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The nonconforming virtual element method with curved edges

Lourenco Beirão Da Veiga∗†, Yi Liu∗‡, Lorenzo Mascotto∗†§, Alessandro Russo∗†

Abstract

We introduce a nonconforming virtual element method for the Poisson equation on domains
with curved boundary and internal interfaces. We prove arbitrary order optimal convergence
in the energy and L2 norms, and validate the theoretical results with numerical experiments.
Compared to existing nodal virtual elements on curved domains, the proposed scheme has the
advantage that it can be designed in any dimension.

AMS subject classification: 65N15; 65N30.

Keywords: nonconforming virtual element method; polytopal mesh; curved domain; optimal
convergence.

1 Introduction

Partial differential equations are often posed on domains with curved boundaries and internal
interfaces. The geometric error between a curved interface/boundary and a corresponding “flat”
approximation affects the accuracy of the standard finite element method, leading to a loss of
convergence for higher-order elements [32, 33]. This phenomenon has been addressed in many
different ways in the literature, the most classical being to employ isoparametric finite elements [26,
28], which require a polynomial approximation of the curved boundary and a careful choice of the
isoparametric nodes; another notable approach, which applies to CAD domains, is that of the
Isogeometric Analysis [21].

Both issues can be avoided employing curved virtual elements [10]. The virtual element
method [5, 7] was designed a decade ago as a generalization of the finite element method to a
Galerkin method based on polytopal meshes. Basis functions are defined as solutions to local par-
tial differential problems with polynomial data. An explicit representation of the basis functions
is not required; rather, the scheme is designed only based on a suitable choice of the degrees of
freedom.

In [10], test and trial virtual element functions are defined (in 2D) so as their restrictions on
curved edges are mapped polynomials. Other variants were developed later. In [8], again focusing
on the 2D case only, virtual element functions over curved edges are restrictions of polynomials.
In [11], a boundary correction technique tracing back to the pioneering work [13] was generalized to
the virtual element setting; here, normal-directional Taylor expansions are used to correct function
values on the boundary. The gospel of [10] has been applied to the approximation of solutions
to the wave equation in [23]. Mixed virtual elements on curved domains are analyzed in two and
three dimensions in [22, 24].

Other polytopal element method have been designed for curved domains. Amongst them, we
recall the extended hybridizable discontinuous Galerkin method [27]; the unfitted hybrid high-order
method [17, 16]; the hybrid high-order method for the Poisson [12, 34] and (singularly perturbed)
fourth order problems [25]; the Trefftz-based finite element method [2].
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In this paper, we focus on the Poisson problem, design a nonconforming virtual element method
on curved domains and with internal curved interfaces, prove arbitrary order optimal convergence
estimates in the energy and L2 norms, and validate the theoretical results with numerical results.

The proposed scheme is a generalization of the standard nonconforming virtual element method
to the case of curved boundaries and internal interfaces. Indeed, when the curved boundaries
happen to be straight, the proposed virtual space boils down to that in [3]. Compared to its
conforming nodal version [10], in principle the nonconforming scheme can be designed and analyzed
in any dimension at once.

The proposed method is based on the computation of a novel Ritz-Galerkin operator that, due
to computability reasons, is different from the standard H1 projection operator typically employed
in virtual elements. A noteworthy challenge of the forthcoming analysis resides in developing
optimal approximation estimates for such a Ritz-Galerkin operator; this result is interesting per
se and could be borrowed also by other methods handling curved boundaries/interfaces.

Even though the standard nonconforming virtual element can be algebraically equivalent to the
hybrid high-order method [20] for a particular choice of the stabilization, the method presented in
this paper differs from the hybrid-high order methods on curved domains available in the literature.

Preliminary notation. We denote the usual Sobolev space of order m, m ≥ 0, on an open
bounded Lipschitz domain D in R

d, d ∈ N, by Hm(D). We endow it with the inner-product
(·, ·)m,D, the norm ‖ · ‖m,D, and the seminorm | · |m,D. Let H1

0 (D) the subspace of H1(D) of
functions with zero trace over the boundary ∂D of D. When m = 0, the space H0(D) is the space
L2(D) of square integrable functions over D. In this case, (·, ·)0,D = (·, ·)D denotes the standard
L2 inner-product. Sobolev spaces of negative order can be defined by duality. The notation 〈·, ·〉

stands for the duality pairing H− 1
2 −H

1
2 on a given domain.

Further, we introduce the Sobolev spaces Wm,∞(D), m ∈ N, of functions having weak deriva-
tives up to order m, which are bounded almost everywhere in D. The case m = 0 coincides with
the usual space L∞(D); the spaces of noninteger order m ≥ 0, m 6∈ N, are constructed, e.g., by
interpolation theory. The corresponding norm and seminorm are ‖·‖Wm,∞(D) and |·|Wm,∞(D).

Model problem. Let Ω ⊂ R
d, d = 2, 3, be a Lipschitz domain with (possibly) curved bound-

ary ∂Ω. Given f in L2(Ω) and g in H
1
2 (∂Ω), we consider the following Poisson problem: Find u

such that {
−∆u = f in Ω,

u = g on ∂Ω.
(1.1)

Introduce Vg = {u ∈ H1(Ω) : u|∂Ω = g}, V := H1
0 (Ω), and the bilinear form

a(u, v) :=

∫

Ω

∇u · ∇v dΩ ∀ u, v ∈ H1(Ω).

A variational formulation of (1.1) reads as follows:

{
Find u ∈ Vg such that

a(u, v) = (f, v)0,Ω ∀v ∈ V.
(1.2)

We assume that the boundary ∂Ω is the union a finite number of smooth curved edges/faces
{Γi}i=1,··· ,N , i.e.,

N⋃

i=1

Γi = ∂Ω.

Each Γi is of class Cη, for an integer η ≥ 1, which will fixed in Assumption 5.1 below: if d = 2,
there exists a given regular and invertible Cη-parametrization γi : Ii → Γi for i = 1, . . . , N , where
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Ii := [ai, bi] ⊂ R is a closed interval; if d = 3, there exists a given regular and invertible Cη-
parametrization γi : Fi → Γi for i = 1, . . . , N , where Fi is a straight polygon. The smoothness
parameter η depends on the order of the numerical scheme and will be specified later.

Since all the Γi can be treated analogously in the forthcoming analysis, we drop the index i and
assume that ∂Ω contains only one curved face Γ. To further simplify the presentation, we focus on
the two dimensional case and postpone the discussion of the three dimensional case to Section 7
below. We further assume that γ : [0, 1] → Γ.

Remark 1.1. The forthcoming analysis can be extended to the case of internal interfaces (and
jumping coefficients) with minor modifications. To simplify the presentation, we stick to the case
of Γ being a curved boundary face; however, we shall present numerical experiments for jumping
coefficients across internal curved interfaces.

Structure of the paper. In Section 2, we introduce regular polygonal meshes, and broken and
nonconforming polynomial and Sobolev spaces. In Section 3, we design a novel nonconforming
virtual element method for curved domain; show its well posedness; discuss its lack of polynomial
consistency. In Sections 4 and 5, we prove stability and interpolation properties of the new virtual
element functions. Section 6 is devoted to the proof of the rate of convergence in the H1 and L2

norms. Details on the 3D version of the method are discussed in Section 7. In Section 8, we present
numerical experiments that verify the theory established the previous sections.

2 Meshes and broken spaces

In this section, we introduce regular polygonal meshes with whom we associate broken polynomial
and Sobolev spaces, and nonconforming polynomial spaces.

2.1 Mesh assumptions

Let {Th} be a sequence of partitions of Ω into polygons, possibly with curved edges along the
curved boundary. We denote the diameter of each element K by hK and the mesh size function
of Th by h := maxK∈Th

hK . Let Eh be the set of edges in Th. We denote the size of any edge e
by he, where the size of a (possibly curved) edge is the distance between its two endpoints; see
Remark 2.1 below. Let EI

h and EB
h be the sets of all interior and boundary edges in Th with Eh,c

and Eh,s denoting the sets of curved and straight edges in Th, respectively.
For each element K ∈ Th, we denote the sets of its edges by EK , which we split into straight EK

s

and curved edges EK
c , respectively. We denote the set of elements containing at least one edge

in EB
h by T B

h ; an element K in T B
h may contain more than one edge in EB

h . With each element K,
we associate the outward unit normal vector nK ; with each edge e, we associate a unit normal
vector ne out of the available two.

Henceforth, we demand the following regularity assumptions on the sequence {Th}: there exists
a positive constant ρ such that

(G1) each element K is star-shaped with respect to a ball of radius larger than or equal to ρhK ;

(G2) for each element K and any of its (possibly curved) edges e, he is larger than or equal to ρhK .

Assumptions (G1)–(G2) imply that each element has a uniformly bounded number of edges.
We introduce a parametrization of the edges:

• for any straight edge e with endpoints x1
e and x2

e, we introduce the parametrization γe(t) =
t

he
(x2

e − x
1
e) + x

1
e;

• for any curved edge e, we introduce the parametrization γe : Ie ⊂ I := [0, 1] → e as the
restriction of the global parametrization γ : I → Γ to the interval Ie.

3



Remark 2.1. Let the lenght of a curved edge ℓe =
∫
Ie
‖γ′(t)‖dt. Since γ and γ−1 are fixed once and

for all, and are of class W 1,∞, the quantity he introduced above is comparable with ℓe. Therefore
in the following we shall simply refer to both quantities as “length”.

We shall write x . y and x & y instead of x ≤ Cy and x ≥ Cy, respectively, for a positive
constant C independent of Th. Moreover, x ≈ y stands for x . b and b . a at once. The involved
constants will be written explicitly only when necessary.

The validity of (G1)–(G2) guarantees that the constants in the forthcoming trace and inverse
inequalities are uniformly bounded.

2.2 Broken and nonconforming spaces

Let Pn(K), n ∈ N, be the space of polynomials of maximum degree n over each element K; we
use the convention P−1(K) = {0}. Given xK the centroid of K, we introduce a basis for the
space Pn(K) given by the set of scaled and shifted monomials

Mn(K) =

{(
x− xK

hK

)α

∀α ∈ N
2, |α| ≤ n, ∀x ∈ K

}
.

Here, α denotes a multi-index α = (α1, α2).

Similarly, let Pn(Ie), n ∈ N, be the space of polynomials of maximum degree n over the inter-
val Ie. Given xIe and hIe the midpoint and length of Ie, we introduce a basis for the space Pn(Ie)
given by the set of scaled and shifted monomials

Mn(Ie) =

{(
x− xIe
hIe

)α

∀α ∈ N, α ≤ n, ∀x ∈ Ie

}
.

Recalling that γe : Ie ⊂ I → e denotes the parametrization of the edge e, we consider the following
mapped polynomial space and scaled monomial set:

P̃n(e) = {q̃ = q ◦ γ−1
e : q ∈ Pn(Ie)}, M̃n(e) = {m̃ = m ◦ γ−1

e : m ∈ Mn(Ie)}.

If e is straight, then P̃n(e) and M̃n(e) boil down to a standard polynomial space and scaled
monomial set, respectively. For any s > 0, we introduce the broken Sobolev space over a mesh Th
as

Hs(Th) := {v ∈ L2(Ω) : v|K ∈ Hs(K) ∀K ∈ Th},

and equip it with the broken norm and seminorm

‖v‖2s,h :=
∑

K∈Th

‖v‖2s,K , |v|2s,h :=
∑

K∈Th

|v|2s,K .

We define the jump across the edge e of any v in H1(Th) as

[[v]] :=

{
v|K+nK+ + v|K−nK− if e ∈ EI

h , e ⊂ ∂K+ ∩ ∂K− for given K+, K− ∈ Th

vne if e ∈ EB
h , e ⊂ K for a given K ∈ Th.

The nonconforming Sobolev space of order k over Th is given as follows:

H1,nc(Th, k) :=

{
v ∈ H1(Th)

∣∣∣∣
∫

e

JvK · ne qds = 0, ∀q ∈ P̃k−1(e), ∀e ∈ Eh

}
.

In the straight edges case, this space coincides with the standard nonconforming Sobolev space
in [3].
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3 The nonconforming virtual element method on curved

polygons

In this section, we introduce the nonconforming virtual element method for the approximation of
solutions to (1.2). In Section 3.1, we introduce the local and global virtual element spaces and
endow them with suitable sets of degrees of freedom (DoFs). In Section 3.2, we discretize the
bilinear form by means of computable polynomial projectors and stabilizing bilinear forms. With
this at hand, we introduce the method in Section 3.3.

3.1 Nonconforming virtual element spaces

We define a local virtual element space of order k in N on the (possibly curved) element K:

Vh(K) :=
{
vh ∈ H1(K)

∣∣∣ ∆vh ∈ Pk−2(K), nK · ∇vh ∈ P̃k−1(e) ∀e ∈ EK
}
. (3.1)

We have that Pn(K)|e = P̃n(e) if e is a straight edge; instead, if e is a curved edge, P0(K)|e ⊂ P̃n(e)

but in general, Pn(K)|e 6⊂ P̃n(e). This implies that on curved elements the space Vh(K) contains
constant functions but not the space Pk(K).

We can define the following sets of degrees of freedom for the space Vh(K).

• on each edge e of K, the moments

Di
e(vh) = |e|−1

∫

e

vhm̃i ds ∀m̃i ∈ M̃k−1(e); (3.2)

• the bulk moments

D
j
K(vh) = |K|−1

∫

K

vhmj dK ∀mj ∈ Mk−2(K). (3.3)

In Figure 3.1, we give a graphic representation for such linear functionals in the case k = 2.

Figure 3.1: Representation of the DoFs for k = 2. The edge moments (3.2) are the black balls (for straight
edges) and red balls (for curved edges); the bulk moments (3.3) are the internal orange circles.

The following result generalizes [3, Lemma 3.1] to the case of curved elements.

Lemma 3.1. The sets of linear functionals (3.2) and (3.3) are a set of unisolvent DoFs for the
space Vh(K).
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Proof. The number of linear functionals in (3.2) and (3.3) equals the dimension of the space Vh(K).
So, we only have to prove the unisolvence. Let vh in Vh(K) be such that

Di
e(vh) = 0 ∀e ∈ EK and D

j
K(vh) = 0 ∀i = 1, · · · , k; j = 1, · · · , k(k − 1)/2. (3.4)

Then, it suffices to prove vh = 0. To this aim, we integrate by parts, use (3.4), and obtain

∫

K

|∇vh|
2 dK =

∫

K

−∆vhvh dK +
∑

e∈EK

∫

e

nK · ∇vhvh ds = 0.

We deduce ∇vh = 0 in K, whence vh is constant. Thanks to (3.4), vh has zero average over each
edge. The assertion follows.

The global nonconforming virtual element space is constructed by a standard coupling of the
interface degrees of freedom (3.2):

Vh(Th) :=
{
vh ∈ H1,nc(Th, k)

∣∣vh|K ∈ Vh(K) ∀K ∈ Th
}
. (3.5)

Further, we define nonconforming virtual element spaces with weakly imposed boundary conditions:
if g is in L1(∂Ω),

V g
h (Th) :=

{
vh ∈ Vh(Th)

∣∣∣∣
∫

e

(vh − g)q̃k−1 = 0 ∀q̃k−1 ∈ P̃k−1(e), e ∈ EB
h

}
. (3.6)

The above spaces and degrees of freedom are a generalization to curved elements of their straight
counterparts in [3]. Interpolation estimates are derived in Section 5 below.

Remark 3.2. The enhanced version of the space Vh(K) [1] involves a modification of the space
inside the element and not on the (curved) edges. Therefore, designing an enhanced version of the
local spaces in (3.1) is straightforward by combining the tools in [1] with the techniques presented
here.

3.2 Polynomial projectors and discrete bilinear forms

Here, we introduce projections onto polynomial spaces, stabilizing bilinear forms, and a discrete
bilinear form.

Projections onto polynomial spaces. On each element K, we introduce projection operators
onto polynomial spaces of maximum degree n in N:

• the (possibly curved) edge L2 projection Π̃0,e
n : L2(e) → P̃n(e) given by

∫

e

q̃n(v − Π̃0,e
n v) ds = 0 ∀q̃n ∈ P̃n(e); (3.7)

• the Ritz-Galerkin projection Π̃∇,K
n : H1(K) → Pn(K) satisfying, for all qn in Pn(K),

∫

K

∇qn · ∇Π̃∇,K
n v dK = −

∫

K

∆qnv dK +
∑

e∈EK
h

∫

e

Π̃0,e
n−1(nK · ∇qn)v ds

= −

∫

K

∆qnv dK +
∑

e∈EK
h,s

∫

e

(nK · ∇qn)v ds+
∑

e∈EK
h,c

∫

e

Π̃0,e
n−1(nK · ∇qn)v ds,

(3.8)

together with {∫
∂K

(v − Π̃∇,K
n v) ds = 0 if n = 1,∫

K(v − Π̃∇,K
n v) dK = 0 if n ≥ 2;

(3.9)
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• the L2 projection Π0,K
n : L2(K) → Pn(K) given by

∫

K

qn(v −Π0,K
n v) dK = 0 ∀qn ∈ Pn(K). (3.10)

Remark 3.3. If all the edges of an element K are straight, then Π̃∇,K
k qk = qk for all qk in Pk(K)

and Π̃∇,K
k boils down to the standard VEM operator Π∇,K

k [5]. Instead, if at least one edge of K

is curved, then Π̃∇,K
k qk 6= qk unless k = 0. This fact is the reason of the lack of polynomial

consistency of the method on curved elements.

Next, we show that the three projectors above are computable by means of the DoFs.

Proposition 3.4. Given the DoFs (3.2)–(3.3) of a given vh in Vh(K), we can compute Π̃0,e
k−1vh|e,

Π0,K
k−2vh, and Π̃∇,K

k vh, where the three operators are defined in (3.7), (3.8)–(3.9), and (3.10),
respectively.

Proof. The computability of Π̃0,e
k−1vh|e and Π0,K

k−2 follows immediately from the edge and bulk DoFs,

respectively. As for Π̃∇,K
k vh, since the average condition (3.9) is obviously computable, it suffices

to show the computability of the right hand side of (3.8). The first term on the right-hand side is
computable from (3.3); the second and third terms are computable from (3.2).

Remark 3.5. Differently from the standard nonconforming virtual element framework [3], we do

not use an H1 projection, but rather the Ritz-Galerkin projection Π̃∇,K
k in (3.8)–(3.9). The reason

is that the definition of the local space and the choice of the DoFs would not allow us to compute the
standard H1 projection from the degrees of freedom, due to the noncomputability of

∫
e
(nK ·∇qn)vh

on curved edges.

A discrete bilinear form. We define a discrete local bilinear form aKh (·, ·) : Vh(K)×Vh(K) → R

on each element K as follows:

aKh (uh, vh) = aK(Π̃∇,K
k uh, Π̃

∇,K
k vh) + SK((I − Π̃∇,K

k )uh, (I − Π̃∇,K
k )vh) ∀uh, vh ∈ Vh(K).

Above, SK(·, ·) : Vh(K) × Vh(K) → R is a bilinear form that satisfies two properties: it is com-
putable via the local set of DoFs over K; it satisfies the stability bounds

|vh|
2
1,K . SK(vh, vh) . |vh|

2
1,K ∀vh ∈ Vh(K) ∩ ker(Π̃∇,K

k ). (3.11)

Denoting by {Dl}
Ndof (K)
l=1 the set of all degrees of freedom of Vh(K), a possible stabilization satis-

fying (3.11) is

SK(uh, vh) =

Ndof (K)∑

l=1

Dl(uh)D
l(vh),

which can be rewritten in terms of boundary and bulk contributions as

SK(uh, vh) =
∑

e∈EK

k∑

i=1

Di
e(uh)D

i
e(vh) +

k(k−1)/2∑

j=1

D
j
K(uh)D

j
K(vh). (3.12)

We postpone to Section 4 below the analysis of such a stabilizing term. Of course, other stabiliza-
tions satisfying the computability and stability properties can be defined; we stick to the choice
in (3.12) since it is the most popular in the virtual element community.

Remark 3.6. The bilinear form aKh (·, ·) does not satisfy the usual consistency property of the
virtual element method [3, 5] when K is a curved polygon. The reason is the use of a polynomial
projection that is not the usual H1 projection; see Remark 3.3 for further details.

Finally, we introduce a global discrete bilinear form ah(·, ·) : Vh × Vh → R defined as

ah(uh, vh) =
∑

K∈Th

aKh (uh, vh) ∀uh, vh ∈ Vh. (3.13)

7



The discrete right-hand side. Here, we construct a computable discretization of the right-
hand side (f, vh)0,Ω in (1.2). For k ≥ 2, we introduce

(fh, vh)0,Ω =
∑

K∈Th

∫

K

f Π0,K
k−2vhdK ∀vh ∈ Vh; (3.14)

Instead, for k = 1, we approximate f by its piecewise projection onto constants, average the test
function vh over the edges of K, and write

(fh, vh)0,Ω =
∑

K∈Th

{
|K|(Π0,K

0 f)

(
1

Ne

∑

e∈EK

D0
e(vh)

)}
. (3.15)

3.3 The method

We propose the following nonconforming virtual element method:

{
find uh ∈ V g

h (Th) such that

ah(uh, vh) = (fh, vh)0,Ω ∀vh ∈ V 0
h (Th).

(3.16)

The well posedness of method (3.16) requires further technical tools, which we derive in Section 4
below. For this reason, we postpone its proof to Theorem 4.9.

Remark 3.7. Method (3.16) is designed for meshes with rather general C1 curved edges. The
assumptions on the meshes in Section 2.1, and notably the fact that curved edges are used only on
the (fixed) curved boundary, will be used to derive convergence estimates in Section 6 below.

4 Stability analysis

In this section, we prove the stability bounds (3.11) for the stabilization (3.13). We proceed in
some steps. First, we recall the inverse inequalities in [9, Lemma 6.3] for curved elements. The
proof is independent on whether the element is curved or not.

Lemma 4.1. Let K ∈ Th, for any v ∈ H1(K) such that ∆v ∈ Pn(K), we have

‖∆v‖0,K . h−1
K |v|1,K .

We introduce the scaled norm

|||w||| 1
2 ,∂K

:= h
− 1

2

K ‖w‖0,∂K + |w| 1
2 ,∂K

,

and the corresponding negative norm

|||w|||− 1
2 ,∂K

:= sup
q∈H

1
2 (∂K)

∫
∂K

qw ds

|||q||| 1
2 ,∂K

.

We recall the Neumann trace inequality for Lipschitz domains; see, e.g., [30, Theorem A.33].

Lemma 4.2. Given an element K and v in H1(K) such that ∆v belongs to L2(K), we have

|||nK · ∇v|||− 1
2 ,∂K

. |v|1,K + hK‖∆v‖0,K .

Next, we state a polynomial inverse inequality on the boundary of an element K.

Lemma 4.3. Given an element K and vh in Vh(K), we have

‖nK · ∇vh‖0,∂K . h
− 1

2

K |||nK · ∇vh|||− 1
2 ,∂K

.
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Proof. Using that vh belongs to Vh(K), we have that nK ·∇vh belongs to P̃k−1(e). So, proving the
assertion boils down to proving a mapped polynomial inverse estimate; see, e.g., [4, Lemma 2.3].
The uniformity of the constant follows from the regularity of the parametrization of the curved
edge.

We are ready to show the continuity of the stabilization SK(·, ·) in (3.12).

Proposition 4.4. Given an element K, vh and wh in Vh(K), and SK(·, ·) as in (3.12), we have
the continuity property

SK(vh, wh) . (h−2
K ‖vh‖

2
0,K + |vh|

2
1,K)

1
2 (h−2

K ‖wh‖
2
0,K + |wh|

2
1,K)

1
2 .

If vh and wh have zero average on K or ∂K, we further deduce

SK(vh, wh) . |vh|1,K |wh|1,K .

Proof. By the standard Cauchy-Schwarz inequality, it is sufficient to prove that

SK(vh, vh) =
∑

e∈EK

k∑

i=1

Di
e(vh)

2 +

k(k−1)/2∑

i=1

Dj
e(vh)

2

. h−2
K ‖vh‖

2
0,K + |vh|

2
1,K ∀vh, wh ∈ Vh(K).

(4.1)

We bound the edge and boundary contributions on the left-hand side separately. We start with
the first one. The standard trace inequality asserts that

h−1
K ‖vh‖

2
∂K . h−2

K ‖vh‖
2
0,K + |vh|

2
1,K .

Recall that mi in Mk−1(Ie) are shifted and scaled monomials of maximum degree k − 1 over Ie.
Then, using the regularity of the element, we have ‖mi‖2Ie . hIe ≈ he ≈ hK . Recalling that each
element has a uniformly bounded number of edges, it follows that

∑

e∈EK

k∑

i=1

Di
e(vh)

2 =
∑

e∈EK

|e|−2
k∑

i=1

(∫

e

vhm̃i ds

)2

≤
∑

e∈EK

|e|−2
k∑

i=1

‖vh‖
2
0,e‖m̃i‖

2
0,e .

∑

e∈EK

|e|−2‖vh‖
2
0,e

k∑

i=1

‖mi‖
2
0,Ie

.
∑

e∈EK

|e|−1‖vh‖
2
0,e . h−1

K ‖vh‖
2
0,∂K . h−2

K ‖vh‖
2
0,K + |vh|

2
1,K ,

which is the bound on the edge contributions of the stabilization in (3.12).
Next, we show the upper bound for the second term on the left-hand side of (4.1). Since we

have that ‖mj‖L∞(K) ≤ 1 for any shifted and scaled monomial mj in Mk−2(K), it is possible to

infer
k(k−1)/2∑

j=1

Dj
e(vh)

2 = |e|−2

k(k−1)/2∑

j=1

(∫

K

vhmj dK

)2

≤ |e|−2

k(k−1)/2∑

j=1

(∫

K

vh dK

)2

≤ |e|−1

k(k−1)/2∑

j=1

‖vh‖
2
0,K . h−2

K ‖vh‖
2
0,K ,

which concludes the main part of the proof. The final assertion follows immediately from known
Poincaré-type inequalities on Lipschitz domains.

In order to show the coercivity of the stabilization SK(·, ·) in (3.12), we need a further technical
result; see, e.g., [19, Lemma 4.1] for the straight edge case (the extension to curved edges follows
with a mapping argument).
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Lemma 4.5. Let e an edge of K and a :=
∑

i ae,im̃e,i belong to P̃n(e) where m̃e,i are the shifted

and scaled monomials in M̃n(e), and collect the coefficients ae,i in the vector a. Then, we have
the following norm equivalence:

he‖a‖
2
ℓ2 . ‖a‖20,e . he‖a‖

2
ℓ2.

Let b :=
∑

j bjmj belong to Pn(K) where mj are the shifted and scaled monomials in Mn(K), and
collect the coefficients bj in the vector b. Then, we have the following norm equivalence

h2K‖b‖2ℓ2 . ‖b‖20,K . h2K‖b‖2ℓ2.

We are now ready to show the coercivity of the stabilization SK(·, ·) in (3.12).

Proposition 4.6. Given an element K, vh in Vh(K), and SK(·, ·) as in (3.12), we have the
coercivity property

SK(vh, vh) & |vh|
2
1,K . (4.2)

Proof. Let vh in Vh(K). An integration by parts gives

|vh|
2
1,K = −

∫

K

∆vhvh dK +

∫

∂K

(nK · ∂vh)vh ds

= −

∫

K

∆vhvh dK +
∑

e∈EK

∫

e

(nK · ∂vh)vh ds.
(4.3)

Expanding ∆vh into a shifted and scaled monomial basis, and using Lemmas 4.1 and 4.5, the first
integral on the right-hand side of (4.3) can be dealt with as follows:

−

∫

K

∆vhvh dK = −

k(k−1)/2∑

j=1

bj

∫

K

mjvh dK = −

k(k−1)/2∑

j=1

bj|K|Dj
e(vh)

≤ |K|‖b‖ℓ2




k(k−1)/2∑

j=1

Dj
e(vh)

2




1/2

≤ |K|‖b‖ℓ2S
K(vh, vh)

1/2

. hK‖∆vh‖0,KS
K(vh, vh)

1/2 . |vh|1,KS
K(vh, vh)

1/2.

(4.4)

As for the boundary integral in (4.3), first expanding (nK · ∇vh) into the {m̃i,e}
k
i=1 basis, then

employing Lemmas 4.1, 4.3, and 4.5, we infer

∑

e∈EK

∫

e

(nK · ∇vh)vh ds =
∑

e∈EK

k∑

i=1

ai,e

∫

e

m̃i,evh ds =
∑

e∈EK

k∑

i=1

ai,e|e|D
i
e(vh)

≤
∑

e∈EK

|e|‖a‖ℓ2

(
k∑

i=1

Di
e(vh)

2

)1/2

≤
∑

e∈EK

|e|‖a‖ℓ2S
K(vh, vh)

1/2

.
∑

e∈EK

h
1
2
e ‖nK · ∇vh‖0,eS

K(vh, vh)
1/2 . h

1
2

K‖nK · ∇vh‖0,∂KS
K(vh, vh)

1/2

. |||nK · ∇vh|||− 1
2 ,∂K

SK(vh, vh)
1/2 . (|vh|1,K + hK‖∆vh‖0,K)SK(vh, vh)

1/2

. |vh|1,KS
K(vh, vh)

1/2.

(4.5)

Collecting (4.4) and (4.5) in (4.3), we obtain the bound in (4.2).

Consider the operator Π0
0 : H1(K) → R given by

Π0
0v :=

1

|∂K|

∫

∂K

v ds.

10



The following scaled Poincaré inequality is valid:

‖v −Π0
0v‖0,K . hK |v|1,K . (4.6)

To analyze the stability properties of the local discrete bilinear form, we need the following result,
which states the stability in H1 of the operator Π̃∇,K

k defined in (3.8)–(3.9).

Lemma 4.7. Given an element K and vh in Vh(K), we have

|Π̃∇,K
k vh|1,K . |vh|1,K . (4.7)

Proof. Introduce v̄h = vh − Π0
0vh. By definition of Π̃∇,K

k , we have |Π̃∇,K
k v̄h|21,K = |Π̃∇,K

k vh|21,K .

Therefore, substituting qk = Π̃∇,K
k v̄h in (3.8) we obtain

|Π̃∇,K
k vh|

2
1,K = |Π̃∇,K

k v̄h|
2
1,K =

= −

∫

K

v̄h∆Π̃∇,K
k v̄h dK +

∑

e∈EK
s

∫

e

v̄h(nK · ∇Π̃∇,K
k v̄h) ds+

∑

e∈EK
c

∫

e

v̄hΠ̃
0,e
k−1(nK · ∇Π̃∇,K

k v̄h) ds

=

∫

K

∇v̄h · ∇Π̃∇,K
k v̄h dK −

∑

e∈EK
c

∫

e

v̄h(I − Π̃0,e
k−1)(nK · ∇Π̃∇,K

k v̄h) ds

≤ |v̄h|1,K |Π̃∇,K
k v̄h|1,K + ‖nK · ∇Π̃∇,K

k v̄h‖0,∂K
∑

e∈EK
c

‖v̄h‖0,e.

Applying standard trace inequality and the scaled Poincaré inequality, we infer

h
− 1

2

K ‖v̄h‖0,e . h−1
K ‖v̄h‖0,K + |v̄h|1,K . |v̄h|1,K

and
h

1
2

K‖nK · ∇Π̃∇,K
k v̄h‖0,∂K . |Π̃∇,K

k v̄h|1,K + hK |∇Π̃∇,K
k v̄h|1,K . |Π̃∇,K

k v̄h|1,K .

Combining the three above estimate, we get the assertion:

|Π̃∇,K
k vh|

2
1,K . |v̄h|1,K |Π̃∇,K

k v̄h|1,K . |vh|1,K |Π̃∇,K
k vh|1,K .

We conclude this section, by proving stability estimates on the local discrete bilinear form aKh (·, ·);
stability estimates for the global discrete bilinear form ah(·, ·) are an immediate consequence.

Proposition 4.8. Given an element K and the discrete bilinear form aKh (·, ·) based on the stabi-
lization in (3.12), we have the stability estimates

|vh|
2
1,K . aKh (vh, vh) . |vh|

2
1,K ∀vh ∈ Vh(K).

Proof. We first prove the lower bound. Let v̄h = vh −Π0
0vh. Using Proposition 4.6, we have

aK(vh, vh)=a
K(v̄h, v̄h).S

K(v̄h, v̄h).S
K((I − Π̃∇,K

k )v̄h, (I − Π̃∇,K
k )v̄h)+S

K(Π̃∇,K
k v̄h, Π̃

∇,K
k v̄h).

Since Π̃∇,K
k preserves constants, we can write (I− Π̃∇,K

k )v̄h = (I− Π̃∇,K
k )vh. From Proposition 4.4

applied to the second term on the right-hand side of the inequality above, we infer

SK(Π̃∇,K
k v̄h, Π̃

∇,K
k v̄h) . h−2

K ‖Π̃∇,K
k v̄h‖

2
0,K + |Π̃∇,K

k v̄h|
2
1,K .

By the definition of Π̃∇,K
k , it follows that

Π0
0Π̃

∇,K
k v̄h = Π0

0v̄h = Π0
0(vh −Π0

0vh) = 0.
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Using (4.6) and |Π̃∇,K
k v̄h|21,K = |Π̃∇,K

k vh|21,K , we deduce

SK(Π̃∇,K
k v̄h, Π̃

∇,K
k v̄h) . |Π̃∇,K

k vh|
2
1,K .

Combining the above inequalities yields

aK(v, v) . SK((I − Π̃∇,K
k )vh, (I − Π̃∇,K

k )vh) + |Π̃∇,K
k vh|

2
1,K = aKh (vh, vh).

Next, we focus on the upper bound. Recalling that Π0
0Π̃

∇,K
k vh = Π0

0vh, the definition of aKh (·, ·)
in (3.13), and inequality (4.7), we conclude the proof:

aKh (vh, vh) = |Π̃∇,K
k vh|

2
1,K + SK((I − Π̃∇,K

k )vh, (I − Π̃∇,K
k )vh)

. |vh|
2
1,K + h−2

K ‖(I − Π̃∇,K
k )vh‖

2
0,K + |(I − Π̃∇,K

k )vh|
2
1,K

. |vh|
2
1,K + |(I − Π̃∇,K

k )vh|
2
1,K . |vh|

2
1,K .

Upon using Proposition 4.8 and the Brenner-Poincaré inequality [14], we derive the following
global stability estimates and the well posedness of method (3.16).

Theorem 4.9. Given the global discrete bilinear form ah(·, ·) based on the local stabilizations
in (3.12), we have the global stability estimates

|vh|
2
1,h . ah(vh, vh) . |vh|

2
1,h vh ∈ Vh.

As a consequence, method (3.16) is well posed.

5 Polynomial and virtual element approximation estimates

In this section, we introduce error estimates by means of polynomial and virtual element func-
tions. Notably, we investigate the approximation properties of the three following approximants
for sufficiently regular functions v:

• the L2 projection vπ of v into the polynomial space Pk(K);

• the virtual element function vKp defined as the solution to





−∆vKp = −Π0,K
k−2∆v in K

nK · ∇vKp = Π̃0,e
k−1(nK · ∇v)− c∂K on e ∈ EK

∫
∂K

(vKp − v) ds = 0,

(5.1)

where

c∂K :=

{
−|∂K|−1

∫
K
∆v if k = 1

0 if k ≥ 2;

• the DoFs interpolant vKI in Vh(K) of v defined as
{∫

K(vKI − v)m dK = 0 ∀m ∈ Mk−2(K)∫
e
(vKI − v)m̃ ds = 0 ∀m̃ ∈ M̃k−1(e), ∀e ∈ EK .

(5.2)

The functions vπ and vKI are well defined by construction. Also vKp is well defined; in fact,
problem (5.1) is well posed as compatibility conditions are valid. For k ≥ 2,

∑

e∈EK

∫

e

nK · ∇vKp ds =
∑

e∈EK

∫

e

Π̃0,e
k (nK · ∇v)ds =

∑

e∈EK

∫

e

nK · ∇v ds

= −

∫

K

∆vdK = −

∫

K

Π0,K
k−2∆vdK = −

∫

K

∆vKp dK;
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for k = 1,

∑

e∈EK

∫

e

nK · ∇vKp ds =
∑

e∈EK

∫

e

Π̃0,e
k (nK · ∇v)ds− c∂K |∂K| =

∑

e∈EK

∫

e

nK · ∇v ds− c∂K |∂K|

= −

∫

K

∆vdK +

∫

K

∆vdK = 0 = −

∫

K

∆vKp dK.

While vKp can be constructed elementwise providing a piecewise discontinuous virtual element

approximant, the DoFs interpolant vKI yields a global nonconforming virtual element interpolant vI
by coupling the face DoFs. The discontinuous approximant vKp will be instrumental in proving the

approximation properties of vKI .

Assumption 5.1. Henceforth, the regularity parameter η of the curved boundary introduced in
Section 1 satisfies η ≥ k.

Polynomial error estimates for vπ are well know; see e.g.[15]:

‖v − vπ‖0,K + hK |v − vπ|1,K . hk+1
K |v|k+1,K ∀v ∈ Hk+1(K).

To prove interpolation error estimates, we present an auxiliary error estimate, which can be proven
proceeding along the same lines as in [10, Lemma 3.2] for the operator Π̃0,e

n .

Lemma 5.2. Let n ∈ N and the regularity parameter η of the curved boundary satisfy η ≥ n+ 1.
Then, given an element K and any of its edges e, for all 0 ≤ m ≤ s ≤ n+ 1, we have

|v − Π̃0,e
n v|m,e . hs−m

e ‖v‖s,e ∀v ∈ Hs(e).

We also recall the properties of the Stein’s extension operator E in [31, Chapter VI, Theorem 5].

Lemma 5.3. Given a Lipschitz domain Ω in R
2 and s ∈ R, s ≥ 0, there exists an extension

operator E : Hs(Ω) → Hs(R2) such that

Ev|Ω = v and ‖Ev‖s,Rd . ‖v‖s,Ω ∀v ∈ Hs(Ω). (5.3)

The hidden constant depends on s but not on the diameter of Ω.

We are in a position to show the first local interpolation result.

Lemma 5.4. Given vKp as in (5.1), then, for all v in Hs+1(K), 1 ≤ s ≤ k, we have

∣∣v − vKp
∣∣
1,h

. hs‖v‖s+1,Ω.

Proof. An integration by part yields

|v − vKp |21,K = −(∆(v − vKp ), v − vKp )0,K +
∑

e∈EK

(nK · ∇(v − vKp ), v − vKp )0,e

= −((I −Π0,K
k−2)∆v, v − vKp )0,K +

∑

e∈EK

((I − Π̃0,e
k−1)(nK · ∇v), v − vKp )0,e + (c∂K , v − vKp )0,∂K

= −((I −Π0,K
k−2)∆v, v − vKp )0,K +

∑

e∈EK

((I − Π̃0,e
k−1)(nK · ∇v), v − vKp )0,e.

We deduce

|v − vKp |21,K ≤ ‖(I −Π0,K
k−2)∆v‖0,K‖v − vKp ‖0,K + ‖v − vKp ‖0,∂K

∑

e∈EK

‖(I − Π̃0,e
k−1)(nK · ∇v)‖0,e.
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Using polynomial approximation properties and Lemma 5.2 gives

‖(I −Π0,K
k−2)∆v‖0,K . hs−1

K ‖∆v‖s−1,K . hs−1
K |v|s+1,K .

We split the edge contributions into curved and straight edges terms. As for the curved edges
terms, we use Lemma (5.2) with n = k − 1 (recalling Assumption 5.1) and write

∑

e∈EK
c

∥∥∥(I − Π̃0,e
k−1)(nK · ∇v)

∥∥∥
0,e

.
∑

e∈EK
c

h
s− 1

2

K ‖nK · ∇v‖s− 1
2 ,e

. h
s− 1

2

K

∑

e∈EK
c

‖∇v‖s− 1
2 ,e
.

As for the straight edges terms, since Π̃0,e
k−1 is the standard L2(e) projection onto polynomials of

maximum degree k − 1 over e, we use the trace inequality and write

∑

e∈EK
s

∥∥∥(I − Π̃0,e
k−1)(nK · ∇v)

∥∥∥
0,e

≤
∑

e∈EK
s

‖nK · ∇(v − qk)‖0,e

≤
∑

e∈EK
s

‖∇(v − qk)‖0,e . h
− 1

2

K |v − qk|1,K + h
1
2

K |v − qk|2,K ∀qk ∈ Pk(K).

Standard polynomial approximation properties imply

∑

e∈EK
s

∥∥∥(I − Π̃0,e
k−1)(nK · ∇v)

∥∥∥
0,e

. h
s− 1

2

K |v|s+1,K .

By the Poincaré inequality and trace inequality, we infer

‖v − vKp ‖0,K . hK |v − vKp |1,K

and
‖v − vKp ‖0,∂K . h

− 1
2

K ‖v − vKp ‖0,K + h
1
2

K |v − vKp |1,K . h
1
2

K |v − vKp |1,K .

Collecting the above estimates leads us to

|v − vKp |1,K . hsK(|v|s+1,K +
∑

e∈EK
c

‖∇v‖s− 1
2 ,e

).

Summing over all the elements, we arrive at

|v − vKp |1,h . hs(|v|s+1,K +

N∑

i=1

‖∇v‖s− 1
2 ,Γi

).

To end up with error estimates involving terms only in the domain Ω and not on its boundary, we
use the Stein’s extension operator of Lemma 5.3. For any curve Γi on the boundary of ∂Ω, let Ci
be a domain in R

2 with part of its boundary given by ∂Ci ∈ Ck,1. Then, applying the standard
trace theorem on smooth domains and the stability of the (vector valued version) Stein’s extension
operator in (5.3), we get

‖∇v‖s− 1
2 ,Γi

= ‖E∇v‖s− 1
2 ,Γi

≤ ‖E∇v‖s− 1
2 ,∂Ci

. ‖E∇v‖s− 1
2 ,Ci

≤ ‖E∇v‖k,Rd . ‖v‖s+1,Ω.

Thanks to the approximation properties of the piecewise discontinuous interpolant vKp we de-

duce the approximation properties of the global nonconforming interpolant vKI .

Lemma 5.5. For all v in Hs+1(Ω), 1 ≤ s ≤ k, we have

∣∣v − vKI
∣∣
1,h

. hs‖v‖s+1,Ω.
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Proof. We follow the guidelines of [29, Proposition 3.1]. The idea is to use the definition of the
DoFs interpolant so as to bound the corresponding energy error by the energy error of any piecewise
discontinuous virtual element function.

Recalling the definition of vKI , for any vh in Vh(K), we get

∫

K

∇(v − vKI ) · ∇(v − vKI ) = −

∫

K

∆(v − vKI )(v − vKI ) +
∑

e∈EK

∫

e

nK · ∇(v − vKI )(v − vKI )

= −

∫

K

∆(v − vh)(v − vKI ) +
∑

e∈EK

∫

e

nK · ∇(v − vh)(v − vKI ) =

∫

K

∇(v − vh) · ∇(v − vKI ).

The Cauchy–Schwarz inequality entails

|v − vKI |1,K ≤ inf
vh∈Vh(K)

|v − vh|1,K ≤ |v − vKp |1,K .

The assertion follows summing over the elements, collecting the above inequalities, and using
Lemma 5.4.

6 Convergence analysis

In this section, we present the error analysis in the energy and L2-norms for the nonconforming
virtual element method (3.16); see Sections 6.1 and 6.2, respectively. In particular, we first derive
Strang-like error bounds and derive optimal error estimates based on the tools in Section 5.

6.1 Convergence analysis in the energy norm

We prove the error estimates in the energy norm in some steps. First, we discuss details on
geometrical errors due to the presence of curved elements.

Given a curved edge e, we denote the straight segment with endpoints given by the vertices
of e by ê; see Figure 6.1.

Ie
ζ

γ

x

e

ê

y

ne
te

t̂ê
n̂ê

t

KK

Figure 6.1: Parametrizations of the curved edge e and straight segment ê by means of the parametriza-
tions γ and ζ.

Recall that ne is an assigned unit normal vector to the curved edge e; fix a unit normal vector n̂ê

to the segment ê. Given γ from the interval Ie := [t1e, t
2
e] into R

2 the usual parametrization of the
edge e, we have the following standard estimate; see, e.g., [18, eq. (2.18)]:

‖ne − n̂ê‖L∞(e) . hK‖γ‖W 1,∞(Ie). (6.1)
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With the notation as in Figure 6.1, for any curved edge e with endpoints x1
e and x2

e, we introduce
the linear map ζ : Ie → ê given by

ζ(t) =
t− t1e
t2e − t1e

(x2
e − x

1
e) + x

1
e.

We further define the constant tangent vector to ê

t̂ê =
x2
e − x

1
e

t2e − t1e
.

We have that t̂ê is equivalently defined as ζ′(t). Analogously, we can define te := γ′(t). Since we
are approximating a curved edge by a straight segment, it is known that, see, e.g., [18, eq. (2.18)],

‖t̂ê − te‖L∞(Ie) . hK‖γ‖W 1,∞(Ie).

We rewrite the two parametrizations ζ and γ as (for any t ∈ Ie)

x(t) = ζ(t) =

∫ t

t1e

t̂êds+ x
1
e, y(t) = γ(t) =

∫ t

t1e

te(s)ds+ x
1
e.

Using that the length of the reference interval is approximately hK , the difference of the two can
be estimated as follows:

‖x(t)− y(t)‖ ≤

∫ t

t1e

‖te(s)− t̂ê‖ds . h2K . (6.2)

Finally, we clearly have ψ ◦ ζ ∈ Pn(Ie) for any ψ in Pn(ê). Thus, we write

ψ̃ = ψ ◦ ζ ◦ γ−1 ∈ P̃n(e). (6.3)

We further introduce the H1 projection Π∇,K
k : H1(K) → Pk(K) for all elements K as follows:

given a polynomial degree k,
{∫

K ∇qk · ∇(v −Π∇,K
k v) = 0∫

∂K
(v −Π∇,K

k v)
∀qk ∈ Pk(K), ∀v ∈ H1(K). (6.4)

With this notation at hand, we derive error estimates for the Ritz-Galerkin projector Π̃∇,K
k defined

in (3.8)–(3.9).

Lemma 6.1. For all v in Hs+1(Ω), 1 ≤ s ≤ k, we have

|v − Π̃∇,K
k v|1,h . hs‖v‖s+1,Ω. (6.5)

Proof. According to the triangle inequality and the approximation properties of Π∇,K
k , we have

|v − Π̃∇,K
k v|1,K ≤ |v −Π∇,K

k v|1,K + |Π∇,K
k v − Π̃∇,K

k v|1,K . hsK |v|s+1,K + |Π∇,K
k v − Π̃∇,K

k v|1,K .

By definition of Π̃∇,K
k and Π∇,K

k , for all qk in Pk(K), we can write
∫

K

∇qk·∇(Π∇,K
k v − Π̃∇,K

k v) dK =

∫

K

∇qk · ∇v dK +

∫

K

∆qkv dK −
∑

e∈EK

∫

e

Π̃0,e
k−1(nK · ∇qk)v ds

=
∑

e∈EK

∫

e

(I − Π̃0,e
k−1)(nK · ∇qk)v ds =

∑

e∈EK
c

∫

e

(I − Π̃0,e
k−1)(nK · ∇qk)v ds.

If k = 1, we have by definition of Vh(K) that Π∇,K
k v = Π̃∇,K

k v and the right-hand side vanishes.
So, we focus on the case k ≥ 2. We set

ψ := ∇(Π∇,K
k v − Π̃∇,K

k v) ∈ [Pk−1(K)]2.
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We rewrite the above identities for the choice qk = Π∇,K
k v − Π̃∇,K

k v and obtain

|Π∇,K
k v − Π̃∇,K

k v|21,K =
∑

e∈EK
c

∫

e

(I − Π̃0,e
k−1)(ψ · nK)v ds

=
∑

e∈EK
c

∫

e

(I − Π̃0,e
k−1)(ψ · nK)(I − Π̃0,e

k−1)v ds

≤
∑

e∈EK
c

‖(I − Π̃0,e
k−1)(ψ · nK)‖0,e‖(I − Π̃0,e

k−1)v‖0,e.

(6.6)

Let ψ̃ : e → R
2 be the mapped polynomial associated to ψ|e , i.e., ψ̃ := ψ ◦ ζ ◦ γ−1 ∈ P̃k−1(e).

Since, by the same observation in (6.3), ψ̃ · n̂ ∈ P̃k−1(e), we deduce

‖(I − Π̃0,e
k−1)(ψ · nK)‖0,e ≤ ‖ψ · nK − ψ̃ · n̂‖0,e + ‖Π̃0,e

k−1(ψ · nK)− ψ̃ · n̂‖0,e

≤ ‖ψ · nK − ψ̃ · n̂‖0,e + ‖Π̃0,e
k−1(ψ · nK − ψ̃ · n̂)‖0,e ≤ 2‖ψ · nK − ψ̃ · n̂‖0,e

. h
1
2
e max

y∈e
|ψ(y) · n(y) − ψ̃(y) · n̂|

. h
1
2
e (max

y∈e
|ψ̃(y) · (n(y)− n̂)|+max

y∈e
|(ψ(y)− ψ̃(y)) · n(y)|).

(6.7)

By (6.1), we have the following estimate for the first term on the right-hand side of (6.7):

max
y∈e

|ψ̃(y) · (n(y)− n̂)| . hK max
t∈Ie

|ψ̃(y(t))| . hK max
t∈Ie

|ψ(x(t))| . hK‖ψ‖∞,K . (6.8)

As for the second term on the right-hand side of (6.7), we use (6.2):

max
y∈e

|(ψ(y) − ψ̃(y)) · n(y)| = max
t∈Ie

|ψ(y(t)) − ψ̃(y(t))|

= max
t∈Ie

|ψ(y(t)) −ψ(x(t))| . h
3
2

K‖ψ‖W 1,∞(K).
(6.9)

Collecting (6.8) and (6.9) in (6.7) and using a polynomial inverse estimate, we obtain

‖(I − Π̃0,e
k−1)(ψ · nK)‖0,e . h

3
2

K‖ψ‖∞,K + h
5
2

K‖ψ‖W 1,∞(K) . h
1
2

K‖ψ‖0,K . (6.10)

On the other hand, the trace inequality for polynomial and Lemma 5.2 with n = k − 1 imply

‖(I − Π̃0,e
k−1)v‖0,e . h

s− 1
2

K ‖v‖s− 1
2 ,e
. (6.11)

Collecting (6.10) and (6.11) in (6.6), we deduce

|v − Π̃∇,K
k v|1,h . hs

(
(‖v‖s+1,Ω +

N∑

i=1

‖v‖s− 1
2 ,Γi

)
.

Recalling the Stein’s extension operator E in Lemma 5.3 with stability properties as in (5.3) and
proceeding along the same lines of Lemma 5.4, we obtain

‖v‖s− 1
2 ,Γi

≤ ‖Ev‖s− 1
2 ,∂Ci

. ‖Ev‖s,Ci
≤ ‖Ev‖s,Rd . ‖v‖s,Ω.

The assertion follows combining the two estimates above.

Remark 6.2. Lemma 6.1 plays a critical role in the optimality with respect to k of the convergence
estimates detailed in Theorems 6.6 and 6.7 below. A more direct approach would not exploit that e
converges to ê as h → 0; the ensuing approximation estimate would either be sub-optimal (order
hk−1/2 in the H1 norm) or require a higher order polynomial degree on curved edges in the definition
of the local spaces thus leading to a more computationally expensive scheme.
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Next, we provide results that are instrumental to derive optimal convergence of the method;
see Theorem 6.6. We begin by recalling the discretization error on the right-hand side; see, e.g.,
[5, Section 4.7].

Lemma 6.3. Let the right-hand side f of (1.1) belong to Hs−1(Ω), ℓ ≤ s ≤ k + 1, where ℓ = 2
if k = 1, ℓ = 1 if k ≥ 2, and the discrete right-hand side fh be as in (3.14)–(3.15). Then, for
any vh in Vh, we have

|(f − fh, vh)0,K | .

{
h|f |1,Ω|vh|1,h for k = 1,

hs|f |s−1,Ω|vh|1,h for k > 1.

Next, we introduce a bilinear form that will allow us to take into account the nonconformity of
the method in the error analysis, namely Nh : H

3
2+ε(Ω)×H1,nc(Th, k) → R defined by

Nh(u, vh) :=
∑

K∈Th

∫

∂K

(nK · ∇u)vh ds =
∑

e∈Eh

∫

e

∇u · [[vh]] ds.

If u, the solution to (1.1), belongs to H
3
2+ε(Ω) and is such that ∆u belongs to L2(K) for all

elements K, an integration by parts implies that

a(u, v) = (f, vh) +Nh(u, vh) ∀vh ∈ Vh ⊂ H1,nc(Th, k). (6.12)

In the following result, we cope with the estimate of the term related to the nonconformity of the
scheme.

Lemma 6.4. Let u, the solution to (1.1) belong to Hs+1(Ω), 1/2 < s ≤ k. Then, for all vh in Vh,
we have

|Nh(u, vh)| . hs‖u‖s+1,Ω|vh|1,h.

Proof. The proof follows along the same line as those in [3, Lemma 4.1]. We briefly report it here
for the sake of completeness.

From the definitions of the space H1,nc(Th, k) and the operator Π̃0,e
k−1, recalling that P0(e) ⊂

P̃k−1(e), finally using the Cauchy–Schwarz inequality, we find

Nh(u, vh) =
∑

e∈Eh

∫

e

(∇u − Π̃0,e
k−1∇u) · [[vh]] ds =

∑

e∈Eh

∫

e

(∇u − Π̃0,e
k−1∇u) · ([[vh]]− [[Π0

0vh]]) ds

=
∑

e∈Eh

‖∇u− Π̃0,e
k−1∇u‖0,e‖ [[vh]]− [[Π0

0vh]]‖0,e,

where Π0
0 denotes as usual the L2 projection on Th-piecewise constant functions. Using Lemma 5.2

and the Poincaré inequality, for each internal edge e = ∂K+ ∪ ∂K−, we get

‖∇u− Π̃0,e
k−1∇u‖0,e . hs−

1
2 ‖u‖s+ 1

2 ,e
. hs−

1
2 ‖u‖s+1,K+∪K−

and

‖ [[vh]]− [[Π0
0vh]]‖0,e . h−

1
2 ‖vh −Π0

0vh‖0,K+∪K− + h
1
2 |vh −Π0

0vh|1,K+∪K− . h
1
2 |vh|1,K+∪K− .

An analogous estimate is valid for boundary edges. The assertion follows summing over all elements.

Next, we estimate from above a term measuring the lack of polynomial consistency of the
proposed method, i.e., the error between the bilinear functions a(·, ·) and ah(·, ·).

Lemma 6.5. Let u the solution to (1.1) belong to Hs+1(Ω), 1 ≤ s ≤ k. Then, we have

|ah(u, vh)− a(u, vh)| . hs‖u‖s+1,Ω|vh|1,h ∀vh ∈ Vh.
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Proof. For any element K, we have

aKh (u, vh)− aK(u, vh) = aK(Π̃∇,K
k u, Π̃∇,K

k vh) + SK((I − Π̃∇,K
k )u, (I − Π̃∇,K

k )vh)− aK(u, vh)

= aK(Π̃∇,K
k u, Π̃∇,K

k vh − vh)− aK(u− Π̃∇,K
k u, vh)

+ SK((I − Π̃∇,K
k )u, (I − Π̃∇,K

k )vh) =: I1 + I2 + I3.

As for the term I1, we denote v̄h = vh −Π0
0vh and use the definition of the operator Π̃∇,K

k , then

I1 = aK(Π̃∇,K
k u, v̄h − Π̃∇,K

k v̄h) =
∑

e∈EK
c

∫

e

(I − Π̃0,e
k−1)(nK · ∇Π̃∇,K

k u)v̄h ds

≤ ‖v̄h‖0,∂K
∑

e∈EK
c

∥∥∥(I − Π̃0,e
k−1)(nK · ∇Π̃∇,K

k u)
∥∥∥
0,e
.

Using the approximation of the operator Π̃0,e
k−1, the Poincaré inequality, and the trace inequality,

we infer, for uπ as in (3.10), the two inequalities

h
1
2

K

∥∥∥(I − Π̃0,e
k−1)(nK · ∇Π̃∇,K

k u)
∥∥∥
0,e

. h
1
2

K

∥∥∥(I − Π̃0,e
k−1)(nK · ∇uπ)

∥∥∥
0,e

+ h
1
2

K

∥∥∥(I − Π̃0,e
k−1)(nK · ∇(Π̃∇,K

k u− uπ))
∥∥∥
0,e

. hsK‖nK · ∇uπ‖s− 1
2 ,e

+ h
1
2

K

∥∥∥nK · ∇(Π̃∇,K
k u− uπ)

∥∥∥
0,e

. hsK‖∇uπ‖s− 1
2 ,e

+ h
1
2

K‖∇(uπ − Π̃∇,K
k u)‖0,e . hsK‖uπ‖s+1,K + |uπ − Π̃∇,K

k u|1,K

. hsK‖u‖s+1,K + hsK‖u− uπ‖s+1,K + |uπ − u|1,K +
∣∣∣u− Π̃∇,K

k u
∣∣∣
1,K

. hsK‖u‖s+1,K +
∣∣∣u− Π̃∇,K

k u
∣∣∣
1,K

(6.13)

and
h
− 1

2

K ‖v̄h‖0,∂K . h−1
K ‖v̄h‖0,K + |v̄h|1,K . |vh|1,K .

As for the term I2, by the continuity (4.7) and approximation properties (6.5) of Π̃∇,K
k , we deduce

I2 ≤
∣∣∣u− Π̃∇,K

k u
∣∣∣
1,K

|vh|1,K .

We handle the term I3 using Proposition 4.4, the Poincaré inequality, the approximation proper-
ties (6.5) of Π̃∇,K

k , and Lemma 4.7:

I3 .
(
h−2
K ‖(I − Π̃∇,K

k )u‖20,K +
∣∣∣(I − Π̃∇,K

k )u
∣∣∣
2

1,K

) 1
2

(h−2
K ‖(I − Π̃∇,K

k )vh‖
2
0,K + |(I − Π̃∇,K

k )vh|
2
1,K

) 1
2

.
∣∣∣(I − Π̃∇,K

k )u
∣∣∣
1,K

|(I − Π̃∇,K
k )vh|1,K . |u− Π̃∇,K

k u|1,K |vh|1,K .

The assertion follows collecting the above estimates, summing over the elements, and using the
approximation properties of Π̃∇,K

k in Lemma 6.1.

We are now in a position to state the abstract error analysis in the energy norm for method (3.16)
and deduce optimal error estimates.

Theorem 6.6. Let u and uh be the solutions to (1.1) and (3.16), respectively. Then, for every uI
in Vh, we have

|u− uh|1,h . |u− uI |1,h + sup
vh∈Vh

(
|(f − fh, vh)0,Ω|

|vh|1,h
+

Nh(u, vh)

|vh|1,h
+

|ah(u, vh)− a(u, vh)|

|vh|1,h

)
. (6.14)
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Furthermore, if u ∈ Hs+1(Ω) and f ∈ Hs−1(Ω), with 1 ≤ s ≤ k, we also have

|u− uh|1,h . hs(‖u‖s+1,Ω + |f |s−1,Ω). (6.15)

Proof. We first prove the Strang-type estimate (6.14). We split u− uh as (u− uI)+ (uI − uh), use
the triangle inequality, and get

|u− uh|1,h ≤ |u− uI |1,h + |uI − uh|1,h.

Set eh := uh − uI . Following the lines of [3, Theorem 4.3] and recalling (6.12), the coercivity
of ah(·, ·) allows us to write

|eh|
2
1,h . ah(eh, eh) = ah(uh, eh)− ah(uI , eh)

= (fh − f, eh)0,Ω −Nh(u, eh)−
∑

K∈Th

aKh (uI − u, eh)−
∑

K∈Th

aKh (u, eh) +
∑

K∈Th

aK(u, eh).

The proof of (6.14) follows by standard manipulations of the right-hand side above. The error
estimates (6.15) finally follow bounding the terms on the right-hand side of (6.14) by means of
Lemmas 5.5, 6.3, 6.4, and 6.5.

6.2 Convergence analysis in a weaker norm

In this section, we prove L2 error estimates for (3.16) based on extra assumptions on Ω. Also
in this case, we follow the guidelines of the nonconforming element method error analysis; see [3,
Section 4.1]. We focus on the case k ≥ 3, and discuss the cases k = 1 and 2 in Remark 6.8 below.

Theorem 6.7. Let k ≥ 3. Assume that u and f , the solution and right-hand side of (1.1), belong
to Hs+1(Ω), and Hs−1(Ω), 1 ≤ s ≤ k. Let uh be the solution to (3.16). If Ω is convex, then we
have

‖u− uh‖0,Ω . hs+1(‖u‖s+1,Ω + |f |s−1,Ω).

Proof. Consider the dual problem

{
−∆φ = u− uh in Ω,

φ = 0 on ∂Ω.

The convexity of Ω entails that φ ∈ H2(Ω) ∩H1
0 (Ω) is the unique solution to the above problem

and satisfies the elliptic regularity estimates

‖φ‖2,Ω . ‖u− uh‖0,Ω.

Proceeding as in [3, Theorem 4.5] using that k ≥ 3, and taking φI in Vh as the DoFs interpolant
of φ in (5.2), we obtain

‖u− uh‖
2
0,Ω =

∑

K∈Th

aK(φ− φI , u− uh) +Nh(φ, u− uh) +Nh(u, φI)

+ (f − fh, φI)0,Ω +
∑

K∈Th

(aKh (uh, φI)− aK(uh, φI))

. (h|u− uh|1,h + hs+1)‖u‖s+1,Ω‖u− uh‖0,Ω

+ h2‖f − fh‖0,Ω‖u− uh‖0,Ω +
∑

K∈Th

(aKh (uh, φI)− aK(uh, φI)).
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For any element K, we have

aKh (uh, φI)− aK(uh, φI)

= aK(Π̃∇,K
k uh, Π̃

∇,K
k φI)− aK(uh, φI) + SK((I − Π̃∇,K

k )uh, (I − Π̃∇,K
k )φI)

= aK(Π̃∇,K
k uh, Π̃

∇,K
k φI − φI)− aK(uh − Π̃∇,K

k uh, Π̃
∇,K
k φI)

− aK(uh − Π̃∇,K
k uh, φI − Π̃∇,K

k φI) + SK((I − Π̃∇,K
k )uh, (I − Π̃∇,K

k )φI) =: I1 + I2 + I3 + I4.

As for the term I1, we use the definition of Π̃∇,K
k , see (3.8)–(3.9), and obtain

I1 =
∑

K∈Th

∑

e∈EK
c

∫

e

(I − Π̃0,e
k−1)(nK · ∇Π̃∇,K

k uh)φI ds

=
∑

K∈Th

∑

e∈EK
c

∫

e

(I − Π̃0,e
k−1)(nK · ∇Π̃∇,K

k uh) (I − Π̃0,e
k−1)φI ds

≤
∑

K∈Th

∑

e∈EK
c

∥∥∥(I − Π̃0,e
k−1)(nK · ∇Π̃∇,K

k uh)
∥∥∥
0,e

∥∥∥(I − Π̃0,e
k−1)φI

∥∥∥
0,e
.

Similarly with the inequality (6.13), we then infer

h
1
2

K

∥∥∥(I − Π̃0,e
k−1)(nK · ∇(Π̃∇,K

k uh))
∥∥∥
0,e

≤ h
1
2

K

∥∥∥(I − Π̃0,e
k−1)(nK · ∇Π̃∇,K

k u)
∥∥∥
0,e

+ h
1
2

K

∥∥∥(I − Π̃0,e
k−1)(nK · ∇(Π̃∇,K

k u− uh))
∥∥∥
0,e

. hsK‖u‖s+1,K + h
1
2

K‖∇Π̃∇,K
k (u− uh)‖0,e . hsK‖u‖s+1,K + |Π̃∇,K

k (u − uh)|1,K

. hsK‖u‖s+1,K + |u− Π̃∇,K
k u|1,K + |Π̃∇,K

k (u− uh)|1,K

. hsK‖u‖s+1,K + |u− Π̃∇,K
k u|1,K + |u− uh|1,K ,

and

h
− 1

2

K ‖(I − Π̃0,e
k−1)φI‖0,e ≤ h

− 1
2

K ‖(I − Π̃0,e
k−1)(φI − φ)‖0,e + h

− 1
2

K ‖(I − Π̃0,e
k−1)φ‖0,e

. h−1
K ‖φI − φ‖0,K + |φI − φ|1,K + hK‖φ‖ 3

2 ,e
. |φI − φ|1,K + hK‖φ‖ 3

2 ,e
.

As for the term I2, we set ψ := ∇Π̃∇,K
k φI −∇φI and ūh := uh −Π0

0uh, and arrive at

I2 = −aK(ūh − Π̃∇,K
k ūh, Π̃

∇,K
k φI) = −

∑

e∈EK
c

∫

e

(I − Π̃0,e
k−1)(nK · ∇Π̃∇,K

k φI)ūh ds

= −
∑

e∈EK
c

∫

e

(I − Π̃0,e
k−1)(nK · ∇(Π̃∇,K

k φI − φI))ūh ds

= −
∑

e∈EK
c

∫

e

(I − Π̃0,e
k−1)(ψ · nK)(I − Π̃0,e

k−1)ūh ds ≤
∑

e∈EK
c

‖(I − Π̃0,e
k−1)(ψ · nK)‖0,e‖(I − Π̃0,e

k−1)ūh‖0,e.

Inequality (6.10) entails

‖(I − Π̃0,e
k−1)(ψ · nK)‖0,e . h

1
2

K‖ψ‖0,K

. h
1
2

K |Π̃∇,K
k φI − φI |1,K . h

1
2

K(|φ − φI |1,K + |(I − Π̃∇,K
k )φ|1,K)

and

‖(I − Π̃0,e
k−1)ūh‖0,e ≤ ‖(I − Π̃0,e

k−1)(ū − ūh)‖0,e + ‖(I − Π̃0,e
k−1)ū‖0,e . ‖ū− ūh‖0,e + hsK‖ū‖s,e

. h
− 1

2

K ‖ū− ūh‖0,K + h
1
2

K |ū− ūh|1,K + hsK‖u‖s,e . h
1
2

K |u− uh|1,K + hsK‖u‖s,e.
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Furthermore, we have
|I3| ≤ |uh − Π̃∇,K

k uh|1,h|φI − Π̃∇,K
k φI |1,h.

Finally, we bound I4:

|I4| .
(
h−2
K ‖(I − Π̃∇,K

k )uh‖
2
0,K + |(I − Π̃∇,K

k )uh|
2
1,K

) 1
2 (h−2

K ‖(I − Π̃∇,K
k )φI‖

2
0,K + |(I − Π̃∇,K

k )φI |
2
1,K

) 1
2

. |uh − Π̃∇,K
k uh|1,K |φI − Π̃∇,K

k φI |1,K .

Each of the above terms can be readily estimated by adding and subtracting u, Π̃∇,K
k u, φ,

and Π̃∇,K
k φ:

|uh − Π̃∇,K
k uh|1,K . |u− uh|1,K +

∣∣∣(I − Π̃∇,K
k )u

∣∣∣
1,K

+ |Π̃∇,K
k (u− uh)|1,K

. |u− uh|1,K +
∣∣∣(I − Π̃∇,K

k )u
∣∣∣
1,K

and
|φI − Π̃∇,K

k φI |1,K . |φ− φI |1,K + |(I − Π̃∇,K
k )φ|1,K + |Π̃∇,K

k (φ − φI)|1,K

. |φ− φI |1,K + |(I − Π̃∇,K
k )φ|1,K .

Combining the above estimates and using Lemmas 5.5, 6.3, 6.4, and 6.5, the assertion follows.

Remark 6.8. The proof of Theorem 6.7 does not cover the cases k = 1 and 2, the reason being
the presence of the term

(f − fh, φI)0,Ω.

Following [6, Section 2.7], one can derive optimal convergence in the L2 norm for k = 1 and
one order suboptimal convergence for k = 2. In this case, optimality can be recovered by either a
suitable modification of the right-hand side (using better discretization of the test function in the
discrete loading term) or by adapting the enhanced version of the virtual element method.

7 The 3D version of the method

In this section, we discuss the nonconforming virtual element method for 3D curved domain and
why the theoretical results are an extension of their two-dimensional counterparts. Polyhedral
meshes are now employed and curved faces are the parametrizations of flat polygons. The geometric
assumptions (G1)–(G2) in Section 2 are still required, but are valid for K being a polyhedron.
We further require

(G3) every face F of K (or, if the face is curved, the associated parametric polygon F̂ ) is star-
shaped with respect to all the points of a disk radius larger than or equal to ρhK .

The local nonconforming virtual element space on the (possibly curved) polyhedron K reads

Vh(K) :=
{
vh ∈ H1(K)

∣∣∣ ∆vh ∈ Pk−2(K), nK · ∇vh ∈ P̃k−1(F ) ∀F ⊂ ∂K
}
,

where P̃k−1(F ) is the push forward on F of Pk−1(F̂ ). The definition of Vh is the natural extension
of its 2D counterpart. The degrees of freedom are given by scaled (possibly curved) face moments
with respect to (possibly mapped) polynomials up to order k − 1 and scaled bulk moments up
to order k − 2. The global nonconforming virtual element space is obtained by a nonconforming
coupling of the face degrees of freedom as in the 2D case:

Vh(Th) :=
{
vh ∈ H1,nc(Th, k)

∣∣vh|K ∈ Vh(K) ∀K ∈ Th
}
,

where J·KF is the jump across the (possibly curved) face and

H1,nc(Th, k) :=

{
v ∈ H1(Th)

∣∣∣∣
∫

F

JvKF · nF q dF, ∀q ∈ P̃k−1(F ), ∀F ⊂ ∂K, K ∈ Th

}
.
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No essential modifications of the 2D structure take place in 3D. This is the major advantage of
using the nonconforming version of the method. The 3D version of the conforming VEM on curved
domains in [10] should involve curved virtual element spaces on faces that are currently unknown.

The construction of the local and global discrete bilinear forms in Section 3.2 directly extends
to the 3D case. The only difference resides in the design of the stabilizing term that requires a
different scaling. It can be proved that the stabilization

SK(uh, vh) :=

Ndof(K)∑

l=1

hKD
l(uh)D

l(vh) ∀uh, vh ∈ Vh(K)

satisfies the 3D version of the estimates in (3.11). In fact, the key technical tools in stability
analysis are inverse inequalities, see Lemma 4.1; the Neumann trace inequality, see Lemma 4.2;
polynomial inverse inequalities on the element boundaries, see Lemma 4.3; “direct estimates” such
as Poincaré-type and trace-type inequalities. All such bounds are valid also in 3D.

The abstract error analysis is dealt with similarly to the 2D case; see Theorems 6.6 and 6.7.
The only minor modification is in the definition of the nonconformity term which in 3D is defined
as

Nh(u, v) :=
∑

F∈E3
h

∫

F

JvKF · ∇u dF,

where E3
h denotes the set of (curved) faces in the polyhedral decomposition. Thus, the proof of

error estimates for the nonconforming term follows along the same lines as in the 2D case, since
[3, Lemma 4.1] is valid in arbitrary space dimension.

8 Numerical experiments

In this section, we present some numerical experiments, so as to validate of Theorems 6.6 and 6.7.

Since the energy and L2 errors are not computable, we rather consider the computable error
quantities:

EH1 :=
(
∑

K∈Th
|u− Π̃∇,K

k uh|21,K)
1
2

|u|1,Ω
, EL2 :=

(
∑

K∈Th
‖u− Π̃∇,K

k uh‖20,K)
1
2

‖u‖0,Ω
. (8.1)

The two quantities above convergence with the same rate as the exact errors |u− uh|1,h and
‖u− uh‖0,Ω.

In Section 8.1, we consider two test cases on domains with curved boundary; in Section 8.2, we
consider a test case with an internal curved interface and curved boundary.

8.1 Curved boundary

As a first test case, we consider the domain Ω = {(x, y)|x2 + y2 < 1}, see Figure 8.1 (left-panel)
and the exact (analytic) solution

u1(x, y) = sin(πx) cos(πy).

The function u1 has inhomogeneous Dirichlet boundary conditions over ∂Ω.

23



Figure 8.1: Left-panel: a circular domain Ω. Right-panel: an example of (curved) Voronoi mesh over Ω.

In Figure 8.2, we show the convergence of the two error quantities in (8.1) on the given sequence
of Voronoi meshes with decreasing mesh size; see Figure 8.1 (right-panel) for a sample mesh. We
consider virtual elements of “orders” k = 2, 3, and 4.
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Figure 8.2: Left-panel: convergence of EH1 . Right-panel: convergence of EL2 . The exact solution is u1.
Voronoi meshes with decreasing mesh size are employed. The “orders” of the virtual element spaces are
k = 2, 3, and 4.

As a second test case, we consider the curved domain Ω introduced in [10] and defined as

Ω := {(x, y) s.t 0 < x < 1, and g1(x) < y < g2(x)}, (8.2)

where

g1(x) :=
1

20
sin(πx) and g2(x) := 1 +

1

20
sin(3πx).

We represent the domain in Figure 8.3. On such an Ω, we consider the exact (analytic) solution

u2(x, y) = −(y − g1(x))(y − g2(x))(1 − x)x(3 + sin(5x) sin(7y)).

The function u2 has homogeneous Dirichlet boundary conditions over ∂Ω.
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(0,0) (1,0)

(1,1)(0,1) 2

1

Figure 8.3: Domain Ω described in (8.2).

Figure 8.4: Left-panel: an example of (curved) Voronoi mesh over Ω. Right-panel: an example of
(curved) quadrilateral mesh over Ω.

The finite element partition on the curved domain Ω is constructed starting from a mesh for
the square [0, 1]2 and mapping the nodes accordingly to the following rule:

(xΩ, yΩ) =

{
(xs, ys + g1(xs)(1− 2ys)), if ys ≤

1
2 ,

(xs, 1− ys + g2(xs)(2ys − 1), if ys ≥
1
2

Above, (xs, ys) denotes the mesh generic node on the square domain (0, 1)2, and (xΩ, yΩ) denotes
the associated node in the curved domain Ω. The edges on the curved boundary consist of an arc
of Γ1 or Γ2, while all the internal edges are straight. In Figure 8.4, we display two examples of
meshes, namely, a (curved) Voronoi and a (curved) square mesh.

In Figure 8.5, we show the convergence of the two error quantities in (8.1) on the given sequences
of meshes under uniform mesh refinements for “orders” k = 2, 3, and 4.
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Figure 8.5: Left-panels: convergence of EH1 . Right-panels: convergence of EL2 . The exact solution is u2.
We employ sequences of (curved) Voronoi meshes (first row) and (curved) square meshes (second row)
with decreasing mesh size are employed. The “orders” of the virtual element spaces are k = 2, 3, and 4.

The theoretical predictions of Section 6 are confirmed: convergence of order O(hk) and O(hk+1)
is observed for the energy and L2-type errors in (8.1).

Next, we approximate the curved domain by using a polygonal mesh sequence of elements with
straight edges. Notably, we approximate the curved boundary by straight segments and force
homogeneous Dirichlet boundary conditions; see Figure 8.6.

In Figure 8.7 we plot the results for the sequence of Voronoi meshes on the approximated
domain, obtained with the standard nonconforming VEM on polygons.

Figure 8.6: An example of (straight) Voronoi mesh over Ω.
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Figure 8.7: Left-panel: convergence of EH1 . Right-panel: convergence of EL2 . The exact solution is u2.
Voronoi meshes with decreasing mesh size are employed. The “orders” of the virtual element spaces are
k = 2, 3.

In this case, we observe that the geometrical error dominates and the rate of convergence is
approximately 1.5 and 2 for the energy and L2 type approximate errors in (8.1).

8.2 Curved interfaces

As a third test case, see [10], we consider the same circular domain Ω with boundary Γ2 as in
Section 8.1, and we split into two subdomains Ω1 and Ω2 by an internal interface Γ1 so as Ω2 has
half the radius of Ω; see Figure 8.8 (left-panel). Further, we are given a diffusion coefficient κ and
a loading term f piecewise defined as

{
κ = 1 in Ω1,

κ = 5 in Ω2,

{
f = 5 in Ω1,

f = 1 in Ω2,

We are interested in approximating the solution u2 to the elliptic problem

{
−div(κ∇u) = f in Ω,

u = 0 on Γ2,

which is given by (here r :=
√
x2 + y2)

u3(x, y) = u3(r) :=

{
− 5

4r
2 + 7

20 + ln(2)
10 if r ≤ 1/2,

− 1
20r

2 − 1
10 ln(r) +

1
20 if 1/2 < r < 1.

The function u3 is analytic in Ω1 and Ω2 but has finite Sobolev regularity across the interface Γ1,
see Figure 8.8).
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Figure 8.8: Left-panel: a circular domain Ω with a curved internal interface Γ1. Right-panel: an example
of (curved) mesh conforming with respect to the internal interface.

In Figure 8.9, we show the convergence of the two quantities in (8.1) on the given sequence
of meshes with decreasing mesh size that are conforming with respect to the curved internal
interface Γ1; see Figure 8.8 (right-panel). We consider virtual elements of “order” k = 2, 3, and 4.
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Figure 8.9: Left-panel: convergence of EH1 . Right-panel: convergence of EL2 . The exact solution
is u3. Meshes with decreasing mesh size are employed that are conforming with respect to the internal
interface Γ1. The “orders” of the virtual element spaces are k = 2, 3, and 4.

The theoretical predictions of Section 6 are confirmed also for domains with internal curved
interface: convergence of order O(hk) and O(hk+1) is observed for the energy and L2-type errors
in (8.1).

Acknowledgment Y.L. is supported by the NSFC grant 12171244 and China Scholarship Coun-
cil 202206860034. L. Beirão da Veiga was partially supported by the Italian MIUR through the
PRIN Grant No. 905 201744KLJL.

References

[1] B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini, and A. Russo. Equivalent projectors for virtual element
methods. Comp. Math. Appl., 66(3):376–391, 2013.

[2] A. Anand, J. S. Ovall, S. E. Reynolds, and S. Weißer. Trefftz finite elements on curvilinear polygons. SIAM
J. Sci. Comput., 42(2):A1289–A1316, 2020.

[3] B. Ayuso de Dios, K. Lipnikov, and G. Manzini. The nonconforming virtual element method. ESAIM Math.
Model. Numer. Anal., 50(3):879–904, 2016.

28



[4] L. Beirão da Veiga and L. Mascotto. Interpolation and stability properties of low order face and edge virtual
element spaces. IMA J. Numer. Anal., 2022. https://doi.org/10.1093/imanum/drac008.

[5] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo. Basic principles of virtual
element methods. Math. Models Methods Appl. Sci., 23(01):199–214, 2013.

[6] L. Beirão da Veiga, F. Brezzi, and L. D. Marini. Virtual elements for linear elasticity problems. SIAM J.
Numer. Anal., 51(2):794–812, 2013.

[7] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. The hitchhiker’s guide to the virtual element
method. Math. Models Methods Appl. Sci., 24(08):1541–1573, 2014.

[8] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. Polynomial preserving virtual elements with curved
edges. Mathematical Models and Methods in Applied Sciences, 30(08):1555–1590, 2020.

[9] L. Beirão da Veiga, C. Lovadina, and A. Russo. Stability analysis for the virtual element method. Math. Models
Methods Appl. Sci., 27(13):2557–2594, 2017.

[10] L. Beirão da Veiga, A. Russo, and G. Vacca. The virtual element method with curved edges. ESAIM Math.
Model. Numer. Anal., 53(2):375–404, 2019.

[11] S. Bertoluzza, M. Pennacchio, and D. Prada. High order VEM on curved domains. Atti Accad. Naz. Lincei
Rend. Lincei Mat. Appl., 30(2):391–412, 2019.

[12] L. Botti and D.A. Di Pietro. Assessment of hybrid high-order methods on curved meshes and comparison with
discontinuous Galerkin methods. J. Comput. Phys., 370:58–84, 2018.

[13] J. H. Bramble, T. Dupont, and V. Thomée. Projection methods for Dirichlet’s problem in approximating
polygonal domains with boundary-value corrections. Math. Comp., 26(120):869–879, 1972.

[14] S. C. Brenner. Poincaré–Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer. Anal., 41(1):306–
324, 2003.

[15] S. C. Brenner and L.R. Scott. The mathematical theory of finite element methods, volume 3. Springer, 2008.

[16] E. Burman, M. Cicuttin, G. Delay, and A. Ern. An unfitted hybrid high-order method with cell agglomeration
for elliptic interface problems. SIAM J. Sci. Comput., 43(2):A859–A882, 2021.

[17] E. Burman and A. Ern. A cut cell hybrid high-order method for elliptic problems with curved boundaries. In
European Conference on Numerical Mathematics and Advanced Applications, pages 173–181. Springer, 2019.

[18] E. Burman, P. Hansbo, and M. Larson. A cut finite element method with boundary value correction. Math.
Comp., 87(310):633–657, 2018.

[19] L. Chen and J. Huang. Some error analysis on virtual element methods. Calcolo, 55(5):1–23, 2018.

[20] B. Cockburn, D. A. Di Pietro, and A. Ern. Bridging the hybrid high-order and hybridizable discontinuous
Galerkin methods. ESAIM Math. Model. Numer. Anal., 50(3):635–650, 2016.

[21] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric analysis: toward integration of CAD and FEA.
John Wiley & Sons, 2009.

[22] F. Dassi, A. Fumagalli, D. Losapio, S. Scialò, A. Scotti, and G. Vacca. The mixed virtual element method on
curved edges in two dimensions. Comput. Methods Appl. Mech. Engrg., 386:114098, 2021.

[23] F. Dassi, A. Fumagalli, I. Mazzieri, A. Scotti, and G. Vacca. A virtual element method for the wave equation
on curved edges in two dimensions. J. Sci. Comput., 90(1):1–25, 2022.

[24] F. Dassi, A. Fumagalli, A. Scotti, and G. Vacca. Bend 3D mixed virtual element method for Darcy problems.
Comput. Math. Appl., 119:1–12, 2022.

[25] Z. Dong and A. Ern. Hybrid high-order and weak Galerkin methods for the biharmonic problem. SIAM J.
Numer. Anal., 60(5):2626–2656, 2022.

[26] I. Ergatoudis, B. M. Irons, and O. C. Zienkiewicz. Curved, isoparametric, “quadrilateral” elements for finite
element analysis. Int. J. Solids Struct., 4(1):31–42, 1968.

[27] C. Gürkan, E. Sala-Lardies, M. Kronbichler, and S. Fernández-Méndez. eXtended Hybridizable Discontinous
Galerkin (X-HDG) for void problems. J. Sci. Comput., 66(3):1313–1333, 2016.

[28] M. Lenoir. Optimal isoparametric finite elements and error estimates for domains involving curved boundaries.
SIAM J. Numer. Anal., 23(3):562–580, 1986.

[29] L. Mascotto, I. Perugia, and A. Pichler. Non-conforming harmonic virtual element method: h- and p-versions.
J. Sci. Comput., 77(3):1874–1908, 2018.

[30] C. Schwab. p- and hp- Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics.
Clarendon Press Oxford, 1998.

[31] E. M. Stein. Singular integrals and differentiability properties of functions, volume 2. Princeton University
Press, 1970.

[32] G. Strang and A. E. Berger. The change in solution due to change in domain. In Partial differential equations
(Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), pages 199–205. Amer.
Math. Soc., Providence, R.I., 1973.

[33] V. Thomée. Polygonal domain approximation in Dirichlet’s problem. IMA J. Appl. Math., 11(1):33–44, 1973.

[34] L. Yemm. A new approach to handle curved meshes in the hybrid high-order method.
https://arxiv.org/abs/2212.05474, 2023.

29

https://doi.org/10.1093/imanum/drac008
https://arxiv.org/abs/2212.05474

	1 Introduction
	2 Meshes and broken spaces
	2.1 Mesh assumptions
	2.2 Broken and nonconforming spaces

	3 The nonconforming virtual element method on curved polygons
	3.1 Nonconforming virtual element spaces
	3.2 Polynomial projectors and discrete bilinear forms
	3.3 The method

	4 Stability analysis
	5 Polynomial and virtual element approximation estimates
	6 Convergence analysis
	6.1 Convergence analysis in the energy norm
	6.2 Convergence analysis in a weaker norm

	7 The 3D version of the method
	8 Numerical experiments
	8.1 Curved boundary
	8.2 Curved interfaces


