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Abstract
We propose a novel stochastic algorithm that randomly samples entire rows and columns
of the matrix as a way to approximate an arbitrary matrix function using the power series
expansion. This contrasts with existing Monte Carlo methods, which only work with one
entry at a time, resulting in a significantly better convergence rate than the original approach.
To assess the applicability of our method, we compute the subgraph centrality and total com-
municability of several large networks. In all benchmarks analyzed so far, the performance
of our method was significantly superior to the competition, being able to scale up to 64 CPU
cores with remarkable efficiency.

Keywords Monte Carlo methods · Randomized algorithms · Matrix functions · Network
analysis

Mathematics Subject Classification 65C05 · 68W20 · 65F50 · 05C90 · 68W10

1 Introduction

Complex networks have become an essential tool in many scientific areas [36, 69, 70] for
studying the interaction between different elements within a system. From these networks,
it is possible, for instance, to identify the most important elements in the system, such as
the key proteins in a protein interaction network [35], the keystone species in an ecological
network [59], vulnerable infrastructures [4] or the least resilient nodes in a transportation
network [9].
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Measures of node importance are referred to as node centrality and many metrics have
been proposed over the years [36, 70]. Here, we consider the family of centrality measures
defined in terms of matrix functions [38], which classify the nodes according to how well
they can spread information to other nodes in the network. Both the Katz centrality [60] and
subgraph centrality [39] belong to this family. In most cases, the node centrality is computed
based on the matrix resolvent (I − γA)−1 and the exponential exp (A), but other functions
[11, 17] can be used as well. HereA ∈ Rn×n denotes the network’s adjacency matrix. In this
paper, we focus on the subgraph centrality [39] (i.e., diag( f (A))) and total communicability
[15] (i.e., f (A)1), where f (A)) is a given matrix function.

Although these centrality measures have been successfully used in many problems [17,
38, 39, 41], computing a matrix function for large networks can be very demanding using
the current numerical methods. Direct methods, such as expm [5, 53] or the Schur-Parlett
algorithm [26], have a computational cost of O(n3) and yield a full dense matrix f (A), hence
are only feasible for small matrices. Methods based on Gaussian quadrature rules [14, 42, 46]
can estimate the diagonal entries of f (A) without evaluating the full matrix function, but are
prone to numerical breakdown when A is sparse and large (which is often the case with real
networks), and thus, are often employed to determine only the most important nodes in the
network. Krylov-based methods [3, 33, 51, 52] can efficiently compute f (A)v, for v ∈ R

n ,
provided that A is well conditioned. Otherwise, their convergence rate can be very slow or
even stagnate since a general and well-established procedure to precondition the matrix A
does not exist. Rational Krylov methods are often more resilient to the condition number
and provide a better approximation to f (A)v than polynomial ones, but require solving a
linear system for each vector of the basis. Moreover, the stopping criteria for these methods
remains an open issue [52].

Monte Carlo methods [18, 28, 29, 43, 58] provide an alternative way to calculate matrix
functions, primarily for solving linear systems. In essence, thesemethods construct a discrete-
timeMarkov chainwhose underlying randompaths evolve through the different indices of the
matrix, which can be formally understood as the Monte Carlo sampling of the corresponding
Neumann series. Their convergence has been rigorously established in [18, 30, 58]. Recently,
[1, 2, 48] extended these methods for the evaluation of the matrix exponential and Mittag-
Leffler functions.

Another strategy is to construct a random sketch (i.e., a probabilistic representation of
the matrix) and then use it to approximate the desired operation. This is a basic idea in
contemporary numerical linear algebra [64, 66]. Some recent studies have shown that a
polynomial Krylov method can be accelerated using randomization techniques [25, 49]. In
this paper, we propose a new stochastic algorithm that randomly samples full rows and
columns of the matrix as a way to approximate the target function using the corresponding
power series expansion. Through an extensive set of numerical experiments, we show that
our approach converges much faster than the original Monte Carlo method and that it is
particularly effective for estimating the subgraph centrality and total communicability of
large networks.We also compare ourmethod against other classical and randomizedmethods
considering very large matrices.

The paper is organized as follows. Section2 presents a brief overview of the centrality
measures defined in terms of matrix functions. Section3 describes our randomized algorithm
and how it can be implemented efficiently. In Sect. 4, we evaluate the performance and
accuracy of ourmethod by running several benchmarkswith both synthetic and real networks.
We also compare ourmethod against several other algorithms. In the last section, we conclude
our paper and present some future work.
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2 Background

In this section, we introduce some definitions and ideas from graph theory that will be used
throughout the paper.

2.1 Graph Definitions

A graph or network G = (V , E) is composed of a set V = {1, 2, . . . , n} of nodes (or vertices)
and a set E = {(u, v) : u, v ∈ V } of edges between them [70]. A graph is undirected if
the edges are bidirectional and directed if the edges are unidirectional. A walk of length
k over the graph G is a sequence of vertices v1, v2, . . . , vk+1 such that (vi , vi+1) ∈ E for
i = 1, 2 . . . , k. A closed walk is a walk that starts and ends at the same vertex, i.e., v1 = vk+1.
An edge from a node to itself is called a loop. A subgraph of graph G is a graph created from
a subset of nodes and edges of G. The degree of a node is defined as the number of edges
entering or exiting the node. In directed graphs, the in-degree counts the number of incoming
edges and out-degree, the number of outgoing edges.

A graph G can be represented through an adjacency matrix A ∈ R
n×n :

A = (ai j ); ai j =
{
wi j , if edge (i, j) exists in graph G
0, otherwise

(1)

where wi j is the weight of the edge (i, j). In this paper, we focus our attention on graphs
that are undirected and unweighted (i.e., wi j = 1 for all edges (i, j)) and do not contain
loops or have multiple edges between nodes. Consequently, all matrices in this paper will be
symmetric, binary, andwith zeros along the diagonal.Notwithstanding, it isworthmentioning
that our method is general and can be applied to other classes of matrices.

2.2 Centrality Measures

There are many node centrality measures, and the simplest one must be the degree
centrality [44]. The degree of a node provides a rough estimation of its importance, yet
it fails to take into consideration the connectivity of the immediate neighbours with the rest
of the network. Instead, let us consider the flow of information in the network. An important
node must be part of routes where the information can flow through, and thus, be able to
spread information very quickly to the rest of the network. These information routes are
represented as walks over the network. This is the main idea behind walk-based centralities
and was formalized by Estrada and Higham [38].

In graph theory, it is well known that the entry (Ak)i j counts the number of walks of length
k ≥ 1 over graph G that starts at node i and end at node j . Then, the entry fi j of the matrix
function f (A) defined as

f (A) =
∞∑
k=0

ζkAk (2)

measures how easily the information can travel from node i to node j . The entryAk is scaled
by a coefficient ζk , such that ζk ≥ ζk+1 ≥ 0 and ζk → 0 when k is large, in order to penalize
the contribution of longer walks and ensure the convergence of the series. The two most
common choices for f (A) are the matrix exponential eA and resolvent (I − γA)−1 [38], but
other matrix functions can be used as well [10, 11, 17].
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Algorithm 1 A Monte Carlo method adapted from [18] for computing a matrix F as an
approximation of f (A). Ns represents the number of random walks for approximating each
row and Wc is the weight cutoff.
1: function MC(A, Ns , Wc)
2: F = 0

3: T =
{
ti j = |ai j |∑

k |aik |
}

4: for i = 1, 2, . . . , n do � for each row in A
5: for s = 1, 2, . . . , Ns do � for each random walk

6: �0 = i;W (0) = 1

Ns
; k = 0

7: while W (k) > WcW (0) do � compute the k-th step
8: fi �k = fi �k + ζkW

(k)

9: �k+1 = SelectNextState(T, �k )

10: W (k+1) = W (k)
a�k�k+1

t�k�k+1
11: k = k + 1
12: end while
13: end for
14: end for
15: return F
16: end function

From the power series (2), Estrada defined f-subgraph centrality [38, 39] as the diagonal
of f (A), that is f SC(i) = ( f (A))i i , and measures the importance of this node based on
its participation in all subgraphs in the network. The sum over all nodes of the subgraph
centrality has become known as the Estrada Index [27, 34], which was first introduced to
quantify the degree of folding in protein chains [34], but later extended to characterize the
global structure of general complex networks [37, 40].

Later, Benzi and Klymko [15, 17] introduced the concept of f-total communicability based
on the row sum of f (A), ranking the nodes according to how well they can communicate
with the rest of the network. Formally, the f-total communicability is expressed as

f TC(i) = ( f (A)1)i , (3)

where 1 is a vector of length n with all entries set to 1. If we consider the matrix resolvent
f (A) = (I − γA)−1, the total communicability of a node corresponds to the well-known
Katz’s Centrality [55, 60].

In the context of network science, it is common to introduce a weighting parameter
γ ∈ (0, 1) and work with the parametric matrix function f (γA). The parameter γ can
be interpreted as the inverse temperature and accounts for external disturbances on the net-
work [41]. Furthermore, the value of γ is often chosen in such a way that the terms ζk(γA)k

in (2) aremonotonically decreasing in order to preserve the notion that the information travels
faster to nearby nodes compared to those that are farther away.

3 Randomized Algorithm for Matrix Functions

Ulam and von Neumann [43] were the first to propose a Monte Carlo method for computing
the matrix inverse as a way to solve linear systems, which was later refined by [18, 28, 30].
It consists of generating random walks over the matrix A to approximate each power in the
corresponding series (2). Starting from a row �0, a randomwalk consists of a random variable
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W (k) and a sequence of states �0, �1, . . . , �k , which are obtained by randomly jumping from
one row to the next. At each step k, the program updates W (k) and add the results to entry
f (A)i�k as an approximation for the k-th term in the series (2).
The full procedure is described in Algorithm 1. The SelectNextState routine ran-

domly selects an entry in row �k to determine which row to jump to in the next step of the
random walk. The probability of choosing an entry j is equal toP(�k+1 = j | �k = i) = ti j ,
where ti j is an entry of a transition probability matrix T.

The main limitation of this method is that each randomwalk only updates a single entry of
f (A) at a time, requiring a large number of walks just to estimate a single rowwith reasonable
accuracy. Therefore, our objective is to modify this algorithm such that it samples entire rows
and columns of A when approximating each term in the series (2), drastically reducing the
number of walks necessary to achieve the desired precision.

3.1 Mathematical Description of theMethod

In the following,we discuss how to extend the randomizedmatrix product algorithmproposed
in [31, 32] to compute an arbitrary matrix power.

Lemma 1 Let Ri and C j denote the i-th row and j-th column of A ∈ R
n×n. The matrix

power Ap with p ∈ N and p ≥ 2 can be evaluated as

Ap =
n∑

i2=1

n∑
i3=1

· · ·
n∑

i p=1

Ci2ai2i3ai3i4 . . . aip−1i p Ri p . (4)

Proof Recall that the matrix product AB with A,B ∈ R
n×n can be expressed as a sum of

outer products [32]:

AB =
n∑

k=1

Ck Bk,

where Ck is the k-th column of A and Bk is the k-th row of B. Therefore, a power p of a
square matrix A can be written as

Ap =
n∑

k=1

Ck R
(p−1)
k , (5)

where R(p−1)
k is the k-th row of Ap−1. For a single row, (5) is reduced to

R(p)
i =

n∑
k=1

aik R
(p−1)
k . (6)

Recursively applying (6) for the powers p, p−1, . . . , 2 and then substituting the expansion
in (5) leads to the expression in (4). ��

Corollary 1 Let f (A) : Rn×n → R
n×n be a matrix function defined by the power series

f (A) = ζ0I + ζ1A +
∞∑
k=2

ζkAk = H + U, (7)
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where H = ζ0I + ζ1A. Concerning matrix U, it can be written as the following sum of
rank-one matrices:

U =
∞∑
k=2

n∑
i2=1

n∑
i3=1

· · ·
n∑

ik=1

ζkCi2ai2i3ai3i4 . . . aik−1ik Rik . (8)

Themultiple sums appearing in the definition ofmatrixU in (8) can be exploited in practice
to construct a probabilistic algorithm similar to [18, 28], which was originally created for
computing the inverse matrix. In fact, the formal procedure is analogous, but instead of
generating random scalar variables our goal here consists of generating randomly rank-one
matrices governed by the following Markov chain.

Definition 1 Let {Xk : k ≥ 0} be a Markov chain taking values in the state space
S = {1, 2, . . . , n} with initial distribution and transition probability matrix given by

(i) P(X0 = �0) = p�0 = ‖C�0‖2∑n
k=1 ‖Ck‖2 (9)

(i i) T = (ti j ); ti j = P(�k+1 = j | �k = i) = |ai j |∑n
k=1 |aik | . (10)

Here, the indices �m denote the corresponding state reached by the Markov chain after m-
steps. We use the initial state �0 of the Markov chain to choose randomly a column of
matrix A, C�0 . After k-steps of the Markov chain, the state is �k , which is used to select
the corresponding row of the matrix A, R�k . During this random evolution of the Markov
chain different states are visited according to the corresponding transition probability, and
along this process a suitable multiplicative random variable W (k) is updated conveniently.
Finally, matrixU can be computed through the expected value of a given functional, as proved
formally by the following Lemma.

Lemma 2 Let Z(ω) be a realization of a random matrix at a point ω of the discrete sample
space, defined as

Z(ω) =
∞∑
k=0

ζk+2 CX0(ω) W
(k)RXk (ω). (11)

Here W (k) is a multiplicative random variable defined recursively as

W (0) = 1

p�0

W (k) = W (k−1) a�k−1�k

t�k−1�k

. (12)

Then, it holds that

U = E[Z]. (13)

Proof Note that Z(ω) is obtained from Eq. (11) as a sum of independent random matrices
Y(k)(ω):

Z(ω) =
∞∑
k=0

ζk+2Y(k)(ω), (14)

where

Y(k)(ω) = CX0(ω)W
(k)RXk (ω) = CX0(ω)

a�0�1a�1�2 . . . a�k−1�k

p�0 t�0�1 t�1�2 . . . t�k−1�k

RXk (ω).
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Let P(k)(ω) be the probability of occurring an event ω consisting in a transition from �0 to �k
after k steps. This probability turns out to be p�0 t�0�1 t�1�2 . . . t�k−1�k . Therefore, the expected
value of the random matrix Y(k)(ω) is given by,

E[Y(k)] =
∑
ω

P(k)(ω)Y(k)(ω)

=
∑
ω

CX0(ω)a�0�1a�1�2 . . . a�k−1�k RXk (ω).

Note that every event ω can be described by different values of k+1 integer indices, running
from 1 to n, then

E[Y(k)] =
n∑

i0=1

n∑
i1=1

· · ·
n∑

ik=1

Ci0ai0i1ai1i2 . . . aik−1ik Rik .

Therefore, from (8) we conclude that E[Y(k)] = Ak+2. Finally after summing all contribu-
tions coming from any number of steps, using (14) and by linearity of the expected value
operator we obtain

E[Z] =
∞∑
k=0

ζk+2E[Y(k)] =
∞∑
k=0

ζk+2Ak+2 = U. (15)

��

3.2 Practical Implementation of the Probabilistic Method

To transform Lemma 2 into a practical algorithm, we must first select a finite sample size
Ns and then compute the expected valueE[Z] in (13) as the corresponding arithmetic mean.
Additionally, each random walk must terminate after a finite number m of steps. Mathemat-
ically, this is equivalent to considering only the first m terms of the power series expansion.
Since some random walks may retain important information of the matrix for longer steps
than others and it is very difficult to determine a priori the number of steps required for
achieving a specific precision, we adopt the following termination criteria: the computation
of the random walk will end when the associated weight is less than a relative threshold
Wc [18]. In other words, a random walk terminates at step m when

W (m) ≤ WcW
(0), (16)

whereW (m) is the weight afterm steps andW (0) is the weight at the initial step of the random
walk. Formally, the infinite series in (15) is truncated as

f (A) ≈ H + Û (17)

with

Û = 1

Ns

Ns∑
s=1

m∑
k=0

ζk+2CX0(s)�
(k)
�0�k

RXk (s) (18)

where �
(k)
i j corresponds to the weight W (k) of the random walk that began at state i and

arrived at state j after k steps. Here s indicates a realization of a random walk.
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Algorithm 2 A probabilistic algorithm for computing the matrix F as an approximation of
f (A). Ns represents the total number of random walks and Wc the weight cutoff.
1: function RandFunm(A, Ns , Wc)
2: Q = 0

3: T =
{
ti j = |ai j |∑

k |aik |
}

4: for i = 1, 2, . . . , n do � for each column in A
5: Ni = Ns P(�0 = i) � see Eq. (9)
6: for s = 1, 2, . . . , Ni do � for each random walk

7: �0 = i;W (0) = 1

Ni
; k = 0

8: while W (k) > WcW (0) do � compute the k-th step
9: qi �k = qi �k + ζk+2W

(k)

10: �k+1 = SelectNextState(T, �k )

11: W (k+1) = W (k)
a�k�k+1

t�k�k+1
12: k = k + 1
13: end while
14: end for
15: end for
16: F = ζ0I + ζ1A + AQA
17: return F
18: end function

Computing Û directly from (18) is ill-advised due to the large number of outer products,
while also being very difficult to be parallelised efficiently. Instead, let us rearrange (17) to
a more suitable form. The random walks with the same starting column can be grouped as

Û =
n∑

i=1

Ci

⎛
⎝ 1

Ni

Ni∑
s=1

m∑
k=0

ζk+2�
(k)
i �k

RXk (s)

⎞
⎠, (19)

where Ni is the number of random walks that began at column i . Assuming that Ns >> 1,
the value of Ni can be estimated a priori as Ni ≈ pi Ns with pi = P(X0 = i) as defined
in (9).

Let νi j denote a visit to the state j at the step k of a random walk that started at state i .
For each visit νi j , the weight of the walk is added to the entry qi j of matrix Q, defined as

qi j = 1

Ni

∑
νi j

ζk+2�
(k)
i j . (20)

Then, we can rewrite (18) as

Û =
n∑

i=1

n∑
j=1

Ciqi j R j = AQA. (21)

Algorithm 2 describes the procedure for approximating f (A) based on Eqs. (17) and (21).
Assuming that matrix A is sparse with Nnz nonzero entries, Algorithm 2 requires O(Nsm)

operations to construct the matrix Q and O(nNnz) to calculate the final product AQA, for a
total computational cost of order of O(Nsm + nNnz). It also uses an additional n2 space in
memory to store the matrix Q. It is possible to reduce memory consumption if the program
divides rows ofQ into blocks in such a way that only one block is computed at a time. At the
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end of each block, the program updates the matrix f (A) and reuses the memory allocation
for the next block.

3.3 Diagonal of theMatrix Function

Algorithm 2 can be conveniently modified to compute only the diagonal of the matrix func-
tion. Let Qk denote the k-th row of matrix Q defined in (20). Then, the diagonal of f (A) is
approximated by vector d = (di ) as follows

di = eᵀ
i f (A) ei = ζ0 + ζ1aii +

n∑
k=1

aik 〈Qk,Ci 〉, (22)

where 〈·, ·〉 denotes the inner product and ei a vector from the canonical basis. Essentially,
the program updates the value of di immediately after the computation of row Qk . In this
way, only a single row of Q needs to reside in memory at a time. Naturally, if aik ∼ 0,
the program can skip the calculation of Qk in order to save computational resources. Note
that multiple entries can be computed at the same time by reusing Qk and then selecting the
appropriate entry aik and column Ci .

In terms of computational cost, the computation of all diagonal entries requires O(Nsm+
Nnzn̄c) floating-point operations, where n̄c denotes the average number of nonzero entries
per column and consumes an additional n space in memory. The algorithm described in this
section will be referred to as RandFunmDiag.

3.4 Action of theMatrix Function Over a Vector

Let v be a real vector in Rn , our goal is to develop another algorithm based on Lemma 2 for
computing f (A) v. First, let us multiply the truncated series (17) by the vector v:

f (A)v ≈ h + û (23)

where

û = 1

Ns

Ns∑
s=1

m∑
k=0

ζk+2CX0(s)�
(k)
�0�k

rXk (s) (24)

with ri = 〈Ri , v〉 and h = Hv. Rearranging the series such that the random walks with the
same starting column are grouped:

û =
n∑

i=1

Ci

⎛
⎝ 1

Ni

Ni∑
s=1

m∑
k=0

ζk+2�
(k)
i �k

rXk (s)

⎞
⎠.

Then, the action of the matrix function f (A) over the vector v can be approximated as

f (A)v ≈ h + Aq (25)

with

q = (qi ); qi = 1

Ni

Ni∑
s=1

m∑
k=0

ζk+2�
(k)
i �k

rXk (s).
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Algorithm 3 A probabilistic algorithm for computing y as an approximation of f (A)v. Ns

represents the total number of random walks and Wc the weight cutoff threshold.
1: function RandFunmAction(A, v, Ns , Wc)
2: q = 0

3: T =
{
ti j = |ai j |∑

k |aik |
}

4: r = Av
5: for i = 1, 2, . . . , n do � for each column in A
6: Ni = Ns P(�0 = i) � see Eq. (9)
7: for s = 1, 2, . . . , Ni do � for each random walk

8: �0 = i;W (0) = 1

Ni
; k = 0

9: while W (k) > WcW (0) do � compute the k-th step
10: qi = qi + ζk+2 W

(k) r�k
11: �k+1 = SelectNextState(T, �k )

12: W (k+1) = W (k)
a�k�k+1

t�k�k+1
13: k = k + 1
14: end while
15: end for
16: end for
17: y = ζ0v + ζ1r + Aq
18: return y
19: end function

Algorithm 3 describes the procedure for approximating f (A)v based on Eq. (25) and
the definition of the vector q. It has a time complexity of O(Nsm + Nnz) and requires an
additional n space in memory to store the vector q.

3.5 Convergence of theMethod and Numerical Errors

In the following, we prove the convergence of the Monte Carlo method described by
Eqs. (17) and (21) through the following theorem:

Theorem 1 Let m be any positive integer. For each k ∈ {0, . . . ,m}, let (ξ (k)(s))s≥1

be a collection of i.i.d. vector-valued random variable in R
n2 defined as ξ (k)(s) =

ζk+2�
(k)
�0�k

vec(CX0(s)RXk (s)), and V (s) = ∑m
k=0 ξ (k)(s). Let ψ = ∑Ns

s=0 V (s), μ =
E[V (s)], α = maxi {(∑n

j=1 |ai j |)2} < 1, and |ζk+1| < |ζk | when k → ∞. Then

lim
Ns→∞

ψ − Nsμ√
Ns

(26)

converges in distribution to a random vector distributed according to a multivariate normal
distribution N [0,
]. Here
 = (θi j ) is the covariance matrix, with θi j = Cov(vi (s), v j (s)),
and vi (s) the i-th component of the random vector V (s).

Proof This proof is based on the proof described in Theorem 3.4 [58] conveniently modi-
fied for the current numerical method. Assuming that all random walks are independently
generated, then

Var(vi (s)) =
m∑

k=0

Var(ξ (k)
i (s)) ≤

m∑
k=0

E[(ξ (k)
i (s))2] ≤

∞∑
k=0

E[(ξ (k)
i (s))2]. (27)
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Here, ξ
(k)
i (s) denotes the i-th component of the random vector ξ (k)(s). To compute the

expected valueE[(ξ (k)
i (s))2], we have to enumerate all the different transitions that occurred

between a given initial state �0 and an arbitrary final state �k of the Markov chain in k steps,
along with the corresponding probabilities. This yields,

E[(ξ (k)
i (s))2] = ζ 2

k+2

n∑
i1=1

· · ·
n∑

ik=1

t�0i1 ti1i2 · · · tik−1ik
1

p2�0
(�

(k)
�0ik

)2(g(ik )
i )2 (28)

where g(ik ) = vec(C�0 Rik ) is the vector obtained after vectorizing the matrix C�0 Rik with

g(ik )
i as the i-th component. From Eq. (12), it follows that

E[(ξ (k)
i (s))2] = ζ 2

k+2

n∑
i1=1

n∑
i2=1

· · ·
n∑

ik=1

1

p2�0

(a�0i1ai1i2 · · · aik−1ik )
2

t�0i1 ti1i2 · · · tik−1ik
(g(ik )

i )2

= ζ 2
k+2

p2�0

n∑
i1=1

a2�0i1
t�0i1

n∑
i2=1

a2i1i2
ti1i2

· · ·
n∑

ik=1

a2ik−1ik

tik−1ik
(g(ik )

i )2. (29)

Note that
∑n

j=1
a2i j
ti j

= (
∑n

j=1 |ai j |)2 from Eq. (10), then it holds

E[(ξ (k)
i (s))2] ≤ ζ 2

k+2

p2�0
αkβ. (30)

Here β = max j {(g( j)
i )2}. Since ζk+2 ≤ 1,∀k for any matrix function of interest, from

Eq. (27), we have

Var(vi (s)) ≤
∞∑
k=0

E[(ξ (k)
i (s))2] ≤ β

p2�0

∞∑
k=0

|ζk+2|αk ≤ β

α2 p2�0

∞∑
j=0

|ζ j |α j . (31)

Since limk→∞ α
|ζk+1|
|ζk | < 1, it holds that the series

∑∞
j=0 |ζ j |α j converges and therefore the

variance Var(vi (s)) is bounded.
Note, however, that for the specific case of the exponential function, |ζk+1|/|ζk |=1/(k+1),

and therefore any value of α is allowed to ensure convergence of the series. However, for the
inverse function α < 1 is strictly mandatory.

Since the variance is finite, the Central Limit Theorem for vector-valued random variables
(see [56] e.g.) guarantees that

ψ − Nsμ√
Ns

→d N [0,
]. (32)

��
Therefore, for a finite sample size Ns , replacing the expected value in (13) by the arithmetic

mean introduces an error which is statistical in nature and known to be distributed according
to a normal distribution. From Theorem 1 the standard error of this mean ε can be readily
estimated as σ 2/

√
Ns , being σ the corresponding standard deviation.
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Table 1 Numerical examples for evaluating the algorithms. Here, k = 103, M = 106 and B = 109

Name Digraph? Nodes Edges Description

smallworld-<n> No 2n 10 × 2n Random graph based on the Watts–Strogatz
model [75]. Each edge has a 10% rewiring
chance

kronecker-<n> No ∼ 2n ∼ 16 × 2n Kronecker graph used by the Graph500
benchmark [47, 63]

yeast No 2114 4480 Protein interaction network for yeast [24, 57,
73]

power-us No 4941 13k Topological representation of the power grid
of the western states in the US [68, 75]

internet No 23k 96k Symmetrized snapshot of the structure of the
internet at the level of autonomous systems
circa 2006 [68]

cond-mat No 40k 351k Collaboration network of scientists in the
field of condensed matter from 1995 to
2005 [68, 69]

twitch No 168k 6.8M Social network of Twitch users in Spring
2018 [61, 72]

stanford Yes 281k 2.3M Web graph of the Stanford University
domain in 2002 [61, 62]

orkut No 3.1M 117M Social network of Orkut users in 2007 [61,
65]

uk-2005 Yes 39.5M 936M Web graph of the .uk domain in 2005
[19–21]

twitter Yes 42.6M 1.47B Social network of Twitter users in 2009 [61,
76]

4 Numerical Examples

To illustrate the applicability of our method, we compute the subgraph centrality and total
communicability of several complex networks using the matrix exponential eγA with γ ∈
[0, 1]. Due to the random nature of the Monte Carlo algorithms, all results reported in this
section correspond to the mean value of 10 runs of the algorithm using different random
seeds.

All numerical simulations were executed on a commodity server with an AMD EPYC
9554P 64C 3.75 GHz and 256 GB of RAM, running Fedora 38. All randomized algorithms
were implemented in C++ using OpenMP. The code was compiled with AMD AOCC v4.0
with the -O3 and -march=znver4 flags. Our implementation uses the PCG64DXSM [71]
random number generator.

The algorithmswere tested using two synthetic graphs—smallworld and kronecker
—as well as a set of networks extracted from real-world data, which are described in Table 1.
Note that, before calculating the subgraph centrality and total communicability of directed
graphs, their adjacency matrix A must symmetrized as

B =
[
0 A
Aᵀ 0

]
(33)
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Fig. 1 Relative �∞ error as function of the number of random walks Ns for Wc = 10−6. The degree γ of the
polynomial of the fitting curve is indicated as εr ∼ Nγ

s

in order to split apart the outgoing and incoming edges of the graph [17]. We also remove all
duplicated edges, loops and disconnected nodes from the kronecker graph generated by
the Graph500 code [47].

4.1 Numerical Errors and Accuracy

Figure1 show the relative �∞ error of our method as function of Ns . Recall from Sect. 3.2
that the algorithm assigns a priori N j ∼ ‖C j‖2 random walks to each node j of the graph.
Therefore, if Ns is too low, very few random walks will be assigned to a node i with a low
norm, such that its centrality score is basically approximated by just the first two terms in the
series, i.e., SC(i) ≈ 1 + aii and TC(i) ≈ 1 + (A1)i . For this reason, the relative errors are
highly dependent on the structure of the graph. In particular, the nodes in the smallworld
network have very similar probabilities, and therefore it can happen that for Ns < n some
nodes will have no chance to be randomly chosen. Only when the sample size is sufficiently
large, the algorithm can properly estimate the centrality of every node. In this scenario,
the numerical error of the algorithm scales with O(N−0.5

s ), similar to other probabilistic
methods. This relation is confirmed numerically by the trend lines in Fig. 1 which has a slope
of approximately −0.5 in the logarithmic scale. Table 2 shows the relative �∞ error for a
fixed number of samples. The table also shows the standard measurement error obtained after
several independent runs.

In Fig. 2 we show the relative �∞ error as function of Wc. The value of Wc controls the
length of the random walks in terms of the number of steps, which is related to the number of
terms of the power series expansion. When the value of Wc is large, the algorithm stops the
random walk generation too early, leading to large errors. On the other hand, when the value
of Wc is small, the algorithm continues generating the random walk for longer steps than
necessary. Note that this increases the computational cost without necessarily improving the
accuracy of the method. In fact, we have to consider also the statistical error, which depends
on the number of generated random walks. According to Fig. 2 the optimal value for Wc is
around 10−6 for these networks.

Figure3 shows how the relative �∞ error grows with the size of the smallworld and
kronecker networks. The smallworld network starts as a ring lattice with n nodes,
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Table 2 Relative �∞ error for
Ns = 108 and Wc = 10−6 as
well as the standard measurement
error obtained after several
independent runs

(a) RandFunmDiag (γ = 10−3) εr

kronecker-19 (1.94 ± 0.14) × 10−7

twitch (8.09 ± 0.67) × 10−8

smallworld-19 (2.70 ± 0.04) × 10−10

stanford (2.70 ± 0.45) × 10−8

(b) RandFunmAction (γ = 10−5) εr

kronecker-24 (2.57 ± 0.26) × 10−8

orkut (1.67 ± 0.09) × 10−9

smallworld-24 (5.59 ± 0.16) × 10−15

Fig. 2 Relative �∞ error as function of the weight cutoff Wc for Ns = 108

Fig. 3 Relative �∞ error as function of the number of nodes n of the graph considering Wc = 10−6 and
Ns = 108. The degree γ of the polynomial of the fitting curve is indicated as εr ∼ nγ
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each connected to 10 neighbours. The algorithm then rewires each edge in the lattice with
a 10% chance, i.e., the edge (i, j) is replaced by (i, k) where k is chosen at random from
all the possible nodes in the network such that there are no loops or duplicated edges. As a
result, the random walks have very similar weights W (k) independently of the sequence of
nodes visited. In other words, the norm of the covariance matrix σ 2 = ‖
‖∞ is very low.
Considering that Ns is fixed, there are fewer random walks to estimate the centrality score
of each node as the graph size increases, which reduces the precision of the algorithm by a
factor of

√
n, as shown in Fig. 3b, c. This is in line with the theoretical results from Sect. 3.5,

where εr ∼ σ 2N−0.5
s .

In contrast, the nodes in the kronecker graph are organized hierarchically. At the top
level, there is a single node acting as the central hub for the entire graph. As we move down
the hierarchy, there are more nodes per level, but they have fewer connections. The number
of levels in the hierarchy as well as the number of nodes and connections at each level are
determined by the size of the graph. Therefore, the weight of the random walks can vary
greatly depending on which nodes are visited and their position in the hierarchy. Larger
graphs have a higher covariance norm σ 2 due to a wider degree difference between nodes.

4.2 Comparison with Other Methods

There are a few algorithms available in the literature for computing the matrix exponential.
Perhaps the most well-known scheme is the expm routine from MATLAB [5, 53, 54]. The
method first scales the matrix A by a power of 2 to reduce the norm to order 1, calculates
the Padé approximant of the matrix exponential and then repeatedly squares the result to
recover the original exponent. For a generic n × n matrix, expm requires O(n3) arithmetic
operations and an additional O(n2) space in memory. expm calculate the entire matrix eγA.

To rank the nodes using the subgraph centrality, we only need to calculate the diagonal
entries of eγA, not the complete matrix. Methods for estimating the individual entries of the
matrix function have been proposed by Golub, Meurant and others [14, 42, 46] and are based
on Gaussian quadrature rules and the Lanczos algorithm. They require O(n) operations to
determine each diagonal entry, resulting in a total cost of O(n2) to calculate the subgraph
centrality for all nodes. In practice, this methodmay suffer from numerical breakdowns when
A is large and sparse [12, 42]. For this reason, it is often restricted to estimate only the k
most important nodes in the graph.

Likewise, the total communicability only requires the action of f (A) over a vector setting
v = 1, which can be computed efficiently using either a polynomial or rationalKrylovmethod
[3, 33, 51, 52]. These methods consist in generating a Krylov basis using the input matrix and
then evaluating the function over the projected matrix through some direct method, such as
expm. Assuming a sparse matrix with Nnz nonzeros and a Krylov basis with m vectors, the
computational cost is O(mNnz). In particular, we compared our method against the restarted
polynomial Krylov [3, 33] from the funm_kryl toolbox [50].

While writing this article, Güttel and Schweitzer published a paper [49] proposing two
new randomized algorithms—sFOM and sGMRES—for estimating f (A)v. Here, we focus on
sFOM since sGMRESworks best with Stieltjes functions and requires a numerical quadrature
rule for all the other functions. sFOM first creates a random sketch of the A and then uses
an incomplete Arnoldi decomposition to generate a non-orthogonal Krylov basis from this
sketch. However, the basis may be ill-conditioned, and thus, for stabilizing the method, it is
required to compute a thin QR decomposition (also called whitening [67]) of the basis before
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Fig. 4 Comparison between different algorithms when calculating the subgraph centrality for real networks
and γ = 10−3. Here, we consider the centrality scores generated by our algorithm with Ns = 1011 as
reference

evaluating the matrix function over the projected matrix. The computational cost of sFOM is
O(Nnzm logm + m3).

Another preprint by Cortinovis, Kressner and Nakatsukasa [25] was also published
recently proposing a different randomization strategy for the Krylov method. They propose
an Arnoldi-like decomposition to iteratively build the non-orthogonal Krylov basisVm using
only random sketches of the basis vectors. Again, the method may apply a whitening [67]
to improve the condition number of the basis. Afterwards, the program solves a least-square
problem to obtain the projected matrix. We will denote this algorithm as rand_kryl and
it has an overall computational cost of O(Nnzm2 + m3).

TheMC represents theMonte Carlomethod adapted from [18] as described inAlgorithm 1.
Similar to our randomized algorithm, the length of the random walks depends on the weight
cutoff Wc. It has a computational cost of O(mNs), where m denotes the average number of
steps in the random walk, and does not require additional space in memory. This method can
be modified to calculate f (A)v or f (A)i i instead of the full matrix function. Note that for
the latter, the method still computes the full f (A), but discards all the off-diagonal entries.

Figure4 compares the serial execution time and accuracy among the different methods
when computing the subgraph centrality. The graphs are sorted according to the number
of nodes. The similarities between the two node rankings are measured using the Pearson
correlation coefficient [13]. Here, cc1 denotes the correlation coefficient between the top
1% nodes between a reference list and the ranking obtained by the algorithm. Note that, if
two or more nodes have similar centrality scores, numerical deviations can alter their ranking
order, lowering the correlation coefficient. Nevertheless, these nodes have similar importance
within the network, and thus, their order in the ranking may not be relevant to understanding
the dynamics of the graph.
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Fig. 5 Comparison between different algorithms when computing the total communicability for real networks
and γ = 10−5. Here, we consider the centrality scores generated by expmv [6] as reference

Although expm reaches machine precision, it cannot be used for large graphs due to its
hefty computational cost and cubic scaling. In fact, the cond-mat graph with 40k nodes
is already too large for expm and cannot be executed in a reasonable amount of time. The
MC requires a very large number of random walks to estimate the subgraph centrality as
it only updates a single entry of the matrix exponential at a time, and it is more likely
for this entry to be outside the diagonal if the matrix is very large. For this reason, the
accuracy of MC is quite poor even with a large number of random walks. Both RandFunm
and RandFunmDiag have the same accuracy and correlation since the core algorithm is
the same. However, RandFunmDiag does not require the computation of the full matrix
product at the end of the algorithm, resulting in a speedup between 3 to 24 over RandFunm.
Moreover, the full matrix exponential of the twitch and stanford graphs are too large to
be fully represented in memory, and thus, their subgraph centrality can only be calculated by
RandFunmDiag. The randomized algorithms also show a very high correlation for top-1%
nodes in the ranking compared with the reference list.

Figure5 compares RandFunmAction against all Krylov-based methods in terms of the
serial execution time and accuracy. The tolerance of funm_kryl was set to 10−8 and the
size of the Krylov basis of sFOM and rand_krylwas set to 4, such that all algorithms have
comparable precision. We choose a small value of γ to avoid overflow as we are working
with large positive matrices, and consequently, all algorithms converge very fast to target
precision.

The stopping criterion of funm_kryl is well-known to be pessimistic [52], resulting in
much higher precision than the target at the cost of higher execution times. In some networks
(twitch, orkut and twitter), sFOM and rand_kryl outperformed funm_kryl
mainly due to the smaller basis, while in others (uk-2005), the additional cost associated
with the sketching, whitening, least square QR and other operations lead to significant slow-
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Fig. 6 Elapsed time for computing the subgraph centrality as a function of the number of nodes n for a fixed
accuracy εr and γ = 10−3

downs. Considering the accuracy difference, the randomization in the Krylov method does
not seem to be very effective when the basis is relatively small. RandFunmAction shows
the best performance among all algorithms, in particular, for the twitter network, being
3.8× faster than funm_kryl, while sFOM and rand_kryl are 2.7× and 1.7× faster,
respectively.

For complex networks, it suffices for the algorithm to be sufficiently accurate to differen-
tiate the centrality score between all nodes in the graph, there is no benefit in having higher
accuracy. Indeed, the ranking produced by RandFunmAction has a correlation greater
than 0.95 for the top 1% nodes despite having a lower accuracy than the others. The only
exception is the twitter network. As a massive social network, there is no clear struc-
ture or hierarchy in the graph, such that many of them have similar centrality scores and
small numerical variations can drastically change the rank order. In comparison, uk-2005
is an equally large web graph that follows a more clear structure with a well-defined hub
and authorities, and thus, it is less susceptible to noise. For this reason, the correlation for
the twitter network is much lower than other graphs and requires greater precision to
differentiate the nodes. Note that the top-1% in the ranking contains almost 1 million nodes
in both the twitter and uk-2005 networks with a wide range of centrality scores. If
we consider only the top-0.1%, the correlation of RandFunmAction for the twitter
network increases to 0.79.

Figures6 and 7 show the elapsed serial time as a function of the number of nodes for the
kronecker and smallworld networks. The computational cost of the expm algorithm
is of the order of O(n3). This is regardless of the sparsity or the distribution of the nonzeros
of the matrix since it was originally proposed for dense matrices. The MC algorithm was too
slow for the prescribed accuracy, and thus, it was not included in the graph. When Nnz ∼ n
the computational cost of the RandFunm and RandFunmDiag algorithms become of order
O(n2). This is because the computational cost of computing the matrix product is higher than
generating randomwalks. Note that this cost is similar to other algorithms [42] for estimating
diagonal entries of thematrix.However, themain advantage here is the smaller proportionality
constant and the capability to compute the subgraph centrality for sparse and large matrices
without worrying about a numerical breakdown [42]. Again, the RandFunmDiag algorithm
is significantly faster than the RandFunm algorithm as it only requires the partial evaluation
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Fig. 7 Elapsed time for computing the total communicability as a function of the number of nodes n for a
fixed accuracy εr and γ = 10−5

Table 3 Relative error for calculating the total communicability of a single node i = argmax j
∑

k |a jk |
considering Ns = 108, Wc = 10−6 and γ = 10−5

stanford orkut kronecker-24

MC 1.48 × 10−9 6.59 × 10−8 1.33 × 10−6

RandFunmAction 4.64 × 10−11 3.87 × 10−10 2.01 × 10−8

of thematrix product at the end of the algorithm.AllKrylov-basedmethods scale linearlywith
n as they rely on matrix–vector multiplications. Similar to the other Monte Carlo methods,
RandFunmAction spendsmore time computing thematrix–vector product than generating
the random walks, and thus, also scales linearly with n.

4.3 Single Entry

One of the main advantages of Monte Carlo algorithms is the ability to calculate a single
entry of the solution without requiring the computation of the full solution. Table 3 shows
the relative �∞ error for calculating the total communicability of the node with the highest
degree. Both RandFunmAction and MC were modified to calculate a single entry of the
solution as efficiently as possible. Due to the ability to sample entire rows and columns,
RandFunmAction produces a much better approximation for ( f (A)v)i than MC for the
same number of random walks, independently of the network.

4.4 Parallel Performance

Parallelizing our randomized algorithm is fairly straightforward. Multiple rows of Q can
be computed at the same time in the RandFunmDiag algorithm, yet the diagonal entries
must be updated atomically to avoid data races. Likewise, the RandFunmAction algorithm
can compute the vector q as well as the final product Aq completely in parallel.
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Fig. 8 Strong scaling for the
RandFunmDiag algorithm
considering Wc = 10−8 and
γ = 10−3

Fig. 9 Strong scaling for the
RandFunmAction algorithm
considering Wc = 10−8 and
γ = 10−5

Figures 8 and 9 show the strong scaling for the parallel implementation of the Rand
FunmDiag and RandFunmAction algorithms, respectively. The scalability of both algo-
rithms is excellent, attaining more than 85% in efficiency for most networks when using
64 cores. In particular, the parallel code was able to achieve near-perfect scaling for the
smallworld network due to its low degree per node and an almost uniform structure. This
leads to a more efficient usage of the cache as well as an even distribution of load across the
processors.

In most networks, the random walks are not distributed equally across the nodes, such
that some rows of Q and entries of q take longer to compute than others. To solve this
load imbalance, the program dynamically distributes the vector q and matrix Q over the
CPU cores. This solution was very effective for most networks, improving significantly the
performance of the program. Yet, the CPU may still be underutilized at the end of the code if
the graph is very unbalanced. This is the case of directed graphs due to the symmetrization
of the adjacent matrix as shown in (33).

Another limiting factor is the latency and bandwidth of the mainmemory.Most operations
with large and sparse matrices are well-known to be memory-bound as they cannot utilize
the cache hierarchy effectively while requiring additional logic and memory accesses for
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handling the sparse storage format. In fact, the kryl_funm algorithm shows no benefits
when running in amultithreaded environment since it relies on sparse matrix–vector products
and the majority of the code is written in MATLAB. In contrast, our randomized algorithm
only needs to compute two sparsematrix products: one at the beginning and another at the end
of the algorithm. This still affects the scalability of the method when working with massive
networks, such as twitter and uk-2005. Even under these conditions, the program
was able to obtain significant speedups when using 64 cores, achieving 60% efficiency for
twitter and 70% for uk-2005.

4.5 Katz Centrality

One of the most well-known centrality measures based on matrix functions is Katz’s Cen-
trality (KC) [55, 60]. It is defined as (I − γA)x = 1 with KC(i) = xi as the centrality
score of the node i . Here, the γ is called attenuation factor and should be between 0 and
ρ(A)−1, where ρ(A) is the spectral radius of A [60]. Different information can be extracted
from the network by changing the value of γ [16]. For instance, if γ tends to ρ(A)−1, Katz’s
Centrality approximates the eigenvalue centrality [22, 23]. If γ tends to 0, then it converges
to the degree centrality.

There are several ways to solve the linear system (I − γA)x = 1. Direct solvers, such
as MUMPS [7, 8] or Intel Pardiso [74], first compute the LU factorization or similar and
then solve the linear system using backward/forward substitution. However, factorization is
a very costly procedure, scaling with O(n3), while also requiring additional space to store
matrices L and U. On the other hand, sparse iterative solvers, such as Conjugate Gradient,
GMRES, and BiCGSTAB, can converge very quickly to the solution especially provided a
good preconditioning is available. Last, but not least, Monte Carlo methods solve the linear
system as the truncated series

(I − γA)−1v =
m∑

k=0

(γA)kv

with v = 1. However, this series only converges when ρ(γA) < 1. Moreover, if ρ(γA) is
near 1, the convergence rate will be very slow, and thus, requires computing many terms of
the expansion to reach a reasonable accuracy.

Figure10 compares RandFunmAction against the original Monte Carlo method (MC)
and a simple Conjugate Gradient algorithm (CG). Here, the error ε of the CG is equal to
residual norm ‖1−Ax̂‖2, while for RandFunmAction and MC, it corresponds to �∞ error
using the results from the CG as reference. Note that we avoid the costly computation of the
eigenvalue by leveraging the Gershgorin’s Theorem [45], i.e., ρ(γA) ≈ maxi

∑
k |γ aik |.

Again, RandFunmAction is faster and more accurate than MC for the same number of
random walks Ns , yet it still is not as good as the sparse iterative solver. Even without
preconditioning, CG can converge extremely quickly to the solution due to the small value of
γ . It is possible to enhance the performance of ourmethods by combining it with aRichardson
iteration as shown in [18]. This is left for future work.

We want to emphasize that Monte Carlo methods are better suited to evaluate other matrix
functions than the matrix inverse, whereas this is either too expensive or is not even possible
with classical methods.
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Fig. 10 Comparison among the different algorithms when computing the katz-centrality for γ =
0.85maxi

∑
k |aik | and Ns = 109. The execution time is measured using all 64 cores

5 Conclusion

This paper proposes a novel stochastic algorithm that randomly samples rows and columns of
the matrix for approximating different powers of the power series expansion. It can evaluate
any matrix function by using the corresponding coefficients of the series. The algorithm
can be conveniently modified to compute either f (A)v or the diagonal of f (A) without the
need to compute the entire matrix function. As a way to test the applicability of our method,
we compute the subgraph centrality and total communicability of several large networks
using the matrix exponential. Within this context, the stochastic algorithm has proven to be
particularly effective, outperforming the competition. Our method also is highly scalable in
a multithreaded environment, showing remarkable efficiency when using up to 64 cores.

In this paper, we primarily focus on the analysis of complex networks as it provided a
very close relation with the method itself, but the algorithm can be applied to any scientific
problem that can be expressed in terms of matrix functions, providing a quick way to estimate
the solution of the problem with reasonable accuracy.

Funding Open access funding provided by FCT|FCCN (b-on). This work was supported by national funds
through FCT, Fundação para a Ciência e a Tecnologia, under projects URA-HPC PTDC/08838/2022 and
UIDB/50021/2020 (DOI:10.54499/UIDB/50021/
2020) and grant 2022.11506.BD. JA was funded by Ministerio de Universidades and specifically the requali-
fication program of the Spanish University System 2021–2023 at the Carlos III University.

Data availability The datasets generated during and/or analysed during the current study are available
in the randfunm-networks repository, available at https://gitlab.com/moccalib/applications/randfunm-
networks.

123

https://gitlab.com/moccalib/applications/randfunm-networks
https://gitlab.com/moccalib/applications/randfunm-networks


Journal of Scientific Computing (2024) 99 :41 Page 23 of 26 41

Declaration

Conflict of interest All authors certify that they have no affiliations with or involvement in any organization
or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this
manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Acebrón, J.: A Monte Carlo method for computing the action of a matrix exponential on a vector. Appl.
Math. Comput. 362, 124545 (2019). https://doi.org/10.1016/j.amc.2019.06.059

2. Acebrón, J.A., Herrero, J.R., Monteiro, J.: A highly parallel algorithm for computing the action of a
matrix exponential on a vector based on a multilevel Monte Carlo method. Comput. Math. Appl. 79(12),
3495–3515 (2020). https://doi.org/10.1016/j.camwa.2020.02.013

3. Afanasjew, M., Eiermann, M., Ernst, O.G., Güttel, S.: Implementation of a restarted Krylov subspace
method for the evaluation of matrix functions. Linear Algebra Appl. 429(10), 2293–2314 (2008). https://
doi.org/10.1016/j.laa.2008.06.029

4. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406(6794),
378–382 (2000). https://doi.org/10.1038/35019019

5. Al-Mohy, A.H., Higham, N.J.: A new scaling and squaring algorithm for the matrix exponential. SIAM
J. Matrix Anal. Appl. 31(3), 970–989 (2010). https://doi.org/10.1137/09074721X

6. Al-Mohy, A.H., Higham, N.J.: Computing the action of the matrix exponential, with an application to
exponential integrators. SIAMJ. Sci. Comput.33(2), 488–511 (2011). https://doi.org/10.1137/100788860

7. Amestoy, P.R., Duff, I.S., L’Excellent, J.Y., Koster, J.: A fully asynchronous multifrontal solver using
distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001). https://doi.org/10.
1137/S0895479899358194

8. Amestoy, P.R., Buttari, A., L’Excellent, J.Y., Mary, T.: Performance and scalability of the block low-
rank multifrontal factorization on multicore architectures. ACM Trans. Math. Softw. 45(1), 1–26 (2019).
https://doi.org/10.1145/3242094

9. Aparicio, J.T., Arsenio, E., Santos, F.C., Henriques, R.: LINES: multimodal transportation resilience
analysis. Sustainability 14(13), 7891 (2022). https://doi.org/10.3390/su14137891

10. Arrigo, F., Benzi, M.: Edge modification criteria for enhancing the communicability of digraphs. SIAM
J. Matrix Anal. Appl. 37(1), 443–468 (2016). https://doi.org/10.1137/15M1034131

11. Arrigo, F., Durastante, F.: Mittag–Leffler functions and their applications in network science. SIAM J.
Matrix Anal. Appl. 42(4), 1581–1601 (2021). https://doi.org/10.1137/21M1407276

12. Bai, Z.,Day,D.,Ye,Q.:ABLE: an adaptive blockLanczosmethod for non-Hermitian eigenvalueproblems.
SIAM J. Matrix Anal. Appl. 20(4), 1060–1082 (1999). https://doi.org/10.1137/S0895479897317806

13. Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. In: Cohen, I., Huang, Y., Chen,
J., Benesty, J. (eds.) Noise Reduction in Speech Processing. Springer Topics in Signal Processing, pp.
1–4. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-00296-0_5

14. Benzi, M., Boito, P.: Quadrature rule-based bounds for functions of adjacency matrices. Linear Algebra
Appl. 433(3), 637–652 (2010). https://doi.org/10.1016/j.laa.2010.03.035

15. Benzi, M., Klymko, C.: Total communicability as a centrality measure. J. Complex Netw. 1(2), 124–149
(2013). https://doi.org/10.1093/comnet/cnt007

16. Benzi, M., Klymko, C.: On the limiting behavior of parameter-dependent network centrality measures.
SIAM J. Matrix Anal. Appl. 36(2), 686–706 (2015). https://doi.org/10.1137/130950550

17. Benzi, M., Estrada, E., Klymko, C.: Ranking hubs and authorities using matrix functions. Linear Algebra
Appl. 438(5), 2447–2474 (2013). https://doi.org/10.1016/j.laa.2012.10.022

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.amc.2019.06.059
https://doi.org/10.1016/j.camwa.2020.02.013
https://doi.org/10.1016/j.laa.2008.06.029
https://doi.org/10.1016/j.laa.2008.06.029
https://doi.org/10.1038/35019019
https://doi.org/10.1137/09074721X
https://doi.org/10.1137/100788860
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1145/3242094
https://doi.org/10.3390/su14137891
https://doi.org/10.1137/15M1034131
https://doi.org/10.1137/21M1407276
https://doi.org/10.1137/S0895479897317806
https://doi.org/10.1007/978-3-642-00296-0_5
https://doi.org/10.1016/j.laa.2010.03.035
https://doi.org/10.1093/comnet/cnt007
https://doi.org/10.1137/130950550
https://doi.org/10.1016/j.laa.2012.10.022


41 Page 24 of 26 Journal of Scientific Computing (2024) 99 :41

18. Benzi, M., Evans, T.M., Hamilton, S.P., Lupo Pasini, M., Slattery, S.R.: Analysis of Monte Carlo accel-
erated iterative methods for sparse linear systems. Numer. Linear Algebra Appl. (2017). https://doi.org/
10.1002/nla.2088

19. Boldi, P., Vigna, S.: The WebGraph framework I: compression techniques. In: Proceedings of the Thir-
teenth International World Wide Web Conference (WWW 2004), pp. 595–601. ACM Press, Manhattan
(2004)

20. Boldi, P., Codenotti, B., Santini, M., Vigna, S.: UbiCrawler: a scalable fully distributed web crawler.
Softw. Pract. Exp. 34(8), 711–726 (2004)

21. Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: a multiresolution coordinate-free
ordering for compressing social networks. In: Srinivasan, S., Ramamritham, K., Kumar, A., Ravindra,
M.P., Bertino, E., Kumar, R. (eds.) Proceedings of the 20th International Conference onWorldWideWeb,
pp. 587–596. ACM Press, Hyderabad (2011)

22. Bonacich, P.: Factoring and weighting approaches to status scores and clique identification. J Math Sociol
2(1), 113–120 (1972). https://doi.org/10.1080/0022250X.1972.9989806

23. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987). https://
doi.org/10.1086/228631

24. Bu, D., Zhao, Y., Cai, L., Xue, H., Zhu, X., Lu, H., Zhang, J., Sun, S., Ling, L., Zhang, N., Li, G., Chen,
R.: Topological structure analysis of the protein–protein interaction network in budding yeast. Nucleic
Acids Res. 31(9), 2443–2450 (2003)

25. Cortinovis, A., Kressner, D., Nakatsukasa, Y.: Speeding upKrylov subspacemethods for computing f(A)b
via randomization (2023)

26. Davies, P.I., Higham, N.J.: A Schur–Parlett algorithm for computing matrix functions. SIAM J. Matrix
Anal. Appl. 25(2), 464–485 (2003). https://doi.org/10.1137/S0895479802410815

27. de la Peña, J.A., Gutman, I., Rada, J.: Estimating the Estrada index. Linear Algebra Appl. 427(1), 70–76
(2007). https://doi.org/10.1016/j.laa.2007.06.020

28. Dimov, I.: Monte Carlo Methods for Applied Scientists. World Scientific, Singapore (2008)
29. Dimov, I., Alexandrov, V., Karaivanova, A.: Parallel resolvent Monte Carlo algorithms for linear algebra

problems.Math. Comput. Simul. 55(1–3), 25–35 (2001). https://doi.org/10.1016/S0378-4754(00)00243-
3

30. Dimov, I., Maire, S., Sellier, J.M.: A new Walk on Equations Monte Carlo method for solving systems
of linear algebraic equations. Appl. Math. Model. 39(15), 4494–4510 (2015). https://doi.org/10.1016/j.
apm.2014.12.018

31. Drineas, P., Kannan, R.: Fast Monte-Carlo algorithms for approximate matrix multiplication. In: Proceed-
ings 42nd IEEE Symposium on Foundations of Computer Science, pp. 452–459 (2001). https://doi.org/
10.1109/SFCS.2001.959921

32. Drineas, P., Kannan, R., Mahoney, M.W.: Fast Monte Carlo algorithms for matrices I: approx-
imating matrix multiplication. SIAM J. Comput. 36(1), 132–157 (2006). https://doi.org/10.1137/
S0097539704442684

33. Eiermann, M., Ernst, O.G.: A restarted Krylov subspace method for the evaluation of matrix functions.
SIAM J. Numer. Anal. 44(6), 2481–2504 (2006). https://doi.org/10.1137/050633846

34. Estrada, E.: Characterization of 3D molecular structure. Chem. Phys. Lett. 319(5–6), 713–718 (2000).
https://doi.org/10.1016/S0009-2614(00)00158-5

35. Estrada, E.: Virtual identification of essential proteins within the protein interaction network of yeast.
PROTEOMICS 6(1), 35–40 (2006). https://doi.org/10.1002/pmic.200500209

36. Estrada, E.: The Structure of Complex Networks: Theory and Applications. Oxford University Press,
Oxford (2012)

37. Estrada, E., Hatano, N.: Statistical-mechanical approach to subgraph centrality in complex networks.
Chem. Phys. Lett. 439(1), 247–251 (2007). https://doi.org/10.1016/j.cplett.2007.03.098

38. Estrada, E., Higham, D.J.: Network properties revealed through matrix functions. SIAM Rev. 52(4),
696–714 (2010). https://doi.org/10.1137/090761070

39. Estrada, E., Rodríguez-Velázquez, J.A.: Subgraph centrality in complex networks. Phys. Rev. E 71(5),
056103 (2005). https://doi.org/10.1103/PhysRevE.71.056103

40. Estrada, E., Rodríguez-Velázquez, J.A.: Subgraph centrality and clustering in complex hyper-networks.
Phys. A Stat. Mech. Appl. 364, 581–594 (2006). https://doi.org/10.1016/j.physa.2005.12.002

41. Estrada, E., Hatano, N., Benzi, M.: The physics of communicability in complex networks. Phys. Rep.
514(3), 89–119 (2012). https://doi.org/10.1016/j.physrep.2012.01.006

42. Fenu, C., Martin, D., Reichel, L., Rodriguez, G.: Block Gauss and anti-Gauss quadrature with application
to networks. SIAM J. Matrix Anal. Appl. 34(4), 1655–1684 (2013). https://doi.org/10.1137/120886261

43. Forsythe, G.E., Leibler, R.A.: Matrix inversion by a Monte Carlo method. Math. Tables Other Aids
Comput 4(31), 127–129 (1950). https://doi.org/10.2307/2002508

123

https://doi.org/10.1002/nla.2088
https://doi.org/10.1002/nla.2088
https://doi.org/10.1080/0022250X.1972.9989806
https://doi.org/10.1086/228631
https://doi.org/10.1086/228631
https://doi.org/10.1137/S0895479802410815
https://doi.org/10.1016/j.laa.2007.06.020
https://doi.org/10.1016/S0378-4754(00)00243-3
https://doi.org/10.1016/S0378-4754(00)00243-3
https://doi.org/10.1016/j.apm.2014.12.018
https://doi.org/10.1016/j.apm.2014.12.018
https://doi.org/10.1109/SFCS.2001.959921
https://doi.org/10.1109/SFCS.2001.959921
https://doi.org/10.1137/S0097539704442684
https://doi.org/10.1137/S0097539704442684
https://doi.org/10.1137/050633846
https://doi.org/10.1016/S0009-2614(00)00158-5
https://doi.org/10.1002/pmic.200500209
https://doi.org/10.1016/j.cplett.2007.03.098
https://doi.org/10.1137/090761070
https://doi.org/10.1103/PhysRevE.71.056103
https://doi.org/10.1016/j.physa.2005.12.002
https://doi.org/10.1016/j.physrep.2012.01.006
https://doi.org/10.1137/120886261
https://doi.org/10.2307/2002508


Journal of Scientific Computing (2024) 99 :41 Page 25 of 26 41

44. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978).
https://doi.org/10.1016/0378-8733(78)90021-7

45. Gershgorin, S.: Uber die abgrenzung der eigenwerte einer matrix. Izvest. Akad. Nauk SSSR Serija Mat.
7(3), 749–754 (1931)

46. Golub, G.H., Meurant, G.: Matrices. Moments and Quadrature with Applications. Princeton University
Press, Princeton (2009)

47. Graph500. https://graph500.org/
48. Guidotti, N.L., Acebrón, J., Monteiro, J.: A stochastic method for solving time-fractional differential

equations (2023). https://doi.org/10.48550/arXiv.2303.15458
49. Güttel, S., Schweitzer, M.: Randomized sketching for Krylov approximations of large-scale matrix func-

tions. SIAM J. Matrix Anal. Appl. 44(3), 1073–1095 (2023). https://doi.org/10.1137/22M1518062
50. Güttel, S.: Funm_kryl toolbox for MATLAB. http://www.guettel.com/funm_kryl/
51. Güttel, S.: Rational Krylov approximation of matrix functions: numerical methods and optimal pole

selection. GAMM-Mitteilungen 36(1), 8–31 (2013). https://doi.org/10.1002/gamm.201310002
52. Güttel, S., Kressner, D., Lund, K.: Limited-memory polynomial methods for large-scale matrix functions.

GAMM-Mitteilungen 43(3), e202000019 (2020). https://doi.org/10.1002/gamm.202000019
53. Higham, N.J.: The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix

Anal. Appl. 26(4), 1179–1193 (2005). https://doi.org/10.1137/04061101X
54. Higham, N.J.: Functions of Matrices. Other Titles in Applied Mathematics. Society for Industrial and

Applied Mathematics, Philadelphia (2008). https://doi.org/10.1137/1.9780898717778
55. Hubbell, C.H.: An input–output approach to clique identification. Sociometry 28(4), 377–399 (1965).

https://doi.org/10.2307/2785990
56. Jacod, J., Protter, P.: Probability Essentials. Universitext. Springer, Berlin (2004). https://doi.org/10.1007/

978-3-642-55682-1
57. Jeong, H., Mason, S.P., Barabási, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature

411(6833), 41–42 (2001). https://doi.org/10.1038/35075138
58. Ji, H., Mascagni, M., Li, Y.: Convergence analysis of Markov Chain Monte Carlo Linear solvers using

Ulam–Von Neumann algorithm. SIAM J. Numer. Anal. 51(4), 2107–2122 (2013)
59. Jordán, F., Benedek, Z., Podani, J.: Quantifying positional importance in food webs: A comparison of

centrality indices. Ecol. Model. 205(1), 270–275 (2007). https://doi.org/10.1016/j.ecolmodel.2007.02.
032

60. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953).
https://doi.org/10.1007/BF02289026

61. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection (2014). http://snap.
stanford.edu/data

62. Leskovec, J., Lang,K.J., Dasgupta,A.,Mahoney,M.W.:Community Structure in LargeNetworks:Natural
Cluster Sizes and the Absence of Large Well-Defined Clusters (2008). https://doi.org/10.48550/arXiv.
0810.1355

63. Leskovec, J., Chakrabarti,D.,Kleinberg, J., Faloutsos,C.,Ghahramani, Z.:Kronecker graphs: an approach
to modeling networks. J. Mach. Learn. Res. 11, 985–1042 (2010)

64. Martinsson, P.G., Tropp, J.A.: Randomized numerical linear algebra: foundations and algorithms. Acta
Numer. 29, 403–572 (2020). https://doi.org/10.1017/S0962492920000021

65. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of
online social networks. In: Proceedings of the 7thACMSIGCOMMConference on InternetMeasurement,
pp. 29–42. ACM, San Diego California USA (2007). https://doi.org/10.1145/1298306.1298311

66. Murray, R., Demmel, J., Mahoney, M.W., Erichson, N.B., Melnichenko, M., Malik, O.A., Grigori, L.,
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