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Abstract. In this paper, an oscillation-free spectral volume (OFSV) method is proposed and
studied for the hyperbolic conservation laws. The numerical scheme is designed by introducing
a damping term in the standard spectral volume method for the purpose of controlling spurious
oscillations near discontinuities. Based on the construction of control volumes (CVs), two classes
of OFSV schemes are presented. A mathematical proof is provided to show that the proposed
OFSV is stable and has optimal convergence rate and some desired superconvergence properties
when applied to the linear scalar equations. Both analysis and numerical experiments indicate that
the damping term would not destroy the order of accuracy of the original SV scheme and can control
the oscillations discontinuities effectively. Numerical experiments are presented to demonstrate the
accuracy and robustness of our scheme.
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1. Introduction. The development of high-order schemes for hyperbolic con-
servation laws has becomes extremely demanding for computational fluid dynamics.
In recent years, a great number high-order numerical schemes have been developed,
including discontinuous Galerkin (DG) [1, 2, 3], spectral volume (SV) [5, 6, 7, 4],
spectral difference (SD) [8], correction procedure using reconstruction (CPR) [9], es-
sential non-oscillatory (ENO) [10, 11], weighted essential non-oscillatory (WENO)
[12, 13, 14], Hermite WENO (HWENO) [15, 16, 17] methods, etc.

One main difficulty for the high-order numerical schemes is the spurious oscilla-
tions near discontinuities, which lead to the nonlinear instability and eventual blow
up of the codes. Therefore, it is important to eliminate the oscillations near discon-
tinuities and maintain the original high-order accuracy in the smooth regions. Many
limiters have been studied in the literatures for DG methods. The minmod total
variation bounded (TVB) limiter [2, 18, 19] was originally developed, which is a slope
limiter using a technique from the finite volume method [20]. One disadvantage of
such limiter is that it may degrade accuracy in smooth regions. The WENO recon-
structions are also used as limiter for the DG methods [21, 22, 23]. In these methods,
the WENO reconstructions were used to reconstruct the values at Gaussian quadra-
ture points in the target cells, and rebuild the solution polynomials from the original
cell average and the reconstructed values through a numerical integration. Although
the original order of accuracy can be kept, the WENO limiters need a very large
stencil, which is complicated to be implemented in multi-dimensions, especially for
unstructured meshes. To use the compact stencils, the HWENO limiters are devel-
oped [15, 16, 17], which reduce the stencil of the reconstruction by utilizing both the
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cell averages and the spatial derivatives from the neighbors. The role of limiters is
to “limit” and ”preprocess” numerical solution in the “troubled cells”, which is often
identified by a troubled cell indicator. Another method is to add artificial diffusion
terms in the weak formulation, which should be carefully designed to ensure entropy
stability and suppress the oscillations essentially [24]. Recently, an oscillation-free DG
(OFDG) method was developed for the scalar hyperbolic conservation laws in [25] by
introducing a damping term on the classical DG scheme. The damping term was
carefully constructed, which controls spurious nonphysical oscillations near disconti-
nuities and maintains uniform high-order accuracy in smooth regions simultaneously.
One advantage of the damping term was that the damping technique is convenient for
the theoretical analysis, at least in the semi-discrete analysis, including conservation,
L2-stability, optimal error estimates, and even superconvergence. The OFDG has
also been extended to the hyperbolic systems [26] and well-balanced shallow water
equations [27].

The main purpose of the current work is to adopt the idea of damping term in [25]
to the standard SV method for system of hyperbolic equations. The SV method was
originally formulated and later developed for hyperbolic equations by Wang and his
colleagues [5, 6, 7], which might be regarded as a generalization of the classic Godunov
finite volume method [28, 29]. The SV method enjoys many excellent properties such
as high-order accuracy, compact stencils, and geometrical flexibility (applicable for
unstructured grids). In particular, since the SV method preserves conservation laws
on more finer meshes, it might have a higher resolution for discontinuities than other
high order methods (see [4]). During the past decades, the SV method has been rapidly
applied to solving various PDEs such as the shallow water wave equation [30], Navier
Stokes equation [31, 32], and electromagnetic field [5], and so on. A mathematical
analysis in terms of the L2 stability, accuracy, error estimates, and superconvergence
of the SV method was conducted in [33] under the framework of the Petrov-Galerkin
method. It was also proved in [33] that a special class of SV scheme is exactly the same
as the upwind DG schemes when applied to linear constant hyperbolic equations.

By introducing the idea of damping term into the SV scheme, a new OFSV method
is proposed in this article. The OFSV method inherits both advantages of the standard
SV method and the damping term. Specifically, In one hand, properties such as high
order accuracy, local conservation, h-p adaptivity, flexibility of handling unstructured
meshes can still be preserved for OFSV method. On the other hand, the OFSV
method could effectively control spurious nonphysical oscillations near discontinuities
and maintaining uniform high-order accuracy in smooth regions, without any use of
limiters. Furthermore, note that the SV method has larger CFL condition number
than the DG method (see, e.g., [34]), which suggests that the proposed OFSV method
might have a looser stability condition than the counterpart OFDG method.

The rest of this paper is organized as follows. In Section 2, the OFSV method
for systems of hyperbolic conservation laws is introduced. In Section 3, a theoretical
analysis is provided to show that proposed OFSV method is stable and has optimal
convergence rate and superconvergnce property similar to the standard SV method,
when applied to for one-dimensional constant-coefficient linear scalar problem. In
Section 4, we present some numerical examples to show the efficiency and robustness
of our algorithm. Finally, some concluding remarks are presented in Section 5.
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AN OSFV METHOD FOR HYPERBOLIC CONSERVATION LAWS 3

2. Oscillation-free SV method. We consider the OFSV method for the fol-
lowing hyperbolic system

(2.1)

 U t +

d∑
i=1

F i(U)xi
= 0, (x, t) ∈ Ω× (0, T ],

U(x, 0) = U0(x), x ∈ Ω,

where x = (x1, . . . , xd)
T , U = (U1, . . . , Um)T , F i(U) = (Fi,1(U), . . . , Fi,m(U))T , 1 ≤

i ≤ d, and Ω is an open bounded domain in Rd. A large amount of physical mod-
els can be rewritten into the form of (2.1), such as the Euler equations for the
two-dimensional inviscid compressible flow, where U = (ρ, ρU, ρV, ρE), F 1(U) =
(ρU, ρU2 + p, ρUV, (ρE + p)U), F 2(U) = (ρV, ρUV, ρV 2 + p, (ρE + p)V ) with ρE =
1/2ρ(U2 + V 2) + p/(γ − 1) for the two-dimensional ideal gas.

Fig. 1. Partitions of a triangular SV for Pk and a rectangular SV for Qk in 2D with k = 1, 2.

To introduce the OFSV scheme, we first suppose that there exists a partition Th
of Ω and Th is shape regular, i.e., there exists a constant c > 0 such that

h ≤ chτ , with h = max
τ∈Th

hτ , hτ = diam τ, τ ∈ Th.

The (discontinuous) finite element space is defined as follows:

Uh = Ukh = {v ∈ L2(Ω) : v|τ ∈ Pk or Qk, τ ∈ Th},

where Pk and Qk denote the finite element space of polynomials with degree not
greater than k and the bi-k tensor product polynomial space, respectively. In the SV
method, a simplex grid element τ , called a spectral volume (SV), is futher divided
into non-overlapping sub-elements {τ∗j }j , named control volumes (CVs). The number
of CVs hinges on the cardinality of the polynomials. To illustrate, in 2D case, a SV is
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segmented into N CVs with N = (k+ 1)(k+ 2)/2 for Pk elements, and N = (k+ 1)2

for Qk elements. Figure.1 shows partitions of a triangular SV and a rectangular SV
for linear and quadratic elements in 2D.

Denote by T ∗h the dual partition of Th, i.e., T ∗h = {τ∗j : τ ∈ Th}. The OFSV

scheme for equation (2.1) read as: Seek Uh(·, t) ∈
[
Ukh
]m

such that for all τ∗j ∈ T ∗h ,

(2.2)

∫
τ∗j

(Uh)t dx =

∫
∂τ∗j

F̂ · ndΓ−
k∑
l=0

σlτ
hτ

∫
τ∗j

(
Uh − P l−1h Uh

)
dx,

where F̂ = (F̂ 1, · · · , F̂ d), and n = (n1, · · · , nd) is the unit outward normal with
respect to τ∗j . The Gaussian quadrature is used for the integration of numerical
fluxes. For the CV interfaces inside the SV, the smooth Euler flux is used. For
the SV interfaces, the numerical fluxes are provided by Riemann fluxes to deal with
discontinuities, such as Lax-Friedrichs flux and HLLC flux [29]. P lh is the standard L2

projection into [U lh]m, l ≥ 0 with P−1h = P 0
h , and σlτ are damping coefficients, which

are adopted to control spurious oscillations near the discontinuities. The damping
coefficients σlτ are given as follows

(2.3) σlτ =
2(2l + 1)

(2k − 1)

hl

l!
max

1≤s≤m

∑
|α|=l

(
1

Ne

∑
v∈∂τ

(J∂αVsK|v)
2

) 1
2

,

where Ne is the number of edges of the element τ , v ∈ τ are the vertices of τ , JwK|v
denotes the jump of w on the vertex v, α is the multi-index of order |α| = α1+· · ·+αd,
and ∂αw is defined as

∂αV =
∂|α|V

∂xα1
1 · · · ∂x

αd

d

= ∂α1
x1
· · · ∂αd

xd
V .

Here the variables ∂lxV =
(
∂lxV1, . . . , ∂

l
xVm

)T
are given by ∂lxV = R−1∂lxUh, R is the

matrix corresponding to right eigenvectors of Jacobian matrix ∂F /∂U((Uh)i+1/2) and

(·)i+1/2 stands for the Roe average of variables at both side of point. The numerical

scheme (2.2) reduces to the standard SV method with σlτ = 0.

Remark 2.1. The introduction of the damping term originates from the OFDG
method for hyperbolic conservation laws in [25]. Usually, higher order terms are
treated as sources of non-physical spurious oscillation. Therefore, the basic idea is
to fix high order term by constructing a serious coefficients, which are small enough
in the smooth region to guarantee the high order accuracy and sufficiently large near
discontinuities to control spurious oscillations. A natural way to establish the coeffi-
cients is adopting the jump of SVs vertexes, but it is not unique. More studies still
need to be investigated in the future research.

3. Analysis for constant coefficient hyperbolic problems. This section
is dedicated to the analysis of the OFSV method, where the stability, convergence
and accuracy are discussed. For simplify and clarity, we focus our attention on the
following 1D constant-coefficient linear advection equation

(3.1)

{
∂tu+ ∂xu = 0, (x, t) ∈ [a, b]× (0, T ],

u(x, 0) = u0(x), x ∈ (a, b),
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with the periodic boundary condition u(a, t) = u(b, t) or the inflow boundary condition
u(0, t) = g(t). The numerical fluxes are taken as upwind fluxes. We would like to
point out that the same argument can be applied to the Qk element for 2D linear
scalar equations or systems, with some tedious calculationas.

3.1. OFSV Method as a Petrov Galerkin Method. Let

Th = {τi : τi = (xi− 1
2
, xi+ 1

2
), 1 ≤ i ≤ N}.

Assume that the i-th SV τi is partitioned into k+1 CVs with k points xi,j , 1 ≤ j ≤ k,
denoted by τi,j , j = 0, · · · , k with τi,j = (xi,j , xi,j+1). Here xi,0 = xi− 1

2
, xi,k+1 =

xi+ 1
2
. Then the dual partition T ∗h can be expressed by

T ∗h = {τi,j : τi,j = (xi,j , xi,j+1), 1 ≤ i ≤ N, 0 ≤ j ≤ k}.

Noticing that different choices of the dual partitions (i.e., xi,j) leads to different SV
scheme, which may have effect on the stability of the numerical scheme. Furthermore,
as pointed out in [33], if xi,j are taken as right Radau points, the SV scheme is exactly
the same as the standard upwind DG scheme. In this paper, two classes of SV schemes
will be analyzed theoretically: 1) xi,j , 1 ≤ j ≤ k are chosen as the Gauss points; 2)
xi,j , 1 ≤ j ≤ k are taken as the interior right Radau points, (i.e., zeros of Li,k+1−Li,k
except the point xi+ 1

2
). Here Li,k denotes the Legendre polynomial of degree k in

τi. The corresponding two SV methods are separately referred as the Gauss Legendre
spectral volume (OF-LSV) method and the right Radau spectral volume (OF-RRSV)
method.

To study the stability of OF-LSV and OF-RRSV, we first rewrite the SV scheme
into its equivalent Petrov-Galerkin method. Define the piecewise constant function
space as

Vh =
{
w∗ : w∗ |τi,j∈ P0, 1 ≤ i ≤ N, 0 ≤ j ≤ k

}
.

Obviously, any function w∗ = w∗(x, t) ∈ Vh has the following formulation

w∗(x, t) =

N∑
i=1

k∑
j=0

w∗i,jχτi,j (x),

where w∗i,j = w∗i,j(t) are coefficients as functions of the variable t, and χA, A ⊂ [a, b]
is the characteristic function valuated 1 in A and 0 otherwise. Let

Hh =
{
v : v|τi ∈ H1, 1 ≤ i ≤ N

}
.

Denote by ah(·, ·) the bilinear form defined on Hh × Vh, i.e.,

(3.2) ah (v, w∗) =

N∑
i=1

ahi (v, w∗) , v ∈ Hh, w∗ ∈ Vh,

with
(3.3)

ahi
(v, w∗) :=

k∑
j=0

w∗i,j
( ∫ xi,j+1

xi,j

vtdx+ v−i,j+1 − v
−
i,j +

k∑
l=0

σli
hi

∫ xi,j+1

xi,j

(vh − P l−1h vh)dx
)
,
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6 X. Y. ZHANG, C. W. CAO, AND P. LIANG

with σli = σlτi given by (2.3). Here v−i,j denotes the right limit of v at the point xi,j .
Recalling the OFSV scheme in (2.2), the OFSV method for (3.1) is to find a

uh ∈ Uh such that

(3.4) ah (uh, w
∗) = 0, ∀w∗ ∈ Vh.

Conversely, if uh ∈ Uh satisfies the equation (3.4), then uh is the solution of (2.2), by
choosing w∗ = χτi,j . In other words, the OFSV method is equivalent to the numerical
method (3.4).

We end with this subsection the discussion about the bilinear form between the
OFSV method and the standard SV method. Define the bilinear form aSVh (·, ·) of the
standard SV method by (see, e.g., [33])

aSVh (v, w) =

N∑
i=1

aSVhi
(v, w∗) , with aSVhi

(v, w∗) =

k∑
j=0

w∗i,j(

∫ xi,j+1

xi,j

vtdx+v−i,j+1−v
−
i,j).

In light of (3.2)-(3.3), there holds

ah (v, w∗) = aSVh (v, w∗) +

N∑
i=1

k∑
l=0

σli
hi

(
v − P l−1h v, w∗

)
.

3.2. L2 stability. We first recall a special transformation the trial space to the
test space F : Uh → Vh, which is of great importance in our stability analysis. For all
w ∈ Uh, let

Fw = w∗ :=

N∑
i=1

k∑
j=0

w∗i,j(t)χτi,j (x) ∈ Vh,

where the coefficients w∗i,j are given as

w∗i,0 = w+
i− 1

2

, w∗i,j − w∗i,j−1 = Ai,jwx (xi,j) , 1 ≤ j ≤ k.

Here Ai,j denotes the numerical quadrature weights corresponding the points xi,j in
τi. Given any function v ∈ Hh, denote by Ri(v) the numerical quadrature error
between the exact integral and its numerical quadrature Qk(v) in τi, i.e.,

Ri(v) =

∫
τi

vdx−Qk(v), with Qk(v) =

k+1∑
i=1

Ai,jv(xi,j).

Define

(v, w)i =

∫
τi

(vw)dx, (v, w) =

N∑
i=1

(v, w)i, D−1x v =

∫ x

a

vdx.

It has been proved in [33] that

(3.5) (v, w∗)i − (v, w)i = Ri
(
wxD

−1
x v

)
, ∀w ∈ Uh, w∗ = Fw.

Due to the identity (3.5), the bilinear form of the OFSV can be rewritten into
(3.6)

ahi (v, w∗) = aSVhi
(v, w∗) +

k∑
l=0

σli
hi

(
v − P l−1h v, w

)
i
+Ri

(
wx

k∑
l=0

σli
hi
D−1x (v − P l−1h v)

)
.

Now we are ready to present the L2 stability for both OF-LSV and OF-RRSV method.
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Theorem 3.1. Suppose uh is the solution of (3.4). Then for both OF-LSV and
OF-RRSV,

(3.7) ‖uh(·, t)‖0 . ‖u0‖0, ∀t > 0.

Proof. Since the k-point Gauss numerical quadrature and the (k+ 1)-point right
Radau numerical quadrature is separately exact for polynomials of degree 2k− 1 and
2k, there holds Ri(v) = 0, v ∈ P2k−1 for OF-LSV and Ri(v) = 0, v ∈ P2k for OF-
RRSV. Then taking v = w ∈ Uh in (3.6) and using the orthogonality property of P lh
yields

(3.8) ahi
(v, v∗) = aSVhi

(v, v∗) +

k∑
l=0

σli
hi
‖v − P l−1h v‖20,τi +Ri(vx(

k∑
l=0

σli
hi
D−1x v)).

Noticing that vxD
−1
x v|τi ∈ P2k for any v ∈ Uh, we have Ri(vxD

−1
x v) = 0 for OF-

RRSV. As for OF-LSV, by using the error of Gauss-Legendre quadrature, there exists
a ξi ∈ τi such that
(3.9)

Ri(vxD
−1
x v) = ckl (

hi
2

)2k+1∂2kx (vxD
−1
x v)(2k)(ξi) = ckl (

hi
2

)2kCk−12k (∂kxv(ξi))
2 ≥ 0,

where ckl = 22k+1(k!)4

(2k+1)[(2k)!]3 . Then we conclude from (3.5) and the inverse inequality that

(3.10) (v, v) ≤ (v, v∗) . (v, v), ∀v ∈ Uh.

On the other hand, substituting (3.9) into (3.8) and summing up all i from 1 to N
gives

(3.11) ah (v, v∗) ≥ aSVh (v, v∗) +

N∑
i=1

k∑
l=0

σli
hi
‖v − P l−1h v‖20,τi .

Note that (see, e.g., [33])

(3.12) aSVh (v, v∗) = (vt, v
∗) +

1

2

N∑
i=1

JvK|2i+ 1
2

+
1

2
(v−
N+ 1

2

)2 − 1

2
(v−1

2

)2.

By taking v = uh in (3.11) and using (3.12) and the L2 equivalence (3.10), then (3.7)
follows.

3.3. Optimal error estimates. We begin with the introduction of a special
Lagrange interpolation. For any v ∈ Hh, let vI ∈ Uh be the Lagrange interpolation of
v satisfying the conditions

vI (xi,j) = v (xi,j) , 1 ≤ i ≤ N, 1 ≤ j ≤ k + 1.

The standard approximation theory gives us

‖v − vI‖0 . hk+1‖v‖k+1.

The optimal error estimate for both OF-LSV and OF-RRSV methods is presented
below.
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Theorem 3.2. Assume u(·, t) ∈ Hk+2([a, b]) is the exact solution of (3.1) and uh
is the solution of (3.4) with the initial solution chosen as uh(x, 0) = (u0)I(x). Then

(3.13) ‖(u− uh)(·, t)‖0 ≤ Ch
k+1,

where C is a constant, depending on u and its derives up to (k + 2)-th order.

Proof. Let
e = u− uh, ξ = uI − uh, η = uI − u.

Since the exact solution u satisfies aSVh (u, v∗) = 0, v ∈ Uh, there holds the following
orthogonality

aSVh (e, v∗) =

N∑
i=1

k∑
l=0

σli
hi

(
uh − P l−1h uh, v

∗)
τi
, v ∈ Uh.

On the other hand, we choose v = ξ in (3.11) and use (3.12) and the above orthogo-
nality, and then obtain
(3.14)

(ξt, ξ
∗) +

N∑
i=1

k∑
l=0

σli
hi
‖ξ − P l−1h ξ‖20,τi ≤ a

SV
h (η, ξ∗) +

N∑
i=1

k∑
l=0

σli
hi

(
uI − P l−1h uI , ξ

∗)
i
.

We next estimate the two terms appeared in the right hand side of (3.14). As for
aSVh (η, ξ∗), there holds the conclusion in [33]

(3.15) |aSVh (η, ξ∗)| . hk+1‖ξ∗‖0.

Using the Cauchy-Schwarz inequality and the approximation property of uI , we get

(uI − P l−1h uI , ξ
∗)i ≤ ‖uI − P l−1h uI‖0,τi‖ξ‖0,τi . hmax(1,l)+ 1

2 ‖uI‖l,∞,τi‖ξ‖0,τi .

Recalling the definition of σli in (2.3), there holds

(3.16)

(
σli
)2

=
4(2l + 1)2

(2k − 1)2
h2l

(l!)2

(
J∂lx (uh − u)K2i− 1

2
+ J∂lx (uh − u)K2i+ 1

2

)
. h2l

(
J∂lxξK

2
i− 1

2
+ J∂lxξK

2
i+ 1

2

)
+ h2l

(
J∂lxηK

2
i− 1

2
+ J∂lxηK

2
i+ 1

2

)
.

Combining the last two inequalities yields

(3.17)

∣∣∣∣∣
N∑
i=1

k∑
l=0

σli
hi

(
uI − P l−1h uIξ

∗)
i

∣∣∣∣∣
.

N∑
i=1

k∑
l=0

h
max(l− 1

2 ,
1
2 )+l

i

(
J∂lxξK

2
i− 1

2
+ J∂lxηK

2
i− 1

2

) 1
2 ‖ξ∗‖0,τi

.‖ξ‖0‖ξ∗‖0 + hk+1‖ξ∗‖0.

Substituting (3.15) and (3.17) into (3.14) leads to

(ξt, ξ
∗) . ‖ξ‖0‖ξ∗‖0 + hk+1‖ξ∗‖0.

By using the L2 equivalence in (3.10) and the Gronwall’s inequality, we have

(3.18) ‖ξ(·, t)‖0 . ‖ξ(·, 0)‖0 + hk+1.

Then (3.13) follows from the approximation property of uI .
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3.4. Superconvergence. Following the argument in [33], we adopt the idea
of correction function to study the superconvergence property of the OF-LSV and
OF-RRSV.

We begin with the construction of the correction function ω ∈ Uh, which is defined
in each element τi, 1 ≤ i ≤ N by

(3.19)

 (ω, vx)i = (∂tη, v
∗)i +

k∑
l=0

σli
hi

(
uI − P l−1h uI , v

∗)
i
, ∀v ∈ P−(τi),

ω(x−
i+ 1

2

, t) = 0,

where P− is the orthogonal complement of P0 in Pk, namely, Pk = P0
⊕
P−.

Lemma 3.3. The correction function ω defined by (3.19) is uniquely determined.
Moreover, if u ∈W k+3,∞([a, b]), then

(3.20) ‖∂rt ω‖0 ≤ Chk+2, r = 0, 1.

where C is a constant, depending on the exact solution u and its derivative up to
(k + 2 + r)-th.

Proof. Since ω|τi ∈ Pk, we suppose that

ω|τi =

k∑
m=0

ci,m(t)Li,m(x),

where Li,m denotes the Legendre polynomial of degree m in τi. Denoting φi,m+1 =
2
hi

∫ x
x
i− 1

2

Li,mdx and choosing v = φi,m+1,m = 0, · · · , k − 1 in (3.19) yields

2

hi

(
ω,L∗i,m

)
i

= (∂tη, φ
∗
i,m+1)i +

k∑
l=0

σli
hi

(
uI − P l−1h uI , φ

∗
i,m+1

)
i

:= H1 +H2.

As for H1, it was proved in [33] that

(3.21) H1 . hm
′
‖u‖m′,∞,τi , m′ = max(2k + 1−m, k + 2).

To estimate H2, we have, from (3.5),
(3.22)

H2 =

k∑
l=0

σli
hi

((uI − P l−1h uI , φi,m+1)i +
2

hi
Ri(Li,mVl)), with Vl = D−1x (uI − P l−1h uI).

Using the fact that right Radau quadrature is exact for 2k, we have Ri(Li,mVl) = 0
for all 0 ≤ m ≤ k − 1 for OF-RRSV. As for OF-LSV, we use the residual of Gauss-
Legendre quadrature to derive

Ri(Li,mVl) = Ri(Li,mD
−1
x uI) = (

hi
2

)2k+1ckl ∂
2k
x (Li,mD

−1
x uI)(ξ), ξ ∈ τi,

which yields, together with the inverse inequality that

2

hi
|Ri(Li,mVl)| . (hi)

2k‖∂k−1x Li,m‖0,∞,τi‖∂kxuI‖0,∞,τi . hk+1
i ‖u‖k,∞,τi .
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As a direct consequence of the Cauchy-Schwarz inequality and the approximation
property of P lh, ∣∣(uI − P l−1h uI , φi,m+1

)
i

∣∣ . h
max{1,l}+1
i ‖u‖l,∞,τi .

In light of (3.16) and the estiamte of ξ in (3.18), we have∣∣σli∣∣ . hk+1‖u‖k+2,∞,τi−1∪τi∪τi+1
.

Substituting the last three inequality into the formulation of H2 in (3.22) yields

(3.23) |H2| .
k∑
l=0

∣∣σli∣∣ · h−1i · (hmax{1,l}+1
i + hk+1

i ) . hk+2
i ‖u‖k+2,∞,τi−1∪τi∪τi+1 .

Combining the estimates of Hi, 1 ≤ i ≤ 2 in (3.21) and (3.23), we have

|ci,m| .
2

hi
|
(
ω,L∗i,m

)
i
| . hk+2

i ‖u‖k+2,∞,τi−1∪τi∪τi+1
, m ≤ k − 1.

As for m = k, the identity ω(xi+ 1
2
)− = 0 implies that

|ci,m| =

∣∣∣∣∣
k−1∑
n=0

ci,n

∣∣∣∣∣ . hk+2
i ‖u‖k+2,∞,τi−1∪τi∪τi+1

.

Consequently,

‖ω‖20 .
N∑
i=1

hi

k∑
m=0

|ci,m|2 . h2(k+2)‖u‖k+2,∞.

The (3.20) is valid for r = 0. Taking time derivative in both sides of (3.19) and
following the same argument, we can prove that (3.20) also holds true for r = 1.

Theorem 3.4. Let u ∈W k+3,∞(Ω) be the solution of (3.1), uh be the solution of

(3.4) with the initial solution chosen as uh(x, 0) = (̃u0)I(x). Then for both OF-LSV
and OF-RRSV,

(3.24) ‖(uI − uh)(·, t)‖0 ≤ Chk+2,

where C is a constant, depending on the exact solution u and its (k+3)-th derivative.

Proof. Denoting

ũI = uI − ω, e = u− uh, ξ = uh − ũI , η = u− ũI .

On the one hand, following the same argument as that in (3.14), we have

(3.25) (ξt, ξ
∗)+

N∑
i=1

k∑
l=0

σli
hi
‖ξ−P l−1h ξ‖20 ≤ aSVh (η, ξ∗)+

N∑
i=1

k∑
l=0

σli
hi

(
ũI − P l−1h ũI , ξ

∗)
i
.

On the other hand, we have for all v ∈ P−, from (3.19) that

aSVhi (η, v∗) +

k∑
l=0

σli
hi

(
ũI − P l−1h ũI , v

∗)
i

= (∂tω, v
∗)i +

k∑
l=0

σli
hi

(
ω − P l−1h ω, v∗

)
i

≤ ‖∂tω‖0,τi ‖v
∗‖0,τi +

k∑
l=0

σli
hi

∥∥ω − P l−1h ω
∥∥
0,τi
‖v∗‖0,τi .
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Summing up all i and using (3.20) gives

aSVh (η, v∗) +

N∑
i=1

k∑
l=0

σli
hi

(
ũI − P l−1h ũI , v

∗)
i
. hk+2 ‖v∗‖0 , ∀v ∈ P−.

When v ∈ P0, we easily obtain from the orthogonality of P lh that

k∑
l=0

σli
hi

(
ũI − P l−1h ũI , v

∗
0

)
i

=

k∑
l=0

σli
hi

(
ũI − P l−1h ũI , v0

)
i

= 0.

Moreover, since it was proved (see Theorem 5.4 in [33]) that

|aSVh (η, v∗0)| . hk+2 ‖v0‖0 , ∀v0 ∈ P
0,

then

aSVh (η, v∗0) +

N∑
i=1

k∑
l=0

σli
hi

(
ũI − P l−1h ũI , v

∗
0

)
i
. hk+2 ‖v∗0‖0 , v0 ∈ P0.

Note that all the function v ∈ Uh can be decomposed into v = v0 + v1 with v0 ∈ P0

and v1 ∈ P−. Consequently,

aSVh (η, v∗) +

N∑
i=1

k∑
l=0

σli
hi

(
ũI − P l−1h ũI , v

∗)
i
. hk+2 ‖v∗‖0 , ∀v ∈ Uh.

Substituting the above inequality into (3.25), we have

(ξt, ξ
∗) . hk+2‖ξ∗‖0.

Then (3.24) follows from the the Gronwall’s inequality, the equivalence (3.10) and the
estimate of ω in (3.20).

Thanks to the supercloseness result (3.24) between uI and uh, There holds the follow-
ing superconvergence results for the cell average error and error at downwind points.

Theorem 3.5. Let u ∈ Hk+3(Ω) be the solution of (3.1), uh be the solution of

(3.4) with the initial solution chosen as uh(x, 0) = (̃u0)I(x). Then for both OF-LSV
and OF-RRSV,

(3.26)

en :=

(
1

N

N∑
i=1

(u− uh)
2

(x−
i+ 1

2

, t)

) 1
2

. hk+2,

ec :=

(
1

N

N∑
i=1

(
1

hi

∫
τi

(u− uh) dx

)2
) 1

2

. hk+2.

Proof. By using the inverse inequality,

en =

(
1

N

N∑
i=1

(uI − uh)
2

(x−
i+ 1

2

, t)

) 1
2

. ‖uI − uh‖0.
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12 X. Y. ZHANG, C. W. CAO, AND P. LIANG

Then the first inequality of (3.26) follows from (3.24). Similarly, since (see, [33])(
1

N

N∑
i=1

(
1

hi

∫
τi

(u− uI) dx
)2
) 1

2

. hk+2,

then

ec =

(
1

N

N∑
i=1

(
1

hi

∫
τi

(u− uI + uI − uh) dx

)2
) 1

2

. hk+2 + ‖uI − uh‖0,

which yields (together with (3.24)) the second inequality of (3.26).

4. Numerical experiments. In this section, the numerical tests will be pre-
sented to validate the accuracy, robustness of current scheme. The accuracy tests are
provided for the linear advection equation and Euler solutions. The ninth-order strong
stability preserving (SSP) Runge-Kutta method is applied as temporal discretization
aimed at avoiding the interference of temporal discretization on the convergence rates.
For the flows with discontinuities, a few benchmark cases for Euler solutions are pro-
vided. The specific heat ratio takes γ = 1.4, and the classic fourth order Runge-Kutta
method is used for temporal discretization. The CFL condition is

∆t =
CFL

(α+ a0)
∆x, α = max

i,s

∣∣∣(λs)±i+1/2

∣∣∣ , a0 = max
i∈ZN

k∑
l=0

σli,

where ∆t and ∆x are time step and cell size, (λs)
±
i+1/2 are real eigenvalues of the Jaco-

bian matrix ∂F /∂U at x±i+1/2 and σli is the damping coefficient defined in (2.3). This

reveals that the time step is severely limited by the coefficient a0. In the computation,
the CFL number takes 2.4. Qk with k = 2 and 3 are used for the accuracy tests, and
Qk with k = 2 is only used for the cases with discontinuities. The mesh with uniform
SVs are used for 1D cases, and the uniform rectangular meshes are used for 2D cases.
Since the numberical solution of OF-LSV and OF-RRSV are resemblance, only the
results of OF-LSV are presented.

4.1. Accuracy tests. In order to verify the order of optimal convergence and
superconvergence of current scheme, the one-dimensional and two-dimensional cases
are provided. In our numerical experiments, the L2 error ‖e0‖0, the cell average error
ec and the average error at downwind points en will be tested.

The first case is given for one-dimensional linear scalar equation (3.1), and the
initial condition is set as follows

u(x) = 1 + 0.2 sin(πx).

The computation domain Ω = [0, 2] and the periodic boundary condition is adopted
at both ends. The analytic solution is

u(x, t) = 1 + 0.2 sin(π(x− t)).

The uniform mesh with N SVs are used. The errors and the order of convergence for
‖e0‖0, ec and en are presented in Table 1 at t = 2. The obtained order in Table 1 are
consistent with the analysis in Theorem 3.2 and Theorem 3.5, i.e., (k+ 1)-th optimal
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convergence order for ‖e0‖0, both (k+ 2)-th convergence order for both ec and en. In
order to investigate the effect of damping term on accuracy, this example is also tested
by the classical SV method with k = 2 and 3. The errors and the order of convergence
are listed in Table 2. The expected orders for SV method in [33] are verified, i.e., the
optimal convergence rate (k+ 1) for the L2 error ‖e‖0, and the convergence rate (2k)
for both the cell average error ec and the error at downwind point en. With the mesh
refinement, the L2 error ‖e0‖0 of OFSV method and SV method get closer, which
means the damping term becomes smaller for the smooth analytic solution. However,
the damping term does affect on the superconvergence accuracy.

Table 1
One-dimensional accuracy test: errors and convergence orders of ‖e0‖0, ec, en for OFSV scheme.

k Mesh ‖e0‖0 order ec order en order
8 4.9119E-03 2.2847E-03 2.4315E-03
16 3.5267E-04 3.8000 1.5955E-04 3.8399 1.6600E-04 3.8727

2 32 2.4316E-05 3.8583 9.2332E-06 4.1110 9.3982E-06 4.1426
64 2.1921E-06 3.4715 5.3050E-07 4.1214 5.3672E-07 4.1301
128 2.4509E-07 3.1609 3.1495E-08 4.0742 3.1815E-08 4.0764
8 2.0132E-04 1.3213E-04 1.3945E-04
16 6.2608E-06 5.0070 4.0326E-06 5.0341 4.1981E-06 5.0539

3 32 2.3475E-07 4.7371 1.3517E-07 4.8988 1.3820E-07 4.9249
64 1.0447E-08 4.4900 4.5274E-09 4.9000 4.5788E-09 4.9156
128 5.5435E-10 4.2361 1.4816E-10 4.9334 1.4915E-10 4.9401

Table 2
One-dimensional accuracy test: errors and convergence orders of ‖e0‖0, ec, en for SV scheme.

k Mesh ‖e0‖0 order ec order en order
8 1.1168E-03 2.8677E-04 3.0598E-04
16 1.2537E-04 3.1551 1.9091E-05 3.9089 1.9951E-05 3.9389

2 32 1.5151E-05 3.0488 1.2196E-06 3.9647 1.2674E-06 3.9765
64 1.8767E-06 3.0130 7.6902E-08 3.9872 7.9807E-08 3.9892
128 2.3405E-07 3.0033 4.8272E-09 3.9938 5.0093E-09 3.9938
8 5.0192E-05 1.2012E-06 5.4416E-06
16 2.9697E-06 4.0791 2.7583E-08 5.4446 3.0592E-08 7.4747

3 32 1.8558E-07 4.0002 4.3641E-10 5.9820 4.7041E-10 6.0231
64 1.1599E-08 4.0000 6.8475E-12 5.9939 7.3725E-12 5.9956
128 7.2493E-10 4.0000 2.9283E-13 4.5474 2.9877E-13 4.6351

The second case for accuracy is the advection of density perturbation for two-
dimensional Euler equations, and the initial conditions are given follows

ρ0(x, y) = 1 + 0.2 sin(π(x+ y)), p0(x, y) = 1, U0(x, y) = 1, V0(x, y) = 1.

The computational domain is [0, 2]× [0, 2] and the periodic boundary conditions are
adopted in both directions. The analytic solutions are

ρ(x, y, t) = 1 + 0.2 sin(π((x+ y)− 2t)), p(x, y, t) = 1, U(x, y, t) = 1, V (x, y, t) = 1.

The uniform mesh with N2 SVs are used in the computation. The errors and conver-
gence orders, including ‖e0‖,ec,en, are presented in Table.3 at t = 2. The expected
order of accuracy are obtained. As reference, this case is also tested by the classi-
cal SV method. The errors and convergence orders are presented in Table.4. The
numerical results indicate the damping term would not pollute the optimal order of
accuracy and reduce the order of superconvergence for the Euler equations as well.
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Table 3
Two-dimensional accuracy test: errors and convergence orders of ‖e0‖0, ec, en for OFSV scheme.

k Mesh ‖e0‖0 order ec order en order
82 1.8533E-02 9.7494E-03 9.6293E-03
162 1.2227E-03 3.9219 5.8527E-04 3.9020 6.2540E-04 3.9446

2 322 7.4101E-05 4.0445 3.5010E-05 4.0633 3.6142E-05 4.1130
642 4.9616E-06 3.9006 2.0624E-06 4.0854 2.0998E-06 4.1054
1282 4.2071E-07 3.5617 1.2461E-07 4.0488 1.2623E-07 4.0560
82 1.4675E-03 6.7864E-04 7.5641E-04
162 3.4150E-05 5.4254 1.6197E-05 5.3889 1.7362E-05 5.4452

3 322 1.0958E-06 4.9619 5.2147E-07 4.9570 5.4169E-07 5.0023
642 3.9061E-08 4.8100 1.7557E-08 4.8925 1.7918E-08 4.9180
1282 1.5517E-09 4.6539 5.7939E-10 4.9214 5.5602E-10 4.9343

Table 4
Two-dimensional accuracy test: errors and convergence orders of ‖e0‖0, ec, en for SV scheme.

k Mesh ‖e0‖0 order ec order en order
82 1.7926E-03 5.5948E-04 6.1273E-04
162 1.8552E-04 3.2724 3.8014E-05 3.8795 4.0014E-05 3.9367

2 322 2.1701E-05 3.0957 2.4428E-06 3.9599 2.5469E-06 3.9737
642 2.6629E-06 3.0267 1.5457E-07 3.9822 1.6100E-07 3.9836
1282 3.3127E-07 3.0069 9.7551E-09 3.9859 1.0190E-08 3.9818
82 7.1124E-05 2.3412E-06 1.0883E-06
162 4.2004E-06 4.0817 5.4813E-08 5.4166 6.1185E-08 7.4747

3 322 2.6246E-07 4.0004 8.7141E-10 5.9750 9.4081E-10 6.0231
642 1.6403E-08 4.0000 1.3685E-11 5.9927 1.4738E-11 5.9963
1282 1.0252E-09 4.0000 3.5470E-13 5.2698 3.6942E-13 5.3182

4.2. One-dimensional Riemann problems. In this case, two Riemann prob-
lems of one-dimensional Euler equations are tested. The first test is Sod problem and
the initial conditions are given as follows

(ρ, U, p) =

{
(1, 0, 1), 0 ≤ x < 0.5,

(0.125, 0, 0.1), 0.5 ≤ x ≤ 1.

The second one is Lax problem and the initial conditions are given as follows

(ρ, U, p) =

{
(0.445, 0.698, 3.528), 0 ≤ x < 0.5,

(0.5, 0, 0.571), 0.5 ≤ x ≤ 1.

For these two tests, the computational domain is [0, 1] with 50 uniform SVs and non-
reflecting boundary condition is adopted on both ends. The cell average of density,
velocity, and pressure distributions for the third-order OFSV method and the exact
solutions are presented in Figure.2 for Sod problem at t = 0.2 and for Lax problem at
t = 0.14. The numerical results agree well with the exact solutions and the spurious
oscillations are effectively restrained.

4.3. Shock-acoustic interactions. For the one-dimensional case, another test
case is the Shu-Osher shock acoustic interaction [11], describing the interaction be-
tween a right moving Mach 3 shock interacting with a sine wave in density. This is
a typical example to show the advantage of a high order scheme because both shocks
and complex smooth region structures coexist. The computational domain is taken
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Fig. 2. One-dimensional Riemann problem: the density, velocity and pressure distributions
for Sod problem (left) at t = 0.2, and Lax problem (right) at t = 0.14.

to be [−5, 5], and the initial conditions are given as

(ρ, U, p) =

{
(3.857134, 2.629369, 10.33333), −5 ≤ x ≤ −4,

(1 + 0.2 sin(5x), 0, 1), −4 < x < 5.

Uniform mesh with 200 SVs is used. The cell average of density distribution and
local enlargement are presented in Figure. 3 at t = 2, where the reference solution is
given by the fifth order finite volume WENO method with 1000 cells. The numerical
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Fig. 3. Shu-Osher problem: the density distribution and local enlargement at t = 2.
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Fig. 4. Titarev-Toro problem: the density distribution and local enlargement at t = 5.

solutions also agree well with the reference solution, which shows that the current
scheme controls the spurious oscillation effectively.

As an extension of Shu-Osher problem, Titarev-Toro shock wave interaction prob-
lem [35] is also tested, which simulates a severely oscillatory wave interacting with
shock. The computational domain is also taken to be [−5, 5], and the initial conditions
for this case are given as follows

(ρ, U, p) =

{
(1.515695, 0.523346, 1.805), −5 < x ≤ −4.5,

(1 + 0.1 sin(20πx), 0, 1). −4.5 < x < 5.

Uniform mesh with 1000 SVs is used. The density distribution and local enlargement
at t = 5 are presented in Figure.4, where the reference solution is given by the fifth-
order finite volume WENO method with 4000 cells. The numerical result shows that
OFSV method does have the ability of high-order numerical scheme to capture the
extremely high frequency waves and eliminate the spurious oscillations.

4.4. Two-dimensional Riemann problems. In this case, two examples of
two-dimensional Riemann problems [36] are presented, including the interactions of
shocks and the interaction of contacts with rarefaction waves. The computational
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domain is both [0, 1] × [0, 1], and the non-reflecting boundary conditions are used in
all ends. The initial conditions for the first case are

(ρ, U, V, p) =


(1.5, 0, 0, 1.5), x > 0.5, y > 0.5,

(0.5323, 1.206, 0, 0.3), x < 0.5, y > 0.5,

(0.138, 1.206, 1.206, 0.029), x < 0.5, y < 0.5,

(0.5323, 0, 1.206, 0.3), x > 0.5, y < 0.5.

A complicated pattern is evolved by the interaction between the four initial shock
waves. The density distributions and the local enlargements are showed at t = 0.3 in
Figure.5 with 400× 400 and 800× 800 uniform SVs. The numerical results show that
the small scale flow structures are well captured by the current scheme.
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Fig. 5. Two-dimensional Riemann problem: the density distributions and local enlargements
for the first case at t = 0.3 with 400× 400 (top) and 800× 800 (bottom) uniform SVs.

The second case is to simulate the interaction between the interaction of two
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Fig. 6. Two-dimensional Riemann problem: the density distributions and local enlargements
for the second case at t = 0.25 with 300× 300 (top) and 600× 600 (bottom) uniform SVs.

contacts with two rarefaction waves, and the initial conditions are given as

(ρ, U, V, p) =


(1, 0.1, 0.1, 1), x > 0.5, y > 0.5,

(0.5197,−0.6259, 0.1, 0.4), x < 0.5, y > 0.5,

(0.8, 0.1, 0.1, 0.4), x < 0.5, y < 0.5,

(0.5197, 0.1,−0.6259, 0.4), x > 0.5, y < 0.5.

The density distributions and the local enlargements at t = 0.25 are given in Figure.6
with 300× 300 and 600× 600 uniform SVs. The results validate the good behavior of
the current method by which the roll-up is well captured.

4.5. Shock-vortex interaction. The interaction between a stationary shock
and a vortex for the inviscid flow [13] is presented. The computational domain is
taken to be [0, 2] × [0, 1]. A stationary Mach 1.1 shock is positioned at x = 0.5 and
vertical to the x-axis. The left upstream state is (ρ, U, V, p) =

(
Ma2,

√
γ, 0, 1

)
, where

Ma is the Mach number. A slight vortex perturbation centered at (xc, yc) = (0.25, 0.5)
is added to the mean flow with the velocity (U, V ), temperature T = p/ρ, and entropy
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Fig. 7. Shock vortex interaction: the pressure distributions at t = 0, 0.3, 0.6 and 0.8 with
400× 200 cells.
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Fig. 8. Shock vortex interaction: the density distributions at t = 0.8 along the horizontal
symmetric line y = 0.5 with mesh size ∆x = ∆y = 1/50, 1/100, 1/200.

S = ln (p/ργ), expressed as

(δU, δV ) = κηeµ(1−η2)(sin θ,− cos θ),

and

δT = − (γ − 1)κ2

4µγ
e2µ(1−η2), δS = 0,

where η = r/rc, r =

√
(x− xc)2 + (y − yc)2, κ implies the strength of the vortex,

µ controls the decay rate of the vortex, and rc is the critical radius of the vortex
with maximum strength. In the computation, these parameters are taken as κ =
0.3, µ = 0.204, and rc = 0.05. The reflecting boundary conditions are used on the
top and bottom boundaries. The inflow and outflow boundary conditions are used
for the left and right boundaries. This case is tested by the uniform SVs with ∆x =
∆y = 1/50, 1/100 and 1/200. The pressure distributions with ∆x = ∆y = 1/200 at
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t = 0, 0.3, 0.6 and 0.8 are shown in Figure.7. By t = 0.8, one branch of the shock
bifurcations has reflected on the upper boundary and this reflection is well captured.
The detailed density distributions along the center horizontal line with mesh size
∆x = ∆y = 1/50, 1/100 and 1/200 at t = 0.8 presented in Figure.8 are convergent.
Satisfactory results are obtained and the accuracy of the scheme is well demonstrated.
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Fig. 9. Double Mach reflections: the density distributions at t = 0.2 with 800× 200 (top) and
1600× 400 (bottom) uniform SVs.

4.6. Double Mach reflection. This problem was first proposed by Woodward
and Colella [37] for the inviscid flow. The computational domain is [0, 4]× [0, 1] and a
reflecting solid wall lies along the bottom of the computational domain starting from
x = 1/6. Initially a right-moving Mach 10 shock makes a 60◦ angle with the reflecting
wall starting at (x, y) = (1/6, 0) towards the top of the computational domain. The
initial pre-shock and post-shock conditions are

(ρ, U, V, p) =

{(
8, 4.125

√
3,−4.125, 116.5

)
, x < 1

6 + 1√
3
y,

(1.4, 0, 0, 1) , x > 1
6 + 1√

3
y.

The inflow and outflow boundary conditions are adopted for the left and right bound-
aries, respectively. The reflecting boundary condition is used at the solid wall, and the
exact post-shock condition is imposed for the rest of the bottom boundary. At the top
boundary, the flow variables are set to describe the exact motion of the Mach 10 shock.
The density distributions and their local enlargement with 800× 200 and 1600× 400
uniform SVs at t = 0.2 are presented in Figure.9 and Figure.10, respectively. The
flow structure under the triple Mach stem can be resolved clearly. However, the shear
layer seems to be smeared by the damping term, and more delicate design of damping
term still needs to be investigated in the future.
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Fig. 10. Double Mach reflections: the local enlargement of density distributions at t = 0.2
with 800× 200 (left) and 1600× 400 (right) uniform SVs.

5. Conclusion. In this paper, an oscillation-free spectral volume method is pro-
posed for the systems of hyperbolic conservation laws. To suppress the oscillations
near discontinuities, a damping term is introduced to the standard spectral volume
method. A mathematical proof is provided to show that the proposed OFSV is sta-
ble and has optimal convergence rate and some excepted superconvergence properties
when applied to linear scalar equations. Numerical experiments are presented to
demonstrate the accuracy and capabilities of resolving discontinuities for the current
scheme. The excepted order of accuracy of the current SV scheme is obtained, and the
oscillations can be well controlled even for the problem with strong discontinuities.
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