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Abstract. In our previous work [arXiv:2202.10042], the complexity of Sinkhorn iteration is
reduced from O(N2) to the optimal O(N) by leveraging the special structure of the kernel matrix.
In this paper, we explore the special structure of kernel matrices by defining and utilizing the proper-
ties of the Lower-ColLinear Triangular Matrix (L-CoLT matrix) and Upper-ColLinear Triangular
Matrix (U-CoLT matrix). We prove that (1) L/U-CoLT matrix-vector multiplications can be carried
out in O(N) operations; (2) both families of matrices are closed under the Hadamard product and
matrix scaling. These properties help to alleviate two key difficulties for reducing the complexity
of the Inexact Proximal point method (IPOT), and allow us to significantly reduce the number of
iterations to O(N). This yields the Fast Sinkhorn II (FS-2) algorithm for accurate computation of
optimal transport with low algorithm complexity and fast convergence. Numerical experiments are
presented to show the effectiveness and efficiency of our approach.
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1. Introduction. The Wasserstein metric, broadly used in optimal transport
theory with applications in many fields including machine learning, quantifies the
dissimilarity between two probabilistic distributions. Many methods have been pro-
posed to compute the Wasserstein metrics directly, such as the linear programming
methods [30, 22, 36], combinatorial methods [33], solving the Monge-Ampère equa-
tions [15, 14, 3], via Benamou-Brenier formulation [2, 21] and the proximal splitting
methods [8, 28]. In recent years, several approximation techniques in optimal trans-
port for high-dimensional distributions have also been proposed [26, 27].

The Sinkhorn algorithm [10, 34] is a popular O(N2) algorithm to approximate
the Wasserstein metric [31] by minimizing the entropy regularized optimal transport
(OT) problem. In [24], the FS-1 algorithm is proposed to solve entropy regularized
OT in O(N) time by leveraging the special structure of the Sinkhorn kernel matrix
of the Wasserstein-1 metric. The solution of entropy regularized OT approximates
the accurate OT solution only if the regularization parameter is sufficiently small.
However, small regularization parameters lead to numerical instability and excessive
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iterations [13]. This causes the slow convergence of the Sinkhorn algorithm.
The Inexact Proximal point method [35] for the Optimal Transport problem

(IPOT) has been proposed to address this challenge. It regularizes the original OT
by introducing the proximal point term and solves a series of successive subproblems.
Only fairly mild regularization parameters are required to ensure the method’s fast
convergence to the accurate OT solution in an O(N2) algorithm. The goal of this
paper is to construct a new method to accurately compute OT solutions with good
convergence behavior and O(N) algorithm complexity by combing the IPOT method
and the FS-1 algorithm. Note the two key steps in the IPOT method make it hard to
reduce the complexity to O(N): the matrix Hadamard product (Algorithm 2.1, line 4)
and the matrix scaling (Algorithm 2.1, line 8). For general matrices, the complexity
of the above operations is both O(N2). Moreover, these operations may destroy the
special structure of the kernel matrix [24], making it impossible for us to implement
matrix-vector multiplication with O(N) cost.

We will explore the special structure of kernel matrices by defining and exploit-
ing the properties of the Lower-ColLinear Triangular Matrix (L-CoLT matrix) and
Upper-ColLinear Triangular Matrix (U-CoLT matrix). For these matrices, we can
realize the matrix-vector multiplication with O(N) cost by using the idea of dynamic
programming similar to [24]. Next, we show that each L/U-CoLT matrix can be rep-
resented by two vectors of dimension N . Furthermore, we prove the closure of families
of L/U-CoLT matrices to matrix Hadamard product and matrix scaling. This means
that the special structure of the kernel matrix is preserved by matrix Hadamard
product and matrix scaling, so we can still implement matrix-vector multiplication
(Algorithm 2.1, lines 6-7) with O(N) cost. On the other hand, by updating two
representation vectors of the L/U-CoLT matrix, we can also implement matrix Ha-
damard product (Algorithm 2.1, line 4) and matrix scaling (Algorithm 2.1, line 8)
with O(N) cost. Consequently, the Fast Sinkhorn II (FS-2) algorithm is developed,
which integrates the advantages of both IPOT and FS-1. Moreover, we also find that
the FS-2 algorithm has the advantage in reducing the space complexity since all the
matrices can be represented by vectors. Due to these benefits, one can expect that our
FS-2 could be applied in various fields, e.g., machine learning [26, 27, 16, 25], image
processing [32, 29], inverse problems [6, 12, 37, 18], density function theory[19, 5, 9].

The rest of the paper is organized as follows. In section 2 , the basics of the
Wasserstein-1 metric and the IPOT method are briefly reviewed. After presenting
the definition, properties, and fast matrix-vector multiplications of the L/U-CoLT
matrix in section 3, we apply them to accelerate the IPOT method, thus developing
the FS-2 algorithm in section 4. In section 5, the FS-2 algorithm is extended to high
dimensions. The numerical experiments are performed to verify our conclusions in
section 6. We conclude the paper in section 7.

2. The Wasserstein-1 metric and the IPOT method. Given two unit dis-
crete distributions u and v,

u = (u1, u2, · · ·uN )> ∈ RN , v = (v1, v2, · · · , vN )> ∈ RN ,

where ui ≥ 0, vj ≥ 0, and
∑
i ui =

∑
j vj = 1. The Wasserstein-1 distance between

them is defined as [31]

(2.1) W1 (u,v) = min
Γ1=u,ΓT 1=v

〈C, Γ〉 ,
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where C = [cij ] ∈ RN×N is the cost matrix. The element cij = ‖xi − yj‖1 represents
the cost of transporting the unit mass from position xi to position yj and the variable

Γ = [γij ] ∈ RN×N to be optimized is the transport plan. Here, the Frobenius inner
product 〈A,B〉 =

∑
i,j aijbij , where A = [aij ], B = [bij ] are real-valued matrices.

The Sinkhorn algorithm [10, 34] solves an entropy regularized OT problem to
obtain an approximate result of (2.1). However, the small regular parameter required
by good approximation leads to a slow convergence rate and numerical instability. To
avoid this problem, the proximal point iteration (2.2) is developed to solve (2.1) ac-
curately [35]. It begins with a transport map Γ(0) and iteratively solves the following
minimization problem

(2.2) Γ(t+1) = arg min
Γ1=u,ΓT 1=v

〈C, Γ〉+ δ(t)Dh

(
Γ, Γ(t)

)
,

where Dh is Bregman divergence, taken in the form of the KL divergence in [35],

Dh (A, B) =
∑
i,j

(
aij ln

aij
bij
− aij + bij

)

and δ(t) is the regular parameter. The Lagrangian of the above equation writes

L(Γ,α,β) = 〈C, Γ〉+ δ(t)Dh

(
Γ, Γ(t)

)
+αT (Γ1− u) + βT

(
ΓT1− v

)
.

Taking derivative of the Lagrangian with respect of γij directly leads to

γij = e−αi/δ
(t)

Q
(t)
ij e
−βj/δ

(t)

, where Q
(t)
ij = γ

(t)
ij e
−cij/δ(t) > 0.

Denoting � as the Hadamard product, Q(t) = K � Γ(t) and K = [e−cij/δ
(t)

] ∈ RN×N

is the kernel matrix. Letting φi = e−αi/δ
(t)

, ψj = e−βj/δ
(t)

, and vectors φ = (φi) and
ψ = (ψj), one obtains

(2.3) diag(φ)Q(t)diag(ψ)1 = u, diag(ψ)Q(t)>diag(φ)1 = v.

By iteratively updating vectors φ and ψ

(2.4) ψ(t,`+1) = v � (Q(t)>φ(t,`)), φ(t,`+1) = u� (Q(t)ψ(t,`+1)),

one can obtain an accurate solution for the original OT problem (2.1). Here � repre-
sents pointwise division, t is the proximal iteration step (outer iteration) and ` it the
Sinkhorn-type iteration step (inner iteration). The pseudo-code of IPOT is shown in
Algorithm 2.1.

3. The Collinear Triangular Matrix.

3.1. Definition and Fast Matrix-Vector Multiplication.

Definition 3.1 (Lower/Upper-Collinear Triangular Matrix). A lower triangu-
lar matrix is called a Lower-Collinear Triangular Matrix(L-CoLT matrix) if
its corresponding entries on any two rows (columns) have the same–column (row)
independent– ratio except those dividing by 0. Specifically, the N-dimensional L-CoLT
matrix set is defined as follows:
(3.1)

CNL =
{
M ∈ RN×N | mi+1,j/mi,j = ri, j ≤ i; mi,j = 0, i < j, r ∈ (R\{0})N−1

}
.
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Algorithm 2.1 IPOT

Input: u, v ∈ RN ; K = e−C/δ ∈ RN×N ; L, itr max ∈ N+

Output: W1(u,v)

1: φ, ψ ← 1
N 1N

2: Γ = 1N1TN
3: for t = 1 : itr max do

4: Q← K � Γ

5: for ` = 1 : L do

6: ψ ← v �
(
QTφ

)
7: φ← u� (Qψ)

8: Γ← diag (φ)Qdiag (ψ)
return W1(u,v)

Similarly, we define Upper-Collinear Triangular Matrix(U-CoLT matrix), which
is a strictly upper triangular matrix:
(3.2)

CNU =
{
M ∈ RN×N | mi−1,j/mi,j = r′i−1, i < j; mi,j = 0, i ≥ j, r′ ∈ (R\{0})N−2

}
.

We call the vectors r and r′ in (3.1)-(3.2) the ratio vectors of the collinear triangular
matrix.

The matrices introduced in Definition 3.1 are termed as collinear triangular
matrices (CoLT), due to the following collinearity between columns:

mi,j/mi,j+1 = mk,j/mk,j+1 ⇐⇒ mi,j/mk,j = mi,j+1/mk,j+1.

Theorem 3.2 (Vector Representation of Collinear Triangular Matrix). Any L-
CoLT matrix ML can be represented by its diagonal elements γ and the ratio vector
r in Equation (3.1). Any U-CoLT matrix MU can be represented by its superdiagonal
elements γ′ and the ratio vector r′ in (3.2).

Proof. For any L-CoLT matrix ML ∈ CNL , if its corresponding γ and r are given,

then mi,j = γj
N−1∏
k=i

rk. The proof of U-CoLT is similar.

In the following, we use L-CoLT(γ, r), γ ∈ RN , r ∈ RN−1 and U-CoLT(γ′, r′),
γ′ ∈ RN−1, r′ ∈ RN−2 to represent a L-CoLT matrix and a U-CoLT matrix, respec-
tively. A specific correspondence of L-CoLT and U-CoLT is shown as follow:

For the L-CoLT matrix ML

ML = L-CoLT(γ, r) =



γ1

γ1r1 γ2

γ1r1r2 γ2r2 γ3

...
...

...
. . .

γ1

N−1∏
i=1

ri γ2

N−1∏
i=2

ri γ3

N−1∏
i=3

ri · · · γN
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Similarly, for the U-CoLT matrix MU

MU = U-CoLT(γ′, r′) =



0 γ′1 γ′2r
′
1 · · · γ′N−1

N−2∏
i=1

r′i

0 γ′2 · · · γ′N−1

N−2∏
i=2

r′i

. . .
. . .

...

0 γ′N−1

0


The special nature of the L-CoLT and U-CoLT matrices allows us to compute

matrix-vector multiplications in O(N) operations.
For any ML = L-CoLT(γ, r) and vector y ∈ RN , the matrix-vector multiplica-

tion MLy is written as

(3.3) MLy =



γ1y1 + 0 + 0 · · · + 0
γ1r1y1 + γ2y2 + 0 · · · + 0
γ1r1r2y1 + γ2r2y2 + γ3y3 · · · + 0

...
...

...
...

...
. . .

...
...

γ1

N−1∏
i=1

riy1 + γ2

N−1∏
i=2

riy2 + γ3

N−1∏
i=3

riy3 · · · + γNyN


.

Denote pk as the summation of the k-th row in (3.3), then one has

p1 = γ1y1, pk = rk−1pk−1 + γkyk, k = 2, · · · , N.

Based on this recursion formula, a fast implementation is proposed in Algorithm 3.1.

Algorithm 3.1 Fast L-CoLT Matrix-Vector multiplication

Input: input vector y of size N , input matrix ML = L-CoLT(γ, r)
Output: p = MLy

1: procedure LCMV(y, γ, r)
2: p1 = γ1y1

3: for i = 1 : N − 1 do
4: pi+1 = ripi + γi+1yi+1

return p

Similarly, the fast matrix-vector multiplication for U-CoLT matrices is shown in
Algorithm 3.2.

Next, we denote the set CN as the direct sum of CNL and CNU , defined by

Definition 3.3.

(3.4) CN = CNL + CNU =
{
A+B | A ∈ CNL , B ∈ CNU

}
.

Due to the linearity of matrix-vector multiplication, we can further develop the fast
matrix-vector multiplication algorithm for matrices in CN , which is given in Algo-
rithm 3.3.

The space and time complexities of these algorithms are O(N), which is much
better than the original matrix-vector multiplication.
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Algorithm 3.2 Fast U-CoLT Matrix-Vector multiplication

Input: input vector y of size N , input matrix M = U-CoLT(γ′, r′)
Output: q = MUy

1: procedure UCMV(y, γ′, r′)
2: qN = 0, qN−1 = γ′N−1yN
3: for i = 2 : N − 1 do
4: qN−i = r′N−iqN−i+1 + γ′N−iyN−i+1

return q

Algorithm 3.3 CoLT Matrix-Vector multiplication

Input: input vector x of size N , diagonal elements γ, γ′ and the ratio vector r, r′

Output: p+ q = My

1: procedure CMV(y, cL, cU , γ, γ′)
2: p = LCMV(y, γ, r)
3: q = UCMV(y, γ′, r′)

return p+ q

3.2. Some Basic Properties. In this subsection, we justify some basic prop-
erties of those matrices involved, which will be used in our algorithm.

Theorem 3.4.
(
CNL , �

)
and

(
CNU , �

)
are Abelian groups, where � is the Hada-

mard product.

Proof. We only prove the theorem for
(
CNL , �

)
. It suffices to show that

(
CNL , �

)
has the following properties:

Closure: For any two matrices A = L-CoLT(γ̂, r̂) and B = L-CoLT(γ̃, r̃), we
set D = A�B. Since di,j = ai,jbi,j , one has

(3.5) di,j/di+1,j = (ai,jbi,j) / (ai+1,jbi+1,j) = r̂ir̃i, j = 1, 2, · · · , i,

and the strictly upper triangle part ofD is obviously 0, which meansD = L-CoLT(γ̂�
γ̃, r̂ � r̃) ∈ CNL .

Identity and Inverses: Let

(3.6) E =


1
1 1
1 1 1
...

...
...

. . .

1 1 1 · · · 1

 ∈ CNL ,
then for any A = L-CoLT(γ, r), A�E = E�A = A, which means E is the identity
element. Let

B =


1/a11

1/a21 1/a22

1/a31 1/a32 1/a33

...
...

...
. . .

1/an1 1/an2 1/an3 · · · 1/ann

 .

Since
bi,j/bi+1,j = ai+1,j/ai,j = 1/ri, j = 1, 2, · · · , i,
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then B ∈ CNL . And obviously, A� B = B � A = E, which means B is the inverse of
A.

Commutativity and Associativity: The commutativity and associativity can be
derived from the commutative and associative law of real number multiplication.

Based on the above theorem, we can deduce directly

Corollary 3.5.
(
CN , �

)
is an abelian group with identity element 1N1TN .

Theorem 3.6. For any vector x ∈ (R\{0})N , fx (M) = (diag (x))M and
gx (M) = M (diag (x)) are permutations in CNL and CNU .

Proof. We only prove the theorem for CNL .

Closure: For any vector x ∈ (R\{0})N , and ML = L-CoLT(γ, r), let E be the
one defined in Equation (3.6). Since

E1 = (diag (x))E =


x1

x2 x2

x3 x3 x3

...
...

...
. . .

xn xn xn · · · xn

 ∈ CNL ,

E2 = E (diag (x)) =


x1

x1 x2

x1 x2 x3

...
...

...
. . .

x1 x2 x3 · · · xn

 ∈ CNL ,
we have

(3.7)
fx (M) = (diag (x))M = (diag (x))E �M = E1 �M ∈ CNL ;

gx (M) = M (diag (x)) = M � E (diag (x)) = M � E2 ∈ CNL .

The last set membership can be derived by the closure of
(
CNL , �

)
proved in Theo-

rem 3.4. Hence, fx and gx are maps from CNL to itself.
Injectiveness: For any two matrices A = L-CoLT(γ̂, r̂) and B = L-CoLT(γ̃, r̃),

let D1 be the inverse of E1 and D2 be the inverse of E2. If fx (A) = fx (B), then

A = D1 � E1 �A = D1 � fx (A) = D1 � fx (B) = D1 � E1 �B = B.

If gx (A) = gx (B), then

A = A� E2 �D2 = gx (A)�D2 = gx (B)�D2 = B � E2 �D2 = B,

which means fx (·) and gx (·) are injective functions.
Surjectiveness: For any M ∈ CNL , let Q1 = D1 �M and Q2 = M �D2, then

fx (Q1) = E1 �D1 �M = E �M = M ;

gx (Q2) = M �D2 � E2 = M � E = M,

which means fx (·) and gx (·) are surjective functions.

Corollary 3.7. fx (·) and gx (·) are permutations in CN .
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4. The Fast Sinkhorn II. In this section, we will discuss the implementation
details to accelerate IPOT. In Algorithm 2.1, three parts lead to O(N2) algorithm
complexity, i.e., the matrix Hadamard product (line 4), the matrix-vector multiplica-
tion (lines 6-7), and the matrix scaling (line 8). They all rely on the representation
and manipulation of L/U CoLT matrices.

For two discrete distributions on a 1D uniform mesh grid with a grid spacing of
h, by introducing the notation λ = e−h/δ, the kernel matrix K is written as

(4.1) K =


1 λ λ2 · · · λN−1

λ 1 λ · · · λN−2

λ2 λ 1 · · · λN−3

...
...

...
. . .

...
λN−1 λN−2 λN−3 · · · 1

 ∈ CN .

Below we discuss step by step of IPOT (Algorithm 2.1) to reduce the complexity:
• line 2: Γ = 1N1TN ∈ CN , we only need four vectors (γ,γ′, r, r′) to represent

Γ according to Theorem 3.2.
• line 4: the matrix Hadamard product Q = K � Γ ∈ CN according to The-

orem 3.4 and Corollary 3.5. By updating the four representation vectors
(γ,γ′, r, r′), we can obtain Q with O(N) cost.

• lines 6-7: the matrix-vector multiplication QTφ and Qψ can be implemented
with O(N) cost according to Algorithm 3.3.

• line 8: the matrix scaling Γ = diag(φ)Qdiag(ψ) ∈ CN according to The-
orem 3.6 and Corollary 3.7. By updating the four representation vectors
(γ,γ′, r, r′), we can obtain Γ with O(N) cost.

Based on the above discussions, we proposed the FS-2 algorithm with O(N)
complexity. The pseudo-code is presented in Algorithm 4.1.

Algorithm 4.1 1D FS-2 Algorithm

Input: u, v ∈ RN ; L, itr max ∈ N+; h, δ ∈ R
Output: W1(u,v)

1: λ← e−h/δ; φ,ψ ← 1
N 1N ; r, s← 0N

2: αL, βL, αU , βU ← λ1N−1; γ ← 1N ; γ′ ← λ1N−1

3: for t = 1 : itr max do
4: for ` = 1 : L do
5: r ← CMV(φ,βL,βU ,γ,γ′)
6: ψ ← v � r
7: s← CMV(ψ,αL,αU ,γ,γ′)
8: φ← u� s
9: for i = 1 : N − 1 do

10: αLi ← λαLi (φi+1/φi), β
L
i ← λβLi (ψi+1/ψi)

11: γ′i ← λγ′iφiψi+1

12: for i = 1 : N − 2 do
13: αUi ← λαUi (φi/φi+1), βUi ← λβUi (ψi/ψi+1)

14: γ ← φ�ψ � γ
return W1(u,v)

There is a minor flaw in the above algorithm. The computational cost of W1(u,v)
is still O(N2) in the last step. This was also ignored in our previous paper [24]. Now,



THE COLLINEAR TRIANGULAR MATRIX AND FS-2 ALGORITHM 9

we would like to discuss this issue. The computation of W1 (u,v) = 〈C, Γ〉 can be
regarded as the summation of all elements of the following matrix.

(4.2)

C � Γ =



0 hγ′1 2hγ′2r
′
1 · · · (N−1)hγ′N−1

N−2∏
i=1

r′i

hγ1r1 0 hγ′2 · · · (N−2)hγ′N−1
N−2∏
i=2

r′i

2hγ1r1r2 hγ2r2 0 · · · (N−3)hγ′N−1
N−2∏
i=3

r′i

...
...

...
. . .

...

(N−1)hγ1
N−1∏
i=1

ri (N−2)hγ2
N−1∏
i=2

ri (N−3)hγ3
N−1∏
i=3

ri · · · 0


.

We separate the summation of the matrix to the lower and strictly upper triangular
parts. Thus, the k-th line summation of two parts can be written as

pk =

k∑
i=1

ωki, qk =

N∑
i=k+1

ωki.

We can consider the following recursive computation

(4.3)

p1 = 0, p2 = hγ1r1, p′2 = hγ1r1 + hγ2,

pi = ri−1

(
pi−1 + p′i−1

)
, p′i = ri−1p

′
i−1 + hγi, i = 3, 4, · · · , N.

qN = 0, qN−1 = hγ′N−1, q′N−1 = hγ′N−1 + h,

qj = r′j
(
qj+1 + q′j+1

)
, q′j = r′jq

′
j+1 + h, j = 1, 2, · · · , N − 2.

Thus, the Wasserstein-1 metric can be finally obtained with O(N) cost

W1(u,v) = 〈C, Γ〉 =

N∑
i=1

(pi + qi) .

5. Extension to high dimension. In this section, we illustrate how the FS-
2 algorithm generalizes to higher dimensions using the two-dimensional case as an
example.

5.1. Block Collinear Triangular Matrix. Hereinafter, for A ∈ RMN×MN ,
we break it into M2 uniform blocks with size N ×N :

A =



A1,1 A1,2 A1,3 · · · A1,M

A2,1 A2,2 A2,3 · · · A2,M

...
...

...
. . .

...

AM,1 AM,2 AM,3 · · · AM,M


.

And for vectors x ∈ RkN , we break it into k uniform blocks as (x1,x2, · · · ,xk)
T

, in
which

xi =
(
x1+(i−1)N , x2+(i−1)N , · · · , xiN

)T
, i = 1, 2, · · · , k.
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To carry out the fast implementation of the matrix-vector multiplication of the block
matrix above, we generalize the definition of CN in (3.4) to the block case as

Definition 5.1.

CN,M = {A ∈RMN×MN |Ak,k ∈ CN ; rL, rU ∈ (R\{0})(M−1)N
;

Ai+1,j =
(
diag

(
rLi
))
Ai,j , j ≤ i; Ai−1,j =

(
diag

(
rUi−1

))
Ai,j , i ≤ j}

.

Since CN,M is a generalization of CN , we can also use the strategy of Algorithm 3.3
in blocks to reduce the computational cost of matrix-vector multiplications. For a
vector x ∈ RNM , the matrix-vector multiplication Ax is written as

(5.1) Ax =


A1,1x1 + A1,2x2 + A1,3x3 · · · + A1,MxM
A2,1x1 + A2,2x2 + A2,3x3 · · · + A2,MxM
A3,1x1 + A3,2x2 + A3,3x3 · · · + A3,MxM

...
...

...
...

...
. . .

...
...

AM,1x1 + AM,2x2 + AM,3x3 · · · + AM,MxM

 .

We separate the summation of row k to the lower triangular part pk and the strictly
upper triangular part qk. Then computing Ax is formulated as

Ax = p+ q, pk =

k∑
i=1

Ak,ixi, qk =

M∑
i=k+1

Ak,ixi, k = 1, · · · ,M.

If A is in CN,M with rL and rU , instead of directly calculating pk and qk, a successive
computation is used

(5.2)
p1 = A1,1x1, pk = rLk−1 � pk−1 +Ak,kxk, k = 2, · · · ,M,

qM = 0N , qk−1 = rUk−1 � (qk +Ak,kxk), k = M,M − 1, · · · , 2.

Since the computation of Ak,kxk can be carried out with O(N) complexity by using
Algorithm 3.3, the whole computation is of O(NM) complexity.

Similar to Theorem 3.4 and Theorem 3.6, CN,M is closed under the Hadamard
product and matrix scaling.

Theorem 5.2.
(
CN,M ,�

)
is an Abelian group; Matrix scaling operations are per-

mutations in CN,M .

Proof. For any A ∈ CN,M , since the diagonal blocks of A are in CN , by Corol-
lary 3.7, all blocks in A are in CN . Then the two properties can be proved in a similar
way as in subsection 3.2.

5.2. The 2D FS-2 Algorithm. Consider two discretized probabilistic distri-
butions

u = (u11, u21, · · · , uN1, u12, · · · , ui1j1 , · · · , uNM ) ,

v = (v11, v21, · · · , vN1, v12, · · · , vi2j2 , · · · , vNM ) ,
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on a uniform 2D mesh of size N ×M with a vertical spacing of h1 and a horizontal
spacing of h2. The corresponding kernel matrix is written as

K =



K0 λ2K0 λ2
2K0 · · · λM−1

2 K0

λ2K0 K0 λ2K0 · · · λM−2
2 K0

...
...

...
. . .

...

λM−1
2 K0 λM−2

2 K0 λM−3
2 K0 · · · K0


,

where the sub-matrix

K0 =


1 λ1 · · · λN−1

1

λ1 1 · · · λN−2
1

...
...

. . .
...

λN−1
1 λN−2

1 · · · 1

 ,

and

λ1 = e−h1/δ, λ2 = e−h2/δ.

Obviously, the original 2D kernel K contains blocks which are multiples of the
1D kernel, hence belongs to CN,M . By an analysis similar to that in section 4 and
using Theorem 5.2, the matrices Q and Γ are in CN,M throughout the course of the
iteration, which means that all the matrix-vector multiplications can be carried out
by using recursion (5.2). Thus, the total cost of matrix-vector multiplication of our
FS-2 algorithm for 2D Wasserstein-1 metric is reduced to O(NM).

In the 2D FS-2 algorithm, we use ‘̂’ to distinguish whether it is a coefficient of the
block or the inner sub-matrix, and update them simultaneously after an inner loop.
The pseudo-code is presented in Algorithm 5.1. Updating the coefficients of inner
sub-matrices and computation of W1 (u,v) are omitted in the pseudo-code since they
are similar to the 1D case, which we have described in detail.

6. Numerical Experiments. In this section, we carry out three numerical ex-
periments to evaluate the FS-2 algorithm, including one 1D example and two 2D
examples. The true Wasserstein metric WLP is obtained by solving the original OT
(2.1) using interior-point methods [11, 20]. In our experiments, for both IPOT and
FS-2, the number of inner loops is set as L = 20 and the regularization param-
eter δ(t) is set to 1. The number of iterations here is the total number of loops:
#iteration = itr max × L. In order to deal with the difficulties caused by zeros, we
utilize the rescaling method in [23]:

(6.1) D(f, g) = W1

(
f
‖f‖ + η

1 +Nη
,

g
‖g‖ + η

1 +Nη

)
,

In the following, we refer to formula (6.1) for numerical stability with η = 10−5.
All the experiments are conducted on a platform with 128G RAM, and one Intel(R)
Xeon(R) Gold 5117 CPU @2.00GHz with 14 cores.
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Algorithm 5.1 2D FS-2 Algorithm

Input: u, v ∈ RNM ; L, itr max ∈ N+; h1, h2, δ ∈ R
Output: W1(u,v)

1: λ1 ← e−h1/δ; λ2 ← e−h2/δ; φ(0),ψ(0) ← 1
NM 1NM ; p(0), r(0), q(0), s(0) ← 0NM

2: γ ← 1NM , γ
′, αL, βL, λ11(N−1)M , α

U , βU ← λ11(N−2)M

3: α̂L, β̂
L
, α̂U , β̂

U
← λ1N(M−1)

4: while t = 1 : itr max do
5: for ` = 1 : L do
6: r1 ← CMV(φ1, β1), sM ← 0N
7: for i = 1 : M − 1 do

8: ri+1 ← β̂
L

i � ri + CMV(φi+1,β
L
i+1,β

U
i+1,γi+1,γ

′
i+1)

9: sN−i← β̂
U

N−i�(sN−i+1+CMV(φN−i+1,β
L
N−i+1,β

U
N−i+1,γN−i+1,γ

′
N−i+1))

10: ψ ← v � (r + s)
11: p1 ← CMV(ψ1, α1), qM ← 0N
12: for i = 1 : M − 1 do
13: pi+1 ← α̂Li � pi + CMV(ψi+1,α

L
i+1,α

U
i+1,γi+1,γ

′
i+1)

14: qN−i←α̂
U
N−i�(qN−i+1+CMV(ψN−i+1,α

L
N−i+1,α

U
N−i+1,γN−i+1,γ

′
N−i+1))

15: φ← u� (p+ q)

16: for i = 1 : M − 1 do

17: α̂Li ← λ2

(
φi+1/φi

)
� α̂Li , β̂

L

i ← λ2

(
ψi+1/ψi

)
� β̂

L

i

18: α̂Ui ← λ2

(
φi/φi+1

)
� α̂Ui , β̂

U

i ← λ2

(
ψi/ψi+1

)
� β̂

U

i

19: Update γ, γ′, αL, βL, αU , βU

return W1(u,v)

6.1. 1D Gaussian distributions. We consider the Wasserstein-1 metric be-
tween two mixtures of 1D Gaussian distributions: 0.4N (60, 64) + 0.6N (40, 36) and
0.5N (35, 81) + 0.5N (70, 81), which is the experiment setting in [35]. Input vectors
u and v are generated by integration on the uniform discretization of interval [0, 100]
with node size N .

We first compare the convergence of FS-1 and FS-2 for N = 1000. We tested 100
experiments, and each experiment was performed for 10, 000 iterations. In Figure 1,
the differences of the Wasserstein-1 metric between the true solution WLP and the
numerical solutions generated by FS-1 and FS-2 are depicted. As expected, as ε
decreases, the error of FS-1 decreases gradually after the iterations converge. We can
observe this for ε = 1/20 and ε = 1/80. However, for ε = 1/320, we can not observe
convergence. In fact, the error does not drop over 10, 000 iterations. This is because
ε is too small, making updates extremely slow. In fact, after 20, 000 iterations, the
result of ε = 1/320 will continue to drop, and the final error is smaller than that of
ε = 1/20 and ε = 1/80. However, in any case, the results of FS-1 are far inferior to
those of FS-2, both in terms of accuracy and convergence rate.

The averaged computational time of the IPOT method and the FS-2 algorithm is
given in Table 1 and Figure 2 (left). Apparently, the FS-2 algorithm has achieved an
overwhelming advantage over the IPOT method in terms of computational speed, and
ensures that the transport plans of the two are almost the same. This replicates the
advantages of the FS-1 algorithm over the Sinkhorn algorithm. According to the data
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Fig. 1. The 1D Gaussian distribution problem. The errors between the numerical results
generated by FS-1 or FS-2 and the true Wasserstein-1 metric w.r.t. number of iterations.

Fig. 2. The 1D Gaussian distribution problem. Left: The comparison of computational time
between the FS-2 algorithm and the IPOT method with different numbers of grid points N . Right:
The computational time required to reach the absolute error of the Wasserstein-1 metric.

fitting results, the empirical complexity of the FS-2 algorithm is O(N1.07), which is
much smaller than the O(N2.40) complexity of the IPOT method. At last, we show the
computational time required to reach the absolute error of the Wasserstein-1 metric
for N = 1, 000 in Figure 2 (right). Clearly, the FS-2 algorithm has an advantage of
two orders of magnitude in computational time compared to the IPOT method.

6.2. 2D Random distributions. Next, we compute the Wasserstein-1 metric
between two N × N dimensional random vectors whose elements obey the uniform
distribution on (0, 1). Without loss of generality, we set h1 = h2 = 0.1. We also
tested 100 experiments, and each experiment was performed for 10, 000 iterations.
We hope to test the performance of the FS-2 algorithm in 2D through this example.
The differences in the Wasserstein-1 metric between the true solution WLP and the
numerical solutions generated by FS-1 and FS-2 are shown in Figure 3. From this, we
can observe that FS-1 converges quickly for ε = 1/20, but the error is large. When
ε = 1/80, the iteration converges at about 5, 000 steps. The error keep decreasing
even after 10, 000 steps for ε = 1/320. However, their errors and convergence speed
are not as good as FS-2.

The averaged computational time of the IPOT method and the FS-2 algorithm
is given in Table 2 and Figure 4 (left). According to the data fitting results, the
empirical complexity of the FS-2 algorithm is O(N2.05), which is much smaller than
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Table 1
The 1D Gaussian distribution problem. The comparison between the IPOT method and the FS-

2 algorithm with the different number of grid points N . Columns 2-4 are the averaged computational
time of the two algorithms and the speed-up ratio of the FS-2 algorithm. Column 5 is the Frobenius
norm of the difference between the transport plan computed by the two algorithms.

N
Computational time (s)

Speed-up ratio ‖PFS − P‖FFS-2 IPOT

500 1.25× 10−2 1.22× 100 9.76× 101 2.09× 10−15

2000 4.95× 10−2 3.73× 101 7.52× 102 6.65× 10−16

8000 2.32× 10−1 8.41× 102 3.63× 103 8.57× 10−16

Fig. 3. The 2D random distribution problem. The errors between the numerical results gener-
ated by FS-1 or FS-2 and the true Wasserstein-1 metric w.r.t. number of iterations.

the O(N4.98) complexity of the IPOT method. The computational time required to
reach the absolute error of the Wasserstein-1 metric for N × N = 32 × 32 is also
presented in Figure 4 (right). Similar to the previous subsection, we can also observe
the huge computational efficiency of the FS-2 algorithm over the IPOT method.

6.3. Image matching problem. The final experiment tests the performance
of our FS-2 algorithm for high-resolution image matching. This is a successful appli-
cation of the Optimal Transport [4, 17, 7]. We select two images from the DIV2K
dataset [1]. Through a process similar to Subsection 5.4 in the manuscript [24], we
compute the Wasserstein-1 metric between the two images. The differences in the
Wasserstein-1 metric between the true solution WLP and the numerical solutions gen-
erated by FS-1 and FS-2 are depicted in Figure 6. We also present the averaged
computational time of the IPOT method and the FS-2 algorithm in Table 3. More-
over, the computational time required to reach the absolute error of the Wasserstein-1
metric for N × N = 32 × 32 is shown in Figure 7. From these results, we can get
the same conclusion as before, that is, the FS-2 algorithm seems to be the numerical
algorithm with the fastest convergence and the lowest complexity for computing the
Wasserstein-1 metric.

7. Conclusion. As the follow-up of the FS-1 paper, we generalize the result of
matrix-vector multiplication at O(N) costs for the special matrix to the more general
L/U-CoLT matrix. We illustrate that only two vectors are required to represent any
L/U-CoLT matrix. Moreover, we also prove the closure of families of L/U-CoLT
matrices to matrix Hadamard product and matrix scaling. Therefore, the above
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Fig. 4. The 2D random distribution problem. Left: The comparison of computational time
between the FS-2 algorithm and the IPOT method with different numbers of grid points N . Right:
The computational time required to reach the absolute error of the Wasserstein-1 metric.

Table 2
The 2D random distribution problem. The comparison between the IPOT method and the

FS-2 algorithm with different total number of grid nodes N × N . Columns 2-4 are the averaged
computational time of the two algorithms and the speed-up ratio of the FS-2 algorithm. Column 5
is the Frobenius norm of the difference between the transport plan computed by the two algorithms.

N×N
Computational time (s)

Speed-up ratio ‖PFS − P‖FFS-2 IPOT

20×20 2.24× 10−2 4.88× 10−1 2.18× 101 2.40× 10−16

40×40 7.74× 10−2 1.34× 101 1.73× 102 1.52× 10−16

80×80 3.38× 10−1 4.79× 102 1.42× 103 1.40× 10−16

160×160 1.42× 100 1.46× 104 1.03× 104 8.51× 10−17

320×320 6.31× 100 − − −

Fig. 5. The image matching problem. Illustration of images.

Table 3
The image matching problem. The comparison between the IPOT method and the FS-2 algo-

rithm with the different total number of grid nodes N × N . Columns 2-4 are the averaged compu-
tational time of the two algorithms and the speed-up ratio of the FS-2 algorithm. Column 5 is the
Frobenius norm of the difference between the transport plan computed by the two algorithms.

N ×N Computational time (s)
Speed-up ratio ‖PFS − P‖FFS-2 IPOT

100×100 5.16× 10−1 1.44× 103 2.79× 103 6.44× 10−17

200×200 2.31× 100 3.69× 104 1.60× 104 4.65× 10−17

400×400 9.69× 100 − − −
800×800 4.18× 101 − − −
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Fig. 6. The image matching problem. The errors between the numerical results generated by
FS-1 or FS-2 and the true Wasserstein-1 metric w.r.t. number of iterations.

Fig. 7. The image matching problem. The computational time required to reach the absolute
error of the Wasserstein-1 metric.

matrix operations are essentially updating the representation vectors, which reduce
both time and space complexity to O(N). These results can be directly applied to
the Inexact Proximal point method for Optimal Transport problem and reduce the
overall computational complexity to O(N). From this, we develop the Fast Sinkhorn
II algorithm. It does not seem to be an overstatement that for the computation of
the Wasserstein-1 metric, we have probably obtained the most competitive method,
both in terms of convergence speed and computational complexity.
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[25] A. T. Lin, W. Li, S. Osher, and G. Montúfar, Wasserstein proximal of GANs, in Interna-
tional Conference on Geometric Science of Information, Springer, 2021, pp. 524–533.

[26] C. Meng, Y. Ke, J. Zhang, M. Zhang, W. Zhong, and P. Ma, Large-scale optimal transport
map estimation using projection pursuit, in Advances in Neural Information Processing
Systems, vol. 32, 2019, pp. 8118–8129.

[27] C. Meng, J. Yu, J. Zhang, P. Ma, and W. Zhong, Sufficient dimension reduction for clas-
sification using principal optimal transport direction, in Advances in Neural Information
Processing Systems, vol. 33, 2020.

[28] L. Métivier, R. Brossier, Q. Merigot, É. Oudet, and J. Virieux, An optimal trans-
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