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ABSTRACT

Lax-Wendroff Flux Reconstruction (LWFR) is a single-stage, high order, quadrature free method for
solving hyperbolic conservation laws. We develop a subcell based limiter by blending LWFR with a
lower order scheme, either first order finite volume or MUSCL-Hancock scheme. While the blending
with a lower order scheme helps to control spurious oscillations, it may not guarantee admissibility
of discrete solution, e.g., positivity property of quantities like density and pressure. By exploiting
the subcell structure and admissibility of lower order schemes, we devise a strategy to ensure that
the blended scheme is admissibility preserving for the mean values and then use a scaling limiter to
obtain admissibility of the polynomial solution. For MUSCL-Hancock scheme on non-cell-centered
subcells, we develop a slope limiter, time step restrictions and suitable blending of higher order fluxes,
that ensures admissibility of lower order updates and hence that of the cell averages. By using the
MUSCL-Hancock scheme on subcells and Gauss-Legendre points in flux reconstruction, we improve
small-scale resolution compared to the subcell-based RKDG blending scheme with first order finite
volume method and Gauss-Legendre-Lobatto points. We demonstrate the performance of our scheme
on compressible Euler’s equations, showcasing its ability to handle shocks and preserve small-scale
structures.

Keywords Conservation laws · hyperbolic PDE · Lax-Wendroff · flux reconstruction · Shock Capturing · Admissibility
preservation

1 Introduction

The current state of memory-bound HPC hardware [2, 63] makes a strong case for development of high order discrete
methods in computational fluid dynamics (CFD). By incorporating more higher order terms, these methods can achieve
greater numerical accuracy per degree of freedom while minimizing memory usage and data transfers. In particular,
high order methods have higher arithmetic intensity and are thus less likely to be memory-bound. However, lower order
methods are still routinely applied in practical applications, in part due to their robustness. This work is in direction of
using high order methods while retaining the robustness properties of lower order methods.
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Discontinuous Galerkin (DG) is a Spectral Element Method first introduced by Reed and Hill [52] for neutron transport
equations and developed for fluid dynamics equations by Cockburn and Shu and others, see [19] and the references
therein. The DG method uses an approximate solution which is a polynomial within each element and is allowed to be
discontinuous across interfaces. The neighbouring DG elements are coupled only through the numerical flux and thus
bulk of computations are local to the element, minimizing data transfers.

Flux Reconstruction (FR) is also a class of discontinuous Spectral Element Methods introduced by Huynh [36]. FR
method is obtained by using the numerical flux and correction functions to construct a continuous flux approximation and
collocating the differential form of the equation. Thus, FR is quadrature free and all local operations can be vectorized.
The choice of the correction function affects the accuracy and stability of the method [36, 71, 72, 67]; by properly
choosing the correction function and solution points, FR method can be shown to be equivalent to some discontinuous
Galerkin and spectral difference schemes [36, 67]. In [17], a nonlinearly stable FR scheme was constructed in split
form where a key idea was application of correction functions to the volume terms.

FR and DG are procedures for discretizing the equation in space and can be used to obtain a system of ODEs in time,
i.e., a semi-discretization of the PDE. The standard approach to solve the semi-discretization is to use a high order
multi-stage Runge-Kutta method. In this approach, the spatial discretization has to be performed in every RK stage and
thus the expensive operations of MPI communication and limiting have to be performed multiple times per time step.

An alternative approach is to use a single-stage solver, see [5] for a more in-depth review. ADER (Arbitrary high order
DERivative) schemes are one class of single-stage evolution methods which originated as ADER Finite Volume (FV)
schemes [66, 65] and are also used as ADER-DG schemes [27, 29]. Another class of single-stage evolution methods
are the Lax-Wendroff schemes which were originally proposed in the finite difference framework in [49] with the
WENO approximation of spatial derivatives [59] and later extended to DG framework in [48]. These schemes were
based on computation of flux Jacobian which leads to a problem dependent and expensive procedure especially for
higher dimension equations with many variables. A Jacobian free method, called approximate Lax-Wendroff, using
finite differences in time was developed in [81] and further studied in several other works [11, 13, 14]. In [41], the flux
Jacobians were directly computed as finite difference derivatives with a parameter ϵ for accuracy of finite difference.
In [11], the approximate Lax-Wendroff procedure was used in the DG framework and the performance benefit of
Jacobian free methods was observed.

In [5], the present authors proposed a Lax-Wendroff Flux Reconstruction (LWFR) scheme which used the approximate
Lax-Wendroff procedure of [81] to obtain high order accuracy. The numerical flux was carefully constructed in [5]; the
dissipative part of the numerical flux was computed with the time averaged solution (called D2 dissipation) leading to
an upwind flux in the linear case and improved CFL numbers at no additional computational cost. The central part of
the numerical flux was computed by performing the approximate Lax-Wendroff procedure at the faces (EA scheme)
rather than using the extrapolated time averaged flux from solution points (AE scheme). It was observed that the EA
scheme improved accuracy of the LWFR scheme and some tests showed optimal order of convergence only with the
EA scheme. Thus, in this work, we use the LWFR scheme with numerical flux computed with D2 dissipation and EA
scheme.

Although arbitrary high order accuracy in smooth test cases and Wall Clock Time (WCT) performance improvement
over RKFR (Runge-Kutta Flux Reconstruction) was observed for the LWFR scheme proposed in [5], robustness and
maintaining high order accuracy in presence of discontinuities remained to be addressed. Solutions to hyperbolic
conservation laws contain shocks in many practical applications and it is well known that high order schemes produce
spurious oscillations in those cases. These oscillations can lead not only to incorrect solutions but can also easily
generate nonphysical solutions like gases with negative density or pressure. Thus, these schemes require limiters which
reduce the high order scheme to a robust lower order scheme in non-smooth regions. In [5], a TVB limiter was used
which reduces the scheme to first order or linear in FR elements using a minmod function (Section 3.1). The TVB
limiter is inadequate for the following reasons - it doesn’t preserve any subcell information other than the element
mean and trace values, and it is not provably admissibility preserving for Lax-Wendroff schemes even when used
with the scaling limiter of Zhang and Shu [78]. The second issue has been considered in [45, 75] by modifying the
numerical flux to obtain admissibility in means making the scaling limiter applicable. In [45], admissibility in means is
obtained by limiting the numerical flux. In [75], a third order maximum-principle satisfying Lax-Wendroff DG scheme
is constructed using the direct DG numerical flux from [16]. We now give a brief literature review of the schemes which
deal with the first issue of TVB limiter which is preservation of subcell information, see [70, 29] for a more in-depth
review.

Moment limiters [9, 10, 39] can be seen as an extension of TVB limiters where coefficients in an orthonormal basis
(moments) are limited in a decreasing sequence, from higher to lower degree. The hierarchical nature of moment limiters
enables preservation of subcell information. Another popular strategy is the (H)WENO limiting procedure [50, 6],
where the DG polynomial is substituted in troubled regions by a reconstructed (H)WENO polynomial that is computed
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by a WENO procedure using subcell and neighboring cells information. There are also the methods of artificial viscosity
where a second order diffusion term is added in elements where the solution is non-smooth, preserving the subcell
information as the high order polynomial solution is still used. In [47], an artificial viscosity model was introduced for
the Runge-Kutta (RK) Discontinuous Galerkin (DG) method to add dissipation to the high order method based on a
modal smoothness indicator. The indicator of [47] was further refined and detailed in [38].

There have also been several schemes which limit the solution by breaking the element into subcells which offers
some advantages over artificial viscosity methods, including problem independence over boundary conditions and
no additional time step restrictions, even when high dissipation is required, as noted in [34]. In [35], the modal
smoothness indicator of [47] was used to adapt local basis functions, e.g., switching to finite volume basis in the
presence of discontinuities. In [15], subcells were used to assign different values to artificial viscosity within each
element. In [60, 24], after having detected the troubled zones using the modal indicator of [47], cells are subdivided
into subcells, and a robust first-order finite volume scheme is performed on the subgrid in troubled cells. In [34],
the modal smoothness indicator of [47] was used to perform limiting by blending a high order DG scheme with
Gauss-Legendre-Lobatto (GLL) points with a lower order finite volume scheme on subcells. In [54], the method of [34]
was extended to compressible magnetohydrodynamics (MHD) and high order reconstruction on subcells was used to
improve accuracy. In [53], it was shown that the subcell FV method of [34] can be made positivity preserving by an a
posteriori modification of the blending coefficient. In [55], the subcell finite volume method of [34] with Rusanov’s
flux [56] was shown to be equivalent to the sparse Invariant Domain Preserving method of Pazner [46].

The approaches explained above can be classified as a priori limiters. We briefly discuss a posteriori limiting techniques
where the solution is updated to time tn+1, and low order re-updates are conducted in the elements that fail certain
carefully chosen admissibility checks. One of these is the MOOD technique [18, 25, 26] where the local re-updates are
computed with reduced order of accuracy until the admissibility checks pass. In [29, 28], the subcell based technique
of [60, 24] is applied in an a posteriori fashion using 2N + 1 subcells for N + 1 degrees of freedom per element in
the 1-D case, using least squares approximation to convert back to a degree N polynomial. In case the least square
transformation leads to violation of admissibility constraints, the subcell solution values are used in the next evolution
and thus the scheme is guaranteed to not crash. In [70], the DG scheme was reformulated as subcell Finite Volume
(FV) method with appropriate subcells. An indicator was used to mark troubled subcells and thus the solution could be
modified in a very localized manner, preserving subcell information well.

Other techniques for shock capturing exist that do not fit strictly into the aforementioned categories. In [30], positivity
preservation and shock capturing were achieved by filtering and enforcing the minimum entropy principle, while in [43],
a numerical damping term was introduced in the DG scheme to control spurious oscillations.

In this work, we use the a priori blending limiter of [34] for LWFR as its choice of subcells gives a natural correction to
the time averaged numerical flux to obtain admissibility preservation in means. The key idea of the blending scheme is
to reduce spurious oscillations by using a low order scheme in regions where the solution is not smooth, as detected by
a smoothness indicator. The blending limiter by itself is not guaranteed to control all oscillations and thus unphysical
solutions may still be obtained. Thus, we perform additional limiting to obtain a provably admissibility preserving
scheme. Special attention is also paid to improving accuracy to capture small scale structures. We use Gauss-Legendre
(GL) solution points and subcells obtained from GL quadrature weights instead of the GLL points and weights used
in [34]. This is because of their accuracy advantage as observed by us, and as reported in the literature. In the non-linear
stability analysis for E-fluxes in [37], Gauss-Legendre points were found to be the most resistant to aliasing driven
instability. In another study on accuracy with different choices of solution points [73], the optimality of Gauss-Legendre
points was again observed. In [5], optimal convergence rates for some non-linear problems were observed only for
Gauss-Legendre solution points.

As observed in [53], accuracy can be improved by performing a high order reconstruction on the subcells. Since LWFR
is a single-stage method, we improve accuracy by using the single-stage, second order MUSCL-Hancock scheme [69]
on the subcells. As explained in [34], for a DG method of degree N , maintaining conservation requires the subcell
sizes to be given by the N + 1 quadrature weights and the solution points to be the solution points of DG scheme. This
implies that the subcells are non-uniform and the finite volumes are neither cell-centered nor vertex centered. Thus, as a
first step to ensuring that the blended scheme is admissible, we extend the work of [7] to the non-cell centered grids that
occur from demanding conservation in the blending scheme. Enforcing admissibility as in [7] requires an additional
slope limiting step and we propose a problem independent procedure to do the same.

In order to maintain conservation, low and high order updates need to use the same numerical flux at the FR element
interfaces (see Remark 1). This numerical flux has to be chosen by blending between the high order time averaged flux
and the low order FV flux. Thus, as the next step to enforce admissibility of the blended Lax-Wendroff scheme, we
carefully select the blended numerical flux using a scaling procedure to ensure that the lower order updates at solution
points neighboring the interfaces are admissible.
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In [53], the blending limiter of [34] has been made admissibility preserving by changing the blending coefficients in an
a posteriori fashion. Since our choice of the blended numerical flux implies the admissibility of lower order updates
at all solution points, we could take the same approach. In this work, we instead use the fact that, with the blended
numerical flux, admissibility of lower order scheme implies admissibility in the means of the blended scheme and thus
the scaling limiter of [78] can now be used to obtain an admissibility preserving scheme. In [45], a correction has been
made to the Lax-Wendroff numerical flux enforcing the admissibility in means property and then the scaling limiter [78]
has been used to obtain an admissibility preserving Lax-Wendroff scheme. Our work differs from [45] as we only target
to ensure admissibility of the lower order scheme and the admissibility in means is consequently obtained. This implies
that our correction requires less storage and doesn’t require additional loops, minimizing memory reads.

The rest of this paper is organized as follows. In Section 2, we review the Lax-Wendroff Flux Reconstruction scheme
proposed in [5]. In Section 3, we explain the blending limiter extended to Gauss-Legendre solution points including a
review of the smoothness indicator used in [34] and then MUSCL-Hancock reconstruction performed on the subcells
in Section 4. Maintaining conservation requires that at the faces of FR elements, both the lower and high order schemes
must use the same numerical flux (see Remark 1). In Section 5, we show how to construct the numerical flux to ensure
admissibility preservation in means. In Section 6, we explain our implementation of the Lax-Wendroff blended scheme
as an algorithm. The numerical results verifying accuracy and robustness of our scheme with 1-D and 2-D compressible
Euler equations are shown in Section 7. Section 8 gives a summary of the proposed blended scheme.

In Appendix A, we give details on extension of the proof of admissibility of MUSCL-Hancock scheme of [7] to non-cell
centered grids and a description of the 2-D MUSCL-Hancock scheme. In Appendix B, we give details on extending the
choice of blended numerical flux to ensure admissibility and accuracy in 2-D.

2 Lax-Wendroff FR scheme

Consider a conservation law of the form
ut + f(u)x = 0 (1)

where u ∈ Rp is the vector of conserved quantities, f(u) is the corresponding flux, together with some initial and
boundary conditions. The solution that is physically correct is assumed to belong to an admissibility set, denoted by
Uad. For example in case of compressible flows, the density and pressure (or internal energy) must remain positive. In
case of shallow water equations, the water depth must remain positive. In most of the models that are of interest, the
admissibility set is a convex subset of Rp, and can be written as

Uad = {u ∈ Rp : pk(u) > 0, 1 ≤ k ≤ K} (2)
where each admissibility constraint pk is concave if pj > 0 for all j < k. For Euler’s equations, K = 2 and p1, p2 are
density, pressure functions, respectively; if the density is positive then pressure is a concave function of the conserved
variables.

For the numerical solution, we will divide the computational domain Ω into disjoint elements Ωe, with
Ωe = [xe− 1

2
, xe+ 1

2
] and ∆xe = xe+ 1

2
− xe− 1

2

Let us map each element to a reference element, Ωe → [0, 1], by

x→ ξ =
x− xe− 1

2

∆xe

Inside each element, we approximate the solution by degree N ≥ 0 polynomials belonging to the set PN . For this,
choose N + 1 distinct nodes

0 ≤ ξ0 < ξ1 < · · · < ξN ≤ 1 (3)
which will be taken to be Gauss-Legendre (GL) or Gauss-Lobatto-Legendre (GLL) nodes, and will also be referred to
as solution points. There are associated quadrature weights wj such that the quadrature rule is exact for polynomials of
degree up to 2N + 1 for GL points and upto degree 2N − 1 for GLL points. Note that the nodes and weights we use
are with respect to the interval [0, 1] whereas they are usually defined for the interval [−1, 1]. The solution inside an
element is given by

x ∈ Ωe : uh(ξ, t) =

N∑
j=0

ue
j(t)ℓj(ξ)

where each ℓj is a Lagrange polynomial of degree N given by

ℓj(ξ) =

N∏
i=0,i̸=j

ξ − ξi
ξj − ξi

∈ PN , ℓj(ξi) = δij

4
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Ωe−1 Ωe Ωe+1

uh

Ωe−1 Ωe Ωe+1

F δ
h , Fh

(a) (b)

Figure 1: (a) Piecewise polynomial solution at time tn, and (b) discontinuous and continuous flux.

Figure (1a) illustrates a piecewise polynomial solution at some time tn with discontinuities at the element boundaries.
Note that the coefficients ue

j which are the basic unknowns or degrees of freedom (dof), are the solution values at the
solution points. The update equation is given by

(ue
j)

n+1 = (ue
j)

n − ∆t

∆xe

dFh

dξ
(ξj), 0 ≤ j ≤ N (4)

which is a single-stage scheme at all orders of accuracy. The quantity Fh is a time average flux which is continuous in
space and is computed using the flux reconstruction approach; it is given by

Fh(ξ) =
[
Fe− 1

2
− F δ

h(0)
]
gL(ξ) + F δ

h(ξ) +
[
Fe+ 1

2
− F δ

h(1)
]
gR(ξ) (5)

where F δ
h is the discontinuous flux obtained by interpolation at the solution points

F δ
h(ξ) =

N∑
j=0

F e
j ℓj(ξ)

The discontinuous and continuous fluxes are illustrated in Figure (1b). The functions gL, gR are some polynomials that
are chosen in the FR technique by linear stability analysis and Fe+ 1

2
are some numerical flux functions. The coefficients

in the discontinuous flux F δ
h provide approximations to the time average flux,

F e
j ≈

1

∆t

∫ tn+1

tn

f(u(ξj , t))dt

and are computed by an approximate Lax-Wendroff procedure that uses finite differencing in time. The reader should
consult [5] for more details on these aspects of the scheme.

The element mean value is given by

ūe =

N∑
j=0

ue
jwj

where wj are the weights associated to the solution points. Then it is easy to show that the scheme is conservative in the
sense that

ūn+1
e = ūn

e −
∆t

∆xe
(Fe+ 1

2
− Fe− 1

2
) (6)

The admissibility preserving property, also known as convex set preservation property since Uad is convex, of the
conservation law can be written as

u(·, t0) ∈ Uad =⇒ u(·, t) ∈ Uad, t > t0 (7)

and thus we define an admissibility preserving scheme to be

Definition 1 The flux reconstruction scheme is said to be admissibility preserving if

(ue
j)

n ∈ Uad ∀e, j =⇒ (ue
j)

n+1 ∈ Uad ∀e, j
where Uad is the admissibility set of the conservation law.

5
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To obtain an admissibility preserving scheme, we exploit the weaker admissibility preservation in means property
defined as

Definition 2 The flux reconstruction scheme is said to be admissibility preserving in the means if

(ue
j)

n ∈ Uad ∀e, j =⇒ un+1
e ∈ Uad ∀e

where Uad is the admissibility set of the conservation law.

The focus of this work is to obtain the admissibility preservation in means property for the Lax-Wendroff Flux
Reconstruction scheme. Once the scheme is admissibility preserving in means, the scaling limiter of [79] can be used to
obtain an admissibility preserving scheme.

3 On controlling oscillations

High order methods for hyperbolic problems necessarily produce Gibbs oscillations at discontinuities as shown by
Godunov. The cure is to make the schemes to be non-linear even in the case of linear equations. For one dimensional
problems, total variation diminishing approach provides a framework to construct non-oscillatory schemes. This
is achieved by incorporating some non-linear limiting strategy into the scheme which locally reduces the order of
the scheme when a discontinuity is detected. In discontinuous Galerkin type methods, the limiting is performed by
modifying the solution in each element so as to ensure a TVD property for the element means. We first recall this
strategy following Cockburn and Shu [22, 21].

3.1 TVD limiter

The limiters developed in the context of RKDG schemes [22, 21] can be adopted in the framework of LWFR schemes.
The limiter is applied in a post-processing step after the solution is updated to the new time level. The limiter is thus
applied only once for each time step unlike in RKDG scheme where it has to be applied after each RK stage update. Let
uh(x) denote the solution at time tn+1 obtained from the LWFR scheme. In element Ωe, let the average solution be ue;
define the backward and forward differences of the solution and element means by

∆−ue = ue − uh(x
+
e− 1

2

), ∆+ue = uh(x
−
e+ 1

2

)− ue

∆−ue = ue − ue−1, ∆+ue = ue+1 − ue

We limit the solution by comparing its variation within the element with the difference of the neighbouring element
means through a limiter function,

∆−um
e = minmod(∆−ue,∆

−ue,∆
+ue), ∆+um

e = minmod(∆+ue,∆
−ue,∆

+ue)

where

minmod(a, b, c) =

{
smin(|a|, |b|, |c|), if s = sign(a) = sign(b) = sign(c)

0, otherwise

If ∆−um
e ̸= ∆−ue or ∆+um

e ̸= ∆+ue, then the solution is deemed to be locally oscillatory and we modify the solution
inside the element by replacing it as a linear polynomial with a limited slope, which is taken to be the average limited
slope. The limited solution polynomial in element Ωe is given by

uh|Ωe = ue +
∆−um

e +∆+um
e

2
(2ξ − 1), ξ ∈ [0, 1]

This limiter is known to clip smooth extrema since it cannot distinguish them from jump discontinuities. A small
modification based on the idea of TVB limiters [22] can be used to relax the amount of limiting that is performed which
leads to improved resolution of smooth extrema. The minmod function is replaced by

m̃inmod(a, b, c) =

{
a, |a| ≤M∆x2

minmod(a, b, c), otherwise

where the parameter M has to be chosen by the user, which is an estimate of the second derivative of the solution
at smooth extrema. In the case of systems of equations, the limiter is applied to the characteristic variables, which
is known to yield better control on the spurious numerical oscillations [20]. Clearly, the performance of this limiter
depends on the proper choice of the parameter M which is problem dependent.

6
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Fe− 1
2

Fe+ 1
2

xe− 1
2

xe+ 1
2

f 1
2

f 3
2

f 5
2

f 7
2

GL nodes

FR element

Subcells

Figure 2: Subcells used by lower order scheme for degree N = 4.

3.2 Blending scheme

The TVD-type limiters used in DG methods lose a lot of information when the limiter is active, since the polynomial
solution of degree N is replaced either by a solution of degree 1 or a constant solution if a strong discontinuity is
detected in an element. This is especially problematic near smooth extrema which may be wrongly detected as a
discontinuity. It would be desirable to use more information inside each element while applying some limiting process.
Let us write the LWFR update equation (4) as

uH,n+1
e = une −

∆t

∆xe
RH
e

where ue is the vector of nodal values in the element. Suppose we also have a lower order and non-oscillatory scheme
available to us in the form

uL,n+1
e = une −

∆t

∆xe
RL
e

Then a blended scheme is given by

un+1
e = (1− αe)u

H,n+1
e + αeu

L,n+1
e = une −

∆t

∆xe
[(1− αe)R

H
e + αeR

L
e ] (8)

where αe ∈ [0, 1] must be chosen based on some local smoothness indicator. If αe = 0 then we obtain the high order
LWFR scheme, while if αe = 1 then the scheme becomes the low order scheme that is less oscillatory. In subsequent
sections, we explain the details of the lower order scheme and the design of smoothness indicators. The lower order
scheme will either be a first order finite volume scheme or a high resolution scheme based on MUSCL-Hancock idea.
In either case, the common structure of the low order scheme can be explained as follows.

Let us subdivide each element Ωe into N + 1 subcells associated to the solution points {xe
j , j = 0, 1, . . . , N} of the

LWFR scheme. Thus, we will have N + 2 subfaces denoted by {xe
j+ 1

2

, j = −1, 0, . . . , N} with xe
− 1

2

= xe− 1
2

and

xe
N+ 1

2

= xe+ 1
2

. For maintaining a conservative scheme, the jth subcell is chosen so that

xe
j+ 1

2
− xe

j− 1
2
= wj∆xe, 0 ≤ j ≤ N (9)

where wj is the jth quadrature weight associated with the solution points. Figure 2 gives an illustration of the subcells
for degree N = 4 case. The low order scheme is obtained by updating the solution in each of the subcells by a finite
volume scheme,

(ue
0)

L,n+1 = (ue
0)

n − ∆t

w0∆xe
[fe

1
2
− Fe− 1

2
]

(ue
j)

L,n+1 = (ue
j)

n − ∆t

wj∆xe
[fe

j+ 1
2
− fe

j− 1
2
], 1 ≤ j ≤ N − 1

(ue
N )L,n+1 = (ue

N )n − ∆t

wN∆xe
[Fe+ 1

2
− fe

N− 1
2
]

(10)

The inter-element fluxes Fe+ 1
2

used in the low order scheme are same as those used in the high order LWFR scheme in
equation (5). Usually, Rusanov’s flux [56] will be used for the inter-element fluxes and in the lower order scheme. The
element mean value obtained by the low order scheme satisfies

ūL,n+1
e =

N∑
j=0

(ue
j)

L,n+1wj = ūn
e −

∆t

∆xe
(Fe+ 1

2
− Fe− 1

2
) (11)

7
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which is identical to the update equation by the LWFR scheme given in equation (6). The element mean in the blended
scheme evolves according to

ūn+1
e = (1− αe)(ūe)

H,n+1 + αe(ūe)
L,n+1

= (1− αe)

[
ūn
e −

∆t

∆xe
(Fe+ 1

2
− Fe− 1

2
)

]
+ αe

[
ūn
e −

∆t

∆xe
(Fe+ 1

2
− Fe− 1

2
)

]
= ūn

e −
∆t

∆xe
(Fe+ 1

2
− Fe− 1

2
)

and hence the blended scheme is also conservative; all three schemes, i.e., lower order, LWFR and the blended scheme,
predict the same mean value.

The inter-element flux Fe+ 1
2

is used both in the low and high order schemes. To achieve high order accuracy in smooth
regions, this flux needs to be high order accurate, however it may produce numerical oscillations near discontinuities
when used in the low order scheme. A natural choice to balance accuracy and oscillations is to take

Fe+ 1
2
= (1− αe+ 1

2
)F LW

e+ 1
2
+ αe+ 1

2
fe+ 1

2
, αe+ 1

2
∈ [0, 1] (12)

where F LW
e+ 1

2

is the high order inter-element time-averaged numerical flux of the LWFR scheme (5) and fe+ 1
2

is a lower
order flux at the face xe+ 1

2
shared between FR elements and subcells (14, 19). The blending coefficient αe+ 1

2
will be

based on a local smoothness indicator which will bias the flux towards the lower order flux fe+ 1
2

near regions of lower
solution smoothness. However, to enforce admissibility in means (Definition 2), the flux has to be further corrected, as
explained in Section 5.

Remark 1 It is essential to use the same inter-element flux in both the low and high order schemes in order to have
conservation. Suppose we use numerical fluxes FL

e+ 1
2

, FH
e+ 1

2

in the low and high order schemes, respectively; then the
element mean in the blended scheme will become

ūn+1
e = ūn

e −
∆t

∆xe
[((1− αe)F

H
e+ 1

2
+ αeF

L
e+ 1

2
)− ((1− αe)F

H
e− 1

2
+ αeF

L
e− 1

2
)]

For conservation the flux leaving element Ωe through xe+ 1
2

must enter the neighbouring element Ωe+1, i.e.,

(1− αe)F
H
e+ 1

2
+ αeF

L
e+ 1

2
= (1− αe+1)F

H
e+ 1

2
+ αe+1F

L
e+ 1

2

i.e., (αe − αe+1)F
L
e+ 1

2

= (αe − αe+1)F
H
e+ 1

2

which must hold for all values of αe, αe+1 and hence we need FL
e+ 1

2

=

FH
e+ 1

2

.

3.3 Smoothness indicator

The numerical approximation of the PDE solution is in the form of piecewise polynomials of degree N . The polynomial
can be written in terms of an orthogonal basis like Legendre polynomials. The smoothness of the solution can be
assessed by analyzing the decay of the coefficients of the orthogonal expansion, a technique originally proposed by
Persson and Peraire [47] and subsequently refined by Klöckner et al. [38] and Henemann et al. [34]. For a scalar
problem, the solution u itself can be used to design a smoothness indicator. For a system of PDE, we can use any one
or all components of the solution vector. Alternatively, some derived quantity that can indicate the smoothness of all
solution components can be chosen. For the Euler equations, a good choice seems to be the product of density and
pressure [34].

Let q = q(u) be the quantity used to measure the solution smoothness. We first project this onto Legendre polynomials,

qh(ξ) =

N∑
j=0

q̂jLj(2ξ − 1), ξ ∈ [0, 1], q̂j =

∫ 1

0

q(uh(ξ))Lj(2ξ − 1)dξ

The Legendre coefficients q̂j are computed using the quadrature induced by the solution points,

q̂j =

N∑
q=0

q(ue
q)Lj(2ξq − 1)wq

8
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Figure 3: Logistic function used to map energy to a smoothness coefficient α ∈ [0, 1] shown for various solution
polynomial degrees N .

Then the energy contained in highest modes relative to the total energy of the polynomial is computed as follows,

E = max

(
q̂2N−1∑N−1
j=0 q̂2j

,
q̂2N∑N
j=0 q̂

2
j

)
The N th Legendre coefficient q̂N of a function which is in the Sobolev space H2 decays as O(1/N2) (see Chapter
5, Section 5.4.2 of [12]). We consider smooth functions to be those whose Legendre coefficients q̂N decay at rate
proportional to 1/N2 so that their squares decay proportional to 1/N4 [47]. Thus, the following threshold for
smoothness is proposed in [34]

T(N) = a · 10−c(N+1)
1
4

where parameters a = 1
2 and c = 1.8 are obtained through numerical experiments. To convert the highest mode energy

indicator E and threshold value T into a value in [0, 1], the logistic function (Figure 3) is used

α̃(E) =
1

1 + exp
(
− s

T (E− T)
)

The sharpness factor s was chosen to be s = 9.21024 so that blending coefficient equals α = 0.0001 when highest
energy indicator E = 0. In regions where α̃ = 0 or α̃ = 1, computational cost can be saved by performing only the
high or low order schemes, respectively. Thus, the values of α are clipped as

αe :=


0, if α̃ < αmin

α̃, if αmin ≤ α̃ ≤ 1− αmin

1, if 1− αmin < α̃

with αmin = 0.001. In [34], the maximum value of α was clipped to αmax = 0.5, but we use αmax = 1 for the LWFR
scheme. There were no significant improvements observed by decreasing αmax in any of the tests; in some tests like
Shu-Osher (Section 7.1.1), we observed a large number of oscillations when αmax = 0.5 was used. Finally, since shocks
can spread to the neighbouring cells, smoothening of α is performed as

αfinal
e = max

e′∈Ee

{
αe,

1

2
αe′

}
(13)

where Ee denotes all elements sharing a face with e.

3.4 First order blending

The lower order scheme is taken to be a first order finite volume scheme, for which the subcell fluxes in (10) are given
by

fe
j+ 1

2
= f(ue

j , u
e
j+1)

9



A PREPRINT - JANUARY 18, 2024

At the interfaces that are shared with FR elements, we define the lower order flux used in computing inter-element flux
(Section 5) as

fe+ 1
2
= f(ue

N , ue+1
0 ) (14)

In this work, the numerical flux f(·, ·) is taken to be Rusanov’s flux [56], which is the same flux used by the high order
scheme at the element interfaces.

4 Higher order blending

The MUSCL-Hancock scheme is a single-stage and second order accurate scheme, originally introduced in [69],
and proven to be robust under appropriate slope restrictions [7]. We can expect better accuracy by blending the
LWFR scheme with the MUSCL-Hancock scheme. Following the slope correction procedure of Berthon [7], the
MUSCL-Hancock scheme can mimic the admissibility set preservation of the solutions of conservation laws (7). The
extension of Berthon’s work to non-cell centered grids (36) which arise in the blending scheme is given in Theorem 1
whose proof is given in Appendix A. In this section, we give algorithmic details of the 1-D procedure and details of the
2-D procedure can be found in Appendix A.5.

Essentially, the MUSCL-Hancock scheme provides a high order estimate of the subcell fluxes fe
j+ 1

2

used in the low
order scheme (10) and we now explain the procedure for estimating these fluxes. To simplify the notation, let us
suppress the element index e and set

u−2 = ue−1
N−1, u−1 = ue−1

N , {uj = ue
j , 0 ≤ j ≤ N}, uN+1 = ue+1

0 , uN+2 = ue+1
1

Using the mid-point rule in time to integrate the conservation law (1) over the space-time element [xj− 1
2
, xj+ 1

2
] ×

[tn, tn+1], we get

un+1
j = un

j −
∆t

∆xj
(f

n+ 1
2

j+ 1
2

− f
n+ 1

2

j− 1
2

) (15)

where
f
n+ 1

2

j+ 1
2

= f(u
n+ 1

2 ,+
j−1 , u

n+ 1
2 ,−

j )

is obtained from a numerical flux function, usually Rusanov’s flux [56]. The u
n+ 1

2 ,±
j denote the approximations of

solutions in subcell j at right, left faces respectively, evolved to time level n+ 1
2 . Aiming to first approximate the

solution at tn on the faces, we create a linear approximation of the solution in each subcell as

rnj (x) = un
j + (x− xj)δj , δj = minmod (β∆+uj ,∆cuj , β∆−uj) (16)

where, for h1 = xj − xj−1, h2 = xj+1 − xj ,

∆+uj =
un
j+1 − un

j

h2
, ∆−uj =

un
j − un

j−1

h1
, ∆cuj = −

h2

h1(h1 + h2)
un
j−1 +

h2 − h1

h1h2
un
j +

h1

h2(h1 + h2)
un
j+1

The ∆±uj are forward and backward approximations of slope respectively, and ∆cuj is the second order approximation
of the slope. The value β is chosen to lie between 1 and 2; for β = 1, we reduce to the minmod limiter and β = 2
corresponds to the limiter of van Leer [68]. A higher value of β tips the slope closer to the second order approximation,
gaining accuracy but also increasing the risk of spurious oscillations. For all results in this work, the choice of
β = 2−αe is made. Thus, β will be close to 2 in regions where smoothness indicator only detects mild irregularities in
the solution, while it will be near 1 in regions with strong discontinuities. With the linear reconstructions, we can define

un,−
j = rnj (xj− 1

2
) = un

j + δj(xj− 1
2
− xj), un,+

j = rnj (xj+ 1
2
) = un

j + δj(xj+ 1
2
− xj) (17)

Using the conservation law, we approximate the temporal derivatives as

∂tu
n
j := −

f(un,+
j )− f(un,−

j )

xj+ 1
2
− xj− 1

2

and finally use Taylor’s expansion to evolve the face values in time as

u
n+ 1

2 ,−
j = un,−

j +
∆t

2
∂tu

n
j , u

n+ 1
2 ,+

j = un,+
j +

∆t

2
∂tu

n
j (18)

At the interfaces shared with the FR elements, the lower order flux used in computing inter-element flux (Section 5) is
given by fe+ 1

2
= f

n+ 1
2

N+ 1
2

; the dependence on neighbouring states can be made explicit as

fe+ 1
2
= f(ue

N−1, u
e
N , ue+1

0 , ue+1
1 ) (19)

10
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For admissibility of the lower order method, we rely on the following generalization of Berthon [7], proved in
Appendix A.

Theorem 1 Consider a conservation law of the form (1) which preserves the admissibility set Uad (7). Let
{
un
j

}
j

be
the approximate solution at time level n and assume that un

j ∈ Uad for all j. Consider conservative reconstructions

un,+
j = un

j + (xj+ 1
2
− xj)δj , un,−

j = un
j + (xj− 1

2
− xj)δj

Define u∗,±
j by

µ−u
n,−
j + u∗,±

j + µ+u
n,+
j = 2un,±

j (20)
where

µ− =
xj+ 1

2
− xj

xj+ 1
2
− xj− 1

2

, µ+ =
xj − xj− 1

2

xj+ 1
2
− xj− 1

2

Assume that the slope δj is chosen so that
u∗,±
j ∈ Uad (21)

Then, under appropriate time step restrictions (44,47,53), the updated solution un+1
j defined by the MUSCL-Hancock

procedure (15) is in Uad.

Slope limiting in practice

A problem-independent procedure for slope limiting to ensure admissibility preservation is proposed, in contrast to
the original procedure for Euler’s equations in [7] that was extended to the 10-moment problem in [44]. For the
MUSCL-Hancock scheme to be admissibility preserving, the slope δj given by the minmod limiter (16) has to be
further limited so that u∗,±

j = un
j + 2(xj± 1

2
− xj)δj ∈ Uad (20). We explain the procedure with a for loop over the

admissibility constraints {pk, k = 1, . . . ,K}.

δj ← minmod (β∆+uj ,∆cuj , β∆−uj)

u∗,±
j ← un

j + 2(xj± 1
2
− xj)δj

for k=1:K do
ϵk = 1

10pk(u
n
j )

θ± ← min

{∣∣∣∣ ϵk−pk(un
j )

pk(u∗,±
j )−pk(un

j )

∣∣∣∣ , 1}
θk ← min{θ+, θ−}
δj ← θkδj
u∗,±
j ← un

j + 2(xj± 1
2
− xj)δj

end for

At the kth iteration, by concavity of the admissibility constraint pk, the u∗,±
j computed with the corrected slope δj will

satisfy
pk(u

∗,±
j ) = pk(θk(u

∗,±
j )prev + (1− θk)u

n
j ) ≥ θkpk((u

∗,±
j )prev) + (1− θk)pk(u

n
j ) ≥ ϵk (22)

so that the kth admissibility constraint is satisfied; here (u∗,±
j )prev denotes u∗,±

j before the kth correction. The choice
of ϵk = 1

10pk(u
n
j ) was made following [53] to allow only a certain deviation below the safe solution, imposing a

stricter requirement than positivity. Note that this limiting is performed on the slope used for reconstruction in the
MUSCL-Hancock scheme, and not on the updated solution. The previous admissibility constraints pl for l < k will
also continue to be satisfied by using induction argument and concavity of the constraints,

pl(u
∗,±
j ) ≥ θkpl((u

∗,±
j )prev) + (1− θk)pl(u

n
j ) ≥ θkϵl + (1− θk)ϵl = ϵl

The slope δj obtained at the end of K iterations satisfies all admissibility constraints ensuring u∗,±
j ∈ Uad.

5 Flux limiter for admissibility preservation

The first step in obtaining an admissibility preserving blending scheme is to ensure that the lower order scheme preserves
the admissibility set Uad. This is always true if all the fluxes in the lower order method are computed with a finite

11



A PREPRINT - JANUARY 18, 2024

volume method that is proven to be admissibility preserving. But the LWFR scheme uses a time average numerical flux
and maintaining conservation requires that we use the same numerical flux at the element interfaces for both lower
and higher order schemes (see Remark 1). To maintain accuracy and admissibility, we have to carefully choose a
blended numerical flux Fe+ 1

2
as in (12) but this choice may not ensure admissibility and further limitation is required.

Our proposed procedure for choosing the blended numerical flux will give us an admissibility preserving lower order
scheme. After this step, there are two possibilities for obtaining admissibility of the blending scheme. We could follow
the procedure of [53] to a posteriori modify the blending coefficient α to obtain admissibility relying directly on the
admissibility of the lower order scheme. The other option which we take in this work is to note that, as a result of using
the same numerical flux in both high and low order schemes, element means of both schemes are the same (Theorem 2).
A consequence of this is that our scheme now preserves admissibility of element means and thus we can use the scaling
limiter of [78]. The latter approach of correcting element means to obtain a positivity preserving Lax-Wendroff scheme
has been used in [45], where the numerical flux is corrected to directly make element means admissible. In comparison
to [45], our procedure for ensuring admissibility of element means requires less storage and loops.

The theoretical basis for flux limiting can be summarised in the following Theorem 2.

Theorem 2 Consider the LWFR blending scheme (8) where low and high order schemes use the same numerical flux
Fe+ 1

2
at every element interface. Then the following can be said about admissibility preserving in means property

(Definition 2) of the scheme:

1. element means of both low and high order schemes are same and thus the blended scheme (8) is admissibility
preserving in means if and only if the lower order scheme is admissibility preserving in means;

2. if the finite volume method using the lower order flux fe+ 1
2

as the interface flux is admissibility preserving,
such as the first-order finite volume method or the MUSCL-Hancock scheme with CFL restrictions and slope
correction from Theorem 1, and the blended numerical flux Fe+ 1

2
is chosen to preserve the admissibility of

lower-order updates at solution points adjacent to the interfaces, then the blending scheme (8) will preserve
admissibility in means.

Proof By (6, 11), element means are the same for both low and high order schemes. Thus, admissibility in means of
one implies the same for other, proving the first claim. For the second claim, note that our assumptions imply (ue

j)
L,n+1

given by (10) is in Uad for 0 ≤ j ≤ N implying admissibility in means property of the lower order scheme by (11) and
thus admissibility in means for the blended scheme. 2

We now explain the procedure of ensuring that the update obtained by the lower order scheme will be admissible. The
lower order scheme is computed with a first order finite volume method or MUSCL-Hancock with slope correction
from Theorem 1 so that admissibility is already ensured for inner solution points; i.e., we already have

(ue
j)

L,n+1 ∈ Uad, 1 ≤ j ≤ N − 1

The remaining admissibility constraints for the first (j = 0) and last solution points (j = N ) will be satisfied
by appropriately choosing the inter-element flux Fe+ 1

2
. The first step is to choose a candidate for Fe+ 1

2
which is

heuristically expected to give reasonable control on spurious oscillations, i.e.,

Fe+ 1
2
= (1− αe+ 1

2
)F LW

e+ 1
2
+ αe+ 1

2
fe+ 1

2
, αe+ 1

2
=

αe + αe+1

2

where fe+ 1
2

is the lower order flux at the face e+ 1
2 shared between FR elements and subcells (14, 19), and αe is the

blending coefficient (8) based on element-wise smoothness indicator (Section 3.3).

The next step is to correct Fe+ 1
2

to enforce the admissibility constraints. The guiding principle of our approach is to
perform the correction within the face loops, minimizing storage requirements and additional memory reads. The lower
order updates in subcells neighbouring the e+ 1

2 face with the candidate flux are

ũn+1
0 = (ue+1

0 )n − ∆t

w0∆xe+1
(fe+1

1
2

− Fe+ 1
2
)

ũn+1
N = (ue

N )n − ∆t

wN∆xe
(Fe+ 1

2
− fe

N− 1
2
)

(23)

12
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To correct the interface flux, we will again use the fact that first order finite volume method and MUSCL-Hancock with
slope correction from Theorem 1 preserve admissibility, i.e.,

ũlow,n+1
0 = (ue+1

0 )n − ∆t

w0∆xe+1
(fe+1

1
2

− fe+ 1
2
) ∈ Uad

ũlow,n+1
N = (ue

N )n − ∆t

wN∆xe
(fe+ 1

2
− fe

N− 1
2
) ∈ Uad

Let {pk, 1 ≤ 1 ≤ K} be the admissibility constraints (2) of the conservation law. The numerical flux is corrected by
iterating over the admissibility constraints as follows

Fe+ 1
2
← (1− αe+ 1

2
)F LW

e+ 1
2

+ αe+ 1
2
fe+ 1

2

for k=1:K do
ϵ0, ϵN ← 1

10pk(ũ
low,n+1
0 ), 1

10pk(ũ
low,n+1
N )

θ ← min

(
minj=0,N

∣∣∣∣ ϵj−pk(ũ
n+1
j )

pk(ũ
low,n+1
j )−pk(ũ

n+1
j )

∣∣∣∣ , 1)
Fe+ 1

2
← θFe+ 1

2
+ (1− θ)fe+ 1

2

ũn+1
0 ← (ue+1

0 )n − ∆t
w0∆xe+1

(fe+1
1
2

− Fe+ 1
2
)

ũn+1
N ← (ue

N )n − ∆t
wN∆xe

(Fe+ 1
2
− fe

N− 1
2

)

end for

By concavity of pk, after the kth iteration, the updates computed using flux Fe+ 1
2

will satisfy

pk(ũ
n+1
j ) = pk(θ(ũ

n+1
j )prev + (1− θ)ũlow,n+1

j ) ≥ θpk((ũ
n+1
j )prev) + (1− θ)pk(ũ

low,n+1
j ) ≥ ϵj , j = 0, N (24)

satisfying the kth admissibility constraint; here (ũn+1
j )prev denotes ũn+1

j before the kth correction and the choice of
ϵj =

1
10pk(ũ

low,n+1
j ) is made following [53]. After the K iterations, all admissibility constraints will be satisfied and

the resulting flux Fe+ 1
2

will be used as the interface flux keeping the lower order updates and thus the element means
admissible. Thus, by Theorem 2, the choice of blended numerical flux gives us admissibility preservation in means. We
now use the scaling limiter of [78] to obtain an admissibility preserving scheme as defined in Definition 1, an overview
of the complete scheme can be found in Algorithm 1. The above procedure is for 1-D conservation laws; the extension
to 2-D is performed by breaking the update into convex combinations of 1-D updates and adding additional time step
restrictions; the details are given in Appendix B.

6 Some implementation details

In Section 5, the procedure for computing the blended numerical flux to achieve admissibility preservation in means for
LWFR (Definition 2) was presented. In this section, we present an overview of the complete LWFR blended scheme
which employs the computed blended flux and the scaling limiter of [78] to obtain an admissibility preserving scheme
(Definition 1) in Algorithm 1.

The residual in (8) is computed by performing an element loop and a face loop, incorporating blending within each of
these loops. Within the element loop, we compute lower order fluxes on the subcell faces not shared by the FR elements.
The fluxes for the faces shared by FR elements are computed within the face loop, and subsequently blended with the
LW flux. This approach enables direct computation and use of each quantity, without the need for intermediate storage.
However, to compute (23), admissibility preservation requires storage of lower order fluxes fe

1
2

and fe
N− 1

2

, which are
computed during the element loop.

In Algorithm 1, we give a high level overview of the LWFR with blending scheme. In practice, some operations could
be reduced by computing only high or low order residuals in the cases where αe = 0 or αe = 1, but we did not include
this optimization in Algorithm 1 to maintain simplicity in our explanation. The correction procedure of numerical flux
for admissibility preservation (Section 5) is performed within the interface iteration. The contribution of numerical
flux to the residual is added in a different element loop to avoid race conditions in a multi-threaded loop; only one
loop would be needed in a serial code. After the solution update in Algorithm 1, the blended flux will ensure that
our purely low order update and the element means are admissible. However, the updates at solution points need not
be admissible at this stage and must be corrected. The correction at solution points could now be performed as an a
posteriori modification of the blending coefficients [53] or using the scaling limiter of [78]; we use the scaling limiter
for all results in this work.

13
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Algorithm 1 High-level overview of the Lax-Wendroff with blending scheme

while t < T do
Compute {αe} (Section 3.3)
for e in eachelement(mesh) do ▷ Assemble element residual

Add LW element residual to rhs scaled with 1− αe

Add FV subcell residual to rhs scaled with αe

Store fe
1
2

, fe
N− 1

2

(23)
end for
for e+ 1

2 in eachinterface(mesh) do ▷ Compute interface flux
Compute F LW

e+ 1
2

, fe+ 1
2

and blend them into Fe+ 1
2

(Section 5)
end for
for e in eachelement(mesh) do ▷ Assemble face residual

Add contribution of Fe± 1
2

to high, low order residual scaled with 1− αe, αe respectively
end for
Update solution
Apply positivity correction at solution points using [78] or [53]
t← t+∆t

end while

7 Numerical results

We perform various tests to show the robustness and accuracy of the proposed blending scheme. The LWFR results are
always obtained with D2 dissipation and EA flux [5] with Rusanov’s numerical flux using Gauss-Legendre solutions
point and Radau correction functions. All numerical simulations were run with the first order blending (Section 3.4),
MUSCL-Hancock blending (Section 4) and TVB limiter with fine-tuned parameter M plotted with legends FO, MH
and TVB-M. We also made comparison with the results of first order blending scheme using Gauss-Legendre-Lobatto
points of [34] implemented in Trixi.jl [51, 57]. Our code is publicly available at [4], and the scripts for reproducing
results in this work are available at [3]. The user only needs to install Julia [8] and the remaining dependencies are
automatically handled by Julia environments and its package manager.

7.1 1-D Euler equations

As an example of system of non-linear hyperbolic equations, consider the one-dimensional Euler equations of gas
dynamics given by

∂

∂t

(
ρ
ρv
E

)
+

∂

∂x

 ρv
p+ ρv2

(E + p)v

 = 0 (25)

where ρ, v, p and E denote the density, velocity, pressure and total energy of the gas, respectively. For a polytropic gas,
an equation of state E = E(ρ, v, p) which leads to a closed system is given by

E = E(ρ, v, p) =
p

γ − 1
+

1

2
ρv2 (26)

where γ > 1 is the adiabatic constant. Unless otherwise specified, it will be taken as 1.4 which is the value for air. The
time step size for polynomial degree N is computed as

∆t = Cs min
e

(
∆xe

|ve|+ ce

)
CFL(N) (27)

where e is the element index, ve, ce are velocity and sound speed of element mean in element e, CFL(N) is the optimal
CFL number obtained by Fourier stability analysis (Table 1 of [5]) and Cs ≤ 1 is a safety factor. Most of the numerical
results presented in this work use degree N = 4 for which CFL(N) = 0.069. The admissibility preservation of
subcell based MUSCL-Hancock imposes a time restriction (Theorem 1) which depends on several quantities other than
element means, including some evolved quantities, see equations (44, 47, 53). The CFL coefficient of MUSCL-Hancock
admissibility is also smaller than CFL(N) in (27), see Remark 2. However, we have found the time step given by (27)
with Cs = 0.98 to be sufficient for admissibility preservation in all the simulations we have performed. Thus, we do
not explicitly impose the CFL restrictions in Theorem 1 as they are more severe and expensive to compute. If the
admissibility is violated in any cell, then the time update can be repeated in those cells by lowering the time step by
some fraction.

14
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Figure 4: Shu-Osher problem, numerical solution with degree N = 4 using first order (FO) and MUSCL-Hancock
(MH) blending schemes, and TVB limited scheme (TVB-300) with parameter M = 300. (a) Full and (b) zoomed
density profiles of numerical solutions are shown up to time t = 1.8 on a mesh of 400 cells.

7.1.1 Shu-Osher problem

This problem was developed in [59] to test the numerical scheme’s capability to accurately capture a shock wave and its
interaction with a smooth density field, which then propagates downstream of the shock. Here, we compute the solution
of (25) up to time t = 1.8 with initial condition

(ρ, v, p) =

{
(3.857143, 2.629369, 10.333333), if x < −4
(1 + 0.2 sin(5x), 0, 1), if x ≥ −4 (28)

prescribed in the domain [−5, 5] with transmissive boundary conditions. The smooth density profile passes through the
shock and appears on the other side, and its accurate computation is challenging due to numerical dissipation. Due
to presence of both spurious oscillations and smooth extremums, this becomes a good test for testing robustness and
accuracy of limiters. We discretize the spatial domain with 400 cells using polynomial degree N = 4 and compare
blending schemes and TVB limiter with parameter M = 300 [48]. The density component of the approximate solutions
computed for the compared limiters are plotted against a reference solution obtained using a very fine mesh, and are
given in Figure (4). The three limiters show similar performance in Figure (4a) on the large scale. The enlarged plot in
Figure (4b) shows that the MUSCL-Hancock blending scheme is able to capture smooth extrema better than the first
order blending and the TVB scheme.

7.1.2 Blast wave

The Euler equations (25) are solved with the initial condition

(ρ, v, p) =


(1, 0, 1000), if x < 0.1

(1, 0, 0.01), if 0.1 < x < 0.9

(1, 0, 100), if x > 0.9

in the domain [0, 1]. This test was originally introduced in [74] to check the capability of the numerical scheme to
accurately capture the shock-shock interaction scenario. The boundaries are set as solid walls by imposing the reflecting
boundary conditions at x = 0 and x = 1. The solution consists of reflection of shocks and expansion waves off
the boundary wall and several wave interactions inside the domain. The numerical solutions are inadmissible if the
positivity correction is not applied. With a grid of 400 cells using polynomial degree N = 4, we run the simulation
till the time t = 0.038 where a high density peak profile is produced. As in the previous test, we compare first order
(FO) and MUSCL-Hancock (MH) blending schemes, and TVB limiter with parameter M = 300 [48] (TVB-300). We
compare the performance of limiters in Figure (5) where the approximated density and pressure profiles are compared
with a reference solution computed using a very fine mesh. Looking at the peak amplitude and contact discontinuity of
the density profile which is also shown in the zoomed inset, it is clear that MUSCL-Hancock blending scheme gives the
best resolution, especially when compared with the TVB limiter.
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Figure 5: Blast wave problem, numerical solution with degree N = 4 using first order (FO) and MUSCL-Hancock
(MH) blending schemes, and TVB limited scheme (TVB-300) with parameter M = 300. (a) Density, (b) pressure
profiles are shown at time t = 0.038 on a mesh of 400 cells.
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Figure 6: Sedov’s blast wave problem, numerical solution with degree N = 4 using first order (FO) and MUSCL-
Hancock blending schemes. (a) Density and (b) pressure profiles of numerical solutions are plotted at time t = 0.001
on a mesh of 201 cells.

7.1.3 Sedov’s blast wave

To demonstrate the admissibility preserving property of our scheme, we simulate Sedov’s blast wave [58]; the test
describes the explosion of a point-like source of energy in a gas. The explosion generates a spherical shock wave
that propagates outwards, compressing the gas and reaching extreme temperatures and pressures. The problem can
be formulated in one dimension as a special case, where the explosion occurs at x = 0 and the gas is confined to the
interval [−1, 1] by solid walls. For the simulation, on a grid of 201 cells with solid wall boundary conditions, we use
the following initial data [80],

ρ = 1, v = 0, E(x) =

{
3.2×106

∆x , |x| ≤ ∆x
2

10−12, otherwise

where ∆x is the element width. This is a difficult test for positivity preservation because of the high pressure ratios.
Nonphysical solutions are obtained if the proposed admissibility preservation corrections are not applied. The density
and pressure profiles at t = 0.001 are obtained using blending schemes are shown in Figure 6. Results of TVD limiter
are not shown as it fails to preserve positivity in this test because the admissibility correction of Lax-Wendroff scheme
depends on the blended numerical flux (Section 5).
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Figure 7: Double rarefaction problem, numerical solution with degree N = 4 using first order (FO) and MUSCL-
Hancock (MH) blending. (a) Density and (b) pressure profiles of numerical solutions are plotted at t = 0.6 on a mesh
of 200 cells.

7.1.4 Riemann problems

We test two extreme Riemann problems from [78] to demonstrate admissibility preservation of our scheme. The first is
a Riemann problem with no shocks and two rarefactions, which move away from each other leading to a near vacuum
state in the exact solution. The low densities make it a challenging test, as the oscillations can easily cause negative
density values. We run the simulation on the domain [−1, 1] with initial data

(ρ, v, p) =

{
(7.0,−1.0, 0.2), −1 ≤ x ≤ 0

(7.0, 1.0, 0.2), otherwise

The results obtained using blending schemes are shown in Figure 7 on a mesh of 200 cells with transmissive boundary
conditions at time t = 0.6.

The second test is a 1D Leblanc shock tube problem with initial data

(ρ, v, p) =

{
(2, 0, 109), −1 ≤ x ≤ 0

(0.001, 0, 1), otherwise

The solution has extremely high density and pressure ratios across the shock and the numerical solutions give negative
pressure if the proposed admissibility preservation techniques are not applied. The log-scaled results obtained using
blending schemes are shown in Figure 8 at time t = 0.001 on a mesh of 800 cells with transmissive boundary conditions.

7.2 2-D advection equation

We consider the advection equation in two dimensions

ut +∇ · [a(x, y)u] = 0 (29)

with a test case from [42] where the equation (29) is solved with a divergence free velocity field, a = ( 12 − y, x− 1
2 ),

and an initial condition which consists of a slotted disc, a cone and a smooth hump, given as follows

u(x, y, 0) = u1(x, y) + u2(x, y) + u3(x, y), (x, y) ∈ [0, 1]× [0, 1]

u1(x, y) =
1

4
(1 + cos(πq(x, y))), q(x, y) = min(

√
(x− x̄)2 + (y − ȳ)2, r0)/r0, (x̄, ȳ) = (0.25, 0.5), r0 = 0.15

u2(x, y) =

1− 1

r0

√
(x− x̄)2 + (y − ȳ)2 if (x− x̄)2 + (y − ȳ)2 ≤ r20

0 otherwise
, (x̄, ȳ) = (0.5, 0.25), r0 = 0.15

u3(x, y) =

{
1 if (x, y) ∈ C

0 otherwise
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Figure 8: Leblanc’s test, numerical solution with polynomial degree N = 4 using first order (FO) and MUSCL-Hancock
(MH) blending. (a) Density and (b) pressure profiles of numerical solutions with log-scales are plotted at t = 0.001 on
a mesh of 800 cells.

(a) Exact (b) TVB with M = 100 (c) FO blending (d) MH blending

Figure 9: Rotation of a composite signal with velocity a = ( 12 − y, x− 1
2 ), numerical solution with polynomial degree

N = 4 on a mesh of 1002 elements.

where C is a slotted disc with center at (0.5, 0.75) and radius of 0.15.

The characteristics of the PDE are circles and the solution returns to its initial state after a period of time t = 2π.
Figure (9) compares contour plots of polynomial solutions obtained using the LWFR method of degree N = 4 with
TVB limiter using a fine-tuned parameter M = 100, and with blending limiter using first order and MUSCL-Hancock
reconstructions, after one time period. The blending limiter with MUSCL-Hancock reconstruction is shown to produce
more accurate solutions among the three profiles especially when compared to the TVB limiter, as the TVB limiter
results in greater smearing of the profile. The sharp features of slotted disc profile show the most notable improvement.

7.3 2-D Euler equations

We consider the two-dimensional Euler equations of gas dynamics given by

∂

∂t

 ρ
ρu
ρv
E

+
∂

∂x

 ρu
p+ ρu2

ρuv
(E + p)u

+
∂

∂y

 ρv
ρuv

p+ ρv2

(E + p)v

 = 0 (30)

where ρ, p and E denote the density, pressure and total energy of the gas, respectively and (u, v) are Cartesian
components of the fluid velocity. For a polytropic gas, an equation of state E = E(ρ, u, v, p) which leads to a closed
system is given by

E = E(ρ, u, v, p) =
p

γ − 1
+

1

2
ρ(u2 + v2) (31)

where γ > 1 is the adiabatic constant. Unless otherwise specified, the adiabatic constant will be taken as 1.4 in the
numerical tests, which is the typical value for air.
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Figure 10: Convergence analysis of isentropic vortex test for polynomial degrees N = 3, 4 when (a) the blending
limiter is active (b) no limiter is active.

The time step size for polynomial degree N is computed as

∆t = Cs min
e

( |ue|+ ce
∆xe

+
|ve|+ ce
∆ye

)−1

CFL(N) (32)

where e is the element index, (ue, ve), ce are velocity and sound speed of element mean in element e, CFL(N) is the
optimal CFL number obtained by Fourier stability analysis (Table 1 of [5]) and Cs ≤ 1 is a safety factor. Most of the
numerical results presented in this work use degree N = 4 for which CFL(N) = 0.069. As in the 1-D case, (32) will
not guarantee that the time step restriction for admissibility of MUSCL-Hancock scheme on the subcells is satisfied.
However, we have found all tests to work with (32) using Cs = 0.98 and the results are shown with that safety factor
unless otherwise specified.

For verification of numerical results and to demonstrate the accuracy gain of our proposed Lax-Wendroff blending
scheme with MUSCL-Hancock reconstruction using Gauss-Legendre points, we will compare our results with the first
order blending scheme using Gauss-Legendre-Lobatto (GLL) points of [34] available in Trixi.jl [51]. Both solvers
use the same time step sizes in all results. We have also performed experiments using LWFR with first order blending
scheme and Gauss-Legendre (GL) points, and observed lower accuracy than the MUSCL-Hancock blending scheme,
but higher accuracy than the first order blending scheme implementation of Trixi.jl using GLL points. These results
are expected since GL points and quadrature are more accurate than GLL points, and MUSCL-Hancock is also more
accurate than first order finite volume method. However, to save space, we have not presented the results of LWFR with
first order blending.

7.3.1 Isentropic vortex convergence test

This problem [76, 61] consists of a vortex that advects at a constant velocity while the entropy is constant in both space
and time. The initial condition is given by

ρ =

[
1− β2(γ − 1)

8γπ2
exp(1− r2)

] 1
γ−1

, u = M∞ cosα− β(y − yc)

2π
exp

(
1− r2

2

)

v = M∞ sinα+
β(x− xc)

2π
exp

(
1− r2

2

)
, r2 = (x− xc)

2 + (y − yc)
2

and the pressure is given by p = ργ . We choose the parameters β = 5, M∞ = 0.5, α = 45o, (xc, yc) = (0, 0) and
the domain is taken to be [−10, 10]× [−10, 10] with periodic boundary conditions. For this configuration, the vortex
returns to its initial position after a time interval of T = 20

√
2/M∞ units. We run the computations up to a time t = T

when the vortex has crossed the domain once in the diagonal direction. Figure (10a) compares the L2 error of density
sampled at N + 3 equispaced points against grid resolution when using the blending limiter. It can be seen that the
limiter does not activate for adequately high resolution, yielding the same optimal convergence rates as those achieved
without the limiter, as shown in Figure (10b).
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(a) Trixi.jl (b) LW-MH

Figure 11: 2-D Riemann problem, density plots of numerical solution at t = 0.25 for degree N = 4 on a 256× 256
mesh.

7.3.2 2-D Riemann problem

2-D Riemann problems consist of four constant states and have been studied theoretically and numerically for gas
dynamics in [32]. We consider this problem in the square domain [0, 1]2 where each of the four quadrants has one
constant initial state and every jump in initial condition leads to an elementary planar wave, i.e., a shock, rarefaction or
contact discontinuity. There are only 19 such genuinely different configurations possible [77, 40]. As studied in [77], a
bounded region of subsonic flows is formed by interaction of different planar waves leading to appearance of many
complex structures depending on the elementary planar flow. We consider configuration 12 of [40] consisting of 2
positive slip lines and two forward shocks, with initial condition

(ρ, u, v, p) =


(0.5313, 0, 0, 0.4) if x ≥ 0.5, y ≥ 0.5

(1, 0.7276, 0, 1) if x < 0.5, y ≥ 0.5

(0.8, 0, 0, 1) if x < 0.5, y < 0.5

(1, 0, 0.7276, 1) if x ≥ 0.5, y < 0.5

The simulations are performed with transmissive boundary conditions on an enlarged domain up to time t = 0.25. The
density profiles obtained from the MUSCL-Hancock blending scheme and Trixi.jl are shown in Figure (11). We
see that both schemes give similar resolution in most regions. The MUSCL-Hancock blending scheme gives better
resolution of the small scale structures arising across the slip lines.

A plot of the blending coefficients computed by the smoothness indicator is shown in Figure (12) at an early time
t = 0.025 (12a) and the final time t = 0.25 (12b). The blending coefficient takes values close to α = 1 in the vicinity
of shocks while smaller values are seen near the stationary contact discontinuities. Figure (13) shows the percentage
of cells in which the indicator function α > 0 as a function of time. From these figures we see that limiting is only
performed in a small subset of the elements in the grid and the indicator is able to track the sharp features and ignore
the smooth regions.

7.3.3 Double Mach reflection

This test case was originally proposed by Woodward and Colella [74] and consists of a shock impinging on a wedge/ramp
which is inclined by 30 degrees. The solution consists of a self similar shock structure with two triple points. By a
change of coordinates, the situation is simulated in the rectangular domain Ω = [0, 4]× [0, 1], where the wedge/ramp is
positioned at x = 1/6, y = 0. Defining ub = ub(x, y, t) with primitive variables given by

(ρ, u, v, p) =

{
(8, 8.25 cos

(
π
6

)
,−8.25 sin

(
π
6

)
, 116.5), if x < 1

6 + y+20t√
3

(1.4, 0, 0, 1), if x > 1
6 + y+20t√

3
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(a) t = 0.025 (b) t = 0.25

Figure 12: 2-D Riemann problem, blending coefficient α for degree N = 4 on a 256× 256 mesh.
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Figure 13: 2-D Riemann problem, percentage of elements where the smoothness coefficient α > 0 vs time t, for
approximate solution with polynomial degree N = 4 on a 256× 256 mesh.
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(a) Trixi.jl (b) LW-MH

Figure 14: Double Mach reflection problem, density plots of numerical solution at t = 0.2 using polynomial degree
N = 4 on a 600× 150 mesh zoomed near the primary triple point.

we define the initial condition to be u0(x, y) = ub(x, y, 0). With ub, we impose inflow boundary conditions at the left
side {0}× [0, 1], outflow boundary conditions both at [0, 1/6]×{0} and {4}× [0, 1], reflecting boundary conditions at
[1/6, 4]× {0} and inflow boundary conditions at the upper side [0, 4]× {1}.
The simulation is run on a mesh of 600 × 150 elements using degree N = 4 polynomials upto time t = 0.2. In
Figure (14), we compare the results of Trixi.jl with the MUSCL-Hancock blended scheme zoomed near the primary
triple point. As expected, the small scale structures are captured better by the MUSCL-Hancock blended scheme.

7.3.4 Kelvin-Helmholtz instability

Fluid instabilities are essential for mixing processes and turbulence production, and play a significant role in many
astrophysical phenomena. They are crucial for accurately modeling stripping of gas from satellite galaxies, as well as
calculating the expected levels of turbulence and entropy in the intracluster gas of galaxy clusters [62]. The Kelvin-
Helmholtz instability is a common fluid instability that occurs across contact discontinuities in the presence of a
tangential shear flow. This instability leads to the formation of vortices that grow in amplitude and can eventually lead
to the onset of turbulence. We adopt the initial conditions for this instability from [62] over the domain [0, 1]2,

ρ(x, y) =

{
2, if 0.25 < y < 0.75

1, otherwise

u(x, y) =

{
0.5, if 0.25 < y < 0.75

−0.5, otherwise,

v(x, y) = w0 sin(4πx)

{
exp

[
− (y − 0.25)2

2σ2

]
+ exp

[
− (y − 0.75)2

2σ2

]}
p(x, y) = 2.5

with w0 = 0.1, σ = 0.05/
√
2 and the adiabatic index γ = 7/5 corresponding to diatomic gases. The initial conditions

consist of a single strongly excited mode in the y velocity concentrated near the interfaces. The wavelength is chosen to
be equal to half the domain size so that the single mode dominates the linear growth of instability. This instability leads
to shearing and small scale, self-similar vortex structures. We run this test using solution polynomial degree N = 4
on a mesh of 5122 elements and periodic boundary conditions. We compare the density profiles of Trixi.jl and our
MUSCL-Hancock blending scheme in Figure (15). The presence of more vortex structures with the MUSCL-Hancock
scheme suggests that the scheme has lesser dissipation errors and is capable of capturing small scale features.

7.3.5 Astrophysical jet

In this test, a hypersonic jet is injected into a uniform medium with a Mach number of 2000 relative to the sound speed
in the medium. Following [33, 79], the domain is taken to be [0, 1]× [−0.5, 0.5], the ambient gas in the interior has
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(a) Trixi.jl (b) LW-MH

(c) Trixi.jl zoomed around top left (d) LW-MH zoomed around top left

Figure 15: Kelvin-Helmholtz instability, density plots of numerical solution at t = 0.4 using polynomial degree N = 4
with Rusanov flux on a 5122 element mesh.

state ua defined in primitive variables as

(ρ, u, v, p)a = (0.5, 0, 0, 0.4127)

and inflow state uj is defined in primitive variables as

(ρ, u, v, p)j = (5, 800, 0, 0.4127)

On the left boundary, we impose the boundary conditions

ub =

{
ua, if y ∈ [−0.05, 0.05]
uj , otherwise

and outflow conditions on the right, top and bottom. The HLLC numerical flux was used in the left most cells to
distinguish between characteristics entering and exiting the domain. To get better resolution of vortices, we used a
smaller time step with Cs = 0.5 in (32) and included ghost elements in time step computation to handle the cold start.
The high velocity makes the kinetic energy much higher than internal energy. Thus, it is very likely for numerical
solvers to give negative pressures. At the same time, a Kelvin-Helmholtz instability arises before the bow shock. Thus,
it is a good test both for admissibility preservation and capturing small scale structures. The simulation gives negative
pressures if used without the proposed admissibility preservation techniques. While the large scale structures are
captured similarly by both the schemes as seen in Figure (16), the LWFR with MH blending scheme shows more small
scales near the front of the jet.

7.3.6 Sedov’s blast case with periodic boundary conditions

Similar to Sedov’s blast test in Sections 7.1.3 this test from [53] on domain [−1.5, 1.5]2 has energy concentrated at the
origin. More precisely, for the initial condition, we assume that the gas is at rest (u = v = 0) with Gaussian distribution
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(a) Trixi.jl (b) LW-MH

Figure 16: Mach 2000 astrophysical jet, density plot of numerical solution in log scales on 400× 400 mesh at time
t = 0.001.

(a) t = 2 (b) t = 20

Figure 17: Sedov’s blast test with periodic domain, density plot of numerical solution on 128× 128 mesh in log scales
with degree N = 4 at (a) t = 2 and (b) t = 20 with polynomial degree N = 4 computed using Trixi.jl.

of density and pressure

ρ(x, y) = ρ0 +
1

4πσ2
ρ

exp

(
− r2

2σ2
ρ

)
, p(x, y) = p0 +

γ − 1

4πσ2
p

exp

(
− r2

2σ2
p

)
, r2 = x2 + y2 (33)

where σρ = 0.25 and σp = 0.15. The ambient density and ambient pressure are set to ρ0 = 1, p0 = 10−5. There
are two differences in this Sedov’s test compared to the previous - the energy concentrated at the origin is lesser, and
domain is assumed to be periodic. When shocks collide at the periodic boundaries, the resulting interaction leads to
the formation of small scale structures. In Figure (18), we compare the density profiles of the numerical solutions of
polynomial degree N = 4 on a mesh of 642 elements using Trixi.jl and the proposed MUSCL-Hancock blending
scheme in log scales. Looking at the reference solution on a finer 1282 element mesh (Figure (17)), we see that the
MUSCL-Hancock scheme resolves the small scale structures better.

24



A PREPRINT - JANUARY 18, 2024

(a) Trixi.jl (b) LW-MH

Figure 18: Sedov’s blast test with periodic domain, density plot of numerical solution on 64× 64 mesh in log scales at
t = 20 with degree N = 4.

7.3.7 Detonation shock diffraction

This test [64] involves a planar detonation wave that interacts with a wedge-shaped corner and diffracts around it,
resulting in a complicated wave pattern comprising of transmitted and reflected shocks, as well as rarefaction waves.
The computational domain is Ω = [0, 2]2\([0, 0.5]× [0, 1]) and following [34], the simulation is performed by taking
the initial condition to be a pure right-moving shock with Mach number of 100 initially located at x = 0.5 and travelling
through a channel of resting gas. The post shock states are computed by normal relations [1], so that the initial data is

ρ(x, y) =

{
5.9970, if x ≤ 0.5

1, if x > 0.5
, u(x, y) =

{
98.5914, if x ≤ 0.5

0, if x > 0.5

v(x, y) = 0, p(x, y) =

{
11666.5, if x ≤ 0.5

1, if x > 0.5

The left boundary is set as inflow and right boundary is set as outflow, all other boundaries are solid walls. The
numerical results at t = 0.01 with polynomial degree N = 4 on a Cartesian grid consisting of uniformly sized squares
with ∆x = ∆y = 1/200 are shown in Figure (19). The results look similar to [34]; the strong shock makes this a tough
test for the admissibility preservation and negative pressure values are obtained if the proposed admissibility correction
is not applied.

7.3.8 Forward facing step

Forward facing step is a classical test case from [31, 74] where a uniform supersonic flow passes through a channel with
a forward facing step generating several phenomena like a strong bow shock, shock reflections and a Kelvin-Helmholtz
instability. It is a good test for demonstrating a shock capturing scheme’s capability of capturing small scale vortex
structures while suppressing spurious oscillations arising from shocks. The step is simulated by taking the domain to be
Ω = ([0, 3]× [0, 1])\([0.6, 3]× [0, 0.2]) and the initial conditions are taken to be

(ρ, u, v, p) = (1.4, 3, 0, 1)

The initial conditions are taken to be constant over the whole domain Ω. The left boundary condition is taken as
an inflow and the right one is an outflow, the rest are solid walls. The corner (0.6, 0.2) of the step is the center of a
rarefaction fan and is thus a singular point leading to formation of a spurious boundary layer. The modern treatment of
this issue is to use a more refined mesh near the corner point. Since we only have a Cartesian mesh, we obtain the same
outcome by forming 1-D meshes in [0, 1], [0, 3] with the same grid spacing ∆xmax away from the singularity and the
smaller grid spacing ∆xmin = 1

4∆xmax in [0.15, 0.25], [0.45, 0.75]. Then, the 2-D mesh is formed by taking a tensor
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(a) Density (b) Mach number

Figure 19: Shock diffraction test, numerical solution at time t = 0.01 with degree N = 4 and grid spacing ∆x =
∆y = 1/200.

product of the two 1-D meshes with cells from [0.6, 3]× [0, 0.2] removed. We show the density profile of numerical
solutions in Figure (20a, b, c) for solution polynomial degrees N = 2, 3, 4 with ∆xmax = 1/160. The scheme captures
both the shock and the small scale vortices, with better resolution of shear structures from the triple shock point near
the top wall as the overall resolution is increased. The corner point singularity causes an artificial boundary layer and
Mach stem to occur but these numerical artifacts decrease as we increase mesh resolution by increasing the polynomial
degree. Figure (21) shows the time evolution of the percentage of cells in the grid where the blending coefficient α > 0
and Figure (20d) plots the blending coefficient for degree N = 4 solution at the final time; these figures show that the
blending limiter is activated in a small fraction of the cells and only in the vicinity of shocks.

8 Summary and conclusions

An admissibility preserving subcell-based blending limiter for the high order Lax-Wendroff Flux Reconstruction
(LWFR) scheme has been constructed by extending the LWFR scheme proposed in [5] using the blending limiter
of [34]. The scheme uses a smoothness indicator to blend two single-stage solvers on the FR grid, one based on the
high order LWFR method and the other based on a finite volume update on the subcells. At the FR element interfaces, a
blended numerical flux is constructed using the Lax-Wendroff time averaged flux and lower order numerical flux. The
same blended numerical flux is used by both schemes at the element interfaces to maintain conservation. The crucial
observation used for obtaining admissibility preservation was that admissibility preservation in means is a consequence
of admissibility of the lower order updates. A simple and efficient procedure to obtain admissibility preservation in
means was thus proposed, where lower-order updates are made admissible by appropriately constructing the blending
numerical flux within the face loop. This approach eliminates the need for additional element or interface loops,
minimizing storage requirements. The user only needs to provide the admissibility constraints {pk, k = 1, . . . ,K}
which are concave functions of the conservative variables and whose positivity implies that the solution is in the
admissibility set Uad, making the correction problem-independent. Once admissibility preservation in means is obtained,
we use the scaling limiter of [79] to enforce admissibility of the polynomial values. To enhance accuracy, we modified
the blending scheme of [34] to use Gauss-Legendre solution points and used the second-order MUSCL-Hancock
scheme to compute the lower-order residual. We extended the slope restriction criterion of [7] for admissibility of the
MUSCL-Hancock scheme to non-cell-centered grids that arise in the blending scheme to maintain the conservation
property. We also proposed a problem-independent procedure to enforce the slope restriction. The scheme is robust and
the higher resolution of MUSCL-Hancock is more superior in capturing small scale structures, as was demonstrated by
numerical experiments on compressible Euler equations.
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(a) N = 2

(b) N = 3

(c) N = 4

(d) Blending coefficient α for N = 4

Figure 20: Forward facing step, density plots of numerical solution at time t = 3.0 with solution polynomial degrees
N = 2, 3, 4 (a, b, c) and blending coefficient plot for degree N = 4 (d). The meshes are formed by taking grid spacing
∆xmax = ∆ymax= 1/160 away from the corner and smaller grid spacing ∆xmin = ∆ymin = 1

4∆xmax near the corner.
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Figure 21: Forward facing step test case, percentage of elements where the smoothness coefficient α is non-zero versus
time t for approximate solution with polynomial degree N = 4 on a mesh with ∆xmax = 1/160.

Data availability

The code and data used to produce the results in this paper will be made publicly available at [3, 4] after publication of
the paper.

A Admissibility of MUSCL-Hancock scheme for general grids

For the conservation law (1), define σ (u1, u2) as

σ (u1, u2) = max{ρ(f ′(uλ)) : uλ = λu1 + (1− λ)u2, 0 ≤ λ ≤ 1}

where ρ(A) denotes the spectral radius of matrix A. For the 2-D hyperbolic conservation law

ut + fx + gy = 0 (34)

where (f, g) are Cartesian components of the flux vector; the wave speed estimates in x, y directions are defined as
follows

σx (u1, u2) = max{ρ(f ′(uλ)) : uλ = λu1 + (1− λ)u2, 0 ≤ λ ≤ 1}
σy (u1, u2) = max{ρ(g′(uλ)) : uλ = λu1 + (1− λ)u2, 0 ≤ λ ≤ 1}

We assume that the admissibility set Uad of the conservation law is a convex subset of Rd which can be written as (2).
The following assumption is made concerning the admissibility of first order finite volume scheme.

Admissibility of first order finite volume scheme. Under the time step restriction

max
j

∆t

∆xj
σ(uj , uj+1) ≤ 1 (35)

the first order finite volume method

un+1
j = un

j −
∆t

∆xj

(
f(un

j , u
n
j+1)− f(un

j−1, u
n
j )
)

is admissibility preserving, i.e., un
j ∈ Uad for all j implies that un+1

j ∈ Uad for all j.
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xj

j − 1
2

j + 1
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Figure 22: Non-uniform, non-cell-centered finite volume grid

A.1 Review of MUSCL-Hancock scheme

Here we review the MUSCL-Hancock scheme for general uniform grids that need not be cell-centered (Figure (22)) in
the sense that

xj+ 1
2
− xj ̸= xj − xj− 1

2
, (36)

for some j where xj is the solution point in finite volume element (xj− 1
2
, xj+ 1

2
). The grid used in the blending limiter

(Figure 2) is a special case of (36).

For the jth finite volume element (xj− 1
2
, xj+ 1

2
), the constant state is denoted un

j and the linear approximation will be
denoted rnj (x). For conservative reconstruction, the linear reconstruction is given by

rn(x) = un
j + (x− xj)δj , x ∈

(
xj− 1

2
, xj+ 1

2

)
The values on left and right faces will be computed as

un,−
j = un

j + (xj− 1
2
− xj)δj , un,+

j = uj + (xj+ 1
2
− xj)δj (37)

We use Taylor’s expansion to evolve the solution to tn + 1
2∆t

u
n+ 1

2 ,−
j = un,−

j − ∆t

2∆xj
(f(un,+

j )− f(un,−
j ))

u
n+ 1

2 ,+
j = un,+

j − ∆t

2∆xj
(f(un,+

j )− f(un,−
j ))

(38)

where ∆xj = xj+ 1
2
− xj− 1

2
. The final update is performed by using an approximate Riemann solver on the evolved

quantities

un+1
j = un

j −
∆t

∆xj

(
f
n+ 1

2

j+ 1
2

− f
n+ 1

2

j− 1
2

)
(39)

where
f
n+ 1

2

j+ 1
2

= f
(
u
n+ 1

2 ,+
j , u

n+ 1
2 ,−

j+1

)
is some numerical flux function. The key idea of the proof is to write the evolution u

n+ 1
2 ,±

j from (38) as a convex
combination of exact solution of some Riemann problem and the final update un+1

j from (39) as a convex combination
of first order finite volume updates on appropriately chosen subcells.

A.2 Primary generalization for proof

For the uniform, cell-centered case, Berthon [7] defined u∗,±
j to satisfy

1

2
un,−
j + u∗,±

j +
1

2
un,+
j = 2un,±

j

We generalize it for non-cell centred grids (36)

µ−u
n,−
j + u∗,±

j + µ+u
n,+
j = 2un,±

j

where

µ− =
xj+ 1

2
− xj

xj+ 1
2
− xj− 1

2

, µ+ =
xj − xj− 1

2

xj+ 1
2
− xj− 1

2

(40)

This choice was made to keep the natural extension of u∗,±
j in the conservative reconstruction case:

u∗,±
j = un

j + 2(xj± 1
2
− xj)δj

noting that un,±
j are given by (37).
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A.3 Proving admissibility

The following lemma about conservation laws will be crucial in the proof.

Lemma 1 Consider the 1-D Riemann problem

ut + f(u)x = 0

u(x, 0) =

{
ul, x < 0
ur, x > 0

in [−h, h]× [0,∆t] where
∆t

h
σ(ul, ur) ≤ 1 (41)

Then, for all t ≤ ∆t, ∫ h

−h

u(x, t)dx = h(ul + ur)− t(f(ur)− f(ul)) (42)

Proof Integrate the conservation law over (−h, 0)× (0, t)

0 =

∫ 0

−h

u(x, t)dx− hul +

∫ t

0

(f(u(0−, t))− f(u(−h, t)))dt

=

∫ 0

−h

u(x, t)dx− hul + t(f(ũ(0−))− f(ul))

where, by self-similarity of solution of Riemann problem, ũ is defined so that u(x, t) = ũ(x/t) and f(u(−h, t)) = f(ul)
is obtained as characteristics from [0, h] do not reach x = −h due to the time restriction (41). Rewriting gives∫ 0

−h

u(x, t)dx = hul − t(f(ũ(0−))− f(ul))

Similarly, ∫ h

0

u(x, t)dx = hur − t(f(ur)− f(ũ(0+)))

If ũ is discontinuous at x = 0, by Rankine-Hugoniot conditions, we will have a stationary jump at x/t = 0 and obtain
f(ũ(0+)) = f(ũ(0−)). The same trivially holds if ũ is continuous at x/t = 0. Thus, we can sum the previous two
identities to get (42). 2

We will now give a criterion under which we can prove u
n+ 1

2 ,±
j ∈ Uad, i.e., the evolution step (38) preserves Uad.

Lemma 2 Define µ± by (40) and pick u∗,±
j to satisfy

µ−

2
un,−
j +

1

2
u∗,±
j +

µ+

2
un,+
j = un,±

j (43)

Assume un,±
j , u∗,±

j ∈ Uad and the CFL restrictions

max
j

∆t

µ−∆xj
σ
(
un,−
j , u∗,±

j

)
≤ 1, max

j

∆t

µ+∆xj
σ
(
u∗,±
j , un,+

j

)
≤ 1 (44)

are satisfied. Then, un+ 1
2 ,±

j given by the first step (38) of the MUSCL-Hancock scheme is in Uad.

Proof We will prove that un+ 1
2 ,+

j ∈ Uad, and the proof for un+ 1
2 ,−

j shall follow similarly. The key idea is to write

u
n+ 1

2 ,+
j as the exact solution of some Riemann problems. Define uh(x, t) : (xj− 1

2
, xj+ 1

2
)× (0,∆t/2) → Uad to be

the weak solution of the Cauchy problem with initial data

uh(x, 0) =


un,−
j , if x ∈ (xj− 1

2
, xj−1/4)

u∗,+
j , if x ∈ (xj−1/4, xj+1/4)

un,+
j , if x ∈ (xj+1/4, xj+ 1

2
)
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j un,+
jun,−
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µ−∆xj µ+∆xj

∆t
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x̃j
xj−1/2 xj+1/2

Figure 23: Two non-interacting Riemann problems

where
xj− 1

4
=

1

2
(xj− 1

2
+ x̃j), xj+ 1

4
=

1

2
(x̃j + xj+ 1

2
), x̃j = xj− 1

2
+ µ−∆xj

Under our time step restrictions (44), the solution uh at time ∆t
2 is made up of non-interacting Riemann problems

centered at xj± 1
4

, see Figure (23). We take the projection of uh(x,∆t/2) on piecewise-constant functions

ũ
n+ 1

2 ,+
j :=

1

∆xj

∫ x
j+1

2

x
j− 1

2

uh

(
x,

∆t

2

)
dx

Since we assumed that the conservation law preserves Uad, we get ũn+ 1
2 ,+

j ∈ Uad. If we prove ũ
n+ 1

2 ,+
j = u

n+ 1
2 ,+

j , we
will have our claim. Applying Lemma 42 to the two non-interacting Riemann problems, we get

ũ
n+ 1

2 ,+
j =

1

∆xj

∫ x̃j

x
j− 1

2

uh

(
x,

∆t

2

)
dx+

∫ x
j+1

2

x̃j

uh

(
x,

∆t

2

)
dx


=

1

∆xj

[
x̃j − xj− 1

2

2
un,−
j +

∆xj

2
u∗,+
j +

xj+ 1
2
− x̃j

2
un,+
j − ∆t

2

(
f
(
un,+
j

)
− f

(
un,−
j

))]
=

1

2

(
µ−u

n,−
j + u∗,+

j + µ+u
n,+
j

)
− ∆t/2

∆xj

(
f
(
un,+
j

)
− f

(
un,−
j

))
= un,+

j − ∆t/2

∆xj

(
f
(
un,+
j

)
− f

(
un,−
j

))
, using (43)

= u
n+ 1

2 ,+
j , by (38)

This proves our claim. 2

Now, we introduce a new variable u
n+ 1

2 ,∗
j defined as follows:

µ−u
n+ 1

2 ,−
j + u

n+ 1
2 ,∗

j + µ+u
n+ 1

2 ,+
j = 2un

j (45)

As illustrated in Figure (24), we evolve each state according to the associated first order scheme to define the following

un+1,−
j = u

n+ 1
2 ,−

j − ∆t

µ−∆xj/2

(
f
(
u
n+ 1

2 ,−
j , u

n+ 1
2 ,∗

j

)
− f

(
u
n+ 1

2 ,+
j−1 , u

n+ 1
2 ,−

j

))
un+1,∗
j = u

n+ 1
2 ,∗

j − ∆t

∆xj/2

(
f
(
u
n+ 1

2 ,∗
j , u

n+ 1
2 ,+

j

)
− f

(
u
n+ 1

2 ,−
j , u

n+ 1
2 ,∗

j

))
un+1,+
j = u

n+ 1
2 ,+

j − ∆t

µ+∆xj/2

(
f
(
u
n+ 1

2 ,+
j , u

n+ 1
2 ,−

j+1

)
− f

(
u
n+ 1

2 ,∗
j , u

n+ 1
2 ,+

j

)) (46)
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ju
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2
∆xj

u
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2
,+

j u
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2
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Figure 24: Finite volume evolution

Recall that (39) is

un+1
j = un

j −
∆t

∆xj

(
f
(
u
n+ 1

2 ,+
j , u

n+ 1
2 ,−

j+1

)
− f

(
u
n+ 1

2 ,+
j−1 , u

n+ 1
2 ,−

j

))
Using (45) and (46), we get

µ−

2
un+1,−
j +

1

2
un+1,∗
j +

µ+

2
un+1,+
j = un+1

j

Thus, assuming u
n+ 1

2±
j , u

n+ 1
2 ,∗

j ∈ Uad for all j, and since 1
2µ− + 1

2µ+ = 1, we get un+1
j ∈ Uad under the following

time step restrictions arising from the assumed time step requirement (35) for admissibility of the first order finite
volume method

max
j

∆t

µ−∆xj/2
σ
(
u
n+ 1

2 ,−
j , u

n+ 1
2 ,∗

j

)
≤ 1,

max
j

∆t

µ−∆xj/2
σ
(
u
n+ 1

2 ,+
j−1 , u

n+ 1
2 ,−

j

)
≤ 1,

max
j

∆t

∆xj/2
σ
(
u
n+ 1

2 ,∗
j , u

n+ 1
2 ,+

j

)
≤ 1,

max
j

∆t

∆xj/2
σ
(
u
n+ 1

2 ,−
j , u

n+ 1
2 ,∗

j

)
≤ 1

max
j

∆t

µ+∆xj/2
σ
(
u
n+ 1

2 ,+
j , u

n+ 1
2 ,−

j+1

)
≤ 1

max
j

∆t

µ+∆xj/2
σ
(
u
n+ 1

2 ,∗
j , u

n+ 1
2 ,+

j

)
≤ 1

(47)

This can be summarised in the following Lemma.

Lemma 3 Assume that the states
{
u
n+ 1

2 ,±
j

}
j
,
{
u
n+ 1

2 ,∗
j

}
j

belong to Uad, where u
n+ 1

2 ,∗
j is defined as in (45). Then,

the updated solution un+1
j of MUSCL-Hancock scheme (37-39) is in Uad under the CFL conditions (47).

Since Lemma 2 states that un+ 1
2 ,±

j ∈ Uad if u∗,±
j ∈ Uad, the only new condition pertains to u

n+ 1
2 ,∗

j . Our goal now
is to understand this condition, and ultimately prove that it follows from the requirement that u∗,±

j ∈ Uad in case of
conservative reconstruction.

Recall that un+ 1
2 ,∗

j was defined by (45); expanding the definition of un+ 1
2 ,±

j given by (38) yields

u
n+ 1

2 ,∗
j = 2un

j −
(
µ−u

n,−
j + µ+u

n,+
j

)
− ∆t

2∆xj
(f(un,−

j )− f(un,+
j )) (48)

This identity (48) will be seen as an evolution update similar to (38) with un,+
j and un,−

j being swapped and un
j replaced

with 2un
j −

(
µ−u

n,−
j + µ+u

n,+
j

)
. The admissibility of un+ 1

2 ,∗
j will be studied by adapting the proof of admissibility

for (38), accounting for the differences in the case of (48). Define u∗,∗
j so that

µ−

2
un,−
j +

1

2
u∗,∗
j +

µ+

2
un,+
j = 2un

j − (µ−u
n,−
j + µ+u

n,+
j ) (49)
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Figure 25: Two non-interacting Riemann problems

i.e.,

u∗,∗
j = 4un

j − 3(µ−u
n,−
j + µ+u

n,+
j ) (50)

The following Lemma extends the proof of Lemma 2 to obtain conditions for un+ 1
2 ,∗

j ∈ Uad.

Lemma 4 Assume that un
j ∈ Uad for all j. Consider the reconstructions un,±

j and the u∗,∗
j defined in (49). Assume

un,±
j , u∗,∗

j ∈ Uad and the time step restrictions

max
j

∆t

µ−∆xj
σ
(
u∗,∗
j , un,−

j

)
≤ 1, max

j

∆t

µ+∆xj
σ
(
un,+
j , u∗,∗

j

)
≤ 1 (51)

Then u
n+ 1

2 ,∗
j ∈ Uad.

Proof We will use the identity which follows from (48,49)

u
n+ 1

2 ,∗
j =

µ−u
n,−
j + u∗,∗

j + µ+u
n,+
j

2
− ∆t

2∆xj
(f(un,−

j )− f(un,+
j )) (52)

to fall back to previous case of Lemma 2.

Define uh(x, t) : (xj− 1
2
, xj+ 1

2
)× (0,∆t/2)→ Uad to be the weak solution of the Cauchy problem with initial data

uh(x, 0) =


un,+
j , if x ∈ (xj− 1

2
, xj−1/4)

u∗,∗
j , if x ∈ (xj− 1

4
, xj+1/4)

un,−
j , if x ∈ (xj+ 1

4
, xj+ 1

2
)

where

xj− 1
4
=

1

2
(xj− 1

2
+ xj), xj+ 1

4
=

1

2
(xj + xj+ 1

2
)

Note that we have already accounted for the swapped un,−
j and un,+

j while defining this initial condition, see Figure (25).

Under the assumed CFL conditions (51), the solution uh at time ∆t
2 is made up of non-interacting Riemann problems

centered at xj± 1
4

. Take the projection of uh(x, t/2) on piecewise-constant functions

ũ
n+ 1

2 ,∗
j :=

1

∆xj

∫ x
j+1

2

x
j− 1

2

uh

(
x,

∆t

2

)
dx ∈ Uad

As in Lemma 2, we will show u
n+ 1

2 ,∗
j ∈ Uad by showing u

n+ 1
2 ,∗

j = ũ
n+ 1

2 ,∗
j . Applying Lemma 42 to the two
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non-interacting Riemann problems, we get

ũ
n+ 1

2 ,∗
j =

1

∆xj

∫ xj

x
j− 1

2

uh

(
x,

∆t

2

)
dx+

∫ x
j+1

2

xj

uh

(
x,

∆t

2

)
dx


=

1

∆xj

(
xj − xj− 1

2

2
un,+
j +

∆xj

2
u∗,∗
j +

xj+ 1
2
− xj

2
un,−
j − ∆t

2

(
f
(
un,−
j

)
− f

(
un,+
j

)))
=

1

2

(
µ+u

n,+
j + u∗,∗

j + µ−u
n,−
j

)
− ∆t/2

∆xj

(
f
(
un,−
j

)
− f

(
un,+
j

))
= u

n+ 1
2 ,∗

j , by (52)

This proves our claim. 2

For conservative reconstruction,
µ−u

n,−
j + µ+u

n,+
j = un

j

and thus by (50), u∗,∗
j = un

j . The previous lemma can thus be specialized as follows.

Lemma 5 Assume that un
j ∈ Uad and un,±

j ∈ Uad for all j with conservative reconstruction. Also assume the CFL
restrictions

max
j

∆t

µ−∆xj
σ
(
un
j , u

n,−
j

)
≤ 1, max

j

∆t

µ+∆xj
σ
(
un,+
j , un

j

)
≤ 1 (53)

where µ± are defined in (40). Then, un+ 1
2 ,∗

j defined in (45) is in Uad.

Combining Lemmas 2, 3, 5, we obtain the final criterion for admissibility preservation of MUSCL-Hancock with
conservative reconstruction in the following Theorem 3.

Theorem 3 Let un
j ∈ Uad for all j and un,±

j be the conservative reconstructions defined as

un,+
j = un

j + (xj+ 1
2
− xj)δj , un,−

j = un
j + (xj− 1

2
− xj)δj

so that u∗,±
j defined in (43) is also given by

u∗,±
j = un

j + 2(xj± 1
2
− xj)δj (54)

Assume the slope δj is chosen such that u∗,±
j ∈ Uad and the CFL restrictions (44, 47, 53) hold. Then, the updated

solution un+1
j , defined by MUSCL-Hancock scheme (39) is in Uad.

Proof Once we obtain un,±
j ∈ Uad, the claim follows from Lemmas 2-5. To prove that un,±

j is indeed in Uad, we make
the straight forward observation that

un,±
j =

1

2
u∗,±
j +

1

2
un
j

Since u∗,±
j and un

j are in Uad, the proof is completed by the convex property of Uad. 2

Remark 2 The strictest time step restriction for admissibility of the MUSCL-Hancock scheme is imposed by (47). Thus,
we can find the CFL coefficient for grid used by subcell-based blending scheme (10) by minimizing the denominator
in (47) which is given by

1

2
min

j=0,...,N

(
ξj −

j−1∑
k=0

wk

)
wj =

1

2
ξ0w0

where ξ0, w0 are the first Gauss-Legendre quadrature point (3) and weight in [0, 1]. This coefficient is less than half of
the optimal CFL coefficient that arises from Fourier stability analysis of the LWFR scheme with D2 dissipation, see
Table 1 of [5].

34



A PREPRINT - JANUARY 18, 2024

A.4 Non-conservative reconstruction

To maintain the simple admissibility criterion (Theorem 3), we have restricted ourselves to conservative reconstruction
in this work. In this section, we explain the complexities that will arise in enforcing admissibility if we perform
reconstruction with non-conservative variables v defined by the change of variables formula

v = κ (u)

The linear approximation is given by

rn(x) = vnj + (x− xj)δj , x ∈ [xj− 1
2
, xj+ 1

2
]

and thus the trace values are
vn,±j = vnj + (xj± 1

2
− xj)δj

Since the arguments of proof of admissibility depend on constraints on the conservative variables, we have to take the
inverse map on our reconstructions. For example, conservative variables at the face are obtained as

un,±
j = κ−1(vn,±j ) (55)

Due to the non-linearity of the map κ, unlike the conservative case, we have

µ−u
n,−
j + µ+u

n,+
j ̸= un

j

which is why several reductions of admissibility constraints will fail. The admissibility criteria for non-conservative
reconstruction is stated in Theorem 4.

Theorem 4 Assume that un
j ∈ Uad for all j. Consider un,±

j defined in (55), u∗,±
j defined in (43) and u∗,∗

j defined so
that

µ−

2
un,−
j +

1

2
u∗,∗
j +

µ+

2
un,+
j = 2un

j − (µ−u
n,−
j + µ+u

n,+
j )

Assume that the slope δj is chosen so that un,±
j , u∗,±

j , u∗,∗
j ∈ Uad and that the CFL restrictions (44, 47, 51) are satisfied.

Then the updated solution un+1
j of MUSCL-Hancock scheme (39) is in Uad.

A.5 MUSCL-Hancock scheme in 2-D

Consider the 2-D hyperbolic conservation law (34) with fluxes f, g. For simplicity, assume that the reconstruction is
performed on conservative variables. Thus, the linear reconstructions are given by

rnij(x, y) = un
ij + (x− xi)δ

x
i + (y − yj)δ

y
j ,

and the approximations at the face un,+x, un,−x, un,+y, un,−y are

un,±x
ij = rnij(xi± 1

2
, yj) = un

ij + (xi± 1
2
− xi)δ

x
i

un,±y
ij = rnij(xi, yj± 1

2
) = un

ij + (yj± 1
2
− yj)δ

y
j

(56)

and the derivative approximations are given by

∂xfij :=
1

∆xi

(
f
(
un,+x
ij

)
− f

(
un,−x
ij

))
, ∂ygij :=

1

∆yj

(
g
(
un,+y
ij

)
− g

(
un,−y
ij

))
∂tu

n
ij := −∂xfi,j − ∂ygi,j

The evolutions to time level n+ 1
2 are given by

u
n+ 1

2 ,±x
ij = un,±x

ij +
∆t

2
∂tu

n
ij , u

n+ 1
2 ,±y

ij = un,±y
ij +

∆t

2
∂tu

n
ij (57)

and then the final update is performed as

un+1
ij = un

ij −
∆t

∆xi
(f

n+ 1
2

i+ 1
2 ,j
− f

n+ 1
2

i− 1
2 ,j

)− ∆t

∆yj
(g

n+ 1
2

i,j+ 1
2

− g
n+ 1

2

i,j− 1
2

) (58)

where the numerical fluxes are computed as

f
n+ 1

2

i+ 1
2 ,j

= f
(
u
n+ 1

2 ,+x
ij , u

n+ 1
2 ,−x

i+1,j

)
, g

n+ 1
2

i,j+ 1
2

= g
(
u
n+ 1

2 ,+y
ij , u

n+ 1
2 ,−y

i,j+1

)
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A.5.1 First evolution step

As in 1-D, define u∗,±x
ij , u∗,±y

ij so that

µ+xu
n,+x
ij + u∗,±x + µ−xu

n,−x
ij = 2un,±x

ij

µ+yu
n,+y
ij + u∗,±y + µ−yu

n,−y
ij = 2un,±y

ij

(59)

where

µ+x =
xi − xi− 1

2

xi+ 1
2
− xi− 1

2

, µ−x =
xi+ 1

2
− xi

xi+ 1
2
− xi−1/2

µ+y =
yj − yj− 1

2

yj+ 1
2
− yj− 1

2

, µ−y =
yj+ 1

2
− yj

yj+ 1
2
− yj− 1

2

(60)

Since we assume conservative reconstruction

µ+xu
n,+x
ij + µ−xu

n,−x
ij = µ+yu

n,+y
ij + µ−yu

n,−y
ij = un

ij

Thus, we have
u∗,±x
ij = uij + 2(xi± 1

2
− xi)δ

x
i , u∗,±y

ij = uij + 2(yj± 1
2
− xj)δ

y
j

We will particularly discuss admissibility of the updates

u
n+ 1

2 ,+x
ij = un,+x

ij − ∆t/2

∆xi

(
f
(
un,+x
ij

)
− f

(
un,−x
ij

))
− ∆t/2

∆yj

(
g
(
un,+y
ij

)
− g

(
un,−y
ij

))
(61)

Admissibility of the other three updates un+ 1
2 ,−x

ij , u
n+ 1

2 ,±y
ij will follow similarly. For some kx, ky chosen such that

kx + ky = 1, we write (61) as

u
n+ 1

2 ,+x
ij = kxθ

+x
ij + kyθ

+y
ij

where

θ+x
ij := un,+x

ij − ∆t/2

kx∆xi

(
f
(
un,+x
ij

)
− f

(
un,−x
ij

))
(62)

and

θ+y
ij := un,+x

ij − ∆t/2

ky∆yj

(
g
(
un,+y
ij

)
− g

(
un,−y
ij

))
(63)

We will choose the slopes δxi , δ
y
j and time step ∆t so that θ+x

ij , θ+y
ij ∈ Uad. Then, we can take convex combinations of

the two terms to obtain admissibility of un+ 1
2 ,+x

ij . The choice of kx, ky will not influence the slope restriction, but only
the time step restriction required to obtain admissibility. In this work, we only use the Fourier CFL restriction imposed
by the Lax-Wendroff scheme (32) and observe admissibility preservation in all our numerical experiments and thus do
not study the choice of kx, ky . However, in a similar context, [78] proposed the choice of

kx =
ax/∆xi

ax/∆xi + ay/∆yj
, ky =

ay/∆yj
ax/∆xi + ay/∆yj

(64)

where
ax = σx(u

n,−x
ij , un,+x

ij ), ay = σy(u
n,−y
ij , un,+y

i,j ) (65)
In [23], it was shown that the time step restriction imposed by the above decomposition is suboptimal and optimal
decompositions were proposed. After choosing kx, ky, following the 1-D procedures from Section A.3, the slopes
δxi , δ

y
j will be limited to enforce admissibility of θ+x

ij , θ+y
ij (62, 63). The admissibility preservation of θ+x

ij (62) follows
directly from the arguments used in Lemma 2, enforcing slope restriction so that un,±x

ij and u∗,+x
ij are admissible, and

appropriate time step restrictions. For admissibility of θ+y
ij (63), we define u∗,+xy

ij so that

µ+yu
n,+y
ij + u∗,+xy

ij + µ−yu
n,−y
ij = 2un,+x

ij

Thus, the proof of Lemma 2 shall apply as in 1-D under the assumption of admissibility of un,±y
ij , u∗,+xy

ij and some CFL
conditions. Thus, we will have admissibility of θ+y

ij ∈ Uad. We obtain further simplifications because of conservative
reconstructions

u∗,+xy
ij = u∗,+x

ij (66)

and thus the slope limiting for enforcing admissibility of u∗,+x
ij will suffice. We note the precise slope and CFL

restrictions are in Lemma 6.
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Lemma 6 For µ±x, µ±y defined in (60), un,±x
ij , un,±y

ij reconstructed in (56), u∗,±x
ij , u∗,±y

ij picked as in (59), assume

un,±x
ij , un,±y

ij , u∗,±x
ij , u∗,±y

ij ∈ Uad

and the CFL restrictions

max
i,j

λxi

µ−x
σx

(
un,−x
ij , u∗,±x

ij

)
≤ 1, max

i,j

λxi

µ+x
σx

(
u∗,±x
ij , un,+x

ij

)
≤ 1

max
i,j

λyj

µ−y
σy

(
un,−y
ij , u∗,±x

ij

)
≤ 1, max

i,j

λyj

µ+y
σy

(
u∗,±x
ij , un,+y

ij

)
≤ 1

max
i,j

λyj

µ−y
σy

(
un,−y
ij , u∗,±y

ij

)
≤ 1, max

i,j

λyj

µ+y
σy

(
u∗,±y
ij , un,+y

ij

)
≤ 1

max
i,j

λxi

µ−x
σx

(
un,−x
ij , u∗,±y

ij

)
≤ 1, max

i,j

λxi

µ+x
σx

(
u∗,±y
ij , un,+x

ij

)
≤ 1

(67)

where λxi
= ∆t

kx∆xi
, λyj

= ∆t
ky∆yj

for all i, j and kx + ky = 1. Then, the updates un+ 1
2 ,±x

ij , u
n+ 1

2 ,±y
ij (61) of the first

step of 2-D MUSCL-Hancock scheme are admissible.

A.5.2 Finite volume step

The final update is given by

un+1
ij = un

ij −
∆t

∆xi
(f

n+ 1
2

i+ 1
2 ,j
− f

n+ 1
2

i− 1
2 ,j

)− ∆t

∆yj
(g

n+ 1
2

i,j+ 1
2

− g
n+ 1

2

i,j− 1
2

) (68)

where the numerical fluxes are computed as

f
n+ 1

2

i+ 1
2 ,j

= f
(
u
n+ 1

2 ,+x
ij , u

n+ 1
2 ,−x

i+1,j

)
, g

n+ 1
2

i,j+ 1
2

= g
(
u
n+ 1

2 ,+y
i,j , u

n+ 1
2 ,−y

i,j+1

)
As in the previous step, the expression (68) is split into a convex combination

un+1
ij = kxζ

x
ij + kyζ

y
ij

where
ζxij := un

ij −
∆t

kx∆xi
(f

n+ 1
2

i+ 1
2 ,j
− f

n+ 1
2

i− 1
2 ,j

), ζyij := un
ij −

∆t

ky∆yj
(g

n+ 1
2

i,j+ 1
2

− g
n+ 1

2

i,j− 1
2

)

for some kx, ky ≥ 0 with kx + ky = 1. The admissibility of ζxij and ζyij will imply the admissibility of un+1
ij . The

admissibility of ζxij , ζ
y
ij will follow exactly as from the procedure in 1-D (Lemma 3) with appropriate time step

restrictions and assumption of admissibility of terms u
n+ 1

2 ,±x
ij , u

n+ 1
2 ,±y

ij , u
n+ 1

2 ,∗x
ij , u

n+ 1
2 ,∗y

ij for u
n+ 1

2 ,∗x
ij , u

n+ 1
2 ,∗y

ij
defined as

µ−xu
n+ 1

2 ,−x
ij + u

n+ 1
2 ,∗x

ij + µ+xu
n+ 1

2 ,+x
ij = 2un

ij

µ−yu
n+ 1

2 ,−y
ij + u

n+ 1
2 ,∗y

ij + µ+yu
n+ 1

2 ,+y
ij = 2un

ij

(69)

The precise CFL restrictions and admissibility constraints are in the following Lemma 7.

Lemma 7 Assume that the states
{
u
n+ 1

2 ,±x
ij , u

n+ 1
2 ,±y

ij , u
n+ 1

2 ,∗x
ij , u

n+ 1
2 ,∗y

ij

}
i,j

belong to Uad, where un+ 1
2 ,∗x

ij , u
n+ 1

2 ,∗y
ij

are defined as in (69). Then, the updated solution un+1
ij of MUSCL-Hancock scheme is in Uad under the CFL conditions

2λxi

µ−x
σx

(
u
n+ 1

2 ,−x
ij , u

n+ 1
2 ,∗x

ij

)
≤ 1, 2λxiσx

(
u
n+ 1

2 ,∗x
ij , u

n+ 1
2 ,+x

ij

)
≤ 1,

2λxi

µ+x
σx

(
u
n+ 1

2 ,+x
ij , u

n+ 1
2 ,−x

i+1,j

)
≤ 1

2λxi

µ−x
σx

(
u
n+ 1

2 ,+x
i−1,j , u

n+ 1
2 ,−x

ij

)
≤ 1, 2λxiσx

(
u
n+ 1

2 ,−x
ij , u

n+ 1
2 ,∗x

ij

)
≤ 1,

2λxi

µ+x
σx

(
u
n+ 1

2 ,∗x
ij , u

n+ 1
2 ,+x

ij

)
≤ 1

2λyj

µ−y
σy

(
u
n+ 1

2 ,−y
ij , u

n+ 1
2 ,∗y

ij

)
≤ 1, 2λyj

σy

(
u
n+ 1

2 ,∗y
ij , u

n+ 1
2 ,+y

ij

)
≤ 1,

2λyj

µ+y
σy

(
u
n+ 1

2 ,+y
ij , u

n+ 1
2 ,−y

i,j+1

)
≤ 1

2λyj

µ−y
σy

(
u
n+ 1

2 ,+y
i,j−1 , u

n+ 1
2 ,−y

ij

)
≤ 1, 2λyjσy

(
u
n+ 1

2 ,−y
ij , u

n+ 1
2 ,∗y

ij

)
≤ 1,

2λyj

µ+y
σy

(
u
n+ 1

2 ,∗y
ij , u

n+ 1
2 ,+y

ij

)
≤ 1

(70)
where λxi

= ∆t
kx∆xi

, λyj
= ∆t

ky∆yj
for all i, j.
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As in 1-D, we now show that admissibility of un+ 1
2 ,∗x

ij , u
n+ 1

2 ,∗y
ij can also be reduced to admissibility of u∗,±x

ij , u∗,±y
ij ,

similar to Lemma 5. Expanding the definition of un+ 1
2 ,∗y

ij gives us

u
n+ 1

2 ,∗y
ij = 2un

ij − (µ−yu
n,−y
ij + µ+yu

n,+y
ij )− ∆t

∆xi

(
f(un,−x

ij )− f(un,+x
ij )

)
− ∆t

∆yj

(
g(un,−y

ij )− g(un,+y
ij )

)
(71)

If we obtain the admissibility of

η∗yxij := 2un
ij − (µ−yu

n,−y
ij + µ+yu

n,+y
ij )− ∆t

kx∆xi

(
f
(
un,−x
ij

)
− f

(
un,+x
ij

))
(72)

and
η∗yyij := 2un

ij − (µ−yu
n,−y
ij + µ+yu

n,+y
ij )− ∆t

ky∆yj

(
g
(
un,−y
ij

)
− g

(
un,+y
ij

))
(73)

for some kx, ky ∈ [0, 1] with kx + ky = 1, then the admissibility of un+ 1
2 ,∗y

ij follows as we can write it as a convex
combination

u
n+ 1

2 ,∗y
ij = kxη

∗yx
ij + kyη

∗yx
ij

and obtain the admissibility of un+ 1
2 ,∗y

ij . Thus, we need to limit the slope so that (72, 73) are admissibile. To that end,
define u∗∗yx

ij , u∗∗yy
ij to satisfy

µ−xu
n,−x
ij + u∗∗yx

ij + µ+xu
n,+x
ij =2

(
2un

ij − (µ−yu
n,−y
ij + µ+yu

n,+y
ij )

)
µ−yu

n,−y
ij + u∗∗yy

ij + µ+yu
n,+y
ij =2

(
2un

ij − (µ−yu
n,−y
ij + µ+yu

n,+y
ij )

)
respectively. Consequently,

η∗yxij =
1

2
(µ−xu

n,−x
ij + u∗∗yx

ij + µ+xu
n,+x
ij )− ∆t

kx∆xi

(
f
(
un,−x
ij

)
− f

(
un,+x
ij

))
η∗yyij =

1

2
(µ−yu

n,−y
ij + u∗∗yy

ij + µ+yu
n,+y
ij )− ∆t

ky∆yj

(
g
(
un,−y
ij

)
− g

(
un,+y
ij

))
Then, assuming the admissibility of u∗∗yx

ij , u∗∗yy
ij and proceeding as in the proof of Lemma 4, we can ensure that

η∗yxij , η∗yyij ∈ Uad and thus un+ 1
2 ,∗y

ij ∈ Uad. Furthermore, since the reconstruction is conservative

µ−yu
n,−y
ij + µ+yu

n,+y
ij = µ−xu

n,−x
ij + µ+xu

n,+x
ij = un

ij

Thus, admissibility of u∗∗yx
ij , u∗∗yy

ij is obtained as

u∗∗yx
ij = u∗∗yy

ij = un
ij

The arguments for admissibility of un+ 1
2 ,∗x

ij are similar. The admissibility criteria of un+ 1
2 ,∗x

ij , u
n+ 1

2 ,∗y
ij are summarised

in the following lemma.

Lemma 8 Assume that un
ij ∈ Uad and un,±x

ij , un,±y
ij ∈ Uad for all i, j with conservative reconstruction. Also assume

the CFL restrictions

max
i,j

λxi

µ−x
σx

(
un
ij , u

n,−x
ij

)
≤ 1, max

i,j

λxi

µ+x
σx

(
un,+x
ij , un

ij

)
≤ 1

max
i,j

λyj

µ−y
σy

(
un
ij , u

n,−y
ij

)
≤ 1, max

i,j

λyj

µ+y
σy

(
un,+y
ij , un

ij

)
≤ 1

(74)

where λxi
= ∆t

kx∆xi
, λyj

= ∆t
ky∆yj

and µ±x, µ±y are defined in (60). Then, un+ 1
2 ,∗x

ij , u
n+ 1

2 ,∗y
ij defined in (69) are in

Uad.

Combining Lemmas 6, 7, 8, we will have the 2-D result corresponding to Theorem 3 with the same proof.

Theorem 5 Let un
ij ∈ Uad for all i, j and un,±x

ij , un,±y
ij be the conservative reconstructions defined as

un,±x
ij = un

ij + (xi± 1
2
− xi)δ

x
i , un,±y

ij = un
ij + (yj± 1

2
− yj)δ

y
j

so that u∗,±x
ij , u∗,±y

ij (59) are given by

u∗,±x
ij = un

ij + 2(xi± 1
2
− xi)δ

x
i , u∗,±y

ij = un
ij + 2(yj± 1

2
− yj)δ

y
j

Assume that the slopes δxi , δ
y
j are chosen to satisfy u∗,±x

ij , u∗,±y
ij ∈ Uad for all i, j and that the CFL restrictions (67, 70,

74) are satisfied. Then the updated solution un+1
ij of MUSCL-Hancock procedure is in Uad.
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B Limiting numerical flux in 2-D

Consider the 2-D hyperbolic conservation law (34). The Lax-Wendroff update is

(ue
ij)

n+1 = (ue
ij)

n −∆t

[
1

∆xe

∂F e
h

∂ξ
(ξi, ξj) +

1

∆ye

∂Ge
h

∂η
(ξi, ξj)

]
, 0 ≤ i, j ≤ N

where F e
h , G

e
h are continuous time-averaged fluxes (5) in the x, y directions for the grid element e = (ex, ey). The

reader is referred to Section 10 of [5] for more details of the 2-D Lax-Wendroff Flux Reconstruction (LWFR) scheme.
Since the 2-D scheme is formed by taking a tensor product of the 1-D scheme, Theorem 2 applies, i.e., the scheme will
be admissibility preserving in means (Definition 2) if we choose the blended numerical flux such that the lower order
updates are admissible at solution points adjacent to the interfaces. Thus, we now explain the process of constructing
the numerical flux where, to minimize storage requirements and memory reads, we will perform the correction within
the interface loop where only one of x or y flux will be available in one iteration. Thus theoretical justification for
the algorithm comes from breaking 2-D lower order updates into 1-D convex combinations. The general structure of
the LWFR Algorithm 1 will remain the same. Here, we justify Algorithm 2 for construction of blended x flux with
knowledge of only the x flux. The algorithm for blended y fluxes will be analogous.

We consider the calculation of the blended numerical flux for a corner solution point of the element, as this situation
differs from 1-D, due to the fact that a corner solution point is adjacent to both x and y interfaces. In particular, we
consider the bottom-left corner point 0 = (0, 0) and show that the procedure in Algorithm 2 ensures admissibility
at such points. The same justification applies to other corner and non-corner points. For the element e = (ex, ey),
denoting interfaces along x, y directions as (ex ± 1

2 , ey), (ex, ey ± 1
2 ), we consider the update at the bottom left corner

0 = (0, 0), suppressing the local solution point index i = 0 or j = 0 when considering the FR interface fluxes. The
lower order update is given by

ũn+1
0 = (ue

0)
n − ∆t

∆xew0
(fe

( 1
2 ,0)
− F̃(ex− 1

2 ,ey)
)− ∆t

∆yew0
(ge(0, 12 )

− G̃(ex,ey− 1
2 )
)

where F̃(ex− 1
2 ,ey)

, G̃(ex,ey− 1
2 )

are heuristically guessed candidates for the blended numerical flux (12). Pick kx, ky > 0

such that kx + ky = 1 and

ũlow,n+1
x = (ue

0)
n − ∆t

kx∆xew0
(fe

( 1
2 ,0)
− f(ex− 1

2 ,ey)
)

ũlow,n+1
y = (ue

0)
n − ∆t

ky∆yew0
(ge(0, 12 )

− g(ex,ey− 1
2 )
)

(75)

satisfy
ũlow,n+1
x , ũlow,n+1

y ∈ Uad (76)
Such kx, ky exist because the lower order scheme with lower order flux at element interfaces is admissibility preserving.
The choice of kx, ky should be made so that (76) is satisfied with the least time step restriction, but we have found the
Fourier stability restriction imposed by (32) to be sufficient even with the most trivial choice of kx = ky = 1

2 . The
discussion of literature for the optimal choice of kx, ky is the same as the one made for the 2-D MUSCL Hancock
scheme (64) and is not repeated here. After the choice of kx, ky is made, if we repeat the same procedure as in the 1-D
case, we can perform slope limiting to find Fex− 1

2 ,ey
, Fex,ey− 1

2
such that

ũn+1
x = (ue

0)
n − ∆t

kx∆xew0
(fe

( 1
2 ,0)
− F(ex− 1

2 ,ey)
) (77)

ũn+1
y = (ue

0)
n − ∆t

ky∆yew0
(ge(0, 12 )

−G(ex,ey− 1
2 )
) (78)

are also in the admissible region. Then, we will get

kxũ
n+1
x + kyũ

n+1
y = ũn+1

0 (79)

We now justify Algorithm 2 as follows. Algorithm 2 corrects the numerical fluxes during the loop over x interfaces to
enforce admissibility of ũn+1

x (77) at all solution points neighbouring x interfaces including the corner solution points,
and the analogous algorithm for y interfaces will ensure admissibility of ũn+1

y (78) at all solution points neighbouring y
interfaces including the corner points. At the end of the loop over interfaces, (79) will ensure that lower order updates
at all solutions points neighbouring interfaces are admissible and Algorithm 1 will be an admissibility preserving
Lax-Wendroff scheme for 2-D if we compute the blended numerical fluxes F(ex+

1
2 ,ey)

, F(ex,ey+
1
2 )

using Algorithm 2
and its counterpart in the y direction.
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Algorithm 2 Computation of blended flux Fex+
1
2 ,ey,j

where (ex + 1
2 , ey) are the interface indices and j ∈ {0, . . . , N}

is the solution point index on the interface

Input: F LW
ex+

1
2 ,ey,j

, fex+ 1
2 ,ey,j

, f
ex+1,ey
1
2 ,j

, fe
N− 1

2 ,j
, u

ex+1,ey
(0,j) , ue

(0,j), αe, αex+1,ey , k
ex,ey
x , k

ex+1,ey
x

Output: Fex+
1
2 ,ey,j

α =
αex,ey+αex+1,ey

2

k0x, k
N
x = k

ex,ey
x , k

ex+1,ey
x ▷ For ease of writing

Fex+
1
2 ,ey,j

← (1− α)F LW
ex+

1
2 ,ey,j

+ αfex+ 1
2 ,ey,j

▷ Heuristic guess to control oscillations

ũn+1
0 ← (u

ex+1,ey
0,j )n − ∆t

k0
xw0∆xe+1

(f
ex+1,ey
1
2 ,j

− Fex+
1
2 ,ey,j

) ▷ FV inner updates with guessed Fex+
1
2 ,ey,j

ũn+1
N ← (u

ex,ey
N,j )n − ∆t

kN
x wN∆xe

(Fex+
1
2 ,ey,j

− fe
(N− 1

2 ,j)
)

ũlow,n+1
0 = (u

ex+1,ey
0,j )n − ∆t

k0
xw0∆xe+1

(f
ex+1,ey
1
2 ,j

− fex+ 1
2 ,ey,j

) ▷ FV inner updates with fex+ 1
2 ,ey,j

ũlow,n+1
N = (u

ex,ey
N,j )n − ∆t

kN
x wN∆xe

(fex+ 1
2 ,ey,j

− fe
N− 1

2 ,j
)

for k=1:K do ▷ Correct Fex+
1
2 ,ey,j

for K admissibility constraints

θ ← min
(
minl=0,N

∣∣∣ ϵl−pk(ũ
n+1
l )

pk(ũ
low,n+1
l )−pk(ũ

n+1
l )

∣∣∣ , 1)
Fex+

1
2 ,ey,j

← θFex+
1
2 ,ey,j

+ (1− θ)fex+ 1
2 ,ey,j

ũn+1
0 ← (u

ex+1,ey
0,j )n − ∆t

k0
xw0∆xe+1

(f
ex+1,ey
1
2 ,j

− Fex+
1
2 ,ey,j

) ▷ FV inner updates with guessed Fex+
1
2 ,ey,j

ũn+1
N ← (u

ex,ey
N,j )n − ∆t

kN
x wN∆xe

(Fex+
1
2 ,ey,j

− fe
(N− 1

2 ,j)
)

end for
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