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Abstract

First-order hydrostatic reconstruction (HR) schemes for shallow water equations are
highly diffusive whereas high-order schemes can produce entropy-violating solutions. Our
goal is to develop a flux correction with maximum antidiffusive fluxes to obtain entropy
solutions of shallow water equations with variable bottom topography. For this purpose,
we consider a hybrid explicit HR scheme whose flux is a convex combination of first-order
Rusanov flux and high-order flux. The conditions under which the explicit first-order
HR scheme for shallow water equations satisfies the fully discrete entropy inequality have
been studied. The flux limiters for the hybrid scheme are calculated from a corresponding
optimization problem. Constraints for the optimization problem consist of inequalities
that are valid for the first-order HR scheme and applied to the hybrid scheme. We ap-
ply the discrete cell entropy inequality with the proper numerical entropy flux to single
out a physically relevant solution to the shallow water equations. A nontrivial approxi-
mate solution of the optimization problem yields expressions to compute the required flux
limiters. Numerical results of testing various HR schemes on different benchmarks are
presented.

Keywords— fully discrete entropy inequality, flux corrected transport, shallow water
equations, hydrostatic reconstruction scheme, linear programming
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1 Introduction

In this paper, we consider a design of entropy stable flux correction for a hydrostatic recon-
struction scheme for shallow water equations with variable bottom topography. For simplicity,
without loss of generality, we focus on the Saint-Venant system of one-dimensional shallow
water equations, given by

∂th+ ∂xQ = 0,

∂tQ+ ∂x

(
Q2

h
+ g

h2

2

)
= −gh∂xz,

(1.1)

subject to the initial conditions

h(x, 0) = h0(x), Q(x, 0) = Q0(x), (1.2)
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where h(x, t) is the water depth, Q(x, t) is the water discharge, g is the gravitational constant,
and z(x) is the bottom topography. The system (1.1) is considered in a certain spatial domain
D, and if D ̸= R, then on the boundary of D a corresponding boundary conditions should be
specified.

In vector form, the system (1.1) can be written as

∂u

∂t
+

∂

∂x
f(u) = s, (1.3)

where u = (h,Q)T is the vector of conserved variables, f = (Q,Q2/h + gh2/2)T is the flux
vector, and s = (0, ghzx)

T is the source vector.
It is well known [19] that solutions of (1.1)-(1.2) may develop singularities in finite time

even for a smooth initial condition. Hence, we should interpret (1.1) in the sense of distribution
and search for weak solutions. However, such weak solutions are not unique. To single out a
unique physically relevant weak solution, the latter should satisfy

∂U(u)

∂t
+

∂F (u)

∂x
≤ 0 (1.4)

in the sense of distribution for every entropy pair (U, F ). Here U is a convex function of u, the
so-called entropy function, and F is its entropy flux that satisfies

F T
u (u) = Uu(u)fu(u). (1.5)

For shallow water equations (1.1) with bottom topography z(x), the total energy

U(u) =
1

2

(
Q2

h
+ gh2

)
+ ghz, (1.6)

serves as an entropy function with entropy flux

F (u) =
Q3

2h2
+ ghQ+ gQz. (1.7)

We discretize (1.3) by the difference scheme

1

∆t
(v̂i − vi) +

1

∆x

[
gi+1/2 − gi−1/2

]
= si, (1.8)

where the numerical flux gi+1/2 is calculated as

gi+1/2 = gL
i+1/2 + αi+1/2

[
gH
i+1/2 − gL

i+1/2

]
. (1.9)

Here, vi = v(xi, t) = (y(xi, t), q(xi, t))
T is the discrete solution at the grid point (xi = i∆x, t);

v̂i = v(xi, t + ∆t); ∆x and ∆t are the spatial and temporal computational grid size, respec-
tively. gH

i+1/2 and gL
i+1/2 are a high-order and low-order numerical fluxes such that gi+1/2 =

g(vi−l+1, ...,vi+r) is the Lipschitz continuous numerical flux consistent with the differential flux,
that is g(u, ...,u) = f(u) for all flux-limiters αi+1/2 ∈ [0, 1].

The expression in square brackets on the right-hand side of (1.5) can be considered as an
antidiffusive flux. For flux-correction we compute the flux limiters αi+1/2 as an approximate
solution to the corresponding optimization problem. The classical two-step Flux-Corrected
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Transport (FCT) was firstly developed by Oran and Boris [4] to solve the transient continuity
equation. The procedure of two-step flux correction consists of computing the time-advanced
low-order solution in the first step and correcting the solution by adding antidiffusive fluxes
in the second step to produce accurate and monotone results. The antidiffusive fluxes, which
define as the difference between the high and low-order fluxes, are limited in such a way that
neither new extrema are created nor existing extrema are increased. Later, Zalesak [31, 32]
extended FCT to multidimensional explicit difference schemes. In [32], using characteristic
variables, Zalesak proposed FCT algorithms for nonlinear systems of conservation laws. Several
implicit FEM-FCT schemes for unstructured grids were proposed by Kuzmin and coworkers [17,
18]. However, the known FCT algorithms do not guarantee entropy solutions for hyperbolic
conservation laws.

We discretize the entropy inequality (1.4) as follows

U(v̂i)− U(vi) +
∆t

∆x

[
Gi+1/2 −Gi−1/2

]
≤ 0 (1.10)

where Gi+1/2 = G(vi−l+1, ...,vi+r) is the numerical entropy flux consistent with the differential
one G(u, ...,u) = F (u).

A difference scheme (1.8) is called entropy stable if computed solutions satisfy the discrete
cell entropy inequality (1.6). We mention here the pioneering studies of entropy stable schemes
by Lax [19]. Entropy stable schemes were developed by several authors [7, 10, 12, 13, 20, 25,
29, 30]. To single out a physically relevant solution, we use the so-called proper numerical
entropy flux, the concept of which was formulated by Merriam [21] and Sonar [27]. Zhao and
Wu [33] proved that three-point monotone semi-discrete schemes in conservative form satisfy the
corresponding semi-discrete entropy inequality with the proper numerical entropy flux. Fully
discrete entropy stable schemes with the proper numerical entropy flux for scalar conservation
laws were obtained in [15, 16]. The numerical entropy flux G(vi−l+1, ...,vi+r) for F is not
unique. The distinguishing feature of the proper numerical entropy flux among others is that
it satisfies property (1.5) of the differential entropy flux.

In this paper, we apply a first-order hydrostatic reconstruction (HR) scheme as a low-order
scheme to design flux correction. A first-order HR scheme was originally developed by Audusse
et al. [1], and it does not properly account for the acceleration due to a sloped bottom [8]
for shallow downhill flow. Morales de Luna et al. [23] improved the original first-order HR
scheme for partially wet interfaces. Using a technique of subcell reconstructions, Chen and
Noelle [6] proposed a new reconstruction with a better approximation of the source term for
shallow downhill flows. The main properties of the original HR scheme or its modifications are
positivity preserving, well-balanced, and satisfying a semi-discrete in-cell entropy inequality.
Unfortunately, it is well known that semi-discrete entropy inequalities are insufficient to obtain
a suitable convergence to the entropy weak solution or to get relevant energy estimates. Audusse
et al. [2] showed that the HR scheme combined with a kinetic solver satisfies a fully discrete
entropy inequality with an error term coming from the topography. Thus, we can expect the
convergence of this scheme for Lipschitz continuous bathymetry. Berthon et al. [3] suggested
to introduce artificial viscosity into the HR scheme to get fully discrete entropy inequalities.

Using the approach proposed in [15, 16], we construct a flux correction for 1D shallow wa-
ter equations (1.1) to obtain numerical entropy solutions for which the antidiffusive fluxes are
maximal. For this, the flux limiters for the hybrid scheme (1.8)-(1.9) are computed from the
optimization problem with constraints that are valid for the low-order scheme. An approximate
solution to the optimization problem yields the desired flux correction formulas. Moreover, con-
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sidering the flux limiters as functions of the numerical solution, we prove the unique solvability
of the hybrid scheme (1.8)-(1.9) under general assumptions on them. We show that the approx-
imate limiters satisfy the assumptions under which the hybrid scheme has a unique solution.
The developed approach is a novel view on the known FCT method.

The paper is organized as follows. In Section 2, we present estimates that are valid for an
explicit first-order HR scheme with the Rusanov numerical flux. Section 3 defines the proper
numerical entropy flux and studies the conditions under which the explicit HR scheme for
homogeneous and inhomogeneous shallow water equations satisfies the fully discrete entropy
inequality. The unique solvability of flux correction for the HR scheme, the optimization prob-
lem for finding flux limiters, and the algorithm for its solution are described in Section 4. An
approximate solution of the optimization problem is derived in Section 5. The results of nu-
merical experiments with different HR schemes are given in Section 6. Concluding remarks are
drawn in Section 7.

2 First-Order Hydrostatic Reconstruction Scheme

We consider an explicit first-order HR scheme of Chen and Noelle [6] in the form

v̂i − vi +
∆t

∆x

[
gL
i+1/2(v

−
i+1/2, v

+
i+1/2) − gL

i−1/2(v
−
i−1/2, v

+
i+1/2)

]
= ∆t si, (2.1)

where gL
i+1/2 is the Rusanov numerical flux [26] consistent with the differential flux f and given

by

gL
i+1/2(v

−
i+1/2,v

+
i+1/2) =

1

2

(
f(v−

i+1/2) + f(v+
i+1/2)− ci+1/2(v

+
i+1/2 − v−

i+1/2)
)
. (2.2)

The vectors of conservative variables v±
i+1/2 are given by

v−
i+1/2 =

(
y−i+1/2

y−i+1/2ui

)
, v+

i+1/2 =

(
y+i+1/2

y+i+1/2ui+1

)
, ui =

√
2yiqi√

y4i +max (y4i , ϵ)
, (2.3)

where ϵ is a small a-priori chosen positive number. The water depths are calculated as

y−i+1/2 = min
(
wi − zi+1/2, yi

)
, y+i+1/2 = min

(
wi+1 − zi+1/2, yi+1

)
(2.4)

with water levels wi = zi + yi, and the cell interface bottom

zi+1/2 = min (max (zi, zi+1) ,min (wi, wi+1)) . (2.5)

The source term si = −s+i−1/2 + s−i+1/2 = (0,−s+i−1/2)
T + (0, s−i+1/2)

T is discretized as

s−i+1/2 = −g
yi + y−i+1/2

2

zi − zi+1/2

∆x
,

s+i+1/2 = −g
y+i+1/2 + yi+1

2

zi+1 − zi+1/2

∆x
.

(2.6)

Finally, the local speed ci+1/2 in (2.2) is calculated using the eigenvalues of the Jacobian
fu(u) as follows

ci+1/2 = max
(
|ui|+

√
g y−i+1/2, |ui+1|+

√
g y+i+1/2

)
. (2.7)

The following theorem gives estimates for the numerical solution of the HR scheme (2.1).
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Theorem 2.1. Assume that ci+1/2 ≥ max (|ui|, |ui+1|) for all i. Then for

∆t ≤ 2∆x

max
i

(ci+1/2 − ui+1 + ci−1/2 + ui−1)
, (2.8)

the following inequalities hold for the numerical solution of the system of equations (2.1)-(2.2)

∆x

∆t
min(wi, w

−
i−1/2, w

+
i+1/2) ≤

∆x

∆t
ŵi −

ui + ui+1

2
zi+1/2 −

(
ci+1/2 − ui+1

2
wi −

ci+1/2 + ui

2
w−

i+1/2

)
+

ui + ui−1

2
zi−1/2 −

(
ci−1/2 + ui−1

2
wi −

ci−1/2 − ui

2
w+

i−1/2

)
≤ ∆x

∆t
max(wi, w

−
i−1/2, w

+
i+1/2),

(2.9)

∆x

∆t
min(qi, q

−
i−1/2, q

+
i+1/2) ≤

∆x

∆t
q̂i −

(
ci+1/2 − ui+1

2
qi −

ci+1/2 + ui

2
q−i+1/2

)
+

g

2

[
1

2

(
y−

2

i+1/2 + y+
2

i+1/2

)
+ (yi + y−i+1/2)(zi+1/2 − zi)

]
− g

2

[
1

2

(
y−

2

i−1/2 + y+
2

i−1/2

)
+ (yi + y+i−1/2)(zi−1/2 − zi)

]
−

(
ci−1/2 + ui−1

2
qi −

ci−1/2 − ui

2
q+i−1/2

)
≤ ∆x

∆t
max(qi, q

−
i−1/2, q

+
i+1/2),

(2.10)

where w±
i+1/2 = y±i+1/2 + zi+1/2.

Proof. Let us prove inequalities (2.9). Inequalities (2.10) are proved similarly.
We rewrite the equation (2.1) for the conservative variable yi in the form

∆x

∆t
ŷi =

∆x

∆t
yi −

ci+1/2 + ui

2
y−i+1/2 −

ci−1/2 − ui

2
y+i−1/2

+
ci+1/2 − ui+1

2
y+i+1/2 +

ci−1/2 + ui−1

2
y−i−1/2.

(2.11)

Substituting the water level wi in (2.11) instead of the water depth yi, we obtain

∆x

∆t
ŵi =

(
∆x

∆t
−

ci+1/2 − ui+1

2
−

ci−1/2 + ui−1

2

)
wi +

ci+1/2 − ui+1

2
w+

i+1/2

+
ci−1/2 + ui−1

2
w−

i−1/2 +
ui + ui+1

2
zi+1/2 −

ui + ui−1

2
zi−1/2

+

(
ci+1/2 − ui+1

2
wi −

ci+1/2 + ui

2
w−

i+1/2

)
+

(
ci−1/2 + ui−1

2
wi −

ci−1/2 − ui

2
w+

i−1/2

)
.

(2.12)

Note that under the condition (2.8), the first three terms in the right-hand side of (2.12)
are a convex combination of wi, w

+
i+1/2, and w−

i−1/2, which proves the theorem.

Remark 2.1. We note that if ci+1/2 satisfies the following inequalities

∆x

∆t
yi −

ci+1/2 + ui

2
y−i+1/2 −

ci−1/2 − ui

2
y+i−1/2 ≥ 0,

ci+1/2 − ui+1 ≥ 0, ci−1/2 + ui−1 ≥ 0,
(2.13)

then the difference scheme (2.11) preserves the non-negativity of the water depth y.
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3 Cell Entropy Inequality for Fully Discrete HR Scheme

In this section we study the cell entropy inequality for the fully discrete HR scheme (2.1)-(2.2).
We consider a homogeneous three-point low-order scheme in the form

v̂i − vi +
∆t

∆x

[
gL
i+1/2(vi,vi+1)− gL

i−1/2(vi−1,vi)
]
= 0, (3.1)

where the low-order numerical flux gL
i+1/2 = g(v,w) is consistent with the smooth differential

flux f(u) : Rm → Rm of the conservative variables u = (u1, . . . , um)T .
We define the numerical entropy flux as follows.

Definition 3.1. Numerical entropy flux G(vi−l+1, ...,vi+r) of the difference scheme (3.1) is
called proper if for any vi−l+1, ...,vi+r ∈ Rm we have

∂

∂vjp
G(vi−l+1, ...,vi+r) =

∑
k

∂U(vp)

∂vkp

∂

∂vjp
gk(vi−l+1, ...,vi+r), p = i− l + 1, ..., i+ r. (3.2)

Then the proper numerical entropy flux for the difference scheme (1.8) and (1.9) can be
written in the form

Gi+1/2 = GL
i+1/2 + αi+1/2

(
GH

i+1/2 −GL
i+1/2

)
, (3.3)

where GL
i+1/2 and GH

i+1/2 are the low-order and high-order proper numerical entropy fluxes

corresponding to the numerical fluxes gL
i+1/2 and gH

i+1/2.

Theorem 3.1. Suppose that f : Rm → Rm is hemicontinuosly Gateaux differentiable, U : Rm →
R is a strictly convex function with a hemicontinuos second Gateaux derivative. If matrices
U ′′(w)g′u(u,vi) and U ′′(w)g′u(vi,u) are positive and negative definite, respectively, for any
u,w ∈ Rm, ∆t satisfies the inequality

∆t max
s∈(vi,v̂i)

λ (U ′′(s)) ⟨
(
gL
i+1/2 − gL

i−1/2

)
,
(
gL
i+1/2 − gL

i−1/2

)
⟩

≤ 2∆x
[
⟨U ′(vi),

(
gL
i+1/2 − gL

i−1/2

)
⟩ −GL

i+1/2 +GL
i−1/2

]
,

(3.4)

then the fully discrete scheme (3.1) satisfies the discrete cell entropy inequality

U(v̂i)− U(vi) +
∆t

∆x

[
GL

i+1/2(vi,vi+1)−GL
i−1/2(vi−1,vi)

]
≤ 0. (3.5)

where GL
i+1/2 is the proper numerical entropy flux corresponding to the numerical flux gL

i+1/2,

⟨·, ·⟩ denotes the Euclidean inner product.

Proof. Multiplying (3.1) by U ′(vi) and subtracting it from the left-hand side of (1.10), we get

U(v̂i)− U(vi) +
∆t

∆x

[
GL

i+1/2 −GL
i−1/2

]
= U(v̂i)− U(vi)−⟨U ′(vi), (v̂i − vi)⟩ +

∆t

∆x

[
GL

i+1/2 −GL
i−1/2 −

〈
U ′(vi),

(
gL
i+1/2 − gL

i−1/2

)〉]
=

1

2

(
∆t

∆x

)2 〈
U ′′(s)

(
gL
i+1/2 − gL

i−1/2

)
,
(
gL
i+1/2 − gL

i−1/2

)〉
+

∆t

∆x

[
GL

i+1/2 − F (vi)−
〈
U ′(vi),

(
gL
i+1/2 − f(vi)

)〉]
+

∆t

∆x

[
F (vi)−GL

i−1/2 −
〈
U ′(vi),

(
f(vi)− gL

i−1/2

)〉]
(3.6)
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where s = θv̂i + (1− θ)vi, 0 < θ < 1.
It is easy to see that the first term on the right-hand side of (3.6) is non-negative. Now we

show that the second and third terms in square brackets are non-positive. Indeed, we rewrite
the second and third terms as follows

GL(vi,vi+1)−GL(vi,vi)−
∑
j

∂U

∂vj
(vi)

[
gL,j(vi,vi+1)− gL,j(vi,vi)

]
=

1∫
0

∑
j,k

[
∂U

∂vj
(vi + ξ∆vi+1/2)−

∂U

∂vj
(vi)

]
∂gL,j

∂vk
(vi,vi + ξ∆vi+1/2)∆vki+1/2dξ

=

1∫
0

1∫
0

∑
k,l

[∑
j

∂2U

∂vj∂vl
(vi + ηξ∆vi+1/2)

∂gL,j

∂vk
(vi,vi + ξ∆vi+1/2)

]
∆vki+1/2∆vli+1/2dη ξdξ

(3.7)

GL(vi,vi)−GL(vi−1,vi)−
∑
j

∂U

∂vj
(vi)

[
gL,j(vi,vi)− gL,j(vi−1,vi)

]
=

1∫
0

∑
j,k

[
∂U

∂vj
(vi − ξ∆vi−1/2)−

∂U

∂vj
(vi)

]
∂gL,j

∂vk
(vi − ξ∆vi−1/2,vi)∆vki−1/2dξ

= −
1∫

0

1∫
0

∑
k,l

[∑
j

∂2U

∂vj∂vl
(vi − ηξ∆vi−1/2)

∂gL,j

∂vk
(vi − ξ∆vi−1/2,vi)

]
∆vki−1/2∆vli−1/2dη ξdξ

(3.8)

where ∆vi+1/2 = vi+1 − vi.
Thus, according to our assumption, the integrals in (3.7)-(3.8) do not change the sign over

the integration interval, which means that the second and third terms are negative.
The second and third terms on the right side of (3.6) are linear in ∆t, and the first term is

of second-order. Therefore, we can choose the time step small enough that the second and third
terms dominate over the first term. Consequently, the right-hand side of (3.5) is non-positive
if ∆t satisfies (3.4). This completes the proof of the theorem.

The proper numerical entropy flux for the first-order HR scheme (2.1) can be written as
follows

GL
i+1/2 =

1

2

(
F (U−) + F (U+)− ci+1/2 (U

+ − U−)
)
. (3.9)

Multiplying (2.1) by U ′(vi) and subtracting it from the left-hand side of (1.10), we obtain

U(v̂i) − U(vi) +
∆t

∆x

[
GL

i+1/2 −GL
i−1/2

]
= U(v̂i)− U(vi)− ⟨U ′(vi), (v̂i − vi)⟩

+
∆t

∆x

[
GL

i+1/2 −GL
i−1/2 −

〈
U ′(vi),

(
gL
i+1/2 − gL

i−1/2 − s−i+1/2 + s+i−1/2

)〉]
= U(v̂i)− U(vi)− ⟨U ′(vi), (v̂i − vi)⟩ +

∆t

∆x

[
∆GL,−

i+1/2 −∆GL,+
i−1/2

]
,

(3.10)

where ∆GL,±
i+1/2 are defined as

∆GL,±
i+1/2 = GL

i+1/2(U
−
i+1/2, U

+
i+1/2)− F (Ui)

−
〈
U ′(vi),

(
gL
i+1/2(v

−
i+1/2,v

+
i+1/2)− s±i+1/2 − f(ui)

)〉
.

(3.11)
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or substituting the values of the corresponding functions, ∆GL,±
i+1/2 can be represented as

∆GL,−
i+1/2 =

1

2

{ui+1

2
y+i+1/2(ui+1 − ui)

2 + g
(
ui+1y

+
i+1/2 − uiyi

)
(zi+1/2 − zi)

+ g
[ui

2
(y−i+1/2 − yi)

2 + (y+i+1/2 − yi)
(
ui+1y

+
i+1/2 −

ui

2
(y+i+1/2 + yi)

)]
− ci+1/2

[
1

2
y+i+1/2(ui+1 − ui)

2 +
g

2
(y+i+1/2 − yi)

2 − g

2
(y−i+1/2 − yi)

2

+ g(y+i+1/2 − y−i+1/2)(zi+1/2 − zi)
]}

,

(3.12)

∆GL,+
i−1/2 =

1

2

{ui−1

2
y−i−1/2(ui−1 − ui)

2 − g
(
ui−1y

−
i−1/2 − uiyi

)
(zi − zi−1/2)

+ g
[ ui

2
(y+i−1/2 − yi)

2 + (y−i−1/2 − yi)
(
ui−1y

−
i−1/2 −

ui

2
(y−i−1/2 + yi)

)]
+ ci−1/2

[
1

2
y−i−1/2(ui−1 − ui)

2 − g

2
(y+i−1/2 − yi)

2 +
g

2
(y−i−1/2 − yi)

2

+ g(y+i−1/2 − y−i−1/2)(zi − zi−1/2)
]}

.

(3.13)

We consider two cases: (1) homogeneous and (2) inhomogeneous shallow water equations.

Theorem 3.2. Assume that ci+1/2 and ∆t satisfy the inequalities

ci+1/2 ≥
1

2
max

(
−ui+1 − ui +

√
(ui+1 − ui)2 + 4gyi, ui+1 + ui +

√
(ui+1 − ui)2 + 4gyi+1

)
,

(3.14)

∆t max
v∈(vi,v̂i)

λ (U ′′(v)) ⟨
(
gL
i+1/2 − gL

i−1/2

)
,
(
gL
i+1/2 − gL

i−1/2

)
⟩

≤ 2∆x
[
⟨U ′(vi),

(
gL
i+1/2 − gL

i−1/2

)
⟩ −GL

i+1/2 +GL
i−1/2

]
.

(3.15)

where λ (U ′′(v)) = 1
2y
(u2 + gy +

√
(u2 + gy)2 − 4gy.

Then for homogeneous shallow water equations, the fully discrete HR scheme (2.1)-(2.2)
satisfies the discrete cell entropy inequality

U(v̂i)− U(vi) +
∆t

∆x

[
GL

i+1/2(vi,vi+1)−GL
i−1/2(vi−1,vi)

]
≤ 0. (3.16)

where GL
i+1/2 is the proper numerical entropy flux (3.9).

Proof. For homogeneous shallow water equations, we have that v−
i−1/2 = vi−1,v

−
i+1/2 = v+

i−1/2 =

vi and v+
i+1/2 = vi+1. Then ∆GL,±

i+1/2 in (3.12)-(3.13) take the form

∆GL,−
i+1/2 =

1

2

{ui+1

2
yi+1(ui+1 − ui)

2 + g(yi+1 − yi)
(
ui+1yi+1 −

ui

2
(yi+1 + yi)

)
− ci+1/2

[yi+1

2
(ui+1 − ui)

2 +
g

2
(yi+1 − yi)

2
]}

,
(3.17)

∆GL,+
i−1/2 =

1

2

{ui−1

2
yi−1(ui−1 − ui)

2 + g(yi−1 − yi)
(
ui−1yi−1 −

ui

2
(yi−1 + yi)

)
+ ci−1/2

[
1

2
yi−1(ui−1 − ui)

2 +
g

2
(yi−1 − yi)

2

]}
.

(3.18)
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Note that the multipliers in the square brackets for ci±1/2 in (3.17)-(3.18) are non-negative.

It is easy to check that when they are zero, then ∆GL,±
i∓1/2 are also zero. Let us show that ci±1/2

can be chosen so that ∆GL,−
i+1/2 and ∆GL,+

i−1/2 are non-positive and non-negative, respectively.

Indeed, we rewrite (3.17) as

∆GL,−
i+1/2 =

1

2

{ui+1

2
yi+1(ui+1 − ui)

2 + g yi+1(yi+1 − yi) (ui+1 − ui)

+g
ui

2
(yi+1 − yi)

2 − ci+1/2

[yi+1

2
(ui+1 − ui)

2 +
g

2
(yi+1 − yi)

2
]}

=
1

2

{yi+1

2
(ui+1 − ci+1/2)(ui+1 − ui)

2 + g yi+1(yi+1 − yi) (ui+1 − ui)

+
g

2
(ui − ci+1/2) (yi+1 − yi)

2
}
.

(3.19)

∆GL,−
i+1/2 is a quadratic form with respect to (ui+1−ui) and (yi+1−yi). For it to be non-positive,

it is sufficient for the leading coefficient and its discriminant to be non-positive. Then, ci+1/2

should satisfy the following inequalities

ci+1/2 − ui+1 > 0,

c2i+1/2 − (ui+1 + ui) ci+1/2 + ui+1 ui − gyi+1 ≥ 0.
(3.20)

It is clear that inequalities (3.20) hold for ci+1/2 ≥ 1
2

(
ui+1 + ui +

√
(ui+1 − ui)2 + 4gyi+1

)
.

Similarly, it can be shown that ∆GL,+
i−1/2 is non-negative for ci−1/2 ≥ 1

2
(−ui−1 − ui

+
√

(ui−1 − ui)2 + 4gyi−1

)
.

We rewrite the discrete cell entropy inequality (3.10) in the form

U(v̂i) − U(vi) +
∆t

∆x

[
GL

i+1/2 −GL
i−1/2

]
= U(v̂i)− U(vi)− ⟨U ′(vi), (v̂i − vi)⟩ +

∆t

∆x

[
∆GL,−

i+1/2 −∆GL,+
i−1/2

]
=

1

2

(
∆t

∆x

)2 〈
U ′′(s)

(
gL
i+1/2 − gL

i−1/2

)
,
(
gL
i+1/2 − gL

i−1/2

)〉
+

∆t

∆x

[
∆GL,−

i+1/2 −∆GL,+
i−1/2

]
.

(3.21)

Thus, the non-positivity of (3.21) can be achieved by choosing a sufficiently small ∆t so that
the second term dominates over the first non-negative term on the right-hand side of (3.21).
This completes the proof of the theorem.

Theorem 3.3. Suppose that ci+1/2 and ∆t satisfy the inequalities

ci+1/2 ≥ max

a−i ui+1 + b−i ui +
√
(a−i ui+1 − b−i ui)2 + 4g a−i y

+
i+1/2(w

+
i+1/2 − wi)2

2a−i
,

−a+i+1ui − b+i+1ui+1 +
√

(a+i+1ui − b+i+1ui+1)2 + 4g a+i+1y
−
i+1/2(w

−
i+1/2 − wi+1)2

2a+i+1

 .

(3.22)

∆t max
v∈(vi,v̂i)

λ (U ′′(v)) ⟨
(
gL
i+1/2 − gL

i−1/2 − s−i+1/2 + s+i−1/2

)
,
(
gL
i+1/2 − gL

i−1/2 − s−i+1/2 + s+i−1/2

)
⟩

≤ 2∆x
[
⟨U ′(vi),

(
gL
i+1/2 − gL

i−1/2 − s−i+1/2 + s+i−1/2

)
⟩ −GL

i+1/2 +GL
i−1/2

]
.

(3.23)
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where

λ (U ′′(v)) =
1

2y
(u2 + gy +

√
(u2 + gy)2 − 4gy

a∓i = ±(y+i±1/2 − y−i±1/2)
(
w±

i+1/2 + w−
i±1/2 − 2wi

)
,

b∓i = ±(y−i±1/2 − yi)
2 ∓ (y+i±1/2 − yi)

2 + 2(y±i±1/2 − yi)(w
±
i±1/2 − wi).

(3.24)

Then for inhomogeneous shallow water equations, the fully discrete HR scheme (2.1)-(2.2)
satisfies the discrete cell entropy inequality

U(v̂i)− U(vi) +
∆t

∆x

[
GL

i+1/2(v
−
i+1/2,v

+
i+1/2)−GL

i−1/2(v
−
i−1/2,v

+
i−1/2)

]
≤ 0. (3.25)

where GL
i+1/2 is the proper numerical entropy flux (3.9).

Proof. We rewrite ∆GL,±
i+1/2 in (3.12)-(3.13) as follows

∆GL,−
i+1/2 =

1

2

{ui+1

2
y+i+1/2(ui+1 − ui)

2 + g y+i+1/2(ui+1 − ui)(w
+
i+1/2 − wi)

+ g
[ui

2
(y−i+1/2 − yi)

2 − ui

2
(y+i+1/2 − yi)

2 + ui(y
+
i+1/2 − yi)(w

+
i+1/2 − wi)

]
− ci+1/2

[
1

2
y+i+1/2(ui+1 − ui)

2 + g(y+i+1/2 − y−i+1/2)

(
1

2
(w+

i+1/2 + w−
i+1/2)− wi

)]}
,

(3.26)

∆GL,+
i−1/2 =

1

2

{ui−1

2
y−i−1/2(ui−1 − ui)

2 − g y−i−1/2(ui−1 − ui)(wi − w−
i−1/2)

+ g
[ ui

2
(y+i−1/2 − yi)

2 − ui

2
(y−i−1/2 − yi)

2 + ui(y
−
i−1/2 − yi)(w

−
i−1/2 − wi)

]
+ ci−1/2

[
1

2
y−i−1/2(ui−1 − ui)

2 + g(y+i−1/2 − y−i−1/2)

(
wi −

1

2
(w+

i−1/2 + w−
i−1/2)

)]}
.

(3.27)

Let us show that the coefficients in the square brackets at ci±1/2 in (3.26)-(3.27) are non-
negative. Consider the following cases:

(i) In the fully wet case, min(wi, wi+1) > max(zi, zi+1). According to (2.4)-(2.5), we have
w−

i+1/2 = wi and w+
i+1/2 = wi+1.

Hence, if y+i+1/2 ≥ y−i+1/2, then w+
i+1/2 ≥ w−

i+1/2, and (y+i+1/2−y−i+1/2)
(

1
2
(w+

i+1/2 + w−
i+1/2)− wi

)
≥ 0. Otherwise, if y+i+1/2 < y−i+1/2, then also w+

i+1/2 < w−
i+1/2, and the required inequality holds.

(ii) In the partially wet case min(wi, wi+1) ≤ max(zi, zi+1). Depending on which bottom is
higher, right or left, we consider two subcases.

Let zi ≥ zi+1. Then zi+1/2 = wi+1, y−i+1/2 = yi, y+i+1/2 = 0, and w−
i+1/2, w

+
i+1/2 ≤ wi.

Therefore, (y+i+1/2 − y−i+1/2)
(

1
2
(w+

i+1/2 + w−
i+1/2)− wi

)
≥ 0.

If zi < zi+1, then zi+1/2 = wi, y
−
i+1/2 = 0, y+i+1/2 = yi+1, and w−

i+1/2 = wi, w
−
i+1/2 > wi. Thus,

we again obtain the required inequality.
The non-negativity of the terms in square brackets at ci−1/2 is proved similarly.

It is easy to check that when they are zero, then ∆GL,±
i∓1/2 are also zero. Let us show

that ci±1/2 can be chosen so that ∆GL,−
i+1/2 and ∆GL,+

i−1/2 are non-positive and non-negative,

respectively. Indeed, we consider ∆GL,−
i+1/2 and ∆GL,+

i−1/2 as quadratic equations with respect to

(ui+1 − ui) and (ui−1 − ui), respectively.
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∆GL,−
i+1/2 will be non-positive if its leading coefficient and discriminant are non-positive, i.e.

ci+1/2 > ui+1,

−a−i c
2
i+1/2 + (a−i ui+1 + b−i ui)ci+1/2 − ui+1uib

−
i + g y+i+1/2(w

+
i+1/2 − wi)

2 ≤ 0,
(3.28)

where

a−i = (y+i+1/2 − y−i+1/2)
(
w+

i+1/2 + w−
i+1/2 − 2wi

)
,

b−i = (y−i+1/2 − yi)
2 − (y+i+1/2 − yi)

2 + 2(y+i+1/2 − yi)(w
+
i+1/2 − wi).

(3.29)

It is clear that the inequalities (3.28) hold for

ci+1/2 ≥
a−i ui+1 + b−i ui +

√
(a−i ui+1 − b−i ui)2 + 4g a−i y

+
i+1/2(w

+
i+1/2 − wi)2

2a−i
. (3.30)

Similarly, it is proved that ∆GL,+
i−1/2 is non-negative for

ci−1/2 ≥
−a+i ui−1 − b+i ui +

√
(a+i ui−1 − b+i ui)2 + 4g a+i y

−
i−1/2(w

−
i−1/2 − wi)2

2a+i
, (3.31)

where

a+i = (y+i−1/2 − y−i−1/2)
(
2wi − w+

i−1/2 − w−
i−1/2

)
,

b+i = (y+i−1/2 − yi)
2 − (y−i−1/2 − yi)

2 + 2(y−i−1/2 − yi)(w
−
i−1/2 − wi).

(3.32)

Thus, returning to the discrete entropy inequality (3.21), we can choose ∆t so that the non-
positive terms in square brackets dominate over the non-negative first term on the right-hand
side of (3.21). This concludes the proof of the theorem.

4 Finding Flux Limiters

The system of equations (1.8)-(1.9) is nonlinear if we consider α as a function of v̂, and it can
be written in the form

v̂ −∆t P v̂ = v̂L, (4.1)

where mapping P : RN×RN → RN×RN is defined by Piv̂ =
[
αi−1/2(v̂)g

AD
i−1/2 − αi+1/2(v̂) g

AD
i+1/2

]
/∆x, gAD

i+1/2 = gH
i+1/2 − gL

i+1/2, and v̂L
i = vi −∆t/∆x

(
gL
i+1/2 − gL

i−1/2

)
+ si. Let O0 = Ō(v̂L, δ)

be a closed ball with center at v̂L and radius δ > 0. Furthermore, we define a mapping
Sv : O0 → RN ×RN as

Sv = v −∆tPv. (4.2)

Let us show that for sufficiently small ∆t the system of equations (4.1) is uniquely solvable
in a neighborhood of the first-order HR solution of (2.1).
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Theorem 4.1. Assume that

∥P (w)− P (v)∥ ≤ M∥w − v∥, ∀v,w ∈ O0. (4.3)

If ∆t satisfies
∆t < δ(∥P v̂L∥+ δM)−1, (4.4)

then the system of equations (4.1) has a unique solution in O0.

Proof. Our proof mimics the proof of theorem 5.1.6 [24, p.122]. For fixed d ∈ O
(
Sv̂L, ε

)
, we

define the mapping T : O0 → RN ×RN by

Ty = ∆tPv + d = v − [Sv − d] .

Then, Sv = d has a unique solution in O0 if and only if T has a unique fixed point. For any
v,w ∈ O0

∥Tv − Tw∥ = ∆t∥Pv − Pw∥ ≤ ∆tM ∥v −w∥ (4.5)

and S is contractive on O0 if ∆tM < 1. Moreover, for any v ∈ O0,

∥Tv − v̂L∥ ≤ ∥Tv − T v̂L∥+ ∥T v̂L − v̂L∥ ≤ ∆tM∥v − v̂L∥+ ∥Sv − d∥ ≤ ∆tMδ + ε. (4.6)

For ε = δ(1−∆tM), the expression on the right-hand side of (4.6) equal to δ. Hence, T maps
O0 into O0, and for any d ∈ O

(
Sv̂L, ε

)
the equation Sv = d has a unique solution in O0.

Finally, we have that v̂L ∈ O
(
Sv̂L, ε

)
if

∥Sv̂L − v̂L∥ = ∆t∥P v̂L∥ < ε. (4.7)

Combining all restrictions on ∆t, we obtain that the nonlinear system of equation (4.1) has a
unique solution if ∆t satisfies (4.4).

Remark 4.1. Note that the mapping S in (4.2) is contractive in the vicinity of a low-order
solution with the HR scheme (2.1)-(2.7) if the mapping P in (4.1) is Lipschitz-continuous.

Our goal is to find the maximum values of the flux limiters α ∈ Uad =
{
α| 0 ≤ αi+1/2 ≤ 1

}
,

for which the numerical solution of the hybrid scheme (1.8)-(1.9) satisfies the constraints (2.9)-
(2.10) and the discrete cell entropy inequality (3.25). Then finding the flux limiters can be
considered as the following optimization problem

ℑ(α) =
∑
i

αi+1/2 → max
α∈Uad

(4.8)

subject to

∆x

∆t
(wi − wi) +

ci+1/2 − ui+1

2
(wi − w+

i+1/2) +
ci−1/2 + ui−1

2
(wi − w−

i−1/2) ≤ −αi+1/2 g
AD,y
i+1/2

+ αi−1/2 g
AD,y
i−1/2 ≤

∆x

∆t
(wi − wi) +

ci+1/2 − ui+1

2
(wi − w+

i+1/2) +
ci−1/2 + ui−1

2
(wi − w−

i−1/2),

(4.9)
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∆x

∆t

(
q
i
− qi

)
+

ci+1/2 − ui+1

2
(qi − q+i+1/2) +

ci−1/2 + ui−1

2
(qi − q−i−1/2) ≤ −αi+1/2 g

AD,q
i+1/2

+ αi−1/2 g
AD,q
i−1/2 ≤

∆x

∆t
(qi − qi) +

ci+1/2 − ui+1

2
(qi − q+i+1/2) +

ci−1/2 + ui−1

2
(qi − q−i−1/2), (4.10)

∆x

∆t
[U(v̂i)− U(vi)− ⟨U ′(vi), (v̂i − vi)⟩]−

〈
U ′(vi), (g

L
i+1/2 − gL

i−1/2 − s−i+1/2 + s+i−1/2)
〉

+GL
i+1/2 −GL

i−1/2 ≤ αi+1/2

(
⟨U ′(vi), g

AD
i+1/2⟩ −GAD

i+1/2

)
− αi−1/2 (⟨U ′(vi), g

AD
i−1/2⟩ −GAD

i−1/2),

(4.11)

∆x

∆t
(v̂i − vi) + gL

i+1/2 − gL
i−1/2 − s−i+1/2 + s+i−1/2 + αi+1/2 g

AD
i+1/2 − αi−1/2 g

AD
i−1/2 = 0, (4.12)

where wi = min
(
wi, w

−
i−1/2, w

+
i+1/2

)
, wi = max

(
wi, w

−
i−1/2, w

+
i+1/2

)
, and GAD

i+1/2 = GH
i+1/2 −

GL
i+1/2.

Due to constraints (4.11) the optimization problem (4.8)-(4.12) is nonlinear. Consequently,
finding a numerical entropy solution of shallow water equations with variable bottom topogra-
phy (1.1)-(1.2) in one time step can be represented as the following iterative process.

Step 1. Initialize positive numbers δ, ϵ1, and ϵ2. Set p = 0, v̂0 = v, α0 = 0.

Step 2. Find αp+1 as a solution to the following linear programming problem

ℑ(α) =
∑
i

αp+1
i+1/2 → max

αp+1∈Uad

(4.13)

subject to

∆x

∆t
(wi − wi)+

ci+1/2 − ui+1

2
(wi−w+

i+1/2)+
ci−1/2 + ui−1

2
(wi−w−

i−1/2) ≤ −αp+1
i+1/2 g

AD,y
i+1/2

+αp+1
i−1/2 g

AD,y
i−1/2 ≤

∆x

∆t
(wi − wi)+

ci+1/2 − ui+1

2
(wi−w+

i+1/2)+
ci−1/2 + ui−1

2
(wi−w−

i−1/2),

(4.14)

∆x

∆t

(
q
i
− qi

)
+

ci+1/2 − ui+1

2
(qi − q+i+1/2) +

ci−1/2 + ui−1

2
(qi − q−i−1/2) ≤ −αp+1

i+1/2 g
AD,q
i+1/2

+ αp+1
i−1/2 g

AD,q
i−1/2 ≤

∆x

∆t
(qi − qi) +

ci+1/2 − ui+1

2
(qi − q+i+1/2) +

ci−1/2 + ui−1

2
(qi − q−i−1/2),

(4.15)

∆x

∆t
[U(v̂p

i )− U(vi)− ⟨U ′(vi), (v̂
p
i − vi)⟩]−

〈
U ′(vi), (g

L
i+1/2 − gL

i−1/2 − s−i+1/2 + s+i−1/2)
〉

+GL
i+1/2−GL

i−1/2 ≤ αp+1
i+1/2

(
⟨U ′(vi), g

AD
i+1/2⟩ −GAD

i+1/2

)
−αp+1

i−1/2 (⟨U
′(vi), g

AD
i−1/2⟩−GAD

i−1/2),

(4.16)
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Step 3. For αp+1 we find v̂p+1 from the system of linear equations

∆x

∆t

(
v̂p+1
i − vi

)
+gL

i+1/2−gL
i−1/2−s−i+1/2+s+i−1/2+αp+1

i+1/2 g
AD
i+1/2−αp+1

i−1/2 g
AD
i−1/2 = 0, (4.17)

Step 4. Algorithm stop criterion∣∣ŷp+1
i − ŷpi

∣∣
max

(
δ,
∣∣ŷp+1

i

∣∣) < ε1,

∣∣q̂p+1
i − q̂pi

∣∣
max

(
δ,
∣∣q̂p+1

i

∣∣) < ε1,
∣∣∣αp+1

i+1/2 − αp
i+1/2

∣∣∣ < ε2. (4.18)

If conditions (4.18) hold, then set v̂ = v̂p+1. Otherwise, set p = p+ 1 and go to Step 2.

Remark 4.2. It is clear that the linear programming problem (4.13)-(4.16) is solvable if ∆t
satisfies inequalities (2.8) and (3.23). It follows from the non-emptiness of the feasible set and
the boundedness on Uad of the objective function ℑ(α).

5 Approximate Solution to the Optimization Problem

Solving a linear programming problem is computationally expensive. So, at Step 2, instead
of solving the linear programming problem, it is reasonable to use its computationally less
expensive approximate solution. In this section our goal is to look for an approximate solution
of the linear programming problem (4.13) - (4.16).

First, we find a nontrivial α ∈ Uad satisfying inequalities (4.14), which are rewritten in the
form

−αi+1/2 g
AD,y
i+1/2 + αi−1/2 g

AD,y
i−1/2 ≥ Q−,y

i , (5.1)

−αi+1/2 g
AD,y
i+1/2 + αi−1/2 g

AD,y
i−1/2 ≤ Q+,y

i , (5.2)

where

Q+,y
i =

∆x

∆t
(wi − wi) +

ci+1/2 − ui+1

2
(wi − w+

i+1/2) +
ci−1/2 + ui−1

2
(wi − w−

i−1/2),

Q−,y
i =

∆x

∆t
(wi − wi) +

ci+1/2 − ui+1

2
(wi − w+

i+1/2) +
ci−1/2 + ui−1

2
(wi − w−

i−1/2).

Denote by α−,y
i and α+,y

i the maximum values of the components α for the negative and positive
terms on the left-hand side of (5.1)-(5.2), respectively. Then

−αi+1/2 g
AD,y
i+1/2 + αi−1/2 g

AD,y
i−1/2 ≥ α−,y

i P−,y
i , (5.3)

−αi+1/2 g
AD,y
i+1/2 + αi−1/2 g

AD,y
i−1/2 ≤ α+,y

i P+,y
i , (5.4)

where

P−,y
i = min

(
0,−gAD,y

i+1/2

)
+min

(
0, gAD,y

i−1/2

)
,

P+,y
i = max

(
0,−gAD,y

i+1/2

)
+max

(
0, gAD,y

i−1/2

)
.

Each flux limiter αi+1/2 appears twice in (5.3) and twice in (5.4) with coefficients that differ
only in sign. Substituting (5.3)-(5.4) into (5.1)-(5.2), we obtain that αi+1/2 should not exceed

ᾱy
i+1/2 =

{
min(α+,y

i , α−,y
i+1) = min(R+,y

i , R−,y
i+1), gAD,y

i+1/2 < 0,

min(α−,y
i , α+,y

i+1) = min(R−,y
i , R+,y

i+1), gAD,y
i+1/2 > 0,

(5.5)
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where R−,y
i = min

(
1,min(0, Q−,y

i )
/
P−,y
i

)
and R+,y

i = min
(
1,max(0, Q+,y

i )
/
P+,y
i

)
.

Similarly, it is proved that inequalities (4.15) hold for

ᾱq
i+1/2 =

{
min(α+,q

i , α−,q
i+1) = min(R+,q

i , R−,q
i+1), gAD,q

i+1/2 < 0,

min(α−,q
i , α+,q

i+1) = min(R−,q
i , R+,q

i+1), gAD,q
i+1/2 > 0,

(5.6)

where R−,q
i = min

(
1,min(0, Q−,q

i )
/
P−,q
i

)
and R+,q

i = min
(
1,max(0, Q+,q

i )
/
P+,q
i

)
,

Q+,q
i =

∆x

∆t
(qi − qi) +

ci+1/2 − ui+1

2
(qi − q+i+1/2) +

ci−1/2 + ui−1

2
(qi − q−i−1/2),

Q−,q
i =

∆x

∆t

(
q
i
− qi

)
+

ci+1/2 − ui+1

2
(qi − q+i+1/2) +

ci−1/2 + ui−1

2
(qi − q−i−1/2).

P−,q
i = min

(
0,−gAD,q

i+1/2

)
+min

(
0, gAD,q

i−1/2

)
,

P+,q
i = max

(
0,−gAD,q

i+1/2

)
+max

(
0, gAD,q

i−1/2

)
.

Finally, we rewrite (4.16) in the form

Ai ≤ αi+1/2dii+1 + αi−1/2dii−1, (5.7)

where

Ai =
∆x

∆t
(U(v̂i)− U(vi)− ⟨U ′(vi), (v̂i − vi)⟩) +GL

i+1/2 −GL
i−1/2

−
〈
U ′(vi), (g

L
i+1/2 − gL

i−1/2 − s−i+1/2 + s+i−1/2)
〉
,

dik =
(
⟨U ′(vi), g

AD
(i+k)/2⟩ −GAD

(i+k)/2

)
sgn(k − i).

By reasoning similar to the above, we obtain from (5.7) that the upper bound of αi+1/2 is
equal to

ᾱU
i+1/2 = min

{
1,

−Ai

Bi

min (0, sgn dii+1) + max (0, sgn dii+1) ,

−Ai+1

Bi+1

min (0, sgn di+1i) + max (0, sgn di+1i)

}
,

(5.8)

where Bi = min(0, dii+1) + min(0, dii−1)
Thus, a nontrivial feasible solution to the linear programming problem (4.13)-(4.16) on Uad

is equal to
αi+1/2 = min(ᾱy

i+1/2, ᾱ
q
i+1/2, ᾱ

U
i+1/2). (5.9)

Theorem 5.1. Let U(v̂) : RN × RN → RN × RN be a Lipschitz-continuous function on a
closed ball O0 = Ō(v̂L, δ), where v̂L is a solution of the system of equations (2.1). Then the
flux limiters α, defined by (5.9), are Lipschitz-continuous on O0.

Proof. It is clear that ᾱy
i+1/2, ᾱ

q
i+1/2, Bi, dik are constants, and Ai are Lipschitz-continuous

functions on O0. Thus, αi+1/2, ᾱ
U
i+1/2 are Lipschitz-continuous on O0, since the minimum of

Lipschitz-continuous functions is again a Lipschitz-continuous function.

Remark 5.1. The hypotheses of Theorems 4.1 and 5.1 are satisfied if U(v) is a strictly convex
function, and αi+1/2 are calculated using (5.1)-(5.9). In this case, the system of equations (4.1)
has a unique solution.

Remark 5.2. The approach presented in this paper can be extended to multidimensional and
implicit HR schemes. For details we refer the reader to [15].
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6 Numerical Examples

In this section, we demonstrate the benefits of the proposed approach and compare numerical
results with analytical and previous numerical studies. We also compare numerical results
obtained with flux limiters, which are approximate and exact solutions to the corresponding
optimization problems.

Applying the centered space flux as a high-order flux, we use the following hybrid HR scheme
in our calculations

v̂i − vi +
∆t

∆x

[
gL
i+1/2(v

−
i+1/2, v

+
i+1/2) − gL

i−1/2(v
−
i−1/2, v

+
i+1/2)

]
+
1

2

∆t

∆x

[
αi+1/2 ci+1/2 (v

+
i+1/2 − v−

i+1/2)− αi−1/2 ci−1/2 (v
+
i−1/2 − v−

i−1/2)
]
= ∆t si,

(6.1)

where gL
i+1/2 is the Rusanov numerical flux (2.2).

Then the discrete cell entropy inequality (1.10) can be written in the form

U(v̂i)− U(vi) +
∆t

∆x

[
GL

i+1/2(v
−
i+1/2,v

+
i+1/2)−GL

i−1/2(v
−
i−1/2,v

+
i−1/2)

+αi+1/2

ci+1/2

2
(U(v+

i+1/2)− U(v−
i+1/2))− αi−1/2

ci−1/2

2
(U(v+

i−1/2)− U(v−
i−1/2))

]
≤ 0

(6.2)

with the proper numerical entropy flux (3.9).
Below we will mark the numerical solutions of scheme (6.1)-(6.2) with a label indicating how

the flux limiters are calculated. The letters L and A denote the applying linear programming or
approximate solution to the optimization problem, respectively. The letters H, Q and E mean
that the flux limiters were calculated using inequalities (4.14), (4.15) and (6.2), respectively.
Numerical solutions with flux limiters satisfying inequalities (2.13) are denoted as PP . In the
latter case, flux limiters are defined as follows

αi+1/2 = max

(
0,min

(
1, 1− ui+1

ci+1/2

, 1 +
ui

ci+1/2

))
. (6.3)

In addition, we use the following labels:

HR1 is a first-order hydrostatic reconstruction scheme with HLL numerical flux given in [6];

HR2 is a hydrostatic reconstruction scheme of second-order spatial accuracy with explicit
Euler time integration proposed in [5];

ZL is a characteristic variable implementation of the Boris-Book flux limiter described in [32]
and applied to the HR scheme (2.1)-(2.2).

To solve linear programming problems we apply GLPK package v.4.65 (https : //www.gnu.
org/software/glpk/).

6.1 One-Dimensional Dam Break Over a Wet Flat Bed

In this section, we consider a dam break on a wet flat bed in a frictionless, horizontal, rectangular
channel. The channel is 1000 m long. The dam is located in the middle of the channel. The
water depth at the left and right hand sides of the dam is 100 m and 1 m, respectively. The
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Figure 1: One-dimensional dam break over a wet flat bed. Comparisons of exact solutions with
simulated water depths (left) and discharges (right) using HR1, ZL, and PP at t=10 s. The
number of cells is N=100.

dam instantly collapses across its entire width and the resulting flow consists of a shock wave
traveling downstream and a rarefaction wave traveling upstream. In this problem there is
a transition from subcritical upstream to supercritical downstream flows. The simulation is
performed up to time t=10 s.

The analytical solution of this problem was given by Stoker (1957) [28]. The 1D dam-break
on a wet flat bed is a classical test to verify the shock-capturing ability of numerical schemes.

Numerical results obtained with different schemes at time t=10 s on a uniform grid of N=100
cells are shown in Fig. 1-Fig. 3. As shown in Fig. 2, the shock wave resolutions using HR2,
LHE, and LHQE are less dissipative (sharper) and better than with the other schemes shown
in Fig. 1.

The simulated results with PP are close to those obtained with ZL but require much less
calculations. In the numerical results with LHE, AHE, LHQE, and AHQE, we observe the
so-called ”terracing” phenomenon characteristic of FCT methods. Numerical results for water
discharge obtained using the LHE and AHE schemes have oscillations that are absent in the
velocities (Fig 3).

The analytical and numerical solutions were compared quantitatively by the L1 error. The
error is defined as

L1 =
1

N

N∑
i=1

|yi − ya(xi)| (6.4)

where yi is the numerical and ya is the analytical solution at point xi, N means the number
of these points. Table 1 shows the L1-norms of errors of the numerical solutions obtained with
different schemes.

A comparison of analytical solutions with computed depths, as well as velocities and dis-
charges at t=10 s using LHE(LHQE) and AHE(AHQE) are given in Fig. 3. The flux limiters for
LHE(LHQE) and AHE(AHQE) are calculated using exact and approximate solutions to linear
programming problems. We note good agreement between these numerical solutions, and the
addition of constraints on water discharges to calculate flux limiters leads to suppression of
oscillations in the numerical solutions.
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Figure 2: One-dimensional dam break over a wet flat bed. Comparisons of exact solutions with
simulated water depths (left) and discharges (right) using HR2, LHE, and LHQE at t=10 s.
The second row is a zoom in the area behind the shock. The number of cells is N=100.

Table 1: L1-norms of errors for the numerical solutions of the 1D dam break over a wet flat
bed at t=10 s with N=100.

HR1 ZL PP HR2

H 1.468×100 1.679×100 1.365×100 4.052×10−1

Q 3.596×101 3.882×101 3.060×101 9.180×100

LHE AHE LHQE AHQE

H 6.153×10−1 5.114×10−1 7.898×10−1 6.306×10−1

Q 1.912×101 1.619×101 2.003×101 1.647×101

6.2 One-Dimensional Dam Break Over a Dry Bed

The dry bed dam-break test is usually applied to verify the ability of a difference scheme to
propagate a wet/dry front at the correct speed and to keep water depth positive. The analytical
solution of this problem was given by Stoker (1957) [28].

We consider a rectangular channel with 1000 m length and a flat bed. The dam is located
in the middle of the channel. The water depth at the left and right hand sides of the dam is
100 m and 0 m, respectively. The dam break is instantaneous and there is no friction. The
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Figure 3: One-dimensional dam break over a wet flat bed. Comparisons of numerical results
obtained with FCT schemes whose flux limiters are computed using exact and approximate
solutions to a linear programming problem with discrete entropy inequality and different con-
straints. The number of cells is N=100.

Figure 4: One-dimensional dam break over a dry bed. Comparisons of exact solutions with
simulated water depths and discharges using HR1, ZL, and PP at time t=7 s. The number of
cells is N=100.

solution consists of a single rarefaction wave with a wet/dry front at its lower end.
The flow domain is discretized into 100 uniform cells. The simulation time is t=7 s.
Comparisons of exact solutions with simulated depths as well as discharges at t=7 s using

the six schemes are presented in Fig. 4-5. Among the proposed schemes, the HR1, ZL, and
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Figure 5: One-dimensional dam break over a dry bed. Comparisons of exact solutions with
simulated water depths and discharges using HR2, LHE, and LHQE at time t=7 s. The second
row is a zoom in the area of the front of the moving water. The number of cells is N=100.

Table 2: L1-norms of errors for the numerical solutions of the 1D dam break over a dry bed
at t=7 s with N=100.

HR1 ZL PP HR2

H 1.145×100 1.320×100 1.050×100 3.684×10−1

Q 2.838×101 3.218×101 2.590×101 1.038×101

LHE AHE LHQE AHQE

H 5.463×10−1 5.216×10−1 7.690×10−1 5.786×10−1

Q 2.129×101 1.978×101 2.207×101 1.820×101

PP schemes present more dissipative results than the HR2, LHE, and LHQE schemes. The
simulated results with PP are close to those obtained with ZL but require much less calculations.
In the numerical results obtained with LHE, AHE, LHQE, and AHQE, we observe the so-called
”terracing” phenomenon, which is characteristic of FCT methods. The LHE and AHE schemes
produce oscillations in the water discharges that are absent in the velocities (Fig 6). For all
the considered schemes, the largest error is observed at the front of the moving water.

Adding constraints on water discharges to the LHQE scheme to calculate flux limiters
eliminates oscillations in numerical solutions. The numerical results obtained with LHE(LHQE)
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Figure 6: One-dimensional dam break over a dry bed. Comparisons of numerical results ob-
tained with FCT schemes whose flux limiters are computed using exact and approximate solu-
tions to a linear programming problem with discrete entropy inequality and different constraints
at time t=7 s.

and AHE(AHQE) are in a good agreement (Fig. 6). The flux limiters for LHE(LHQE) and
AHE(AHQE) are calculated using exact and approximate solutions to linear programming
problems.

6.3 Dam Break Over a Step.

In this test [5], a dam break over a downward bottom step is considered. The bottom topography
and the initial data are given as follows

z(x) =

{
1 if x ≤ 0,

0 otherwise ,
h(x, 0) =

{
0.75 if x ≤ 0,

1.0 otherwise ,
Q(x, 0) = 0, (6.5)

After a dam break, the solution consists of a left rarefaction wave, a stationary shock wave
at an intermediate height of the bottom step between two stationary contact waves located at
the bottom discontinuity, and a right shock wave [11, 22].

Comparisons of the numerical results obtained on a uniform grid of 200 cells with a reference
solution at t=0.1 after the dam break are shown in Fig. 7-9. The reference solution was
calculated using a central-upwind scheme of second-order spatial accuracy [14] on a uniform
grid with 2000 cells. In Fig. 7, the PP scheme generates oscillations in the numerical results in
the area of the bottom discontinuity. In the numerical results obtained with the ZL scheme,
we see an overshoot of the water depth and discharge for the right shock wave. The second-
order HR2 scheme does not reproduce the left rarefaction wave in its whole entirety, as well
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Figure 7: Dam break over a step. Comparisons of reference solutions with simulated water
depths and discharges using the HR1, ZL, and PP schemes at time t=0.1 s with N=200 cells.

Figure 8: Dam break over a step. Comparisons of reference solutions with simulated water
depths and discharges using HR2, LHE, and LHQE at time t=0.1 s with N=200 cells. On the
right is a zoom of the area of the bottom discontinuity and the right shock wave.

as the shock wave (Fig. 8). In Fig. 8-9, the right side of the shock wave for the LHE, LHQE,
AHE, and AHQE schemes shows an overshoot of the simulated water depth and discharge.
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Figure 9: Dam break over a step. Comparisons of numerical results obtained with FCT schemes
whose flux limiters are computed using exact and approximate solutions to a linear program-
ming problem with discrete entropy inequality and different constraints. (t=0.1 s, N=200).

We note that none of the considered schemes reproduces the exact solution, especially in the
bottom discontinuity. Table 3 shows the L1-norm error between the reference solution and the
numerical solutions at time t = 0.1 for different difference schemes.

Table 3: L1-norms of errors for the numerical solutions of the 1D dam break over a step at
t = 0.1s with N=200.

HR1 ZL PP HR2

H 5.219×10−3 8.647×10−3 6.039×10−3 6.840×10−3

Q 1.390×10−2 2.489×10−2 1.806×10−2 1.703×10−2

LHE AHE LHQE AHQE

H 4.830×10−3 4.100×10−3 4.695×10−3 4.656×10−3

Q 1.326×10−2 1.096×10−2 1.243×10−2 1.209×10−2

We also note that the numerical results obtained with LHE(LHQE) and AHE(AHQE) agree
well (Fig. 9). The flux limiters for LHE(LHQE) and AHE(AHQE) are calculated using exact
and approximate solutions to linear programming problems.
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6.4 Steady Transcritical Flow With a Shock Over a Bump.

We consider a test taken from [9] consisting of a transcritical flow with a shock over a bump.
The bed topography of a rectangular channel 25 m long is given as follows

z(x) =

{
0.2− 0.05(x− 10)2 if 8 < x < 12,

0 otherwise .
(6.6)

Initial conditions satisfy the hydrostatic equilibrium

h+ z = 0.33 and Q = 0. (6.7)

Discharge Q = 0.18 m2/s and water level h + z = 0.33 m were set as upstream and down-
stream boundary conditions. In the steady-state solution, the flow to the left of the bump is
subcritical, then closer to the end of the bump it becomes supercritical, and after a hydraulic
jump it is subcritical again.

Figure 10: Steady transcritical flow with a shock over a bump. Comparison of exact solutions
with computed water depths and discharges obtained by HR1, PP, HR2, LHE, and LHQE with
N=100.

Numerical results for the steady state, obtained on a uniform grid of 100 cells, are shown in
Fig. 10-11. In the numerical results obtained with the HR1 scheme, we observe an overshoot of
the free surface before the bump and an undershoot of the free surface for the PP scheme. The
free water surfaces calculated with HR2, LHE, and LHQE agree fairly well with the analytical
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Figure 11: Steady transcritical flow with a shock over a bump. Comparisons of numerical
results obtained with FCT schemes whose flux limiters are computed using exact and approxi-
mate solutions to a linear programming problem with discrete entropy inequality and different
constraints.

Table 4: L1-norms of errors of the transcritical steady state flow with a shock over a bump.

HR1 PP HR2

H 1.633×10−3 2.858×10−3 6.258×10−4

Q 7.534×10−4 1.106×10−3 2.201×10−4

LHE AHE LHQE AHQE

H 1.298×10−3 1.298×10−3 1.501×10−3 9.556×10−4

Q 1.270×10−3 1.087×10−3 1.282×10−3 8.034×10−4

solution, with slight deviations around the hydraulic jump. Numerical oscillations for water
discharges near the hydraulic jump are present for all compared schemes. Small oscillations
are also present in the calculated discharges with the LHE and LHQE schemes in the whole
modeling area. The L1-norm error between the exact and numerical solutions are shown in
Table 4.

Note that none of the considered schemes is well-balanced for moving water steady states
with non-zero discharges.

We also note that the numerical results obtained with LHE(LHQE) and AHE(AHQE) agree
well (Fig. 11). The flux limiters for LHE(LHQE) and AHE(AHQE) are calculated using exact
and approximate solutions to linear programming problems.
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Figure 12: Drainage on a non-flat bottom. Water levels and discharges at various times
t=0.15,0.25,0.5,1.0 s.
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6.5 Drainage on a Non-Flat Bottom

We consider drainage of a symmetric rectangular reservoir to a dry bed through its boundaries,
leaving water in topographic depressions. Due to the symmetry, the flow is computed on half
the domain, with wall boundary conditions on the left boundary, and open boundary conditions
on the right boundary. The boundary condition on the right side of the domain allows water
that was at rest to flow freely through the right boundary into the originally dry region. The
bottom topography consists of one hump

z(x) =

{
0.25 [1 + cos(π(x− 0.5)/0.1)] if |x− 0.5| < 0.1,

0 otherwise .
(6.8)

After drainage begins, the solution converges to a steady-state solution in which water exists
only to the left of the hump.

Figure 13: Drainage on a non-flat bottom. Water levels and discharges at times t=0.5,1.0 s.

Numerical results of water flow at different times, obtained on a uniform grid with N=200
cells, are presented in Fig. 12-14. Fig. 12 shows that all numerical schemes, except HR1, give
similar results for the water surface level. The first-order HR1 scheme produces a more diffusive
water level profile. The most significant difference in the computed discharges is observed over
the right side of the hump.

In Fig. 13, the numerical results obtained with the LHE and AHE schemes are in good
agreement, in contrast to the results presented in Fig. 14.

Note that the AHE and AHQE schemes use flux limiters, which are approximate solutions
of the corresponding linear programming problems. The numerical results in Fig. 14 show their
strong dependence on the numerical diffusion of the applied difference schemes.
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Figure 14: Drainage on a non-flat bottom. Water levels and discharges at times t=0.5,1.0 s.

Figure 15: Water surface levels and depth contours for the partial dam-break flow at t = 7.2 s
computed with the HR1 scheme.

6.6 2D Partial Dam Break

In this section, a partial dam break problem with a nonsymmetrical breach is considered. The
spatial domain is defined as a channel with 200 m in length and 200 m in width, the dam
is located in the middle of the domain at a distance of 100 m. The bottom is horizontal
and frictionless. Initially, the upstream and downstream water depths are set at 10 and 5 m,
respectively. The breach is 75 m long, located 30 m from the left bank and 95 m from the right
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bank.

Figure 16: Water surface levels and depth contours for the partial dam-break flow at t = 7.2 s
computed with the HR2 scheme.

Figure 17: Water surface levels and depth contours for the partial dam-break flow at t = 7.2 s
computed with the LHE scheme.

The computational domain is discretized by a 40 x 40 square grid. Fig. 15-20 show a three-
dimensional view of the water surface levels and water depth contours 7.2 s after the dam failure.
The numerical results obtained with the HR1 scheme are the most diffusive of the others. The
water surface levels and water depth countours obtained by the LHE, LHQE, AHE, and AHQE
schemes are similar to the numerical results of HR2 but are non-smooth. AHE and AHQE,
whose flux limiters are approximate solutions to the corresponding optimization problems,
produce smoother solutions than LHE and LHQE, but their solutions are nonsymmetric about
the center of the breach.

7 Conclusions

We presented the flux correction design for a hybrid scheme to obtain an entropy-stable solution
of shallow water equations with variable topography. The hybrid scheme is an explicit HR
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Figure 18: Water surface levels and depth contours for the partial dam-break flow at t = 7.2 s
computed with the LHQE scheme.

Figure 19: Water surface levels and depth contours for the partial dam-break flow at t = 7.2 s
computed with the AHE scheme.

Figure 20: Water surface levels and depth contours for the partial dam-break flow at t = 7.2 s
computed with the AHQE scheme.
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scheme whose numerical flux is a convex combination of a first-order Rusanov flux and a high-
order flux. We studied the conditions under which a first-order HR scheme with the Rusanov
flux satisfied the fully discrete entropy inequality. The flux limiters for the hybrid scheme
can be an exact or approximate solution to the corresponding optimization problem in which
constraints valid for the first-order HR scheme are applied to the hybrid scheme. It is proved
that in the vicinity of a numerical solution of the first-order HR scheme, there is a unique flux
correction with flux limiters that are the proposed approximate solution to the optimization
problem.

Numerical examples show that the hybrid HR scheme can produce oscillations in numerical
results if only water surface level constraints for the optimization problem are used to com-
pute the flux limiters. We also note that numerical results obtained with hybrid HR schemes
whose flux limiters are exact and approximate solutions to the optimization problem can differ
significantly.
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