus x7 is a
nonnegative solution of Ax = b satisfying xt = Pe(A*w'), i.e. the source condition (3.21)
holds. We use o™ = 13(0.9 — £) (¢ — 0.35), the corresponding x ' is plotted in Fig. 1a. We then
pick a random data § with [|§ |20 1) = 1 and generate the noisy data be by b’ = b+ SE.
Clearly [|b° — bll 20,17 = 9.

For numerical implementation, we discretize the equation by the trapzoidal rule based on
partitioning [0, 1] into N — 1 subintervals of equal length with N = 600. We then execute
the method (3.20) with Q = 0, p; = 10, p» = 1 and the initial guess x* = 19 =10 =0
using the noisy data b® for several distinct values of 8. In Fig. 1b and ¢ we plot the relative
error || x* — x*||L2/||xT||Lz versus k, the number of iterations, for § = 10~2 and § = 10—+
respectively. These plots demonstrate that the proximal ADMM always exhibits the semi-
convergence phenomenon when used to solve ill-posed problems, no matter how small the
noise level is. Therefore, properly terminating the iteration is important to produce useful
approximate solutions. This has been done in [21, 22].
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In Table 1 we report further numerical results. For the noisy data b° with each noise level
§=10"%i =1,---,7, we execute the method and determine the smallest relative error,
denoted by errp;y, and the required number of iterations, denoted by i terpyi,. The ratios
ermin /81/ 2 and errmin /6 /4 are then calculated. Since xT satisfies the source condition
(3.21), our theoretical result predicts the convergence rate 0 (8Y*). However, Table 1 illus-
trates that the value of errp;,/ 81/2 does not change much while the value of errpi,/ sl/4
tends to decrease to 0 as § — 0. This strongly suggests that the proximal ADMM admits the
order optimal convergence rate O (8Y/2%) if the source condition (3.21) holds. However, how
to derive this order optimal rate remains open.
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