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Abstract It is known that standard stochastic Galerkin methods encounter challenges when
solving partial differential equations with high-dimensional random inputs, which are typically
caused by the large number of stochastic basis functions required. It becomes crucial to properly
choose effective basis functions, such that the dimension of the stochastic approximation space
can be reduced. In this work, we focus on the stochastic Galerkin approximation associated with
generalized polynomial chaos (gPC), and explore the gPC expansion based on the analysis of
variance (ANOVA) decomposition. A concise form of the gPC expansion is presented for each
component function of the ANOVA expansion, and an adaptive ANOVA procedure is proposed
to construct the overall stochastic Galerkin system. Numerical results demonstrate the efficiency
of our proposed adaptive ANOVA stochastic Galerkin method for both diffusion and Helmholtz
problems.
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uncertainty quantification
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1 Introduction

Over the past few decades, there has been a significant increase in efforts to develop efficient un-
certainty quantification approaches for solving partial differential equations (PDEs) with random
inputs. Typically, these random inputs arise from a lack of precise measurements or a limited un-
derstanding of realistic model parameters, such as permeability coefficients in diffusion problems
and refraction coefficients in acoustic problems [38[1T12].

Designing a surrogate model or calculating statistics (such as mean and variance of the solu-
tion) for partial differential equations (PDEs) with random inputs is of great interest, especially
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when the inputs are high-dimensional. To achieve this, extensive efforts have been made. The
Monte Carlo method (MCM) and its variants are among the direct methods for computing the
mean and variance [5l[I3]. In MCM, numerous sample points of the random inputs are generated
based on their probability density functions. For each sample point, the corresponding determin-
istic problem can be solved using existing numerical methods. The statistics of the stochastic
solution can then be estimated by aggregating the results of these deterministic solutions. While
MCM is easy to implement, it converges slowly and typically requires a large number of sample
points. Additionally, it does not provide a surrogate model directly, which limits its applications.

To enhance efficiency, the stochastic collocation method (SCM) and the stochastic Galerkin
method (SGM) have been developed. Both the SCM and the SGM are typically more efficient
than the MCM for solving partial differential equations (PDEs) with moderate dimensional ran-
dom inputs [3738BIHE0,B241]. To further accelerate the SCM and the SGM, various of methods
such as the reduced basis collocation method [10], the dynamically orthogonal approximation [6]
[7)24], the reduced basis solver based on low-rank approximation [27] and the preconditioned
low-rank projection methods [I920] are actively studied. However, these methods still face chal-
lenges in addressing high-dimensional problems, as the number of collocation points required by
the SCM and the number of unknowns in the SGM increase rapidly with an increasing number
of random variables, a well-established phenomenon referred to as the curse of dimensionality.

To address the challenges posed by high-dimensional problems, novel techniques have been
developed and implemented. For example, the adaptive sparse grids [I], multi-element general-
ized polynomial chaos [33], the compressive sensing approaches [16l[17], and anchored ANOVA
methods (i.e. cut-HDMR) [23l[42]. In particular, the anchored ANOVA method has been ex-
tensively employed in various research studies (see for instance [30,14\29,31L21]). It is shown
that the choice of the anchor point is crucial for efficient approximation [2834]. The work [30]
proposes to use the covariance decomposition to effectively evaluate the output variance of mul-
tivariate functions. An efficient approximation strategy for high-dimensional periodic functions
is proposed based on the fast Fourier transform and the ANOVA decomposition in [25], and its
application to PDEs with random coefficients is studied in [I§]. The studies conducted in [8|[35]
explore the adaptive reduced basis collocation method based on ANOVA decomposition and its
applications to problems involving anisotropic random inputs and stochastic Stokes-Brinkman
equations.

In this paper, we investigate the generalized polynomial chaos (gPC) expansion of component
functions for the ANOVA decomposition, and present a concise form of the gPC expansion for
each component function. With this formulation, we propose an adaptive ANOVA stochastic
Galerkin method. The proposed method adaptively selects the effective gPC basis functions in
the stochastic space, reducing the dimension of the stochastic approximation space significantly,
and leveraging the orthonormality of the gPC basis to facilitate the computation of the variance of
each term in the ANOVA decomposition. Note that compared with anchored ANOVA collocation
methods [234212T1[]], our proposed adaptive ANOVA stochastic Galerkin method avoids the
difficulty for selecting anchor points, which are crucial for anchored ANOVA methods [28][34]
[T4]. Additionally, the proposed method provides a straightforward approach to build a surrogate
model. We conduct numerical simulations and present the results to demonstrate the effectiveness
and efficiency of our proposed method.

An outline of the paper is as follows. We present our problem setting in the next section.
In Section Bl we review the stochastic Galerkin method and the ANOVA decomposition for
partial differential equations with random inputs. Our main theoretical results and the adaptive
ANOVA stochastic Galerkin method are presented in Section @l Numerical results are discussed
in Section Bl Section [B] concludes the paper.
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2 Problem setting

Let D C R? (d = 2,3) denote a physical domain that is bounded, connected, with a polygonal
boundary 9D, and = € R? denote a physical variable. Let g = (u1,. .., pn) be a random vector
of dimension of N, where the image of p; is denoted by I, and the probability density function
of p; is denoted by p;(p;). We further assume that the components of p, i.e., pi,...,un are
mutually independent, then the image of p is given by I"' = I} X --- x 'y, and the probability
density function of p is given by p(p) = Hl]\il pi(pi). In this work, we focus on the partial
differential equations (PDEs) with random inputs, that is

(z,p) € D x I,

{ngundmdw)f@ﬂ v (x, (2.1)
YV (xz,u) € 0D x I, .

b(.’l), K, u(:z:, ”‘)) = Q(m)

where £ is a linear partial differential operator with respect to physical variables, and b is a
boundary operator. Both operators can have random coefficients. The source function is denoted
by f(zx), and ¢(x) specifies the boundary conditions. Additionally, we assume that £ and b are
affinely dependent on the random inputs. Specifically, we have

K
L, pyulw, p) = O (1)L, u(w, ), (2:2)
z_; |
b, u(w, ) = 3 0 (w)bi(w, u(w, ), (2:3)

where {£;}X | are parameter-independent linear differential operators, and {b;}X | are parameter-
independent boundary operators. Both @S) (p) and @gf) (n) take values in R for i =1,..., K.

It is of interest to design a surrogate model for the problem (2.1 or calculate statistics of the
stochastic solution u(x, u), such as the mean and the variance.

3 Stochastic Galerkin method and ANOVA decomposition

In this section, we introduce the stochastic Galerkin methods for solving problem (Z1I), and
we review the ANOVA decomposition for multi-variable functions. For the sake of presentation
simplicity, we consider problems that satisfy homogeneous Dirichlet boundary conditions. How-
ever, it is noteworthy that the approach we present can be readily extended to other arbitrary
(well-posed) boundary conditions.

3.1 Variational formulation

To introduce the variational form of (2]), some notations are required. We first define the Hilbert
spaces L*(D) and L2(I") via

L%D%{M@:DH{WLU%de<m},
@@%=%WMF%R’AMMfWMu<w}
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which are equipped with the inner products

Following presentation from Babuska et al.[3], we define the tensor space of L*(D) and L2(I") as
L*(D) @ L(T") = {w(w,u)‘w(m,u) = wi(x)gi(p),vi(x) € L*(D), gi(w) € L2(I'),n € N} ,
i=1

which is equipped with the inner product

(w0 i@ ) o = [ [ wla i wp(p)dedn.

We next define the space
Hy(D) :={ve H(D)|v=0o0ndD},
where H!(D) is the Sobolev space
H'(D) := {v e L*D), 9v/0x; € L*(D),i=1,...,d}.

Furthermore, we define the solution and test function space
W= Hy(D)® Ly(I') = {w(m,u) € Hy(D) ® L3(I') w(@, p)|| L2eLz < oo} ,

where || - || z2g 2 is the norm induced by the inner product ( -, - )r2gz2. The variational form
of [ZJ) can be written as: find u in W = Hg(D) ® L3(I") such that

B(u,w) =F(w), VweW, (3.1)
where
%(uvw) = <2(.’1), 22 u(m, H)); w(mv /1’)>L2®L,23 ) 8:(w) = <f(.’13), w(mv /1’)>L2®Ll2) :

Since £ is affinely dependent on the parameter g € I" (see ([Z2])) then 9B has the following form

K

B(u,w) = Z B (u, w), (3.2)
where the component bilinear forms %;(-,-) for i € N* are defined as

Bi(u,w) = (00 ()i (@, u(w. ), w(. ), - (33)
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3.2 Discretization
A discrete version of [B]) is obtained by introducing a finite dimensional subspace to approx-

imate W. Specifically, we first denote the finite dimensional subspaces of the corresponding
stochastic and physical spaces by

Sp = span {®;(p)}7", € Ly(I)}, Vi = span{vs(2)};2, € Hy(D)},

where @,(p) and vs(x) refer to basis functions. We next define a finite dimensional subspace of
the overall solution (and test) function space W by

WP =V, ® S, :=span{v(x)P(p) v € Vs,,P € S, }.
The stochastic Galerkin method seeks an approximation u®P(xz, ) € W}’ such that
B(u™P, w) =F(w), VweWp.
Suppose u?P(x, p) is defined as

Ng Mu

W) =303 ug (o). (3.4)

s=1j=1

Since £ is affinely dependent on the random inputs (see ([Z2))), we substitute (34) into B3)) to
obtain

B ) w) = 300 () (08 (w)Sivae) wla ) (35)

Combining (0 with BI)—(B2), we obtain a linear system for the unknown coefficients u;:
K
<Z G;® Ai> u=h®f, (3.6)
i=1

where {G;}X | are matrices of size n, x n,, and h is a column vector of length n,. They are
defined via

Gi(j. k) = (09 (1)D; (1), D (1)) 2, h(i) = (D;(), 1) L2 (3.7)

The matrices A; and the vector f in ([3.0) are defined through
A’L(Svt) = <£’ivsavt>L2 ) f(S) = <f7 US>L2 ’ (38)
where s =1,...n, and t = 1,...,n,. The vector @ in (8.0) is a column vector of length n, x n,,

and is defined by

ul U1y

I
I

, where u; = v J=1n,.

un“ unxj
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3.3 ANOVA decomposition

We define some notations before introducing the ANOVA decomposition. Let T = {t1,... ¢}
be a subset of U = {1,..., N}, where |T| is the cardinality of T. For special case where T = (),
we set |T| to 0. Otherwise, we assume that t; < t; < ... < fjp. In addition, for T # 0,
let pr denote the |T|-vector that contains the components of the vector p indexed by T, i.e.,
pr = (fitys - -« pt,p ). Furthermore, let pr(pr) and I't denote the probability density function
and the image corresponding to ur respectively, i.e.,

pr(pr) = pry (b, ) - Pt (,utm)’ Im =1 x--- % tha |T| > 0.
For a given cardinality k = 0,1,..., N, we define

T = {T|T Cc, |T| = k’}, ‘IZ = Ui:l,...,kgi-
The representation of u(x, 1) in a form
u(@, p) = uo(x) + Y ur(x, pr)
TeT
N (3.9)
= up(x) + Z ur(x, pr) + ... + Z ur(x, pr),
TeTy TeTN
is a called an ANOVA decomposition if
w(@) = [ playula, ) (3.10)
/ Pty (Htk)uT(m,my)dutk_ =0, tp €T, |T| > 0. (311)
I

t

We call ur(z, pr) in (39) the |T|-th order term or | T|-th order component function, and call ug(x)
the 0-th order term or 0-th order component function for special case.

In this work, we assume that the components of the random vector p are independent. It
follows from ([B.II)) that the terms in (B.9) can be expressed as integrals of u(x, ). To illustrate
this, we first show that if M ¢ T, then

/ pre (e Jun (@, pur)dppre = 0, (3.12)
I're

where T€ represents the complementary set of T, i.e., T = U\T, and the universal set is given
by U= {1,...,N}. In the rest of this paragraph, we prove ([3.12). Since M ¢ T, there exists an
element my, € M such that my, ¢ T; or in other words, there exists an element mj € M such that
my, € TC. Letting P = T°\{my}, we then have

/ pre (e )un (@, par)dpre = / / Prui (ny, ) pe (e ) una (20, pone ) Ao, A
F-yrc F]P FTVLk

= /Fw (PP(NP)/F

mp

Prmi (Hmy, ) uma (T, um)dumk> dpe.
According to ([B.I1]), we have

/ Pmy, (H’mk)u(ma HM)dek = Oa
I,

mE
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which gives (3.12).
If M C T, then M N T¢ = (), and we have

/ pre (pre Jun (2, pn ) dprre = UM(%MM)/ pre(pre )dpre = up(, p)- (3.13)
I're I're

By using (B12)) and BI3]), we obtain

[ prethyuta pidp: = ws( ) + 3w ).
Tpe MCT

This formula provides a means to compute the ANOVA terms, as described [23[42]:

ur(x, pr) =/ pre (e )u(z, p)dpre — > upg(@, p).
FTC MCT

An important property of the ANOVA decomposition is that all the terms in ([B.9) are or-
thogonal, as follows from (II]). To illustrate this, let us assume that T # M, which implies
the existence of an element ¢, € T such that ¢, ¢ M (if this is not the case, then there exist
an element my € M such that my ¢ T, and the proof follows a similar line of reasoning). let
S = U\{tx} be the complementary set of {t;}, then we have

/FP(H)U(%HT)U(%HM)dH://F Pty (bt ) ps (ps)u(z, pr)u(z, pone)dpae, dps

= /F (/)S(HS)U(CB,HM)/F

tk

Pty (,u'tk )U(IE, I'I’T)d/j/tk> dIJ/S
According to (BI1]), we have

/ Pty (bt )u(@, pr)dpse, = 0,
I,
which implies

/FP(H)U(% pr)u(z, pv)dp = 0.

Due to the orthogonality of ANOVA terms, the variance of u(x, @) is the summation of the
variances of all the decomposition terms:

N
Vg =) > Viur(e, pr)]., (3.14)
k=1Te%
where
V [ur(z, pr)] Z/FP(N)U%(w,uT)duz/p pr(pr)uz (@, pr)dpr. (3.15)
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3.4 Adaptive ANOVA decomposition

Note that the k-th order term in B3], i.e., > Spcq, ur(®, pr), has (ZZ) terms. For high-dimensional
problems, the total number of terms in ([33) can be prohibitively large. This motivates the de-
velopment of an adaptive ANOVA expansion for such problems. The adaptive ANOVA approach
is expected to be a more efficient way to approximate the exact solution since only part of low
order terms in ([B.9) is activated based on certain criteria [42].

To determine which terms to include in the ANOVA decomposition, we define sensitivity
indices for each term as follows:

_ Vi urllre
Yrexs, IV Iurl llz2”

where || - || 2 denotes the L? function norm. It follows from equations (B14)—(B.I5) that

ST

0<8r<1, ZST:L
TeTy

The intuitive way to select the important terms in the ANOVA decomposition (3.9 is that
find the terms such that 8¢ > TOL, where TOL is a given tolerance. However, computing all
possible terms is computationally expensive since u(x, ) is the solution of a PDE with random
inputs. Instead, we construct the higher order component functions based on the lower order
terms in the following way.

Let Jx € %% denote the sets of active indices for each order. Using these active indices, the
solution u(x, i) can be approximated by

uw(z, p) ~ up(x) + Z ur(x, pur) + Z ur(x, pr) + .. ..
Ted TeJ2

For the first order terms, all the terms are retained, i.e., J; = ¥1. Suppose that Jj is given for
k < N — 1, and define the relative variance vy as

|V [ur] || 2 N
_ , T ey, (3.16)
ZTe:;; IV [ur] || L2 F

where J7 := J1 U -+ UJg. Then, the index set of the next order can be constructed via

T -

Jes1 = {T|T € Tp11, and ¥ S C T with [S| = k satisfies S € Ji},

where }
i :={T € Jx|yr > TOL}.

Algorithm 1 Adaptive ANOVA decomposition [42]

Input: u(xz, ) and TOL, set k =1 and J1 = {{1},...,{N}}.
while (k < N) and J;, # 0 do
Compute yr for T € Jy.
Set Ji := {T € 3k|7’]1‘ > TDL}.
Set Jpi1 = {T|T € Tpy1, and ¥V S C T with |S| = k satisfies S € Ji}.

k=k+1.
end while
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Algorithm [ presents the pseudo-code for the adaptive ANOVA decomposition. However,
computing the relative variance r efficiently by classical methods can be challenging, espe-
cially when dealing with the high-dimensional random inputs that arise in the context of PDEs
with random inputs. To address this issue, we propose an adaptive ANOVA stochastic Galerkin
method. In the following sections, we provide details of how to compute the relative variance ~r
in the adaptive ANOVA stochastic Galerkin method.

4 Adaptive ANOVA stochastic Galerkin method

In the last section, we introduced the ANOVA decomposition as a method to capture the im-
portant features of the solution. By representing the component functions of the ANOVA de-
composition as the generalized polynomial chaos expansion, an effective surrogate model for the
problem (21]) can be constructed, which is essential for accelerating the solution evaluation pro-
cess for time intensive problems. There are two widely used approaches for this purpose: the
generalized polynomial chaos (gPC) expansion [38], and the polynomial dimensional decomposi-
tion (PDD) [31]. In this work, we apply the gPC expansion to present the component functions
in (39). However, it is noteworthy that the PDD can also be used similarly.

4.1 Generalized polynomial chaos expansion of component functions

Let us commence with the definition of gPC basis functions for a single random variable. Suppose
that py is a random variable with probability density function pg(ux), where k =1,..., N. The
gPC basis functions are the orthogonal polynomials satisfying

/F pi ()8 (Nk)¢§-k) (pk)dpk = 03, (4.1)
tk
where ¢ and j are non-negative integers, and 9; ; is the Kronecker delta.

For N dimensional random variables, let ¢ = (i1,...,in) € N¥ be a multi-index with the
total degree |i| = i1 + -+ + in. Note that in this work, we assume that the components of p,
ie., pu1,...,pun are mutually independent, and thus the N-variate gPC basis functions are the
products of the univariate gPC polynomials, i.e.,

Bi(p) = & (1) - 6N ().
It follows from (@I that
/F p() @i ()P (p)dp = b5 4,

where 57;,3' = 51'1,]‘1 N '6iN,jN-

We now consider the generalized polynomial chaos expansion of the |T|-th order component
function uwr(x, pr), which requires some notations. Let T¢ = {¢¢, ... vtﬁrc\} be the complementary
set of T, i.e., T¢ = U\T, where the universal set is given by U = {1,..., N}. For any set T C U
with |T| > 0, the gPC basis function corresponding to the multi-index iy is given by

1 (tyr))
Qsiwr (HT) = (bgitZ)(Mtl) o '(bi(‘;‘r.‘m)(ﬂtm )a

where 47 denote the multi-index that contains the components of the multi-index % indexed by T,
ie., it = (i(t1),...,4(fr,))). In additional, let M be the set of multi-indices defined by

My := {ili € NV i(t1) #0,...,i(typ) # 0,i(t5) = 0,...,i(tfpe) = 0}, 0 < |T| < N.
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For the special case |T| = 0, we set My = {i]i € NV (1) =0,...,4(N) = 0}, and for the special
case |T| = N, we set My := {3|s € NV, 4(1) #0,...,4(N) # 0}. We can then state the following
theorem:

Theorem 4.1 Given x € D and T C U with |T| > 0, assuming that the |T|-th order compo-
nent function ur(x, pur) belongs to Lﬁ(F), then the generalized polynomial chaos expansion of
ur(x, wr) can be expressed by

ur(@, pr) = Y ui(®)®i(p), (4.2)

€M

where u;(x) is the coefficient of P;() defined by
wi@) = [ ol (e, )i

Proof Since ur(z, pr) € Ly(I') and {®};}7_, forms an complete orthonormal basis of L2(I),
we can express the generalized polynomial chaos expansion of ur(x, pr) as

up(a, pr) = Y ui(@)Pi(p), (4.3)

|i|=0
where u;(x) are the coefficients of the expansion given by
uile) = [ plu)us( pun)s(p2)
r
To prove the theorem, it suffices to show that if ¢ ¢ 9y, which means that there exists t, € T

such that 4(¢;) = 0 or there exists ¢, € T¢ such that 4(¢f) # 0, then u;(x) = 0.
If there exists t; € T such that é(t;) = 0, let S = U\{¢x} be the complementary set of {tx},

and note that qﬁgtk)(utk) = 1. Then, we have

/F p(p)ur(z, pr)Pi(p)dp = / /F ps(1s) pry (e, ) Pig (s )ur (2, por ) dpie, dps

— / (ps(us)@s (“S)/F

tk

pt, (e, Jur (e, NT)d,utk> dpss.
Using (B.11]), we obtain

/F ey, (e, Jur (2, pr)dps, = 0,

T

which implies that

ui(e) = /P p(pe)un (., ) B () dps = 0.

On the other hand, if there exists t{ € T¢ such that i(¢7) # 0, then we have
[ st mmittiman = [ [ prlueipe(useJus . o) i () (e Ypasdpor.
r I J e

= /F pr(pr)ur(x, pr )P, (pr)dpr / pre (pre ) Piye (pre )dpare .
T

Ire
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Note that since the gPC basis function corresponding to (0,...,0) is 1, and épe # (0,...,0), we
have
/ pre(pre)Pie (pre )dpere = 0,
Ire
and thus
ustw) = [ plu)us(a. p)s()dp = 0.
r
O
Theorem 4.2 Suppose that u(x, p) can be expressed as
u(a, p) = uo(x) + Y ur(w,pr) + ...+ Y ur(x, pr), (4.4)
TeT, TeTn
where
ur(@, pr) = Y ui(@)®s(p), T € Ti. (4.5)

€M
Then the right hand side of ([{&4) is the ANOVA decomposition of u(x, ).

Proof To complete the proof, we only need to show that the right hand side of (£.4)) satisfies (3.10)

and (BII). Using (@4) and (LH), we have
/ p(p)u(z, p)dp = / plp)uo(z)dp + Y / p)ur(z, pr)dp
r

TeTy

P Y wie L/ )P (1) dp.

TeTy 1€Mr
Since T # () when T € T%;, we have
i #(0,...,0), i € Mr.
Thus,
/Fp(u)@(u)du =0,

which implies that

| st man = o).
r

To show that the right hand side of ([&4]) satisfies (BI1)), suppose that ¢, € T, k = 1,...

and let S = U\{¢x} be the complementary set of {¢;}. Then, by (@3], we have

AMmmmmmmew/mwammk

te iEMy Iy,

= Z uz /I'S / Pty (Mtk)gbilélti)(y’tk )du/tk

€M I k

Recall that gb(t’“)( .) =1 and i(tx) # 0, we have

/ Pty (lu’tk)qﬁ»g?zz)(:u’tk)d:u’ti =0,

Iy,

7t|T\7
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which implies that
/ Pty (IU/tk)uT(wa I*I’T)d,utk =0, k= I,... at\']l'|'
I}

tk

a

In practical computations, the expansion given in ([£2) must be truncated to a finite number
of terms. Following the approach in [36], we retain the terms with the total degree up to p. This
yields the approximation

ur(z, pr) & Y uil@)Pi(p), (4.6)
€My
where 9. is the set of multi-indices defined by
MY = {i|i € My and |i| < p}.

By inserting (£6) into (39, we obtain the following expansion of u(x, pt) in terms of gPC basis
functions:

u(z, p) ~ up(x, ) = ug(x) + Z Z ui(T)Pi(p) + ... + Z Z ui (x) P (1), (4.7)

Te%y iemfp TeTn iemy

where u,(x, @) is the polynomial approximation of u(x, u) with the total degree up to p. By
employing (L), we can easily compute the variance of uy(x, pr) using the following expression:

Viur = Y ui(z), Te Ty, (4.8)
€M

Fig. AJ] illustrates the multi-indices of the gPC basis functions corresponding to the component
functions of each order in (7). It is worth noting that the number of terms in (7)) is given by

(©)E)++ ()G =% w

which identical to the number of terms in the generalized polynomial chaos expansion with the
total degree up to p. The equation ([£9) is commonly referred to as the Vandermonde’s identity
or the Vandermonde’s convolution. Interested readers can find more information on this topic in
the relevant literature, such as [2].

4.2 Adaptive ANOVA stochastic Galerkin method

Based on the adaptive ANOVA decomposition and the gPC expansion of component functions,
we can develop an adaptive ANOVA stochastic Galerkin method for the problem (21]). The idea
is quite simple, namely, we select the basis functions of stochastic space based on the adaptive
ANOVA decomposition, in which the relative variance is computed by (B.10) and ().

To give the algorithm of this procedure, some notations are needed. We first collect the basis
functions associated with the k-th order component function ur(ax, pur) and denote the set of
their multi-indices with the total degree up to p as M} := Upey, MY, Moreover, let us denote

the set of all multi-indices as Sﬁg =My Uﬁﬁ{, where Dﬁi* := Urey: M7 With those notations,
Algorithm [2] gives the pseudocode for the adaptive ANOVA stochastic Galerkin method.

In the adaptive ANOVA stochastic Galerkin method, we select the set of multi-indices adap-
tively based on the ANOVA decomposition. Specifically, only part of the multi-indices with the
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Fig. 4.1: Multi-indices of the gPC basis functions corresponding to the component functions of
each order in 3 dimensions with the total degree up to 6, arranged according to the order of the
component functions (from left to right): 0-th, first, second, and third order.

total degree up to p will be retained, resulting in a much lower computational cost compared to
the standard stochastic Galerkin method. It is worth noting that if the tolerance TOL is chosen
small enough, all multi-indices will be selected, and the adaptive ANOVA stochastic Galerkin
method will become equivalent to the standard stochastic Galerkin method.

5 Numerical results

In this section, we will explore two problems: a diffusion problem and a Helmholtz problem. All
the results presented here are obtained using MATLAB R2015b on a desktop with a 2.90GHz
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Algorithm 2 Adaptive ANOVA stochastic Galerkin method

Input: The gPC order p and the tolerance TOL in ANOVA decomposition.
Set k=1,3J0 =0, 31 = {{1},...,{N}} and compute A; and f defined in ([B.8).
while (k < N) and J; # 0 do
Generate the multi-indices S)ﬁiT and compute G; and h defined in (B7).
Solve the linear system (3.6) and compute 47 for T € J, by (B.16) and (43]).
Set Ji := {T € 3k|7’]1‘ > TDL}.
Set Jr+1 :={T|T € Tp41, and V S C T with |S| = k satisfies S € jk}
k=k+1

end while
Return: the approximation u®?(x, p), the mean function ug(x) and the variance function

i 0(@)

Intel Core i7-10700 CPU. The CPU time reported in this paper correspond to the total time
required to solve the linear systems in the respective procedures.
To assess the accuracy, we define the mean errors and the variance errors as follows:
g - IE[urer(®, p)] — E[u* (2, p)] || 2
ERR = )
[E [urer (@, p)] || 2
Vg = IV [urer (2, p)] = V [0 (2, p)] [ 2
ERR = .
IV [uner (@, )] || 2

Here, uggr(x, ) is the reference solution, and u®P(x, p) is the approximate solution.

5.1 Test problem 1

In this problem, we investigate the diffusion equation with random inputs, given by

-V (a(x,p)Vu(z,)) =1 in D x T,
u(x,u) =0 on 0D x I,

where D = [0,1] x [0,1] is the spatial domain, and D represents the boundary of D. The
diffusion coefficient a(x, u) is modeled as a truncated Karhunen—Loeve (KL) expansion [I59] of
a random field with a mean function ag(x), a standard deviation o = 1/4, and the covariance
function Cov (x,y) given by

Cov (z,y) = 02 exp (_|x1 —ul_ —y2|) ,
c c

T

where = [z1,22]7, y = [y1,y2]T and ¢ = 1/4 is the correlation length. The KL expansion takes

the form
N

N
a(z, p) = ao(x) + Y ai(@)ps = ao(x) + > _ v/ Nics(@)pi, (5.1)
i=1 i=1
where ag(x) = 1, {\;, ci(x)} Y, are the eigenpairs of Cov (z,y), {1}, are uncorrelated random
variables, and N is the number of KL. modes retained.

For this test problem, we assume that the random variables {y;}YY | are independent and
uniformly distributed within the range [—1, 1]. The parameters of a(x, u) are set as shown in
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Table 5.1: Parameters of the diffusion coefficient a(x, p) in (5I) and K in 22).

Case N K
I 10 11
11 50 51

Table 5l In the physical domain, the meshgrid is set to 33 x 33 (i.e., n, = 33). In the stochastic
space, the total degree of gPC in the adaptive ANOVA stochastic Galerkin (AASG) method
is specified as p = 5. The linear systems arising from both the standard and the adaptive
ANOVA stochastic Galerkin methods are solved using the preconditioned conjugate gradients
(CG) method, with a tolerance of 10~® and the mean based preconditioner [26].

In this test problem, we compare the the adaptive ANOVA stochastic Galerkin (AASG)
method with the anchored ANOVA stochastic collocation (AASC) method [23/[42] and the Monte
Carlo method (MCM). For the AASC method, we follow the method described in [23] with the
relative mean Ar, i.e.,

- Efur]|z-
T =
I[E [uo] || 2

as the criterion for selecting important terms within the ANOVA decomposition. Additionally,
the mean value of p is used as the anchor point. In the AASC method, we adopt tensor style
Gaussian quadrature points with a grid level of 5 as the collocation points, resulting in a total
of 6!T! collocation (quadrature) points for each T € J%. Furthermore, for the AASC method, the
variance function is computed following the method proposed in [30]. For both the MCM and
the AASC method, the linear systems are solved using the MATLAB backslash solver.

, T eJg

5.1.1 Case I: a 10 dimensional diffusion problem

We consider the AASG method with decreasing tolerances TOL = {10~%,1072,107°,10~7,10°}
to demonstrate its effectiveness and efficiency. To access the accuracy, we obtain the reference
solution uggr(, p) using the standard stochastic Galerkin method with the total degree of up to
p="T.

Table 5.2: Performance of the AASG method for test problem 1 with N = 10.

TOL (31 19:] 32l 1921 sl 19s] [3al 194l sl 1§s] k(9| CPU time
107! 10 1 0 0 0 0 0 0 0 0 1 51 0.07
103 10 10 45 2 0 0 0 0 0 0 2 501 0.87
10~ 10 10 45 37 70 0 0 0 0 0 3 1201 3.35
107 10 10 45 45 120 75 60 0 0 0 4 2001 9.38
107? 10 10 45 45 120 120 210 127 70 0 5 2821 18.71

Table presents the number of active indices for each order of the ANOVA decomposition
and the total number of selected gPC basis functions in the stochastic space. Furthermore,
we report the computational time required for solving all linear systems that arise during the
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execution of the while loop in Algorithm 2l It can be observed that the number of selected
gPC basis functions increases as the tolerance TOL decreases, and therefore, the accuracy can be
improved by reducing TOL. For a 10 dimensional problem, the number of gPC basis functions with
the total degree up to 5 is C7?5 = 3003. From the table, it can be seen that when TOL = 1079,
almost all the gPC basis functions are selected in the AASG method. Further decreasing the
tolerance in the AASG method results in the selection of all gPC basis functions with the total
degree up to 5, making the AASG method equivalent to the standard stochastic Galerkin method.
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Fig. 5.1: Matrix block-structure (each block has dimension n, x n,) for test problem 1 with
N =10.

Fig. 5] displays the block structure of the coefficient matrix of the resulting linear system.
Each point in the figure represents a block of dimension n, x n,. Furthermore, each nonzero
block of the coefficient matrix has the same sparsity pattern as the corresponding deterministic
problem. Therefore, the coeflicient matrix is extremely large and sparse, and the resulting linear
system should be solved using iterative methods.

Fig. B2 investigates the accuracy achieved by the three methods, presenting errors concerning
both CPU time and stochastic degrees of freedom (DOF). For clarity, CPU time denotes the total
time required to solve all the linear systems within the respective procedures. For the AASG
method, stochastic degrees of freedom encompass the cumulative count of gPC basis functions
generated during the execution of the while loop in Algorithm [2] while for the MCM and the
AASC method, it corresponds to the total number of sample points used. The results indicate the
notable efficiency of both the AASG method and the AASC method in comparison to the MCM,
as they are hundreds of times faster in terms of CPU time and stochastic degrees of freedom.
Furthermore, the AASG method outperforms the AASC method in terms of CPU time, and it is

also evident that the AASG method provides a higher accuracy per stochastic degree of freedom
compared to the AASC method.

5.1.2 Case II: a 50 dimensional diffusion problem

We consider the AASG method with decreasing tolerances TOL = {1071,1072,1073,107%,10°}
to demonstrate its effectiveness and efficiency. To access the accuracy of the AASG method and
the MCM, we obtain the reference solution uggr(, ) using the AASG method with a tolerance
of TOL = 107S.

Table presents the number of active indices for each order of ANOVA decomposition and
the total number of selected gPC basis functions in the stochastic space. Furthermore, we report
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Fig. 5.2: Comparison of errors with respect to CPU times and stochastic degrees of freedom for
test problem 1 with N = 10, where both the total degree of gPC in the AASG method and the
grid level in the AASC method are set to 5.

the computational time required for solving all linear systems that arise during the execution
of the while loop in Algorithm 21 It can be observed that the number of selected gPC basis
functions increases as the tolerance TOL decreases, and therefore, the accuracy can be improved
by reducing TOL. It is worth noting that the number of gPC basis functions with the total degree
up to p = 5 is C5 = 3478761, which renders the standard stochastic Galerkin method practically
infeasible for solving this problem in reasonable time.

Fig. displays the block structure of the coefficient matrix of the resulting linear system.
Each point in the figure represents a block of dimension n, X n,. Furthermore, each nonzero
block of the coefficient matrix has the same sparsity pattern as the corresponding deterministic
problem. It is evident from the figure that the coefficient matrix in this case exhibits a sparser
pattern than that of Case I.

The plot displayed in Fig. 5.4l compares the CPU times and the stochastic degrees of freedom

required by the three methods in relation to mean and variance errors. The results clearly indi-
cate that both the AASG method and the AASC method are significantly more efficient than
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Fig. 5.3: Matrix block-structure (each block has dimension n, x n,) for test problem 1 with
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Fig. 5.4: Comparison of errors with respect to CPU times and stochastic degrees of freedom for
test problem 1 with N = 50, where both the total degree of gPC in the AASG method and the
grid level in the AASC method are set to 5.
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Table 5.3: Performance of the AASG method for test problem 1 with N = 50.

TOL |31 |31 132l el 13sl [3s] 34l 194l k9P| CPU time
10~t 50 1 0 0 0 0 0 0 1 251 0.39
1072 50 11 59 0 0 0 0 0 2 801 1.99
1073 50 30 435 0 0 0 0 0 2 4601 16.37
1074 50 50 1225 15 8 0 0 0 3 12581 84.39
10=% 50 50 1225 83 120 0 0 0 3 13701 88.55
10=6 50 50 1225 377 1537 15 1 0 4 27876 284.41

the MCM, with improvements observed in both CPU time and stochastic degrees of freedom.
Additionally, the AASG method outperforms the AASC method in terms of CPU time, and it is
also evident that the AASG method provides a higher accuracy per stochastic degree of freedom
compared to the AASC method.

5.2 Test problem 2

In this test problem, we consider the stochastic Helmholtz problem given by
V2u +d*(z, p)u= f(x) in DxI,

with Sommerfeld radiation boundary condition. Here, D = [0, 1]? is the domain of interest and
the Helmholtz coefficient a(x, pt) is a truncated KL expansion of a random field with a mean
function ag(x), a standard deviation o = 27, and the covariance function Cov (z,y) given by

Cov (z,y) = 02 exp (_|x1 —ul_ Jz —y2|) ,

C C

where © = [11,22]7, ¥ = [y1,92]7 and ¢ = 1 is the correlation length. Note that the KL expansion

takes the form N N
a(z, p) = ao(x) + Y ai(@)ps = ao(@) + > v/ Nics(T)pi, (5.2)
i=1 i=1

where ag(z) = 4 - (27), {\;, ci(z)}Y, are the eigenpairs of Cov (z,y), {1}, are uncorrelated
random variables, and N is the number of KL. modes retained. The Gaussian point source at the
center of the domain is used as the source term, i.e.,

f(z) = o= (8:4)((21-0.5)*+(x2—0.5)%)

For this test problem, we assume that the random variables {yu;}Y ; are independent and
uniformly distributed within the range [—1,1]. The parameters of a(x, ) are set as shown in
Table 541 We use the perfectly matched layers (PML) to simulate the Sommerfeld condition [4],
and generate the matrices {A;}% | using the codes associated with [22]. In the physical domain,
the meshgrid is set to 33 x 33 (i.e., n, = 33). In the stochastic space, the total degree of the gPC
basis functions in the AASG method is set to p = 6. The linear systems arising from both the
standard stochastic Galerkin method and the AASG method are solved using the preconditioned
bi-conjugate gradient stabilized (Bi-CGSTAB) method, with a tolerance of 10~% and the mean
based preconditioner [26]. Furthermore, for the MCM, the linear systems is solved using the
MATLAB backslash solver.
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Table 5.4: Parameters of the Helmholtz coefficient a(x, p) in (5.2) and K in (22)).

Case N K
1 4 25
11 10 121

5.2.1 Case I: a 4 dimensional Helmholtz problem

We consider the AASG method with decreasing tolerances TOL = {1071,1072,1073,107%,10°}
to demonstrate its effectiveness and efficiency. To access the accuracy of the AASG method and
the MCM, we obtain the reference solution uggr(x, p) using the standard stochastic Galerkin
method with the total degree of up to p = 8.

Table 5.5: Performance of the AASG method for test problem 2 with N = 4.

TOL |3 & 132l 1S2] [l 3] |34 134l k|| CPU time
10°t 4 1 0 0 0 0 0 0 1 25 0.22
1072 4 4 6 3 0 0 0 0 2 115 1.52
1073 4 4 6 5 2 1 0 0 3 155 3.62
107 4 4 6 6 4 3 0 0 3 195 4.46
107 4 4 6 6 4 4 1 1 4 210 7.95

Table presents the number of active indices for each order of ANOVA decomposition
and the total number of selected gPC basis functions in the stochastic space. Furthermore,
we report the computational time required for solving all linear systems that arise during the
execution of the while loop in Algorithm 2l It can be observed that the number of selected gPC
basis functions increases as the tolerance TOL decreases. For a 4 dimensional problem, there are
C%, = 210 gPC basis functions with the total degree up to 6. From the table, it can be seen that
when TOL = 1075, all the gPC basis functions are selected in the AASG method, making the
AASG method equivalent to the standard stochastic Galerkin method.

Fig. illustrates the block structure of the coefficient matrix of the resulting linear system.
Each point in the figure represents a block of dimension n, x n,. Moreover, each nonzero block of
the coefficient matrix has the same sparsity pattern as the corresponding deterministic problem.
Although the coefficient matrix of the Helmholtz equation is much denser than that of the
diffusion equation, it is still very sparse and thus should be solved by iterative methods.

Fig. investigates the accuracy achieved by the two methods, presenting errors concerning
both CPU time and stochastic degrees of freedom. For clarity, CPU time denotes the total time
required to solve all the linear systems within the respective procedures. For the AASG method,
stochastic degrees of freedom encompass the cumulative count of gPC basis functions generated
during the execution of the while loop in Algorithm 2] while for the MCM, it corresponds to
the total number of sample points used. The results indicate the notable efficiency of the AASG
method in comparison to the MCM, as it is dozens of times faster in terms of CPU time and
hundreds of times faster in terms of stochastic degrees of freedom. This distinction from the
diffusion problem is noteworthy, as the performance of CPU time does not seem to align with
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test problem 2 with N = 4, where the total degree of gPC in the AASG method is set to 6.
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that of stochastic degrees of freedom. This phenomenon can be attributed to the fact that the
number of matrix-vector products computed in each iteration for solving the linear system (B.6])
is proportional to (N +1)? for Helmholtz problems, while it is proportional to N + 1 for diffusion
problems.

5.2.2 Case II: a 10 dimensional Helmholtz problem

We consider the AASG method with decreasing tolerances TOL = {107%,1072,1072,107%,10~°}
to demonstrate its effectiveness and efficiency. To access the accuracy of the AASG method and
the MCM, we obtain the reference solution uggr(, ) using the standard stochastic Galerkin
method with the total degree of up to p = 8.

Table 5.6: Performance of the AASG method for test problem 2 with N = 10.

TOL 31l 13l 192l 1F2] 1331 193] |34l |34 K |9ﬁ2T| CPU time
10~! 10 1 0 0 0 0 0 0 1 61 0.72
10—2 10 9 36 6 0 0 0 0 2 601 14.03
1073 10 10 45 14 7 3 0 0 3 876 41.77
10=* 10 10 45 32 55 21 0 0 3 1836 82.92
10~° 10 10 45 43 105 59 41 22 4 3451 281.31

Table presents the number of active indices for each order of ANOVA decomposition and
the total number of selected gPC basis functions in the stochastic space. Furthermore, we report
the computational time required for solving all linear systems that arise during the execution
of the while loop in Algorithm 2 It can be observed that the number of selected gPC basis
functions increases as the tolerance TOL decreases, and therefore, the accuracy can be improved
by reducing TOL.
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Fig. 5.7: Matrix block-structure (each block has dimension n, x n,) for test problem 2 with
N =10.

Fig. B illustrates the block structure of the coefficient matrix of the resulting linear system.
Each point in the figure represents a block of dimension n, x n,. Moreover, each nonzero block of
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the coefficient matrix has the same sparsity pattern as the corresponding deterministic problem.
It can be observed that the coefficient matrix of the Helmholtz equation is much denser than
that of the diffusion equation, which makes it more time consuming to solve than the diffusion
problem.
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Fig. 5.8: Comparison of errors with respect to CPU times and stochastic degrees of freedom for
test problem 2 with N = 10, where the total degree of gPC in the AASG method is set to 6.

Fig. investigates the accuracy achieved by the two methods, presenting errors concerning
both CPU time and stochastic degrees of freedom. The results indicate the notable efficiency of
the AASG method in comparison to the MCM, as it is dozens of times faster in terms of CPU
time and hundreds of times faster in terms of stochastic degrees of freedom. This distinction from
the diffusion problem is noteworthy, as the performance of CPU time does not seem to align with
that of stochastic degrees of freedom. This phenomenon can be attributed to the fact that the
number of matrix-vector products computed in each iteration for solving the linear system (B.6])
is proportional to (N + 1)? for Helmholtz problems, in contrast to N + 1 for diffusion problems.
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6 Conclusion

In this work, we investigate the generalized polynomial chaos (gPC) expansion of component
functions for the ANOVA decomposition, and present a concise form of the gPC expansion for
each component function. With this formulation, we propose an adaptive ANOVA stochastic
Galerkin method for solving partial differential equations with random inputs. The proposed
method effectively selects basis functions in the stochastic space, enabling significant reduction
in the dimension of the stochastic approximation space. Compared with anchored ANOVA meth-
ods, the proposed approach avoids the difficulty for selecting proper anchor points, which are
crucial for achieving efficient approximations in the context of anchored ANOVA methods. Nu-
merical simulations are conducted to demonstrate the effectiveness and efficiency of the proposed
method. While our current focus is on selecting the basis in the stochastic space, future work
will explore techniques for reducing computational costs in the physical space.
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