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Abstract

Efficient and fast computation of a tensor singular value decomposition (t-SVD)
with a few passes over the underlying data tensor is crucial because of its many
potential applications. The current/existing subspace randomized algorithms need
(2q+2) passes over the data tensor to compute a t-SVD, where q is a non-negative
integer number (power iteration parameter). In this paper, we propose an efficient
and flexible randomized algorithm that can handle any number of passes q, which
not necessary need be even. The flexibility of the proposed algorithm in using
fewer passes naturally leads to lower computational and communication costs.
This advantage makes it particularly appropriate when our task calls for several
tensor decompositions or when the data tensors are huge. The proposed algorithm
is a generalization of the methods developed for matrices to tensors. The expect-
ed/average error bound of the proposed algorithm is derived. Extensive numerical
experiments on random and real-world data sets are conducted, and the proposed
algorithm is compared with some baseline algorithms. The extensive computer
simulation experiments demonstrate that the proposed algorithm is practical, effi-
cient, and in general outperforms the state of the arts algorithms. We also demon-
strate how to use the proposed method to develop a fast algorithm for the tensor
completion problem.

Keywords: Tensor singular value decomposition, randomization, pass-efficient
algorithms.
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1. Introduction

Multidimensional arrays or tensors are natural extensions of matrices and vec-
tors. It was in 1927 when the first definition of the tensor rank was presented
and the corresponding tensor decomposition termed Canonical Polyadic Decom-
position (CPD) was defined [1]. Later on, an alternative definition for the tensor
rank (Tucker rank) was defined in 1963 [2, 3] and a new tensor decomposition
called Tucker decomposition was proposed. The Tucker decomposition includes
the CPD as a special case. Indeed, there is no unique definition for the tensor rank
or the tensor decomposition. Other tensor decompositions include Tensor Train
(TT) or Matrix Product State (MPS) [4, 5], Tensor Chain/Ring (TC) or MPS with
periodic boundary conditions [6, 7], tensor SVD (t-SVD) [8, 9] and Hierarchical
Tucker decomposition [10].

Tensors have been successfully applied in many machine learning and data
analysis tasks such as data reconstruction, data compression, clustering, etc. See
[11, 12] and the references therein for a comprehensive review of such applica-
tions. One of the main challenges in this work is developing fast algorithms for
the computation of different types of tensor decomposition. For example, to solve
the tensor completion problem [13], we usually need to compute tensor decom-
positions multiple times. When the data tensors are huge or many iterations are
necessary for the convergence, these calculations become prohibitively expensive.
Therefore, in order to be employed in real-time applications such as traffic data
prediction, we need to build fast methods for various types of tensor decomposi-
tions.

The randomization framework has been proven to be an efficient technique,
for low-rank matrix computation [14] and recently generalized to the tensors [15,
16, 17, 18]. It is known that randomized algorithms reduce the computational
complexity of the deterministic counterparts and also their communication costs.
The latter benefit is especially important when the data tensor is very large and
stored on several machines. Here, the communication cost is the main concern
and we need to access the data tensor as few times as possible. In the context
of randomization, such methods are called randomized pass-efficient algorithms
[19]. For example, in [20] a pass-efficient randomized algorithm is developed for
the Tucker decomposition. The standard randomized subspace iteration method
needs (2q+2) passes/views over the data tensor [14], where q is a power iteration
parameter. In [19], the author proposed new randomized algorithms for matrices,
which do not have this limitation and, for any budget of passes, can compute
a low-rank matrix approximation. In this paper, we generalize this idea to the
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tensor case based on the tubal product (t-product) [8, 9]. The flexibility of using
fewer passes leads to lower communication and computational costs and this is
the key benefit of the proposed algorithm in this paper. For example, as will be
shown in our experiments, for the image/video compression task, in Section 6,
three passes provided quite good results, while the classical subspace randomized
algorithm at least needs 4 passes, and this extra pass can be very expensive for
data tensors stored out-of-core or when multiple low tubal rank approximations
are required in our task, e.g., tensor completion. Simulations on synthetic and
real-world datasets are provided to support the theoretical results. In particular, we
present an application of the proposed algorithm for the image/video completion
problem.

Our principal contributions can be summarized as follows:

• Developing a pass-efficient randomized algorithm for the computation of
the t-SVD with an arbitrary number of passes

• Applying the proposed algorithm to reconstruct images/videos with missing
pixels

• Extensive simulation results on synthetic benchmarks and real-world datasets

The remainder of this paper is organized as follows: The preliminary concepts
and definitions are introduced in Section 2. Section 3 is devoted to introducing
the t-SVD and its computational procedures. The proposed approach is outlined
in Section 4. An application of the proposed algorithm to the tensor completion
problem is presented in Section 5. Simulation results are presented in Section 6
and a conclusion is given in Section 7.

2. Preliminaries

Let us introduce the notations and main concepts that we need in the next sec-
tions. Tensors, matrices, and vectors are denoted by underlined bold upper case
letters e.g., X, bold upper case letters, e.g., X, and bold lower case letters, e.g.,
x, respectively. Slices are produced by fixing all but two modes of a tensor. For
a third-order tensor X, X(:, :, i), X(:, i, :) and X(i, :, :) are called frontal, lateral,
and horizontal slices, respective. Fibers are obtained by fixing all but one mode.
For a third-order tensor X, X(i, j, :) is called a tube. The Frobenius and infinity
norms of tensors are denoted by ∥.∥F and ∥.∥∞, respectively. The notation “conj”
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denotes the complex conjugate of a complex number or the component-wise com-
plex conjugate of a matrix. The mathematical expectation of a random tensor X is
denoted by E(X), and ⌈n⌉means the nearest integer number greater than or equal
to n. The element-wise or Hadamard product, is denoted by “⊛”. For a given data
tensor X ∈ RI1×I2×···×IN and the indicator set Ω ∈ RI1×I2×···×IN , the projector
PΩ is defined as follows

PΩ(X) =

{
X(i) i ∈ Ω,
0 i /∈ Ω,

where i = (i1, i2, . . . , iN) is a multi-index and 1 ≤ in ≤ In, n = 1, 2, . . . , N .
Throughout the paper, we focus only on real and third-order tensors, however, our
results can be generalized to complex higher-order tensors straightforwardly.

Before presenting the t-SVD, we first need to present some basic definitions
such as the t-product operation and f-diagonal tensors.

Definition 1. (t-product) Let X ∈ RI1×I2×I3 and Y ∈ RI2×I4×I3 , then the t-
product X ∗Y ∈ RI1×I4×I3 is defined as follows

C = X ∗Y = fold (circ (X) unfold (Y)) , (1)

where

circ (X) =


X(:, :, 1) X(:, :, I3) · · · X(:, :, 2)
X(:, :, 2) X(:, :, 1) · · · X(:, :, 3)

...
... . . . ...

X(:, :, I3) X(:, :, I3 − 1) · · · X(:, :, 1)

 ,

and

unfold(Y) =


Y(:, :, 1)
Y(:, :, 2)

...
Y(:, :, I3)

 , Y = fold (unfold (Y)) .

It is known that the t-product operation is indeed the circular convolution op-
erator and can be computed using the Fast Fourier Transform (FFT). To this end,
the FTT operator is applied to all tubes of two tensors X, Y, and obtains new
tensors X̂, Ŷ. Then, we multiply the frontal slices of the tensors X̂, Ŷ to get the
new tensor Ẑ. Finally, we apply the Inverse FFT (IFFT) operator to all tubes of the
tensor Ẑ. This procedure is summarized in Algorithm 1, which is the optimized
version of the t-product, because it needs only the FFT of the ⌈ I3+1

2
⌉ first frontal
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slices suggested by the works [21, 22], while the original papers ([8, 9]) consider
the FFT of all frontal slices. Note that fft (Z, [], 3) is equivalent to computing the
FFT of all tubes of the tensor Z. The t-product can be defined according to an
arbitrary invertible transform [23]. For example, the unitary transform matrices
were utilized in [24], instead of discrete Fourier transform matrices. It was also
proposed in [25] to use non-invertible transforms instead of unitary matrices.

It can be proven that for a tensor X ∈ RI1×I2×I3 , we have

∥X∥2F =
1

I3

I3∑
i=1

∥X̂(:, :, i)∥2F , (2)

where X̂(:, :, i) is the i-th frontal slice of the tensor X̂ = fft(X, [], 3), see [22, 26].

Algorithm 1: t-product in the Fourier domain [8]
Input : Two data tensors X ∈ RI1×I2×I3 , Y ∈ RI2×I4×I3

Output: t-product C = X ∗Y ∈ RI1×I4×I3

1 X̂ = fft (X, [], 3);
2 Ŷ = fft (Y, [], 3);
3 for i = 1, 2, . . . , ⌈ I3+1

2 ⌉ do
4 Ĉ (:, :, i) = X̂ (:, :, i) Ŷ (:, :, i);
5 end
6 for i = ⌈ I3+1

2 ⌉+ 1 . . . , I3 do
7 Ĉ (:, :, i) = conj(Ĉ (:, :, I3 − i+ 2));
8 end
9 C = ifft

(
Ĉ, [], 3

)
;

Definition 2. (Transpose) Let X ∈ RI1×I2×I3 be a given tensor. Then the trans-
pose of the tensor X is denoted by XT ∈ RI2×I1×I3 , which is constructed by
transposing all its frontal slices and then reversing the order of transposed frontal
slices 2 through I3.

Definition 3. (Identity tensor) The tensor I ∈ RI1×I1×I3 is called identity if its
first frontal slice is an identity matrix of size I1× I1 and all other frontal slices are
zero. It is easy to show I ∗X = X and X ∗ I = X for all tensors of conforming
sizes.

Definition 4. (Orthogonal tensor) A tensor X ∈ RI1×I1×I3 is orthogonal if XT ∗
X = X ∗XT = I.
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Figure 1: Illustration of (a) Tensor SVD (t-SVD) and (b) truncated t-SVD for a third-order
tensor [34].

Definition 5. (f-diagonal tensor) If all frontal slices of a tensor are diagonal then
the tensor is called an f-diagonal tensor.

Definition 6. (Random tensor) A tensor Ω is random if its first frontal slice Ω(:
, :, 1) has independent and identically distributed (i.i.d) elements, while the other
frontal slices are zero.

The MATLAB implementation of many operations in the t-product format can
be found in the following useful toolbox:
https://github.com/canyilu/Tensor-tensor-product-toolbox.

3. Tensor SVD and Tensor QR decomposition

Tensor SVD (t-SVD) was originally proposed in ([8, 9, 27, 28]) to represent
a third-order tensor as a product of three third-order tensors, where all frontal
slices of the middle tensor are diagonal, (Figure 1, provides a graphical illustra-
tion on the t-SVD and its truncated version). For a generalization of the t-SVD to
higher-order tensors, see [29]. This decomposition has found interesting applica-
tions such as completion, clustering, compression, and background initialization
in video surveillance, see [30, 31, 32, 33].

The tubal rank is defined as the number of nonzero tubes of the middle tensor.
It is interesting to note that, unlike other tensor decompositions, the truncated t-
SVD provides the best approximation in the least-squares sense for any unitary
invariant tensor norm [8].

6
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Let X ∈ RI1×I2×I3 , then the t-SVD of the tensor X, admits the model X =
U ∗ S ∗VT , where U ∈ RI1×R×I3 , V ∈ RI2×R×I3 are orthogonal tensors and the
tensor S ∈ RR×R×I3 is f-diagonal ([8, 9]). Computation of the t-SVD is performed
in the Fourier domain and this is summarized in Algorithm 2. Algorithm 2 is a
faster version of the original truncated t-SVD [9, 8] and was developed in [23, 22].
It requires only the SVD of the ⌈ I3+1

2
⌉ first frontal slices [22]. The original t-SVD

[8, 9] involves the SVD of all frontal slices in the Fourier domain. Similar to the
t-product, instead of the discrete Fourier transform matrices, one can define the
t-SVD according to an arbitrary unitary transform matrix. It is shown in [25] that
this can provide a t-SVD with a lower tubal rank.

Algorithm 2: Truncated t-SVD [8, 9]
Input : A data tensor X ∈ RI1×I2×I3 and a tubal rank R;
Output: UR ∈ RI1×R×I3 , SR ∈ RR×R×I3 ,VR ∈ RI2×R×I3 ;

1 X̂ = fft (X, [], 3);
2 for i = 1, 2, . . . , ⌈ I3+1

2 ⌉ do
3 [U,S,V] = Truncated - SVD

(
X̂(:, :, i), R

)
;

4 Û (:, :, i) = U;
5 Ŝ (:, :, i) = S;
6 V̂ (:, :, i) = V;
7 end
8 for i = ⌈ I3+1

2 ⌉+ 1, . . . , I3 do
9 Û(:, :, i) = conj(Û(:, :, I3 − i+ 2));

10 Ŝ(:, :, i) = Ŝ(:, :, I3 − i+ 2);
11 V̂(:, :, i) = conj(V̂(:, :, I3 − i+ 2));
12 end
13 UR = ifft

(
Û, [], 3

)
, SR = ifft

(
Ŝ, [], 3

)
, VR = ifft

(
V̂, [], 3

)
;

The tensor QR (t-QR) decomposition can be defined similarly based on the
t-product. To be precise, for the t-QR decomposition of a tensor X ∈ RI1×I2×I3 ,
i.e., X = Q ∗R, we first compute the FFT of the tensor X as

X̂ = fft(X, [], 3), (3)

and then the QR decompositions of all frontal slices of the tensor X̂ are computed
as follows

X̂(:, :, i) = Q̂(:, :, i) R̂(:, :, i). (4)
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Finally, the IFFT operator is applied to the tensors Q̂ and R̂ to compute the tensors
Q and R. A given data tensor X, can be orthogonalized by applying the t-QR
decomposition and taking the Q part. We use the notation orth(X) to denote this
operation. It is not difficult to see that the t-SVD and the t-QR decomposition for
matrices (I3 = 1) are reduced to the classical matrix SVD and QR decomposition.
Here, orth(X) gives the orthogonal part of the matrix QR decomposition. In
Matlab, this is equivalent to Q = qr(X, 0). The tubal LU (t-LU) decomposition
[35] can be defined in an analogous way by replacing LU decomposition with
the QR decomposition in (4). We remark that the rank-revealing QR and LU
decompositions and their randomized variants were extended to tensors based on
the t-product in [35] and can also be used in this work.

4. A Pass-Efficient randomized algorithm for computation of the t-SVD

It is obvious that Algorithm 2 is prohibitive for large-scale tensors because of
the computation of multiple SVDs of some large-scale matrices. Let us first de-
scribe the idea of the random projection technique [26, 36] to tackle this problem.
In the first stage of the random projection method, the size of a given data tensor
X is reduced by multiplying the X with a random tensor Ω ∈ RI2×(R+P )×I3 as
Y = X∗Ω. Then, the tensor Y is orthogonalized through the t-QR decomposition
of the tensor Y to provide the following low tubal rank approximation:

X ∼= Q ∗B, (5)

where B = QT ∗X, and Q ∈ RI1×R×I3 , B ∈ RR×I2×I3 . Note R+P ≪ I2, where
R is an estimation of the tubal rank and P is the oversampling parameter to better
capture the action of the tensor X [26]. From the low tubal rank approximation
(5), and the t-SVD of B as B = Û ∗ S ∗VT , we can recover the t-SVD of X as
X =

(
Q ∗ Û

)
∗ S ∗VT . It is worth mentioning that the tensor B is smaller than

the original data tensor X and requires less memory and computational resources.
This approach is efficient when the singular values of the frontal slices decay very
fast; otherwise, the power iteration should be utilized. Here, the original tensor
X is replaced with Z =

(
X ∗XT

)q ∗ X and the above-mentioned procedure
is applied to Z. Due to stability issues, the tensor Z should not be explicitly
computed. Instead, it can be efficiently computed using the subspace iteration
method [14, 26].

The basic randomized algorithm for the low-rank matrix approximation is
summarized in Algorithm 3. The ”for” loop (Lines 3 - 6), is the power iteration
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technique and is used when the singular values of a matrix do not decay fast. It has
been established that in practice, q = 1, 2, 3 are sufficient to achieve good accu-
racy. In addition, P is the oversampling parameter, which helps to better capture
the range of the matrix. These strategies have been generalized to develop fast al-
gorithms for computation of the t-SVD. Algorithm 4, is an extension of Algorithm
3 to the case of tensors based on the t-product. For computational efficiency, one
can replace the t-QR decomposition in Algorithm 4 with the t-LU decomposition
[35, 37, 38], or alternatively use a combination of t-QR and t-LU decompositions
[37, 39]. Similar to Algorithm 3, the power iteration procedure discussed earlier
is performed in Algorithm 4, in Lines (3 - 6). For power iteration q, Algorithms
3 and 4 need to pass the data tensor (2q + 2) times. Indeed, for Algorithm 4
two passes in lines (2,&7) and 2q passes in lines (3 - 6) are required. This means
that the number of passes over the data tensor is always an even number. To the
best of our knowledge, the only paper, which proposes a single-pass randomized
algorithm for computing the t-SVD is [36], which is a generalization of those pro-
posed in [40] from matrices to tensors. In [19], the authors resolved the drawback
of the mentioned limitation of the randomized subspace algorithms for matrices
and developed randomized algorithms, which are applicable for a budget of any
number of passes. This algorithm is presented in Algorithm 5. Motivated by this
efficient algorithm, we extend it to the tensor case based on the t-product. The
proposed pass-efficient algorithm can compute a low tubal rank approximation of
the underlying data tensor using an arbitrary number of passes and is presented in
Algorithm 6. Besides, we exploit the proposed method to develop a fast algorithm
to solve the tensor completion problem as a practical application.

Now, we describe the main procedure for computing the t-SVD in a pass-
efficient way. Assuming that we afford a budget of v passes (the number of pos-
sible passes) for computing the t-SVD, it is clear that if v ≥ 4 is even, then we
can use the classical randomized subspace Algorithm 4 with the power iteration
parameter q = (v − 2)/2. So, how about making the amount of passes odd?

Inspired by the idea presented in [19], we suggest the following procedures
for computation of the t-SVD given v ≥ 2 passes:

• (If v is even) Construct an orthonormal tensor Q for the range of the tensor
(X ∗XT )(v−2)/2 ∗X ∗Ω. Then, compute the truncated t-SVD of the tensor
XT ∗Q as

[V,S, Û] = Trunacted t - SVD(XT ∗Q)

and set U = Q ∗ Û.
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• (If v is odd) Construct an orthonormal tensor Q for the range of the tensor
(XT ∗ X)(v−1)/2 ∗ Ω. Then, compute the truncated t-SVD of the tensor
XT ∗Q as

[U,S, V̂] = Trunacted t - SVD(XT ∗Q)

and set V = Q ∗ V̂.

Algorithm 3: Classical randomized subspace method for computation
of the Truncated SVD [39]

Input : A data matrix X ∈ RI1×I2 ; a matrix rank R; Oversampling P and the power
iteration q.

Output: Truncated t-SVD: X ∼= USVT

1 Ω = randn(I2, P +R);
2 [Q(1),∼] = orth(XΩ);
3 for i = 1, 2, . . . , q do
4 [Q(2),∼] = orth(XQ(1));
5 [Q(1),∼] = orth(XTQ(2));
6 end
7 [Q(2),R] = orth(XTQ(1));
8 [V̂,S, Û] = Truncated SVD(R, R);
9 V = Q(1)V̂;

10 U = Q(2)Û;

Note that the proposed algorithm 6 requires an estimation of the tubal rank as
input but a fixed-precision algorithm is proposed in [41] that for a given approxi-
mation bound gives the tubal rank and corresponding low tubal rank approxima-
tion. The proposed randomized algorithm offers more flexibility in passing the
underlying data tensor. The next theorem gives the expected/average upper bound
of the approximated tensor computed by Algorithm 3 and we use it to derive sim-
ilar results for Algorithm 5.

Theorem 1. [26] (Average Frobenius error for Algorithm 3). Let X ∈ RI1×I2 and
Ω ∈ RI2×(R+P ) be a given matrix and a Gaussian random matrix, respectively
with the oversampling parameter P ≥ 2. Suppose Q is obtained from Algorithm
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Algorithm 4: Classical randomized subspace method for computation
of the Truncated t-SVD [26]

Input : A data tensor X ∈ RI1×I2×I3 ; a tubal rank R; Oversampling P and the power
iteration q.

Output: Truncated t-SVD: X ∼= U ∗ S ∗VT

1 Ω = randn(I2, P +R, I3);
2 [Q(1),∼] = orth(X ∗Ω);
3 for i = 1, 2, . . . , q do
4 [Q(2),∼] = orth(X ∗Q(1));
5 [Q(1),∼] = orth(XT ∗Q(2));
6 end
7 [Q(2),R] = orth(XT ∗Q(1));
8 [V̂,S, Û] = Truncated t-SVD(R, R);
9 V = Q(1) ∗ V̂;

10 U = Q(2) ∗ Û;

Algorithm 5: Randomized truncated SVD with an arbitrary number of
passes [19]

Input : A data matrix X ∈ RI1×I2 ; a matrix rank R; Oversampling P and the budget
of number of passes v.

Output: Truncated t-SVD: X ∼= USVT

1 Q(1) = randn(I2, P +R);
2 for i = 1, 2, . . . , v do
3 if i is odd then
4 [Q(2),R(2)] = orth(XQ(1));
5 else
6 [Q(1),R(1)] = orth(XTQ(2));
7 end
8 end
9 if v is even then

10 [V̂,S, Û] =Truncated SVD(R(1), R);
11 else
12 [Û,S, V̂] =Truncated SVD(R(2), R);
13 end
14 V = Q(1)V̂;
15 U = Q(2)Û;
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Algorithm 6: Proposed pass-efficient randomized truncated t-SVD with
an arbitrary number of passes

Input : A data tensor X ∈ RI1×I2×I3 ; a tubal rank R; Oversampling P and the budget
of number of passes v.

Output: Truncated t-SVD: X ∼= U ∗ S ∗VT

1 Q(1) = randn(I2, P +R, I3);
2 for i = 1, 2, . . . , v do
3 if i is odd then
4 [Q(2),R(2)] = orth(X ∗Q(1));
5 else
6 [Q(1),R(1)] = orth(XT ∗Q(2));
7 end
8 end
9 if v is even then

10 [V̂,S, Û] =Truncate t-SVD(R(1), R);
11 else
12 [Û,S, V̂] =Truncated t-SVD(R(2), R);
13 end
14 V = Q(1) ∗ V̂;
15 U = Q(2) ∗ Û;

3, then

E
(
∥X−QQTX∥2F

)
≤
(
1 +

R

P − 1
τ 4qR

)min{I1,I2}∑
j=R+1

σ2
j

 ,

where R is a matrix rank, q is the power iteration, σj is the j-th singular value of
X, and τR = σR+1/σR ≪ 1 is the singular value gap.

It is not difficult to check that for an even number of passes, e.g., v = 2q + 2,
Algorithm 5 is equivalent to Algorithm 3, so Theorem 1 can be used for its error
analysis. However, given an odd number of passes, Algorithm 5’s error analy-
sis is presented in Theorem 2. Using this, we can derive the average Frobenius
norm error for Algorithm 6. Note that in [19], some average error bounds (in the
spectral norm) have been established for Algorithm 5, but here we consider the
Frobenius norm because it facilitates the derivation of the average error bound of
the approximations achieved by the proposed Algorithm 6.

Theorem 2. (Average Frobenius error for Algorithm 5). Let X ∈ RI1×I2 and
Q(1) ∈ RI2×(R+P ) be a given matrix and a Gaussian random matrix respectively

12



with P ≥ 2 being the oversampling parameter. Suppose Q is obtained from
Algorithm 5, with an odd number of passes v, then

E
(
∥X−XQQT∥2F

)
≤
(
1 +

R

P − 1
τ
2(2v−1)
R

)min{I1,I2}∑
j=R+1

σ2
j

 ,

where R is the matrix rank, q is the power iteration, σj is the j-th singular value
of X, and τR = σR+1/σR ≪ 1 is the singular value gap.

Proof. See the Appendix.

Theorem 3 provides the average error bound for Algorithm 4. Similar to the
matrix case, Algorithm 6 is reduced to Algorithm 4 when an even number of
passes is used hence Theorem 3 can be used for its error analysis. For the case of
an odd number of passes, we present Theorem 4, and its proof is quite similar to
the proof of Theorem 3.

Theorem 3. [26] Given an I1 × I2 × I3 tensor X and a Gaussian tensor Ω of size
I2 × (R + P )× I3, if Q is obtained from Algorithm 4, then

E
(
∥X−Q ∗QT ∗X∥F

)
≤

(
1

I3

I3∑
i=1

(
1 +

R

P − 1
(τ̃

(i)
R )4q

)
(∑

j>R

(σ̃
(i)
j )2

))1/2

,

where R is a tubal rank, P ≥ 2 is an oversampling parameter, q is the power
iteration, σ̃(i)

j is the i-th component of fft(S(j, j, :), [], 3), and the singular value

gap τ̃
(i)
R =

σ̃
(i)
R+1

σ̃
(i)
R

≪ 1.

Theorem 4. Given an I1 × I2 × I3 tensor X and an I2 × (R + P )× I3 Gaussian
tensor Ω, if Q is obtained from Algorithm 6, then

E
(
∥X−X ∗Q ∗QT∥F

)
≤(

1

I3

I3∑
i=1

(
1 +

R

P − 1
(τ̃

(i)
R )2(2v−1)

)(∑
j>R

(σ̃
(i)
j )2

))1/2

,
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where R is the tubal rank, P ≥ 2 is the oversampling parameter, with an odd num-
ber of passes v, σ̃(i)

j is the i-th component of fft(S(j, j, :), [], 3), and the singular

value gap τ̃
(i)
R =

σ̃
(i)
R+1

σ̃
(i)
R

≪ 1.

Proof. See the Appendix.

5. An Application to tensor completion

The problem of recovering a data tensor from only a part of its components
is known as tensor completion [13]. Let X ∈ RI1×I2×···×IN be a given tensor
with missing elements, where the indicator set Ω, stores the location of known
(observed) elements. It is generally known that we may effectively recover the
underlying original tensor from its incomplete version under the low-rank prop-
erty assumption [13]. The following is a common tensor decomposition approach
to solve the tensor completion problem [42, 13]

min
X
∥PΩ(X)−PΩ(M)∥2F ,

s.t. Rank(X) = R,
(6)

where M is the exact data tensor. As described in [43], using an auxiliary variable
C, the optimization problem (6) can be solved more conveniently by the following
reformulation

min
X,C

∥X−C∥2F ,

s.t. Rank(X) = R,
PΩ(C) = PΩ(M)

(7)

and we can alternatively solve the minimization problem (6) over variables X and
C. Thus, the solution to the minimization problem (6) can be approximated by
the following iterative procedures

X(n) ← L(C(n)), (8)

C(n+1) ← Ω⊛M+ (1−Ω)⊛X(n), (9)

where L is an operator to compute a low-rank tensor approximation of the data
tensor C(n) and 1 is a tensor whose all components are equal to one. Note that
equation (8) solves the minimization problem (7) over X for fixed variable C.
Also, Equation (9) solves the minimization problem (7) over C for fixed variable
X. The algorithm consists of two main steps, low-rank tensor approximation (8)
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and Masking computation (9). It starts from the initial incomplete data tensor
X(0) with the corresponding observation index set Ω and sequentially improves
the approximate solution till some stopping criterion is satisfied or the maximum
number of iterations is reached. We do not need to compute the term Ω ⊛ M at
each iteration because it is just the initial data tensor X(0). The filtering/smoothing
procedure is a known technique in signal processing community to improve the
image quality. Indeed, in the above procedure, we exploit this idea and smooths
out the tensor C(n+1) before applying the low tensor rank approximation operator
L to get better results. The first step is computationally expensive steps especially
when a large number of iterations is required for convergence or the data tensor
is quite large. Here, we use our randomized pass-efficient Algorithm 6 instead of
the deterministic algorithms. The experimental results show that this algorithm
provides promising results with lower computational cost.

6. Simulations

In this section, we test the proposed randomized algorithm on synthetic and
real-world datasets. All numerical simulations were performed on a laptop com-
puter with 2.60 GHz Intel(R) Core(TM) i7-5600U processor and 8GB memory.
The Peak Signal-to-Noise Ratio (PSNR) and relative error have been utilized to
evaluate the performance of the proposed algorithm. The PSNR of two images X
and Y is defined as

PSNR = 10 log 10

(
∥X∥∞
∥X−Y∥F

)
dB.

The relative error is also defined as

e(X̃) =
∥X− X̃∥F
∥X∥F

,

where X is the original tensor and X̃ is the approximated tensor. We compare the
proposed algorithm with the baseline methods: Truncated t-SVD (Algorithm 2)
and randomized t-SVD (Algorithm 4).

Example 1. In this experiment, we generate a tensor X ∈ R500×500×500 with exact
tubal rank 15. We set the oversampling parameter P = 5 and apply Algorithm
6 with the tubal rank R = 10 with different numbers of passes over the data
tensor X. In Figure 2 (right), we report the relative error versus the number of
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Table 1: Comparing the running time and relative errors achieved by the proposed algorithm,
Algorithm 2 and Algorithm 4 for Example 1. The results are for the tubal rank R = 10.

Algorithms Running Time (Seconds) Relative error
Truncated t-SVD [8, 9] 25.52 3.4e-15

Randomized t-SVD [26] 17.65 5.2e-15
Proposed algorithm 8.23 7.1e-15

passes. The results show that with v = 2, 3 passes, we can achieve quite good
results and for a larger number of passes, the relative error is smoothly decreased,
while the computational complexity is also higher. In Figure 2 (left), we report the
running time of Algorithm 6 for different numbers of passes. Please note that the
benefit of Algorithm 6 compared with Algorithm 4 is that it does not necessarily
need to pass the original data tensor X four times, and with only two passes, we
can achieve reasonable results. This is one benefit of the proposed method over
method 4, which lacks this flexibility in terms of the number of passes. In Table 1,
we compare the outcomes obtained by the proposed method with those obtained
by the truncated t-SVD (Algorithm 2) and the randomized t-SVD (Algorithm 4).
The outcome clearly demonstrates that we can get about the same accuracy for the
aforementioned data tensor in much less time. It is intriguing that the suggested
approach only requires two runs, but Algorithm 4 requires at least four passes (for
power iteration q = 1). This means that the proposed algorithm even requires less
running time than the randomized Algorithm 4.

The output of Algorithm 6 for two and three runs was insignificant since the
artificial data tensor utilized in this case was noiseless. Examples 2 and 3 show
that the outcomes of two and three passes are important for the real-world datasets
(images and videos).

To further examine the proposed approach, the results for different tubal ranks
are also reported in Figure 3. We see that the proposed algorithm is still efficient
and robust for other tubal ranks.

Additionally, we examined the robustness of the proposed algorithm for situ-
ations that the true rank is not selected. To this end, we first considered a larger
tubal rank R = 15, where the algorithm provided an approximation with a rel-
ative error of 2.1231e − 15 while for a smaller tubal rank R = 5, the algorithm
gave an approximation with a relative error of 0.5619 which is close to the best
approximation computed by the t-SVD. To solve the problem of selecting a tubal
rank lower than the true tubal rank, one can gradually increase the tubal rank until

16



Figure 2: Running time and relative error of the approximations achieved by the proposed
algorithm for a synthetic data tensor of size 500× 500× 500 and the tubal rank R = 15
using different numbers of passes for Example 1.

a satisfying approximation is achieved. Indeed, we combined this technique with
our proposed algorithm and by gradually increasing the tubal rank from R = 5 to
R = 10, the approximation with a relative error of 5.4582e − 15 was achieved.
As the proposed algorithm is very fast especially for relatively small tubal ranks,
it is also applicable for the exact tubal rank estimation task. These simulations
convinced us that it can be efficiently used in different applications.

Example 2. In this example, we apply the proposed algorithm to compress color
images. To this end, we consider the “Kodim03” and “Kodim23” color images in-
cluded in the Kodak dataset 1. We set the oversampling parameter P = 6 and ap-
ply Algorithm 6 to the mentioned images with the tubal rank R = 40 for different
numbers of passes. The reconstructed images and corresponding results including
relative error, PSNR, and running time achieved by the proposed algorithm are
reported in Figure 4. As can be seen, the higher the number of passes, the better
performance of the images and the higher the computational cost. Moreover, we
compare the running time and the PSNR achieved by the proposed algorithm with
the Truncated t-SVD (Algorithm 2) and the randomized t-SVD (Algorithm 4) and
they are shown in Figure 2. These results indicate that the proposed algorithm can

1http://www.cs.albany.edu/˜xypan/research/snr/Kodak.html
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Figure 3: Running time and relative error of the approximations achieved by the truncated
t-SVD, the randomized t-SVD and the proposed algorithm for a synthetic data tensor of
size 500× 500× 500 for different tubal ranks for Example 1.

provide approximately the same reconstruction (PSNR) as the baseline methods
but with less execution time.

Example 3. In this experiment, we examine Algorithm 6 for compressing video
datasets. We have used the “Foreman” and “News” videos from [44] in this test.
Both videos are third-order tensors of size 144× 176× 300. We set the oversam-
pling parameter P = 5 and apply the proposed algorithm for computing t-SVD
with the tubal rank R = 20. For this tubal rank, we achieve the compression ra-
tio 3.7271. The PSNR of some random samples of the frames for the mentioned
two videos and different numbers of passes are reported in Figure 6. Besides,
the PSNR of all frames of both videos are shown in Figure 7 (upper). The cor-
responding running times can been seen in Figure 7 (bottom). Here again, the
same results as the previous two simulations are achieved and using more passes
over the video dataset, we achieve better results with a higher computational cost.
A comparison between the mean of the PSNR of all reconstructed frames by the
proposed algorithm and the truncated t-SVD (Algorithm 2) and the randomized
t-SVD (Algorithm 4) are made in Table 3. The running time and PSNRs of the
reconstructed images obtained by the proposed algorithm and the baselines for
different tubal ranks are also compared in 5. Here again, we see that the proposed
algorithm provides almost the same reconstruction as the baseline but with less
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Figure 4: (Upper) The reconstruction of the “Kodim23” and the “Kodim03” images
using the proposed algorithm for the tubal rank R = 20 and different numbers of
passes (Bottom) The running time of the proposed algorithm for computation of the trun-
cated t-SVD of the “Kodim23” image (left) and the “Kodim03” image (right) with the
tubal rank R = 40 and using different numbers of passes for Example 2. .
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Figure 5: The running time and PSNRs of the reconstructed images achieved by the trun-
cated t-SVD, the randomized t-SVD and the proposed algorithm using different tubal
ranks for Example 2.
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Table 2: Comparing the running time and the PSNR achieved by the proposed algorithm, Algo-
rithm 2 and Algorithm 4 for Example 2. The results are for the tubal rank R = 40.

Kodim23 Image
Algorithms Running Time (Seconds) PSNR

Truncated t-SVD [8, 9] 0.45 27.87
Randomized t-SVD [26] 0.23 27.51

Proposed algorithm 0.18 27.38
Kodim03 Image

Algorithms Running Time (Seconds) PSNR
Truncated t-SVD [8, 9] 0.23 27.67

Randomized t-SVD [26] 0.19 27.39
Proposed algorithm 0.10 27.23

running time.

Example 4. In this simulation we investigate he effectiveness of Algorithm 6 for
the tensor completion task described in Section 5. In our simulations, we make use
of both images and videos. First, we consider four color images taken from the
well-known Kodak dataset (“Kodim03”, “Kodim15”, “Kodim16”, “Kodim23”).
The size of these images is 512× 768× 3, and we remove 80% of the pixels ran-
domly. Then apply the completion procedure described in Section 5 with the tubal
rank R = 30 and use Algorithm 6 with two passes (v = 2) and the oversampling
parameter P = 10. The reconstructed images and their PSNRs are displayed in
Figure 9. The results show the good performance of the proposed algorithm for
the image completion task. A comparison between the proposed algorithm and
Truncated t-SVD (Algorithm 2) and randomized t-SVD (Algorithm 4) for the low
tubal rank approximation is made and the results are shown in Table 4. The ex-
perimental results clearly illustrate that the proposed algorithm can provide the
recovered images with approximately the same accuracy but much faster.

To compare the pass-efficient tensor-based (Algorithm 6) and the pass-efficient
matrix-based algorithms (Algorithm 5), we consider the pepper image depicted in
Figure 10 (first left) that is of size 256 × 256 × 3 and we remove some pixels
of the image in a structure way shown in the second left image. Then, we apply
the completion procedure described in Section where the proposed pass-efficient
tensor-based algorithm (Algorithm 6) was used for the operator L. Also, we re-
shaped the image to a matrix and then apply the iterative procedures (8)-9 to it,
in which the pass-efficient matrix-based algorithm (Algorithm 5) is used or the
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Figure 6: Reconstruction of some random frames for the “News” and the “Foreman”
videos using the proposed algorithm. The tubal rank R = 20 and different numbers
of passes for Example 3.
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Figure 7: Example 3. (Upper) The results of the proposed algorithm for video compression
using different numbers of passes and the tubal rank R = 20 (the left figures are for the
“Foreman” video and the right is for the “News” video). (Bottom). The running time of
the proposed algorithm for different numbers of passes and the tubal rank R = 20. The
left figure is for the “Foreman” video and the right figure is for the “News” video.
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Figure 8: The running time and the mean of the PSNRs of the all reconstructed frames
of the videos achieved by the truncated t-SVD, the randomized t-SVD and the proposed
algorithm using different tubal ranks 3.
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Table 3: Comparing the running time and the mean of the PSNR of all frames achieved by the
proposed algorithm, Algorithm 2 and Algorithm 4 for Example 3. The results are for the tubal
rank R = 25.

News dataset
Algorithms Running Time (Seconds) PSNR

Truncated t-SVD [8, 9] 2.64 30.45
Randomized t-SVD [26] 2.02 30.10

Proposed algorithm 1.10 29.65
Foreman dataset

Algorithms Running Time (Seconds) PSNR
Truncated t-SVD [8, 9] 2.67 28.25

Randomized t-SVD [26] 2.13 28.31
Proposed algorithm 1.05 28.09

operator L. These reconstructed images using two algorithms are visualized in
Figure 10. This indicates that due to the tensor structure-preserving property, the
proposed algorithm has overall better reconstruction quality. The proposed algo-
rithm for a given tubal rank R, provides close to optimal approximation, which is
achieved by the truncated t-SVD. However, in some image restoration methods,
like matrix factorization-based techniques, the rank (R) of a matrix or a tensor
is a crucial parameter. This parameter represents the number of significant com-
ponents or features used to model the image. Choosing an appropriate rank is
essential, and it can significantly impact the quality of the restored image. If the
user provides an incorrect value for R (either too large or too small), it can neg-
atively affect the quality of the restored image. A too small value might result in
a loss of details, while a too large value may overfit the data, leading to artifacts
and noise into the image.

We used the idea known in signal processing, where one starts with a small
tubal rank and gradually increases it until the quality of the image is not improved
significantly[45]. We should highlight that depending on the specific character-
istics of the image and the degradation process, the initial tubal ranks may be
different. For example, in our experiments reported in the paper, for images of
size 512× 768× 3 and 80% of pixels removed, we started by the tubal rank of 25
and gradually increased the tubal rank for which the tubal rank of 30 provided the
best reconstruction. Also, for the images with 90% of pixels missing, we started
with the tubal rank of R = 15 and again gradually increased the tubal rank. Here
the tubal rank R = 21 provided the best recovery results. Please note that since
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the proposed randomized algorithm is fast, running it for several tubal ranks is not
a concern and this is one of the advantages of the proposed algorithm.

We next considered three videos “Akiyo”, “Foreman”, and “News”[44], which
are third-order tensors of size 176×144×300 (collocation of 300 frames or black
and white images). We remove 70% of the pixels of the mentioned videos ran-
domly. With the same procedure described for the images, we used our proposed
pass-efficient algorithm in the completion stage (8), with two passes (v = 2), the
oversampling parameter P = 10, and the tubal rank R = 15 to reconstruct the
incomplete videos. The PSNR of all reconstructed frames of the “Akiyo” video
are shown in Figure 11 (upper). Also, the original, the observed, and the recon-
struction of some frames are displayed in Figure 11 (bottom). The obtained results
for the ”News” and the ”Foreman” videos are reported in Figures 12 and 13, re-
spectively. Similar results as the images were achieved for the case of videos and
the proposed algorithms provided almost the same recovery performance as the
baseline methods by in a faster time. These results are skipped in order to pre-
vent duplication. The clearly indicates the efficiency of the proposed algorithm at
delivering satisfactory results faster.

7. Conclusion and future works

In this paper, a pass-efficient randomized algorithm was proposed for the com-
putation of the tensor SVD (t-SVD). Contrary to the classical randomized sub-
space algorithms, which need an even number of passes over the data tensor, it
can find a low tubal rank approximation of a third-order tensor using an arbi-
trary number of passes. We applied the proposed algorithm for developing a fast
completion method to reconstruct images and videos with missing pixels. The
suggested approach is for real-valued tensors of third order, but it may be eas-
ily extended to higher-order complex tensors. The thorough simulation results
demonstrated the feasibility and efficiency of the proposed algorithm. In future
work, we plan to extend the block Krylov subspace algorithms to the tensor case
based on the t-product and also propose efficient single-pass algorithms for the
computation of the t-SVD.
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Figure 9: Comparing the original, the observed (with 80% missing pixels) and the recon-
structed images using the completion algorithm based on the proposed algorithm using
two passes and the tubal rank 30 for Example 4.

Figure 10: Comparing the matrix and tensor based completion algorithms. For the matrix
based method the matrix rank 25 and for the tensor based approach the tubal rank 25 were
used for Example 4.
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Table 4: Comparison of the running time and the PSNR achieved by the proposed algorithm,
Algorithm 2 and Algorithm 4 for Example 4.

Kodim03
Algorithms Running Time (Seconds) PSNR

Truncated t-SVD [8, 9] 17.34 28.01
Randomized t-SVD [26] 10.03 27.93

Proposed algorithm 5.1 27.88
Kodim15

Algorithms Running Time (Seconds) PSNR
Truncated t-SVD [8, 9] 20.13 25.98

Randomized t-SVD [26] 9.84 25.75
Proposed algorithm 4.57 25.60

Kodim16
Algorithms Running Time (Seconds) PSNR

Truncated t-SVD [8, 9] 19.62 27.56
Randomized t-SVD [26] 11.05 27.34

Proposed algorithm 4.89 27.17
Kodim23

Algorithms Running Time (Seconds) PSNR
Truncated t-SVD [8, 9] 19.45 27.89

Randomized t-SVD [26] 11.43 27.75
Proposed algorithm 5.21 27.69
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Figure 11: (Upper) The PSNR of all reconstructed frames of the “Akiyo” video using the
completion procedure combined by the proposed algorithm. The tubal rank R = 15 and
two passes (Bottom) Visualization of some random samples of the original, the observed
(70% missing pixels) and the reconstructed frames for Example 4.
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Figure 12: (Upper) The PSNR of all reconstructed frames of the “News” video using the
completion procedure combined by the proposed algorithm. The tubal rank R = 15 and
two passes (Bottom) Visualization of some random samples of the original, the observed
(70% missing pixels) and the reconstructed frames for Example 4.
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Figure 13: (Upper) The PSNR of all reconstructed frames of the “Foreman” video using the
completion procedure combined by the proposed algorithm. The tubal rank R = 15 and
two passes (Bottom) Visualization of some random samples of the original, the observed
(70% missing pixels) and the reconstructed frames for Example 4.
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11. Appendix

The proof of Theorem 2 is almost the same as the proof of Theorem 1 pre-
sented in [26]. In fact, they worked on the matrix

(
XXT

)v
X and here we con-

sider Y =
(
XTX

)v. However, due to some tricky modifications, we provide the
details.

Let X = [U1,U2]

[
Σ1 0
0 Σ2

] [
VT

1

VT
2

]
and define Ω1 = VT

1 Ω, Ω2 = VT
2 Ω,

where Σ1 and Σ2 are square. Now, from straightforward computations we have

Y = (XTX)vΩ =
[
V1 V2

] [Σ2v
1 0
0 Σ2v

1

] [
VT

1

VT
2

]
Ω =

[
V1 V2

] [Σ2v
1 0
0 Σ2v

1

] [
Ω1

Ω2

]
,

and consider the orthogonal projector PV = VVT .
The next propositions are used in our subsequent analysis.

Proposition 5. [14] Suppose U is unitary. Then UTPMU = PUTM.

Proposition 6. [14] Suppose range(N) ⊂ range(M). Then, for each matrix A,
it holds that ∥PNA∥ ≤ ∥PMA∥ and that ∥(I−PM)A∥ ≤ ∥(I−PN)A∥.

To prove Theorem 2, we need to first prove the following theorem.

Theorem 7. Let X ∈ RI×J with the SVD X = UΣVT and v ≥ 0 be a
fixed parameter. Choose Ω1 and Ω2 as above and assume that Ω1 is of full
rank. Compute the Q (an orthogonal matrix which forms a basis for the range
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of Y =
(
XTX

)v
Ω) using Algorithm 5 for an odd number of passes v, then the

approximation error satisfies

∥X(I−QQT )∥2F ≤ ∥Σ2∥2F + τ 2(2v−1)∥Σ2Ω2Ω
†
1∥2F . (10)

Proof. Define matrices Z and F as

Z = VTYΩ†
1Σ

−2v
1 =

[
I
F

]
, F ≡ Σ2v

2 Ω2Ω
†
1Σ

−2v
1 . (11)

From the construction of Z, we have

Range(Z) ⊂ Range(Y) ⊂ Range(VTY) ⊂ Range(VTQ). (12)

It is not difficult to see

∥X(I−QQT )∥2F = ∥UΣVT (I−PQ)∥2F =

∥ΣVT (I−PQ)∥2F , (13)

and from (12)-13 together with Propositions 5 and 6 , we have

∥ΣVT (I−PQ)∥2F = ∥ΣVT (I−PQ)VΣT∥F ≤
∥Σ(I−PVTQ)Σ

T∥F = ∥(I−PZ)Σ
T∥2F . (14)

Similar to [14, 26], we can prove

(I−PZ)Σ
T =

[
(I+ FTF)−1FTFΣ1

(I− F(I+ FTF)−1)FTΣ2

]
,

and so we come at

∥(I−PZ)Σ
T∥2F = ∥(I+ FTF)−1FTFΣ1∥2F +

∥(I− F(I+ FTF)−1)FTΣ2∥2F . (15)

Now, we bound two terms of (15). For the first term, consider

∥(I+ FTF)−1FTFΣ1∥2F ≤ ∥F(I+ FTF)−1∥2∥FΣ1∥F
≤ ∥FΣ1∥F , (16)

and for the second term, we get

∥(I− F(I+ FTF)−1)FTΣ2∥2F ≤ ∥Σ2∥2F , (17)
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because I−F(I+FTF)−1)FT ⪯ I, (see [14] for the proof). From (13), (15), (16)
and (17), we have

∥X(I−PQ)∥2F ≤ ∥X(I−PZ)∥2F ≤ ∥Σ2∥2F + ∥FΣ1∥2F . (18)

It is seen that FΣ1 = Σ2v−1
2 (Σ2Ω2Ω

†
1)Σ

−2v+1
1 and with some straightforward

computations we get

∥FΣ1∥F ≤ ∥Σ2v−1
2 ∥2∥Σ−(2v−1)

1 ∥2∥Σ2Ω2Ω
†
1∥F ≤

τ (2v−1)∥Σ2Ω2Ω
†
1∥F . (19)

From (17) and (19), we can conclude the identity (10).

Proof of Theorem 2. Combining Theorem 7 and Theorem 8, the desired result
can be achieved.

Theorem 8. (average Frobenius error) [14]. Suppose that A is a real m×n matrix
with singular values σ1 ≥ σ2 ≥ σ3 ≥ · · · . Choose a target rank k ≥ 2 and an
oversampling parameter p ≥ 2, where k + p ≥ min{m,n}. Draw an n× (k + p)
standard Gaussian matrix Γ, and construct the sample matrix Y = AΓ. Then the
expected approximation error E(∥I−PY)A∥F ≤ (1 + k

p−1
)1/2(Σj>kσ

2
j )

1/2 .

Proof of Theorem 4. From the linearity of the expectation operator and rela-
tion (2) we have

E
(
∥X−X ∗Q ∗QT∥2F

)
≤

1

I3

(
I3∑
i=1

E ∥X̂(i) − X̂(i)Q̂(i)Q̂(i)T∥2F

)
, (20)

where X̂(i) = X̂(:, :, i) and Q̂(i) = Q̂(:, :, i). We can now use Theorem 2 to bound
each term of summation (20) as follows

E
(
∥X̂(i) − X̂(i)Q̂(i)Q̂(i)T∥2F

)
≤

1

I3

(
1 +

R

P − 1
(τ

(i)
R )2(2q−1)

)(∑
j>R

(σ̂
(i)
j )2

)
,

and so we have

E
(
∥(X−X ∗Q ∗QT )∥2F

)
≤

I3∑
i3=1

1

I3

(
1 +

R

P − 1
(τ

(i)
R )2(2q−1)

)(∑
j>R

(σ̂
(i)
j )2

)
.
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It suffices to use the Holder’s identity as follows

E
(
∥X−X ∗Q ∗QT∥

F

)
≤
(
E
(
∥X−X ∗Q ∗QT∥2F

))1/2
,

to get the desired result.
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