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RECOVERY TYPE A POSTERIORI ERROR ESTIMATION OF AN
ADAPTIVE FINITE ELEMENT METHOD FOR CAHN-HILLIARD
EQUATION*

YAOYAO CHEN', YUNQING HUANG#, NIANYU YI¥ AND PEIMENG YINY

ABSTRACT. In this paper, we derive a novel recovery type a posteriori error estimation of the
Crank-Nicolson finite element method for the Cahn—Hilliard equation. To achieve this, we
employ both the elliptic reconstruction technique and a time reconstruction technique based
on three time-level approximations, resulting in an optimal a posteriori error estimator. We
propose a time-space adaptive algorithm that utilizes the derived a posteriori error estimator
as error indicators. Numerical experiments are presented to validate the theoretical findings,
including comparing with an adaptive finite element method based on a residual type a

posteriori error estimator.

1. INTRODUCTION

In this paper, we are interested in an adaptive finite element method for the Cahn—Hilliard

equation
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rut—irA(a.Au%—éf(u)) =0, in Q x (0,77,

6nu |3Q = O, on 0f) x [O,T],
. (1.1)
On <6Au + gf(u)) lag = 0, on 02 x [0, T,

u(z,0) =ug, in Q x {t =0},

\

where Q C RY(d = 2,3) is a bounded domain with Lipschitz boundary 99, n is the unit
outward normal to the boundary 02, the operator A := —A, and the interface width ¢ > 0
is a small parameter compared with the characteristic length of the laboratory scale. The
nonlinear function f(u) = F' (u) = v® — u with F(u) = +(u? — 1)?, which is a double well
potential and drives the solution to two pure states u = +1.

The Cahn—Hilliard equation, which was introduced by Cahn and Hilliard in the late 1950s
to describe the process of phase separation [0], has become a fundamental model in engineer-
ing and materials science. It also plays an increasingly important role in many other fields
[4, 13]. The Cahn-Hilliard equation can be expressed as the H '-gradient flow, given by

u; = 0, F(u), where 6, F(u) is the variational derivative of the total free energy functional

E(u) = /Q (%|Vu|2 + éF(u)) dz.

It is well-known that the Cahn-Hilliard equation (1.1)), subject to the prescribed boundary
conditions, satisfies an energy dissipative law given by

d
EE(u(t)) = —(ut,up) <0.

Efficient and easy-to-implement numerical methods for the Cahn—Hilliard equation face
several challenges, including the presence of high order derivatives, a nonlinear reaction term
f(u), and the smallness of the parameter €. To overcome these challenges, many spatial
discretizations have been studied, including finite difference methods [I0], finite element
methods [1T, 6], 25 B3], discontinuous Galerkin methods [14] [15, 28], and spectral methods
[12]. Strategies to address the nonlinearity include convex-splitting methods [18], stabiliza-
tion methods [32], invariant energy quantization (IEQ) approach [35, 28], and scalar variable
auxiliary (SAV) approach [21], 30, 3T]. Numerical approximations of the Cahn—Hilliard equa-
tion have been extensively investigated, but efficient and accurate methods are still an active
area of research.

The smallness of the parameter ¢ in gradient flow models, including the Cahn-Hilliard
equation and the Allen—-Cahn equation, results in the interface layer phenomenon. To ac-
curately simulate macroscopic processes described by these equations, it is necessary to use
adaptive techniques to adjust the spatial mesh size and time step size according to the in-

terface width . In recent years, some works on a posteriori error estimators and adaptive
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methods have been proposed. Feng and Wu [I7] developed residual-type a posteriori er-
ror estimates for conforming and mixed finite element approximations of the Cahn—Hilliard
equation. A superconvergent cluster recovery (SCR)-based a posteriori error estimation and
a time-space adaptive finite element algorithm was proposed in [§] for the Allen-Cahn equa-
tion. The SCR method produces a superconvergent recovered gradient, which leads to an
asymptotically exact SCR-based error estimator. The primary focus of [§] was to design an
adaptive algorithm based on the SCR-based error estimator, while the time adaptation of
the error indicator was simply constructed based on approximations on two time levels.

In this paper, we present a novel SCR-based recovery type a posteriori error estimator
for the Crank-Nicolson finite element method applied to the Cahn—Hilliard equation. The a
posterior error estimator is derived using both the elliptic reconstruction technique and the
time reconstruction technique. Therefore, the a posterior error estimator constructed is of
greater precision and efficiency. The elliptic reconstruction technique involves separating the
error between the finite element approximation and the exact solution into two categories:
elliptic type and parabolic type. The key idea is to leverage pre-existing elliptic a posteriori
estimators for the elliptic type error, while controlling the parabolic type error using parabolic
energy estimates. In [9], a time reconstruction technique using approximations on two time
levels were introduced for the Allen—-Cahn equation, which allowed for the construction of a
first-order a posteriori error estimator for time discretization. In this work, we utilize the
time reconstruction technique involving approximations on three time levels [29], leading to
a second-order a posteriori error estimator for time discretization. We employ the derived
a posteriori error estimator as error indicators and propose an efficient time-space adaptive
algorithm to solve the Cahn—Hilliard equation. Our numerical results show that the proposed
recovery type a posteriori error estimator is more effective than a residual type error estimator
and a space-only adaptive algorithm. Furthermore, our results demonstrate that the use of
time step adaptation is essential in achieving accurate numerical solutions for the Cahn—
Hilliard equation.

The paper is organized as follows: In Section [2 we introduce the Crank-Nicolson finite
element method for discretizing the Cahn—Hilliard equation, followed by an introduction of
the elliptic reconstruction for a nonlinear elliptic problem and its properties. In Section
we derive an optimal a posteriori error estimation for the Cahn—Hilliard equation based on
the elliptic reconstruction and time reconstruction techniques. Based on the derived error
estimator, we propose a time-space adaptive algorithm. In Section [} we present several
numerical examples to verify the accuracy and effectiveness of the proposed error indicators
and the corresponding time-space adaptive algorithm. We present concluding remarks in

Section [5} Finally, in Appendix [A] we provide the proof of Theorem [3.2]
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2. THE DISCRETE SCHEME AND ELLIPTIC RECONSTRUCTION

For a bounded domain Q C R? we adopt the standard notations for the Sobolev space

WmP(Q) equipped with the norm || - ||, 0 and the semi-norm | - |, 0. If p = 2, we set
wmr(Q) = H™(Q), || - llmpo = || - lma and | - |;mpa = | - |mao. Further, if m = 2, we take
1= 11 Tlo0-

By introducing the chemical potential
w:=cAu + éf(u), (2.1)
we can get the equivalent form of ,
( ug+ Aw =0,  in Qx (0,7,
Onw |9a =0, on 0N x [0, 77,
cAu + gf(u) —w =0, in Q x (0,77, (2.2)
Ontt |ag = 0, on 0N x [0, T7,
w(z,0) =ug, in Qx {t=0}.

\
2.1. The Crank-Nicolson Finite Element Scheme. For the homogeneous Neumann
boundary conditions, the problem ({2.2]) is understood in the following weak form: find
(u,w) € HY() x H(Q) such that

(ur,v) + (Vw, Vv) = 0, Vv € HY(R),

1

e(Vu, Vo) + —(f(u)9) = (w,9) =0, Vyp e H(Q), (2.3)

u(+,0) = up.

Let T, be a shape regular triangulation of €2, and V} be the corresponding finite element
space, which is defined as

Vi :={ve H(Q),v|x € P(K),V K €Ty},

where P;(K) denotes the set of linear polynomials defined in K. The semi-discrete finite
element scheme of ([2.2]) reads: find (uy,wy) € V, x Vj, such that

(Uh,ta Uh) + (th, Vl)h) =0, ‘v’vh € Vh,
1
e(Vup, Vo) + g(f(uh)> on) — (wh, n) =0, Von € Vi, (2.4)
(un(,0) — ug, ¢n) = 0, Von € V.
Generally, we rewrite the scheme (2.4) in its pointwise form
Up,t + Awh = 0,
1
eAuy, + ng(uh) —wp, =0, (2.5)

up(x,0) = u) : = Puy,
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where the finite-dimensional space operator A : V;, — V}, is the discrete Laplacian defined,
through the Riesz representation in V}, by

(Av, @) = a(v, ), Yo €V,
and P : L*(Q) — V,, is the L?(2)-projection operator such that, for each v € L*(Q), we have
(Pv,®) = (v, ®), Vo € V.

We divide the time interval [0, 7] into a partition of N consecutive adjacent subintervals
whose endpoints are denoted by 0 = tg < t; < --- < ty = T, the n-th time interval
I, := [tn—1,t,] and the corresponding time step is defined as 7, := t,, — t,_;. The Crank-
Nicolson finite element is to find a sequence of function (u}},wy) € V;* x V;* such that, for
eachn=1,2,...,N,

( up, — UZ” 1 1
(T—,Uh> + 5 (VU)Z + V'LUZ_ ,Vvh) =0, Yy, € th,
€ (oo | L[ flup) + flup™)
3 (Vuh + Vuy ,Vgoh) + z ( 5 , Pn (2.6)

Similarly to the semi-discrete scheme, the fully discrete scheme can be written in a point-
wise form as follows

( n n—1 1

P f(ug) + P )
2% (2.7)

(A”UZ + A"iluzfl) +

DO ™

\

where A™ : V;» — V;" is defined as the discrete Laplacian and P" : L*(Q2) — V}" represents
the L?(2)-projection operator.

2.2. Elliptic Reconstruction. The nonlinear elliptic problem corresponding to a steady
state of the nonlinear evolution equation ([1.1)) is taken as follows: given g € L*(2), r € L*(Q),
find (u,v) € H(Q) x H'(Q) such that

Av+v =y, in €,
1
eAp + gh(,u) —v=r, in 0, (2.8)
Viu-n=0,Vv-n=0, on 02,
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with h(u) := p. The weak form of the elliptic problem (2.8)) reads: find (u,v) € H*(Q) x
H'(Q) such that

(Vv,Vu) + (v,v) = (g,v), Yo € H'(Q), (2.9)
(V0 V) + = () 9) — () = (rn0), V€ HI(Q) (2.10)

Remark 2.1. The well-posedness of the variational problem (2.9)-(2.10) can be derived as
follows. Owing to the variational problem ([2.9) is the Euler-Lagrange equation of the func-

/|vy|2 /,, —/gy (2.11)

taking the derivative of the functional J(v), it holds that

tional

(6{5(””)’1}) _ (v% VU) + (l/, U) — (g’v) =0, WYWwe Hl(Q) (2'12>

Notice that J(v) is a convex functional, then the uniqueness of the solution for scheme ({2.9))
is proved. As for the variational problem (2.10)), it is the Euler-Lagrange equation of the

€ 1
Hp) = §/Q|Vu|2 4 4—5/Qu4 —/qu, (2.13)

where [, sy = (v, ) + (r, p). Similarly, taking the derivative of the functional H (), it has

0H (p)

op

Due to H(i) be a convex functional, then the uniqueness of the solution for scheme (2.10)) is
proved.

functional

#) = (Vo) + L)) - (i) =0, FpE IO (211)

The finite element discretization of the elliptic problem ([2.8)) reads: find (uy,v,) € Vi, X Vi,
such that
(VVh, V’Uh) + (Vhyvh> = <gh7 Uh>7 V/Uh S Vh7

. (2.15)
e(Vpn, Vo) + z (h(pn), on) = (Vhy 0n) = (Th, ©n)s Vo € V.

Definition 2.1. (Gradient recovery a posteriori estimator function) For the nonlinear elliptic

problem (2.8]), we define the gradient recovery a posteriori estimator functional
E, =&, H(Q), V3] := ||Gv — V|, Vv € Vy, (2.16)
where G is a gradient recovery operator.

Remark 2.2. As in [26], we utilize H(£2) to estimate the elliptic a posteriori estimation for
the gradient recovery a posteriori estimator functional &£,. However, it’s worth noting that
there are alternative methods to compute upper and lower bounds for the error in other
functional spaces, such as L*(Q2) and L> ().
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Gradient recovery is a post-processing technique that has gained widespread popularity
in the engineering community for its robustness as an a posteriori error estimator, its su-
perconvergence of the recovered derivatives, and its efficiency in implementation. It involves
reconstructing gradient approximations from finite element solutions to obtain improved so-
lutions. The practical use of the recovery technique is not only to enhance the quality of the
approximation but also to construct a posteriori error estimators in adaptive computation.
The gradient of the finite element approximation for the Lagrange element provides a dis-
continuous approximation to the true gradient. Various techniques have been proposed to
recover the gradient, including averaging [5, 22], local or global projections [20], 23], postpro-
cessing interpolation [27] [34], the superconvergent patch recovery (SPR) [37], the polynomial
preserving recovery (PPR) [3§] and the superconvergent cluster recovery (SCR) [24].

Assumption 2.1. (Elliptic a posteriori error estimators) Assume that (u,v), (pn,vn) are
the exact solution and numerical solution of nonlinear elliptic problem , respectively, €
defined as Definition there exists constants Cy and Cy, such that the following bounds
hold

IV (n = )] < Coly,

2.17
IV (v, —v)|| < CLE,. (2.17)

In [I9], He and Zhou derived both a priori and a posteriori finite element error estimates

for the following semilinear elliptic problems

{—Au +b(z,u) =0, inQx (0,7T], (2.18)

u=0, on 08 x [0, T,

and if the nonlinear term b satisfies

ob
sup b(z,y) — b(z, yo) + a—y(x,yo)(yo - y)‘ S (1 +max{[yl*, [vol* Py — vol*, Yy, vo € R
e

(2.19)
with ¢ € (1,2], s € [0,5 — ¢], then it has the following L? promotional property.
Lemma 2.1. [19] (L? promotional property) If ho < 1, h € (0, hy|, then
[l = pll < Cohllpn = pll1.0,
(2.20)

s = vl < Calll, — v

1,95

here Cy, Cy are constants and h = max{hy, K € Tp}.

Remark 2.3. In this paper, for the nonlinear elliptic problem ({2.8]), the nonlinear term b(u) :=

h(u) = u® satisfies

b(y) — b(yo) — ' (y0) (v — vo) = (2y0 + v)(y — vo)?,
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which is consistent with the condition (2.19) as ¢ = 2. Thus, in view of Lemma , we have

lien = 1?1 = Nt = wall* + 1V G — )2

< ol |lpn — pll o + 11V (o — )|,

(2.21)
lvn = vI* 0 = lvw = vI* + IV (o = V)|
< CiRflvn — vt + IV = v)|1%,
thus, if A is small enough, it holds that
[n = pill1,0 < Col V(i — p)|| < Coy,
g (2.22)

lvn = vle < CillV (e = )|l < Ci&,.

To link the Cahn—Hilliard equation and the elliptic recovered gradient estimates, we utilize

the elliptic reconstruction technique.

Definition 2.2. (Elliptic reconstruction) For 1 < n < N with the discrete elliptic operator
A" defined as (2.7), we define the corresponding elliptic reconstruction operator R™ : V' —
HY(Q), for each (x,9) € V;* x V;*, by solving for the elliptic problem

AR"™) + R™ = A™) + v,

1 1 (2.23)

eAR"x + gh(Rnx) — R") =ecA"x + anh(X) -1,

which can be written in weak form as
a(R™),v) + (R"),v) =(A"I,v) + (V,v), Yo € H' (),
1 1

ea(R"x, @) + - (MR"X), ) = (R0, ) =e{A"X, ) + —{h(X), ¥) (2.24)

- <197S0>7 VSO € Hl(Q)

By the Definition [2.2] it is obviously that (R™uj, R"w}!), (uf,w}) are the exact solution
and numerical solution of ([2.23)), respectively. According to Assumption we have

IV (uh = Rup) || < Co&y,s (2.25)
IV (wyy = BMwp)l| < C1E, (2.26)

where £, £ are defined following Definition [2.1], respectively, by

EN = ||G™u} — Vu}, Vuj € Vi, (2.27)
Ep = |G wy, — Vuwyll,  Yw, €V}, (2.28)

with G" == GVA".
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3. A POSTERIORI ERROR ESTIMATION AND ADAPTIVE ALGORITHM

In this section, we derive a recovery type a posteriori error estimation for the Cahn—
Hilliard equation based on the elliptic reconstruction and time reconstruction techniques,
and a time-space adaptive algorithm is also developed based on the proposed a posteriori

error estimation.

3.1. A posteriori error estimation. The discrete solution is sequence of finite element
functions uj; € V)" defined at each discrete time ¢,,1 < n < N. Define the piecewise
quadratic extension [29]

t—tn— t, —1  _ 1
up(t) : = Lup + upt 4 St = tan)(t = tn)Pup, t € I,, 1 <n <N,
t _T;L tTn— t 1 (3.1)
wp(t) : = — 2Ll 4 Dy 4 St = tan)(t = tn)02wy, te I, 1<n<N,
Tn Tn
where the term 921, is defined as
n n—1 n—1 n—2
Vh =V, by Yh
82”’1 = = Tn+Tn—1Tn_l (32>
2
with v, ' =v) asn = 1.
Then we also define
p" = R"uy, q" == R"wy, n=0,1,2,..., N, (3.3)

and denote this sequence’s piecewise quadratic reconstruction in time by p(t) and ¢(t), that

is,

t—t,_ t, —t 1
p(t) : = — Lo + —" Ly 5(zs—tn_l)(t—tn)a,ip, tel, 1<n<N\,
t—tpq , ta—t . 1 ) (3.4)
q(t) : = ¢t +§(t—tn_1)(t—tn)8nq, tel,, 1<n<N.
The corresponding fully discrete error is defined by
ey : = up(t) — u(t),
(3.5)
ew : = wi(t) — w(t),
and can be split, using the elliptic reconstruction p(t) and ¢(t), as follows
ew = (p(t) — u(t)) — (p(t) — un(t)) == pu — €u,
(3.6)

ew = (q(t) —w(t)) — (q(t) — wi(t)) == puw — €w.

For terms in (3.6)), the following result holds.
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Theorem 3.1. (Parabolic error identity) For eachn =1,2,..., N and each t € (t,_1,t,], it
holds that

n,,,n n—1,,n—1
Arwy — A" wy,

cApy— po = AR AT PU() = P wh — i (37)
2 2e 2
n n f u)— f pn 1 n n
AWl — ) — (alt) — g + T Ly,
where A™ and P" are defined in , respectively.
Proof. Forn=1,2,...,N and t € (t,_1,t,], by the definition of u}, we have
up —up~! 2
Owup, = ——+ (t — t,,_1)0;up,
Tn 2
and using the fully discrete scheme ([2.7]), we obtain
uj, — UZ” 2
Owup, + Aq" + q" :7_— + A”wZ + wz + (t — tn_%)anuh
n _ ,n—1 Anq™ An—l n—1 A — An—l n—1
_Uh T U A W + O 2 Wn ) +wp + (t—t, 1)0%u,
Tn 2 2 2
A" — An—l n—1
_ 4 Wh 5 Sh o (1),
eAp" + Eh(p ) —q" = A"y + EP h(up) — wy
_ 8A"u2 + Ayt N 8A”uﬁ — Ayt N Prh(up) + PPt f(upt)
2 2 2e
Ph(up) = PP f(uy ™) wp +wp™t wp —wp
2e 2 2
_ gA”uZ — An ! N Prf(up) — PP f(u) ™) _wy — wy ! N luz
2 2e 2 €
Hence
Anwz — An_lwzil n n n, n 2
1 Ay — A1 n—1 pr ny _ pn—1 n—1 n _ ,,,n—1
eAp(t) + Zh(p") —a(t) =< n . LG 5 fli ) wi 2wh

A — ) — (a0) — ") + Zuf,
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and subtracting (2.2)) from the above formula, we get

N, N n—1,,n—1

O+ Apy = 2 +A(q(t) — ¢") +wh — RMwpy + (t = t,_1)un,
EApu — Pw = gAnuZ — An_luzfl + Pnf(“’?;) _ Pn—lf(,u/h71> _ ’l,UZ — wzil

2 2¢e 2

FeAp(t) ) — () — ) + LTI Ly

Then we have the following result.

11

Theorem 3.2. Let (u}, w})nejo:n] be the fully discrete solution, defined at each discrete time
tn, its piecewise linear extension uy, wy defined as (3.1), and let u, w be the exact solution
of the model problem (2.2)). Assume that Aoy € L*(0,T) is a function such that for almost

every t € (0,T), we have

Kon(t) < —Aep(t) = int Ve e, 0)

veV\ {0} VA~ ]2 ’
and set
a(t) := (1 + 2152 +2(1—¢) KCH(t)> ,
Ho 1= SUD 1 Cun) | e (s0-
Define

N N
P = VAP + S48 + 3 (1 +n) T
n=1 n=1

< sy (Ve (/oTa(t)dt))_l_; |

T .2 T
sup |[VA™ e, +/ EHVeuﬂzdt < 81 exp (/ a(t)dt> ,
] 0 0

tel0,T

and assume

then

where

M0 =Y + 0o + My + Buss
m =, +& + By + 0 + 0, +ay +(;

=2  C§ 2 —13\2 -1
&l =3 n (EN*+E+ ™)

o (En &) b (e + &2

67—n—1 (Tn + Tn—l)

+C3 (en+ex)

(3.8)
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(B rer) en(enva))

3072 (Tn + Tno1)? ’

" H AMwp — A”_lwz_l
Yw = ;
2 —1
2
-
n._||n 52 .
5u ‘ 3 nUh 71,
o ::H(A” L=t 4wl ) — (A" + w)) || L+ "82 (Awy, +wp)||
1
Ou ::HwZ—wh lH Lt " 92wy, ;
1
5" = u’h _UZ ! .
u 8 bl
" A"up — A”*1u2_1
fyu =€ 2 )
o | ) = P
wr 2¢ ’
n—1
g _Hwh Wy, )
w 2 Y
n n—1, n—1 1 n—1 n—1 n.n 1 n n
Oy =2 A" uy " + gh(uh ) — wy — | eA"up + gh(uh) —wy
Anfl n—1 1 n—1 n—1 Aan n—2 1 n—2 n—2 .
—l—H(&? uy, —i-gh(uh ) —wy, >—<5 uy —i-gh(uh ) — wy, )‘,
1
ay =—C (5" + 8"_1 + 81’}_2) :
€
(e 3(up)?up ' = 2(up)® — (up™')? Bup(up)? = 2(up")? — (up)?
v € €
N (3(up)?02up, — 3upuy " 0%uy) 72 N (3(up=")202uy, — 3ujuy 02wy 72
8¢ 8¢
(uh)d (n 1)57(u271)37(u272)3
R T —
_"_ 2
8e
N (up(B2un)® — 3up ™ (D2up)?) 7 (3up " (Opun)?) 7 (O2up)*1)
64e 64e 512¢ ’

here Cs,C are constants, which are independent of mesh size, and E? = E[u}] is defined as

©2.27).
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The proof of this theorem is provided in Appendix [A]

Remark 3.1. The a posteriori error estimator in Theorem [3.2] can be divided into two cat-
egories. The terms v, B, nu, on, on, v, &, Bu, On, (' are viewed as the a posteriori
error indicators for time discretization, the terms &7 and ] are the spatial discretization

error indicators.

3.2. Adaptive Algorithm. In view of the a posteriori error estimator of Theorem [3.2] we
design the algorithms for time-step size control and spatial adaptation in this part.

We adjust the time-step size in view of the error equidistribution strategy, which means that
the time discretization error should be evenly distributed to each time interval (¢,_1,¢,], n =
1,2,...,N. Let TOLjn. be the tolerance allowed for the part of the a posteriori error
estimator in related to the time discretization, that is,

N
D T 4 B A O A O A+ &+ By + 0+ (0 < TOLyime.— (3.9)
n=1
Generally, we can achieve by adjusting the time-step size 7,, so as to have the following
relations

Niime = Yeo & B+ My 4 00y + 0y + 70 + &0 + Boy + 0, + (o < AV/TOLyie /T := TOL,. (3.10)

We summarize the procedure of time-step size control in Algorithm [1}

Algorithm 1 Time-step size control

1. Given tolerances TOL;, TOL;,, = \/TOLn-me,mm/T, parameters 0; € (0,1), dy > 1;

2: Set 7, = To_1, ty = th_1 + Tn;

3: Solve the discrete problem and compute the time error estimator n},..;
4: while 0}, .. > TOL, or n}},.,. <TOL,,, do

5. if . > TOL; then

6 Set 7, ;== 01 -7, and t,, :=t,_1 + Tn;
7. else

8 Set 7, ;=09 - 7, and t,, :=t,,_1 + Tu;
9 end if

10:  Solve the discrete problem and compute the time error estimator 7;,,,.;
11: end while

Let T'OLgpece be the tolerance allowed for the part of the a posteriori error estimator in
(13.8]) related to the spatial discretization. For the recovery type error estimator, we adopt the
SCR-based error estimator. The SCR gradient recovery method was proposed by Huang and
Yi in [24, 36], it can produce a superconvergent recovered gradient, which in turn provides
the SCR-based error estimator that is asymptotically exact. Similar to time discretization,
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we aim to achieve the following relation at each time step n,

ngpace = gg + 043 S \/ TOLspace/T = TOLs (311)

Given the refinement and the coarsening parameters TOL,, TOL., respectively, we adopt
the following Maximum mark strategy to mark the elements for refinement or coarsening.
Set

Ny = |G"upy, — Vuy Miax = max{ng, K € T;'}, (3.12)

choose the elements {K : 1}t > TOL, x n,..} for refinement, and choose the elements
{K :n} <TOL. xn},.} for coarsening.

In view of the error indicators above, we design the following time-space adaptive algorithm
for Cahn—Hilliard equation, which is outlined in Algorithm

4. NUMERICAL EXAMPLES

In this section, we present three examples to demonstrate the reliability and effectiveness
of the proposed adaptive algorithm based on the a posteriori error estimator of Theorem [3.2]
In Example 4.1}, we investigate the main part of the space and time discretization error indi-
cators numerically. In Example 4.2 we focus on illustrating the efficiency of the a posteriori
error estimator based on the recovery type and the necessity of time-space adaptation by
comparing them with the residual type and space-only adaptation, respectively. We provide
the corresponding numerical results, including the discrete energy history, the change in the
number of nodes and time steps, the numerical solutions, adaptive meshes, and CPU time,
to support our conclusions. For the last example, we apply the proposed time-space adaptive
algorithm to the three-dimensional Cahn—Hilliard equation.

In all examples, we take the parameters

and the remaining parameters will be specified in each example.
Example 4.1. Consider the Cahn—Hilliard equation ({2.2)) with the initial condition
wo(,y) = tanh (((g; —0.3)2 44 — 0.252)/5> tanh <((x 10.3)2 44 — 0.32)/5),

where Q = [—=1,1]* and the parameters ¢ = 0.01, TOL, = 50, TOL;,, = 5, TOL,; = 10,
TOL; = 0.002.

We apply the proposed time-space adaptive algorithm to solve the Cahn—Hilliard equation,
the numerical solutions of u and the corresponding adaptive meshes are shown in Figure [T}
respectively. From the pictures, we can see that the meshes follow the zeros level set of u as
1t moves.
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Algorithm 2 Time-space adaptive algorithm for the Cahn—Hilliard equation

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

1: Given TOLy, TOL;,,, TOLs, TOL;, 61 € (0,1), 09 > 1;

2: Given the initial time step 79, initial mesh 7,2, and initial solution uY;
3: Setn=0,t =0, E(u,") =0;

4: Compute the initial error estimator 9. = lluo — uill;

9:
6
7
8
9

Refine 7,0 to get a mesh such that 7)., < TOL;;

. Compute the energy F(uj);
. while E(u}) — E(u}™') > TOL, do

Set n:=n+1, T := 771"_1, Trn i= Tn-1, bn := tp_1 + Tn;
Solve the discrete problem and compute the time error estimator 7y, .;
while n} . >TOL, or n,.. < TOL,,, do
if 0y, > TOL; then
Set 1, := 01 -7, and t,, := t,,_1 + Tu;
else
Set 7, := 09 - 7, and t,, :=t,_1 + Tn;
end if

Solve the discrete problem and compute the time error estimator 7;,,,.;

end while
Compute the space error estimator 7g,,.., Mg and 7.
while 7g,... > TOL; do
Mark elements for refinement;
Refine mesh 7," to generate a new mesh 7,;
Solve the discrete problem for u} on the new mesh 7," using data uj,
Compute the time error estimator 7;,,.;
while ;. > TOL, or n}},.. < TOL,,, do
if n},. > TOL; then
Set 7, ;== 01 -7, and t,, :=t,_1 + Tu;
else
Set 7, := 09 - T, and t,, = t,_1 + Tn;
end if

Solve the discrete problem and compute the time error estimator np, .. ;

end while

Compute the space error estimator ng,,.., ng and 7y,
end while
Compute the energy E(u}) ;

Mark elements for coarsen and coarsen 7, producing a modified mesh 7,";

end while

n—1,
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FIGURE 1.

Example First line:

of numerical solutions for u.
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Error estimations for time

Rate of error estimations for residual type
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=
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time

FI1GURE 2. Example Left: Error indicators for spatial discretization of
recovery type; Middle: Error indicators for time discretization of recovery type;

Right: Error indicators for spatial discretization of residual type.

From Theorem [3.2], the proposed error estimator contains twelve terms,

n
ntime

=f§§+ag

n
nspace

= Yo+ B 1y Oy + 0y + 7y + &+ By 0, G

We numerically investigate which terms are the main part of the time and space discretization

error indicators. We also test the performance of the residual type error estimator provided

in [17], in which the local error estimators are defined by

1
i (t) = huc| Rl ez + ( Pelldrglagy )y G =12,

TEOK

(4.1)
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with the element residual
Ri1 = ung|x + A(wi(t)| k),
1 1 (4.2)
R = Alun(t)|x) + gf(uh(t)h() - gwh(t)lK,
and the residual jumps across 7

Joa(t) = (th(t)|K1 . th(t)|K2) ‘n,

Joo(t) = (Vuh(t)|K1 — Vuh(t)|K2) ‘n,

here n is the unit normal vector to 7 pointing from K to K5. The corresponding total spatial

(4.3)

discretization error estimator is taken as

1
1) = (D (a(0) +niea() ) (4.4)
KeTy

Figure [2| plots each parts of the error indicators. It shows that: i) for the recovery type
error indicator, the time discretization error estiamtor 77, . is dominated by 6, and the
space discretization error estimator 7} ,.. is dominated by &£7; ii) 71 (t") is the main part of
the residual type error indicator 7(¢"). In the following examples, we adopt 6 as the time
discretization error indicator, and & or nx 1(t") as the spatial discretization error indicator,

respectively.

Example 4.2. Consider the model equation (2.2)) with the parameters Q = [—1,1]%, ¢ = 0.01,
TOL; =50, TOL,,, =5, TOL; =4, TOL; = 0.002 and the initial condition

uo(z,y) = tanh (((x —0.3)2 +9° — 0.22)/€> tanh (((x +0.3)2 + 97 — 0.22)/5) X

tanh <($2 + (y — 0.3)* — 0.22>/€> tanh ((x2 + (y +0.3)? — 0.22)/5>.

node = 28509, elem = 56504

T=0, At=0

1 55
. 08
5
. 06
. 04 45
. 02
S 4
2
’ &
35
0. 02
-0. 04 3
0. 06
25
0. 08
4 2

-1
4 08 06 04 02 0 02 04 06 08 1 4 0.002 0.004 0.006 0.008 0.01
time

FIGURE 3. Example [4.2] Left: initial mesh; Middle: the contour plot of u;
Right: discrete energy.

In this example, we compare the recovery type a posteriori error estimator with the residual
type. Figure [3] displays the initial mesh, contour plot of the initial numerical solution, and
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FIGURE 4. Example adaptive meshes and snapshots of numerical solu-
tions; First and second column: recovery type; Third and fourth column:
residual type.

discrete energy history for the two spatial error estimators based on the proposed time-
space adaptive algorithm. We can see clearly that the energy decreases over time. Figure []
shows the sequences of adaptive meshes and contour plots of the corresponding approximate
solutions produced by the time-space adaptive algorithm guided by the recovery and residual
type error indicators for the spatial discretization, respectively. The adaptive meshes match
the numerical solutions of Algorithm [2| based on the recovery type error indicator better than
the residual type. The corresponding time-step and number of nodes are also displayed in
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Figure[5| We observe that as the time-step grows, the degree of freedom based on the recovery
type is much less than the residual type, indicating that the recovery type a posteriori error
estimation is clearly superior to the residual type.

FIGURE 5. Example Left: time-steps; Right: number of nodes.

TABLE 1. Example (T=0.01), CPU time for two kinds of types by using
time-space adaptive algorithm and space-only adaptation, respectively (11th

Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz 2.42GHz).

CPU time | time-space adaptation | space-only adaptation
Recovery type 389s 1095s
Residual type 106975s -

Furthermore, we evaluate the efficiency of the adaptive algorithm with time and space
adaptation. Table [l| reports the corresponding CPU time. We observe that: i) the time-
space adaptive method based on our proposed recovery type error estimator is significantly
more efficient than the adaptive method based on the residual type error indicator; ii) the

time-space adaptation is more efficient than the adaptive method with space-only adaptation.

Example 4.3. In the last example, we consider the three dimensional Cahn—Hilliard equation

(12.2) with the following initial condition
uo(z,y, z) = € cos(1.5mx) cos(1.5my) (sin(mz) + sin(27z)),

where Q = [—1,1]> and the parameters ¢ = 0.05, TOL, = 20, TOL,,, = 1, TOL, = 1.5,

Figure [0 displays the contour plots of the discrete energy history, time steps, and the
change in the number of nodes with time. It is evident that the energy and the number of
nodes both decrease over time, and the time steps change with time. In Figure[7] we show the
sequence of adaptive meshes and contour plots of the corresponding approximate solutions.
We observe that the meshes adapt around the zero level set, which confirms the effectiveness
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FIGURE 6. Example [4.3] Left: discrete energy; Middle: time-steps; Right:
number of nodes.
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FIGURE 7. Example adaptive meshes and snapshots of numerical solu-
tions.

of the derived a posteriori error estimation and adaptive algorithm for the three-dimensional
Cahn—Hilliard equation.

5. CONCLUSIONS

In this paper, we derived a novel SCR-based recovery type a posteriori error estimator
for the Crank-Nicolson finite element method applied to the Cahn—Hilliard equation. The
derivation of the error estimator utilized the elliptic reconstruction technique and the time
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reconstruction technique, which was based on approximations on three time levels and led to
a second order error estimator for time discretization. Based on the derived a posteriori error
estimator, we designed an efficient time-space adaptive algorithm. The numerical results
indicated that the recovery-type a posteriori error estimator and the time-space adaptive
strategy could greatly improve the efficiency of the adaptive algorithm for the Cahn-Hilliard
equation. Notably, our proposed time-space adaptive finite element method outperformed
the adaptive finite element method based on residual-type a posteriori error estimators, as
well as the space-only adaptive finite element method. These results demonstrate the superior

efficiency of our method in accurately solving the Chan—Hilliard equation at hand.

APPENDIX A. PROOF OF THEOREM

In this section, we present the proof of the Theorem [3.2] To begin with, we recall the
following results.
Lemma A.1. [2] Let V := {qb c H'(Q), ¢ := \ﬁll Jq ddx = 0} , there exists Cr > 0 such that
forall¢p € V ifd=2 and for all p € VN L®(Q) if d = 3, we have
1811250y < Crllgll ) IVAT II7 Vo], (A.1)
where o =1 if d =2 andaz% if d = 3.

Lemma A.2. [3] (Generalized Gronwall’s Lemma) Suppose that the nonnegative functions
v € C([0,T)), yo, y3 € L0, T), a € L=(0,T), and the real number A > 0 satisfy

t

n0)+ [ woyis <A+ [ aomas + [ s

for allt € [0,T]. Assume that for B >0, 5> 0 and every t € [0,T], we have

/0 ya(s)ds < B sup g2 (s) / (11(5) + ya(s)) ds.

s€0,t]
Setting E := exp <fOT a(s)ds) and assume that SAE < (8B(1+T)E)™"? | then we obtain
T T
sup y1(¢) +/ yo(s)ds < 8Aexp </ a(s)d5> :
te[0,T) 0 0
Now, we are ready to present the proof of Theorem [3.2]

Proof. According to (3.7), we have that

A" n_An—l n—1
T+ A(g(t) — ") + wy — R,

+(t —t,_1)0qun, (A.2)

%
At — At PR f(g) PP ()
+ —
2 2¢e 2

ede, —e, =—cAe, +€, +¢
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e A(t) — 1) — (alt) — )+ LTI Ly (A.3)

€ 9

To make the conclusion clean, we separate the remaining of this proof into eleven steps.
Step 1: Multiplying both sides of (A.2) by —A~!e, and (A.3) by e,, respectively, then
adding the resulting equations, we obtain

An An 1 n 1
4 TA ey + ]| Veu |2 = ( wh ,—A-leu)

2dt 2

(A0 — ), =271 + (uf = R ~A )+ (0 -1, —0 7,

Ay — An—1yn1 1
—ca(ey,e,) +¢€ ( U U 7€u) + = (up, —p", eu)
€

2
) (P"f(u}“{) ‘i“f(“’i_”,eu) . (_%>
+ ((eA (p(t) —p") — é (f(p")t";t - f(p"‘l)%) — (q(t) — CJ”)) aeu)
T e O e R L e
# (2 (1) - £ =02 gy =h) e ) + (20 - ) ).

for all t € (t,,_1,t,] and each n = 1,2,..., N. Then integrate with respect to t, we get

1 T
SIVATE P+ [ el ve P
0

1 T Am An— 1 n 1
—yIvaap [ (F atte, )
0

2
T T
+/ (wp — Rwy, —A™e,) dt+/ <(t—tn_%)82uh,_A—1eu> dt
0 0
T
/ (A(q(t) — ") +q(t) — ", —A7"e,) dt + / —ea (€ey, €,) dt
0 0
T
/ ¢ — qt) — (@ —wy),—Ale,) db + / (wf — wn, —Ale,) di
0 0
T An 1 n T 1
+/ 6( u)dt+/ —(uy —p",e,)dt
0 0 g
T pn n—1 n— T n_ ,n—1
/ ( fluh) = P fluy ) eu) dt+/ (—M,eu> dt
0 0 2
[

( ( ) - 1<h(p”)t” Y

39

Tn Tn
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h(P™)—h(@E"~Y) (" H—h(E""?)

—l(t—tn,l)(t—tn) e —(a@t) —q") ), eu)dt
2 2

1

o \e ho Th Tn 2e nl "

propnt  pntlepn? up—upmt upmloup?

- - Tr1 t, —t
Tn Tn—1 _ Tn Tn—1 " dt - n __ n—1 n u dt
( Tn+;'n—1 Tn“l’;n—l >76 ) +\/0\ (8 (uh uh ) Tn 76 )
T
1 b —th—1 iy tn — 1 n o bn — 1 iy tn — 1
[ C (e ™= === g+ som ™ 2=

3

Fp=fup™)  flupH—fp™®  fem—femY  feD—f@en2)
1 Tn Tn—1 Tn Tn—1
o= to)(t— 1) - e )di
€ 2 2

-t 1
- 5(1& —tn1)(t — 1)

/OT (2 (7w = s == — pla )™

n Tn
fup)—fup™)  flup)=fup?)
Tn Tn—1 ) ’ eu> dt

Tn+Tn—1

+/0T (1 (f(w) —f<uh>>,eu) it

€
1
=5 VAT + By + - + By, (A.4)
where
T
B :/ (wi — RMwy, —A™'e,) di;
0
T n,n _ An—1,,n—1
B, ;:/ (A wh — AT w, ,—Aleu> dt;
0 2
T
B ::/ ((t—tng)@fluh, A 1eu) dt;
0
T
Bim [ (Alat) ~ ")+ at) - -2 1e) di
0
T
Bs :—/ —ca (€y, €,) dt;
0
T
Bg := / (q” —q(t) — (wy —wp), —A eu) dt;
0
T
B, ::/ (wh —wh,—A_leu) dt;
0
T AP _An—l n—1
Bg::/ g( “h 5 h ,eu)du
0
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(up — p", ey) dt;

P f(uf) — P!

2e

n n—1
(wh — wy

2

7€u

M) )

) dt;

/OT ((eA(p(t) - p") - é(h(pn)? — B ?

R(P™)—h(E"Y)  hA@E""H—h(E""?)

fap)—fp™)  fepH=fwp? M —fe"Y)  fem )= f("2)

— "=

-t
Tn

t

1 Tn Tn— n
—at ~tn1)(t— ) TR ) B (Q(t) 1 ))’e“>dt;
2
T
= — (= = (= D)) B (=t (E— 1y
[ GO == =) = =t - 1)
pnipn—l . pn—lipn—Q un_uz 1 uzfl_uZ*Q
Tn Tn—1 Tn Tn—1
( TntTn—1 - TnFTn—1 ) ’ 6") dt;
2 2
T
1 N
= = (up = dt
/0 (5 (uh h ) p 7eu) ;
1 I woitn —t . antn — 1
= | (2 (st  Fl ) = ) + )
0 n n n

Tn Tn—1

Tn

Tn—1

Tn+Tn—1
2

t—1tn_1 t, — 1

— fluy™)

n n

Flup)=fup™)  fp = fup=?)

z cem— P

TntTn—1

2

Next we estimate each of the terms {83;},-1.17, separately.

Step 2: First, the term By, which contains a spatial discretization error term, is bounded

by using Schwarz inequality

1B, | =

T

/ (wpy — RMwp, —A™'ey) dt’
0
N

tn
Z/ (wy — RMwj, —A™"e,) dt
—1Ytn-1

Tn+Tn—1
2

7€u> dt;
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N tn
SZ t Jwp — RMwp| - ||A™ e,]| dt
n=1"tn-1
N tn
gZ/t Cih|lwy — RMwpll, o || A eu|| dt. (A.5)
n=1"vtn-1

Owing to Remark [2.1] it can be ignored while A is small enough. In the same way, the term
By can be also ignored.

Similarly, the time discretization terms By and B3 can be estimated as

/T (Anwz, _ An—lwzl’_A_leu) dt‘
O 2

N _ _
tn Anw;:_An lwh 1
< g
n=17tn-1

2
N tn
=3 / o [VAe || d. (A.6)
n=1"tn-1

1B,| =

VAT e, || dt
-1

T
|Bs| = / ((t—tn_%)aﬁuh,—A‘leu> dt’
0
N tn || 12
<> = Oqun|| - [|[VA e dt
n=1"tn-1 -1
N tn
=3 / Br [VAe || dt. (A7)
n=1Ytn-1

Step 3: For the term By, based on the definition of elliptic reconstruction, we have

By = / (Ala(t) — ") + a(t) — ", —A"e,) dt\

B ’i\f:/tn <A<t—tn_1qn+ ty —tqn_l +%(t—tn_1)(t—tn)8§q—q”)

n=1"tn-1 n n

bt t, —t 1
n (—”lq” P T () (t = )PP — q”), —A*leu> dt’
T Th 2

N

1>/ (AR B ) - (AR + Brup)™

n=1 tn—1

S tan)(— 1) (@ Ag + 820), ~A e, )]

N tn
<> /
n=1"tn-1

HVA’leuH dt

—1

Tn

t, —1

2
(ARn_le_l + Rn—lwz—l . (AR”U)Z + Ran)) + %‘62(.,4}%@0;1 + Rwh)

Tn

-1
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N tn
SZ[1(||An1 P = (At wp) ||+

T 82 (Awp, + wy)

) .

-1

= /t - [VA- e de. (A8)

Step 4: The term Bj yields the spatial discretization error, which is bounded as follows

T
|Bs| = —/ 5a(eu,eu)dt‘
= —Z/ a(€y, e,)dt
tn—1
Z / Ve - Ve ldt
tn—1

N tn c
/ (21ver? + —||Veu||2)dt
tn—1

ng 2 Ve, | d“z/tn IVt (A.9)

and in view of the triangle inequality and the linearity of the operators G and V, we get

tn tn
/ |Veu|Pdt = / 19 (p — w) |2t
tn—1 tn—1

tn t—t,_ t, —t
:/ V((R”uz — uﬁ) ! <R” ! uZ’l>
tn—1

Tn
b3t bt~ 12)(820 — 3R ) ||

IN

L[]

2
tn t—tn_1 one1 tn —t
< [ (19— (=) e =) ()
_ 204
= tn_1)4<t to) 102V p — 92V, |?
t—t,—1)(t, —1
F o V(R — )| 7 (Rt — gy | ) =0

Tn

t—tn 1)*(t —ty)
27,

+2||V (R up —up) || - 102V — 02V uy|| (
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nen—1 %(tn + tn*1>t2 - %t3 - tntnfl -t tn
+2E€, _ o
(tn - tn—l)

T 1BV — B2V (5" + 5”-1) |52V — 62T
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< (€2 + (€ + e

TatTaa (&0 + &)+ Eny +E2
e I 6Tn_1<2n ﬂL) : >(53+53‘1)

2
(e e en(an va
+ Cor? <T 1( —2075127—:17(”1)12+ )>

—~2
=En

then taking (A.10) into (A.9), we get

N s N tn 62
Bs| <) 2¢r — | Ve dt.
B <3228+ 3 [ vl

Similarly, the spatial discretization error term By is estimated as follows

T
|Bg| := / (q" —q(t) — (wy — wp), —Afleu) dt‘
0
N t
" t—tay o ta—t
IS [ e et
n=1Ytn-1

(A.10)

(A.11)

- — 5(15 —ty1)(t — 1,)02q)
t—t,.— i t,—t 1 _
— (wf = (wp— Ly gp! — 4 St = )t~ ) O2wn)), —A 1eu>dt‘

N o n n b — 1 n—1 n—1 ln — 1
=12 ()™ == (=)
n=17tn-1 7

n Tn
(t= t"12) (t=tn) (02q — 02wy, —A_leu> dt‘

N tn
= O A (Y T e P T PN
n=1

tn—1

o oo ~1
12202 = wn) |- 1A eull) e

N tn
<3 [ (e~ wpll g+ Chlla = g
n=1

tn—1

7_2
+ Chl| 202 (q - wh)||m) |A~"e, || dt.

(A.12)

According to Remark it can be ignored while A is small enough. In the same way, the

term Bp3 can be also ignored.

27
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Step 5: The time discretization term By is bounded as follows

T
|B7| = / (wz — Wk, —A*Ieu) dt‘
0
Y n n n—1 ln —t 1 2 -1
=D (wp —wp™) — Z(t = ty1)(t — t,)DPwp, —A e, | dt
n=17tn-1 Tn 2

Sy

tn—1

Z/t 15” |[VA~e,]| dt. (A.13)

Similarly, the terms By, By, By, Bi1 are also the time discretization terms, and they are

T
1 t, — 1t
B — - n__ ,n—1 n "
Bu ‘/0 (g(uh ) e)‘

2

-
n 92

3 Oiwp,

(J =i, +

) VA~te,||dt
~1

estimated as follows

<Z/ R e ) at
tn 1
tn
= Z o7 - ||eq | dt, (A.14)
n=1Ytn-1

|Bs| =

T Ay — An—1 n—1
/ € ( h— A" ,eu) dt’
0 2

n,n nlnl
2

tn
::Z/fmww, (A.15)

’ ||€u|| dt

T n n n— n—
Byo| = /0 (P f(“h) _212 1f(“h 1)7%) dt‘
-\ / P f(up) — P f(u )
T 2e
N
:Z/ & - lleul . (A.16)
Byy| = /O (thleeu> dt‘
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N tn
<>/

n=1"Ytn-1

N tn
=S [ e (A7)
n=1"7tn-1

n n—1
2

leull dt

Step 6: The term Bi,, which also contains a time discretization term, is estimated by using

the definitions of w™, w and R",

Bizl = ’ /OT ((5“4(1’(?5) —p”) - 1<h(p")t" L
1

€ T Tn
h(p™)—h(@E"Y) _ hE""H-h(p"?)

_ 5(t —tp_1)(t —ty) T e Tl ) - (q(t) — q")) : eu> dt‘

N t
n t—tn th—t 1
= ’Z/ (<€A<p” 1+p”‘1—+§(t—tn_1)(t—tn)33p—p”>
n=17tn-1

Tn Tn

R(P™)—h@E""Y)  h(E"H)—h(E"?)

1 t,—t 1
. h ny ]’L n—1 ) n - t . tn— t . tn Tn Tn—1
5( (") — h(p"™") - 5 1)( ) =
nt_tn—l 71tn_t 1 9 )) ) ‘
- gttt —q" » Cu dt
(q - +q - + 2( ( )2q — q")), e
N ot | L ome1 . 1 A
- ‘Z/ (((ﬁAR”‘ up + gh(R”— ur ) — ") = (CARM + gh(R"UZ) _ q")> -
n=1 tn—1 5

—1 -1 -2
(e Ap™+ h(zn)*qn)f(&Apn71+ h(p™ )7qn71) B (E.Ap”71+h<pn )*qnil)f(E.Apnfer h(p™ )7qn72)

154 £ £

+ = Tn+Tn—1 -
2
t_tn— n
( )t —t ),eu>dt‘
2

N i 1 1
< <2H( Anfl nfl_i__h -1y nfl) - < An n —h ny __ n)‘
_;:1 /tn_l 3 uy, . (u, ) —wy 5 uh—l—6 (up) — wy,

1 1
+ ‘ <5A”_1u2_1 + gh(uz_l) — wﬁ_l) — <5A”_2u2_2 + gh(uZ_Q) — wZ‘z) H) ey dt

N tn
:Z/ 0 fle|ldt. (A.18)
n=1"7tn-1

Step 7: The term Bj; also yields a time discretization error, which is estimated by using
Lagrange mean value theorem and embedding theorem.

T 1 - — n n - — n -
Bul =] [ (2 (A = ) 2 g + ron )

Tn n n
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cE™ 2 ||lew]| dt

(A.19)

Step 8: In order to estimate the term Bg, which also yields a time discretization error, we

first simplify the following formula

n—t

= = fl!

Tn

— St taa)(t — ta)

fup)—fup™h)

Tn

1

eu> dt‘
) i
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Tn Tn

+ [Bup (up ) — (up)® = 2(up)?] - t—tn (tn _ t>2

Tn Tn

=[BCup) ™ = 20w)" = ;™) - (t - t> o

Tn

2
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1 ty—1)°
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thus we have
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N t n—1\2 n—1\3 n\3
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n=1 tn—l

Step 9: Grouping together (A.8), (A.12)) and (A.13]), we have

|By| + -+ + | Ba| + | Bs| + | B7]
N o oty N
<[ lvartalas > [ g vatel
n=1"tn-1 n=17tn-1
N tn N tn
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Summing up —, it holds that
N tn N tn N tn
B+t Bl <30 [ atlledidt+ > [ eSS [ o e
n=1"Ytn-1 n=1"tn-1 n=1"tn-1
N o, N o ftn
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+Z/ ”Hequt—i—Z el dt
tn—1 =1 tn—1
—Z/ i leal) dt
tn 1
<Z/t l—nldt+2/t 1—||eu|| dt. (A.23)

Step 10: As for estimation of the term By, according to the Remark [2.3] the spectrum
estimate [, [7], and the fact that

(f(a) = f(0) = f'(b)(a— b)) (a—0) = —f(b) [a—b [’

with f(b) = 3|b|, we obtain
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(A.24)

Step 11: Taking (A.11), (A.22)-(A.24) into (A.4)), we have
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Note that

lea])? = (V(=A7le,), Ve,,)
< [VA™ e, ||| Ve

IN

1 e, 2
plugging (A.26|) into (A.25)), and further simplification, then we obtain
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According to Lemma and assume that ||e,||r~ < C, then it holds that
T T
| lealisde < [ Crlealio VA e Ve e
0 0
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T
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then by Lemma[A.2] we have
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