
Journal of Scientific Computing (2024) 99:48
https://doi.org/10.1007/s10915-024-02517-1

A Spectrally Accurate Step-by-Step Method for the Numerical
Solution of Fractional Differential Equations

Luigi Brugnano1 · Kevin Burrage2 · Pamela Burrage2 · Felice Iavernaro3

Received: 16 October 2023 / Revised: 25 January 2024 / Accepted: 13 March 2024 /
Published online: 8 April 2024
© The Author(s) 2024

Abstract
In this paper we consider the numerical solution of fractional differential equations. In par-
ticular, we study a step-by-step procedure, defined over a graded mesh, which is based on
a truncated expansion of the vector field along the orthonormal Jacobi polynomial basis.
Under mild hypotheses, the proposed procedure is capable of getting spectral accuracy. A
few numerical examples are reported to confirm the theoretical findings.

Keywords Fractional differential equations · Fractional integrals · Jacobi polynomials ·
Hamiltonian Boundary Value Methods · HBVMs · FHBVMs

Mathematics Subject Classification 65L05 · 65L03 · 65L99

1 Introduction

In recent years fractional differential equation modelling has become more and more
frequent—see, for example, the two monographs [20, 37]. In fact the use of fractional mod-
els has quite a long history and early applications considered their behaviour in describing
anomalous diffusion in a randomly hetergeneous porous medium [31] and in water resources
modelling [6]. In mathematical biology, a number of researchers have considered fractional
reaction diffusion equations—see, for example, Bueno-Orovio et al. [16] who have studied

B Luigi Brugnano
luigi.brugnano@unifi.it

Kevin Burrage
kevin.burrage@qut.edu.au

Pamela Burrage
pamela.burrage@qut.edu.au

Felice Iavernaro
felice.iavernaro@uniba.it

1 Dipartimento di Matematica e Informatica “U.Dini”, Università di Firenze, Firenze, Italy

2 School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia

3 Dipartimento di Matematica, Università di Bari, Bari, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-024-02517-1&domain=pdf
https://orcid.org/0000-0002-6290-4107
https://orcid.org/0000-0002-8111-1137
https://orcid.org/0000-0002-6612-3084
https://orcid.org/0000-0002-9716-7370

48 Page 2 of 28 Journal of Scientific Computing (2024) 99 :48

via a spectral approach the interfacial properties of the Allen-Cahn equation with a quar-
tic double well potential, a model often used for alloy kinetics and the dynamics of phase
boundaries. Henry, Langlands and Wearne [27] analysed Turing pattern formation in frac-
tional activator-inhibitor systems. In a computational medicine setting, Henry and Langlands
[26] developed fractional cable models for spiny neuronal dendrites. Orsingher and Behgin
[36] have considered the dynamics of fractional chemical kinetics for unimolecular systems
using time change. The authors in [17] have made a series of arguments based on Riesz
potential theory and the wide range of heterogeneous cardiac tissues for the use of fractional
models in cardiac electrophysiology, while Cusimano et al. [18] have explored the effects
of fractional diffusion on the cardiac action potential shape and electrical propagation. In
addition, Magin et al. [34], Hori et al. [28], Bueno-Orovio and Burrage [15] have considered
the calibration of fractional cardiac models through a fractional Bloch–Torrey equation.

Due to these application advances there is clearly a need to develop advanced numerical
methods for fractional differential equations. In a purely time fractional setting the standard
approach has been to use a first order approximation to the Caputo derivative. Lubich [32]
has extended this and developed higher order approximations based on an underlying linear
multistep method that are convergent of the order of this multistep method.

There are two important issues when designing effective numerical methods for Frac-
tional Differential equations: memory and non-locality. In the case of memory, in principle
one needs to evaluate the numerical approximations all the way back to the initial time point
at each time step and this becomes very computationally intensive over long time intervals.
Techniques such as fixed time windowing have been proposed [37] and more recently a
number of approaches have been considered to compute the discrete convolutions to approx-
imate the fractional operator [39, 44]. Zeng et al. [43] developed fast memory-saving time
stepping methods in which the fractional operator is decoupled into a local part with fixed
memory length and the history part is computed by Laguerre–Gauss quadrature, whose error
is independent of the stepsize.

In the second situation the solutions to FDEs are often non-smooth and may have a strong
singularity at t = 0. In these cases the vector field may inherit this singularity behavior and
so a constant stepsize would be very inefficient. Thus graded meshes have been proposed by
a number of authors [30, 40, 42]. Lubich [33] on the other hand deals with singularities by
introducing certain correction terms. Other approaches have been considered such as Adams
methods [21], trapezoidal methods [23] and Bernstein splines [38] while Garrappa [24] has
given a survey and software tutorial on numerical methods for FDEs.

In this paper, we consider a major improvement of the recent solution approach described
in [2, 9], based on previous work on Hamiltonian Boundary value Methods (HBVMs) [7, 8,
11, 14] (also used as spectral methods in time [3, 5, 12, 13]), for solving fractional initial
value problems in the form:

y(α)(t) = f (y(t)), t ∈ [0, T], y(0) = y0 ∈ R
m, (1)

where, for sake of brevity, we omit t as a formal argument, at the r.h.s. For the same reason,
hereafter the dimension m of the state vector will be also omitted, when unnecessary.

Here, for α ∈ (0, 1], y(α)(t) ≡ Dα y(t) is the Caputo fractional derivative:

Dαg(t) = 1

Γ (1 − α)

∫ t

0
(t − x)−α

[
d

dx
g(x)

]
dx . (2)

123

Journal of Scientific Computing (2024) 99 :48 Page 3 of 28 48

The Riemann–Liouville integral associated to (2) is given by:

Iαg(t) = 1

Γ (α)

∫ t

0
(t − x)α−1g(x)dx . (3)

It is known that [37]:

Dα Iαg(t) = g(t), IαDαg(t) = g(t) − g(0),

Iα t j = j !
Γ (α + j + 1)

t j+α, j = 0, 1, 2, (4)

Consequently, the solution of (1) is formally given by:

y(t) = y0 + Iα f (y(t)), t ∈ [0, T]. (5)

We shall here generalize the approach given in [2], by defining a step-by-step procedure,
whereas the procedure given in [2] was of a global nature. This strategy, when combined
with a graded mesh selection, enables better handling of singularities in the derivative of the
solution to (1) at the origin, which occur, for example, when f is a suitably regular function.
Additionally, our approach partially mitigates issues stemming from the non-local nature of
the problem. Indeed, at a given time-step of the integration procedure, it requires the solution
of a differential problem within the current time interval along with a finite sequence of pure
quadrature problems that account for the contribution brought by the history term.

With this premise, the structure of the paper is as follows: in Sect. 2 we recall some
basic facts about Jacobi polynomials, for later use; in Sect. 3 we describe a piecewise
quasi-polynomial approximation to the solution of (1); in Sect. 4 the analysis of the new
method is carried out; in Sect 5 we report a few numerical tests for assessing the theoretical
achievements; at last, in Sect. 6 a few concluding remarks are given.

2 Orthonormal Jacobi Polynomials

Jacobi polynomials form an orthogonal set of polynomials w.r.t. a given weighting function.
In more detail, for r , ν > −1:

P̄(r ,ν)
i (x) ∈ Πi ,

(
P(r ,ν)
0 (x) ≡ 1

)
∫ 1

−1
(1 − x)r (1 + x)ν P̄(r ,ν)

i (x)P̄(r ,ν)
j (x)dx

= 2r+ν+1

2i + r + ν + 1

Γ (i + r + 1)Γ (i + ν + 1)

Γ (i + r + ν + 1)i ! δi j , i, j,= 0, 1, . . . ,

where as is usual, Πi is the vector space of polynomials of degree at most i and δi j is the
Kronecker symbol. Consequently, the shifted and scaled Jacobi polynomials

P(r ,ν)
i (c) :=

√
(2i + r + ν + 1)

Γ (i + r + ν + 1)i !
Γ (i + r + 1)Γ (i + ν + 1)

P̄(r ,ν)
i (2c − 1), i = 0, 1, . . . ,

are orthonormal w.r.t.
∫ 1

0
(1 − c)r cν P(r ,ν)

i (c)P(r ,ν)
j (c)dc = δi j , i, j = 0, 1,

123

48 Page 4 of 28 Journal of Scientific Computing (2024) 99 :48

In particular, hereafter we shall consider the polynomials 1

Pi (c) := P(α−1,0)
i (c)√

α
≡

√
2i + α√

α
P̄(α−1,0)
i (2c − 1), i = 0, 1, . . . , (6)

with α ∈ (0, 1] the same parameter in (1), such that:

P0(c) ≡ 1, α

∫ 1

0
(1 − c)α−1Pi (c)Pj (c)dc = δi j , i, j = 0, 1, . . . , (7)

where we have slightly changed the weighting function, in order that it has a unit integral:

α

∫ 1

0
(1 − c)α−1dc = 1. (8)

We refer to Gautschi [25] and the accompanying software, for their computation, and for
computing the nodes and weights of the Gauss–Jacobi quadrature of order 2k.

Remark 1 As is clear, when in (6)–(8) α = 1, we obtain the scaled and shifted Legendre
polynomials, orthonormal in [0, 1].

As is well known, the polynomials (6) form an orthonormal basis for the Hilbert space
L2[0, 1], equipped with the scalar product

(f , g) = α

∫ 1

0
(1 − c)α−1 f (c)g(c)dc, (9)

and the associated norm
‖ f ‖ = √

(f , f). (10)

Consequently, from the Parseval identity, it follows that any square summable function can be
expanded along such a basis, and the corresponding expansion is convergent to the function
itself.

That said, with reference to the vector field in (1), let us consider the interval [0, h], and
the expansion

f (y(ch)) =
∑
j≥0

γ j (y)Pj (c), c ∈ [0, 1], (11)

with the Fourier coefficients given by:

γ j (y) = α

∫ 1

0
(1 − c)α−1Pj (c) f (y(ch))dc, j = 0, 1, (12)

Consequently, on the interval [0, h], (1) can be rewritten as

y(α)(ch) =
∑
j≥0

γ j (y)Pj (c), c ∈ [0, 1], y(0) = y0, (13)

and, by virtue of (3)–(4), one obtains:

y(ch) = y0 + hα
∑
j≥0

γ j (y)I
αPj (c), c ∈ [0, 1]. (14)

In particular, due to (7) and (8), one has:

y(h) = y0 + hα

Γ (α + 1)
γ0(y). (15)

1 Hereafter, for sake of brevity, we shall omit the upper indices for such polynomials.

123

Journal of Scientific Computing (2024) 99 :48 Page 5 of 28 48

Remark 2 By considering that P0(c) ≡ 1, from (12) one derives that

γ0(y) = α

∫ 1

0
(1 − c)α−1 f (y(ch))dc.

Consequently, because of (3), (15) becomes

y(h) = y0 + Iα f (y(h)),

i.e., (5) with t = h. This clearly explains the use of the Jacobi basis for the expansion (11).
Further, we observe that, when α = 1, one retrieves the approach described in [11] for

ODE-IVPs.

We also need the following preliminary results.

Lemma 1 Let G : [0, h] → V , with V a vector space, admit a Taylor expansion at t = 0.
Then,

α

∫ 1

0
(1 − c)α−1Pj (c)G(ch)dc = O(h j), j = 0, 1,

Proof By the hypothesis and (7), one has:

α

∫ 1

0
(1 − c)α−1Pj (c)G(ch)dc

= α

∫ 1

0
(1 − c)α−1Pj (c)

∑
�≥0

G(�)(0)

�! (ch)�dc

= α
∑
�≥0

G(�)(0)

�! h�

∫ 1

0
(1 − c)α−1Pj (c)c

�dc

= α
∑
�≥ j

G(�)(0)

�! h�

∫ 1

0
(1 − c)α−1Pj (c)c

�dc = O(h j).

�	
Remark 3 Concerning the above result, we observe that, by considering (9)–(10), from the
Cauchy–Schwarz theorem one derives that∣∣∣∣α

∫ 1

0
(1 − c)α−1Pj (c)c

�dc

∣∣∣∣ = |(Pj , c
�)| ≤ ‖Pj‖ · ‖c�‖ ≤ 1, ∀� ≥ j ≥ 0.

From Lemma 1, one has the following:

Corollary 1 Assume that the r.h.s. of problem (1) admits a Taylor expansion at t = 0, then
the coefficients defined at (12) satisfy:

γ j (y) = O(h j).

The result of the previous lemma can be weakened as follows (the proof is similar and,
therefore, omitted).

Lemma 2 Let G : [0, h] → V , with V a vector space, admit a Taylor polynomial expansion
of degree k with remainder at t = 0. Then,

α

∫ 1

0
(1 − c)α−1Pj (c)G(ch)dc = O(hmin(j,k)), j = 0, 1,

123

48 Page 6 of 28 Journal of Scientific Computing (2024) 99 :48

In such a case, the result of Corollary 1 is weakened accordingly.

Corollary 2 Assume that the r.h.s. of problem (1) admits a Taylor polynomial expansion of
degree k with remainder at t = 0. Then, the coefficients defined at (12) satisfy:

γ j (y) = O(hmin(j,k)).

However, in general, at t = 0 the solution may be not regular, since the derivative may
be singular (this is, indeed, the case, when f is a regular function). In such a case, we shall
resort to the following result.

Lemma 3 Assume that the r.h.s. in (1) is continuous for all t ∈ [0, h]. Then, for a convenient
ξt ∈ (0, t)m, one has2:

y(t) = y0 + y(α)(ξt)

Γ (α + 1)
tα, t ∈ [0, h].

Proof In fact, from (4), and by using the weighted mean-value theorem for integrals, one
has:

y(t) = y0 + Iα y(α)(t) = y0 + 1

Γ (α)

∫ t

0
(t − x)α−1y(α)(x)dx

= y0 + y(α)(ξt)

Γ (α)

∫ t

0
(t − x)α−1dx = y0 + y(α)(ξt)

Γ (α + 1)
tα.

�	
As a consequence, we derive the following weaker results concerning the Fourier

coefficients (12).

Corollary 3 In the hypotheses of Lemma 3, and assuming f is continuously differentiable in
a neighborhood of y0, one has:

γ0(y) = f (y0) + O(hα), γ j (y) = O(hα), j = 1, 2,

Proof In fact, from Lemma 3, one has:

f (y(ch)) = f

(
y0 + y(α)(ξch)

Γ (α + 1)
(ch)α

)
= f (y0) + f ′(y0)

y(α)(ξch)

Γ (α + 1)
(ch)α + o((ch)α).

From this relation, and from (12), the statement then follows. �	
For later use, we also need to discuss the quadrature error in approximating the first s

Fourier coefficients (12) by means of the Gauss–Jacobi formula of order 2k, for a convenient
k ≥ s, whose abscissae are the zeros of Pk , as defined in (7), and with weights:

Pk(ci) = 0, bi = α

∫ 1

0
(1 − c)α−1�i (c)dc, �i (c) =

k∏
j=1, j =i

c − c j
ci − c j

, i = 1, . . . , k.

(16)

2 Hereafter, y(α)(ξt) means that each component of the function is evaluated at the corresponding entry of
the argument.

123

Journal of Scientific Computing (2024) 99 :48 Page 7 of 28 48

That is,

γ j (y) ≈
k∑

i=1

bi Pj (c j) f (y(ci h)) =: γ̂ j (y). (17)

Concerning the quadrature errors

Σα
j (y, h) := γ̂ j (y) − γ j (y), j = 0, . . . , s − 1, (18)

the following result holds true.

Theorem 1 Assume the function G j,h(c) := Pj (c) f (y(ch)) be of class C (2k)[0, h]. Then,
with reference to (18), one has, for a suitable ξ = (0, 1)m :

Σα
j (y, h) = K j

G(2k)
j,h (ξ)

(2k)! = O(h2k− j), j = 0, . . . , s − 1, (19)

with the constants K j independent of both G j,h and h.

Proof The statement follows by considering that the quadrature is exact for polynomials in
Π2k−1. �	

However, as recalled above, when f is a smooth function, the derivative of the solution
of problem (1) may have a singularity at t = 0. In such a case, estimates can be also derived
(see, e.g., [19, 41] and [35, Theorem5.1.8]). However, for our purposes, because of (7), for
j = 0, . . . , s − 1, from Corollary 3 we can easily derive the following one, assuming that
k ≥ s and (13) hold true:

γ̂ j (y) =
k∑

i=1

bi Pj (ci) f (y(ci h)) =
k∑

i=1

bi Pj (ci)
∑
�≥0

P�(ci)γ�(y)

=
s−1∑
�=0

(
k∑

i=1

bi Pj (ci)P�(ci)

)

︸ ︷︷ ︸
= δ j�

γ�(y) + O(hα)

≡ γ j (y) + Σ j (y, h), j = 0, . . . , s − 1.

Consequently,
Σ j (y, h) = O(hα), j = 0, . . . , s − 1. (20)

In order to derive a polynomial approximation to (13), it is enough to truncate the infinite
series in (11) to a finite sum, thus obtaining:

σ (α)(ch) =
s−1∑
j=0

γ j (σ)Pj (c), c ∈ [0, 1], σ (0) = y0, (21)

with γ j (σ) formally given by (12) upon replacing y by σ . In so doing, (14) and (15)
respectively become:

σ(ch) = y0 + hα
s−1∑
j=0

γ j (σ)IαPj (c), c ∈ [0, 1], (22)

and

σ(h) = y0 + hα

Γ (α + 1)
γ0(σ). (23)

123

48 Page 8 of 28 Journal of Scientific Computing (2024) 99 :48

It can be shown that Corollary 1, Corollary 2, Lemma 3, and Corollary 3 continue formally
to hold for σ . Further, by considering the approximation of the Fourier coefficients obtained
by using the Gauss–Jacobi quadrature of order 2k,

γ̂ j (σ) =
k∑

i=1

bi Pj (c j) f (σ (ci h)) ≡ γ j (σ) + Σα
j (σ, h), (24)

the result of Theorem 1 continues to hold. Moreover, we shall assume that the expansion

f (σ (ch)) =
∑
j≥0

Pj (c)γ j (σ), c ∈ [0, 1], (25)

holds true, similarly as (11), from which also (20) follows for the quadrature error Σ j (σ, h),
when σ has a singular derivative at 0. In the next sections, we shall better detail, generalize,
and analyze this approach.

3 Piecewise Quasi-Polynomial Approximation

To begin with, in order to obtain a piecewise quasi-polynomial approximation to the solution
of (1), we consider a partition of the integration interval in the form:

tn = tn−1 + hn, n = 1, . . . , N , (26)

where

t0 = 0,
N∑

n=1

hn = T . (27)

Then, according to (21)–(23), on the first subinterval [0, h1] we can derive a polynomial
approximation of degree s − 1 to (11), thus getting the fractional initial value problem

σ
(α)
1 (ch1) =

s−1∑
j=0

γ j (σ1)Pj (c), c ∈ [0, 1], σ1(0) = y0, (28)

where γ j (σ1) is formally given by (12), upon replacing y by σ1 at the right-hand side:

γ j (σ1) = α

∫ 1

0
(1 − c)α−1Pj (c) f (σ1(ch1))dc, j = 0, . . . , s − 1. (29)

The solution of (28) is a quasi-polynomial of degree s − 1 + α, formally given by:

σ1(ch1) = y0 + hα
1

s−1∑
j=0

γ j (σ1)I
αPj (c), c ∈ [0, 1]. (30)

However, in order to actually compute the Fourier coefficients {γ j (σ1)}, one needs to
approximate them by using the Gauss–Jacobi quadrature (16)3:

γ 1
j := γ̂ j (σ1) =

k∑
i=1

bi Pj (ci) f (σ1(ci h1)) ≡ γ j (σ1) + Σα
j (σ1, h1).

3 Hereafter, as a notational convention, γ i
j := γ̂ j (σi), i = 1, . . . , N .

123

Journal of Scientific Computing (2024) 99 :48 Page 9 of 28 48

In so doing, (30) now formally becomes

σ1(ch1) = y0 + hα
1

s−1∑
j=0

γ 1
j I

αPj (c), c ∈ [0, 1]. (31)

Moreover, one solves the system of equations, having (block) dimension s independently of
k:

γ 1
j =

k∑
i=1

bi Pj (ci) f

(
y0 + hα

s−1∑
ν=0

γ 1
ν IαPν(ci)

)
, j = 0, . . . , s − 1. (32)

This kind of procedure is typical of HBVM(k, s) methods, in the case of ODE-IVPs [7]: the
main difference, here, derives from the non-locality of the operator. As is clear [compare
with (23)], the approximation at t = h1 will be now given by: 4

ȳ1 := σ1(h1) = y0 + hα
1

Γ (α + 1)
γ 1
0 . (33)

Remark 4 For an efficient and stable evaluation of the integrals

IαP0(ci), IαP1(ci), . . . , IαPs−1(ci), i = 1, . . . , k, (34)

we refer to the procedure described in [4].

3.1 The General Procedure

We now generalize the previous procedure for the subsequent integration steps. For later use,
we shall denote:

yn(chn) := y(tn−1 + chn), c ∈ [0, 1], n = 1, . . . , N , (35)

the restriction of the solution on the interval [tn−1, tn]. Similarly, we shall denote by σ(t) ≈
y(t) the piecewise quasi-polynomial approximation such that:

σ |[tn−1,tn](tn−1 + chn) =: σn(chn) ≈ yn(chn), c ∈ [0, 1], n = 1, . . . , N . (36)

Then, by using an induction argument, let us suppose one knows the quasi-polynomial
approximations

σi (chi) = φα
i−1(c, σ) + hα

i

s−1∑
j=0

γ i
j I

αPj (c) ≈ yi (chi), c ∈ [0, 1], i = 1, . . . , n,

(37)

where φα
i−1(c, σ) denotes a history term, to be defined later, such that:

– in the first subinterval, according to (31), φα
0 (c, σ) ≡ y0, c ∈ [0, 1];

– for i > 1, φα
i−1(c, σ) only depends on σ1, . . . , σi−1.

The corresponding approximations at the grid-points are given by

ȳi := σi (hi) = φα
i−1(1, σ) + hα

i

Γ (α + 1)
γ i
0 ≈ yi (hi) ≡ y(ti), i = 1, . . . , n, (38)

4 Hereafter, we shall in general denote by ȳn the approximation to y(tn), since yn(t) will be later used to
denote the restriction of y(t) to the subinterval [tn−1, tn], n = 1, . . . , N .

123

48 Page 10 of 28 Journal of Scientific Computing (2024) 99 :48

and assume we want to compute

σn+1(chn+1) := φα
n (c, σ) + hα

n+1

s−1∑
j=0

γ n+1
j IαPj (c) ≈ yn+1(chn+1), c ∈ [0, 1]. (39)

Hereafter, we shall assume that the time-steps in (26) define a graded mesh. In more detail,
for a suitable r > 1:

hn = rhn−1 ≡ rn−1h1, n = 1, . . . , N . (40)

Remark 5 As is clear, in the limit case where r = 1, (40) reduces to a uniform mesh with a
constant time-step h = T /N .

In order to derive the approximation (39), we start computing the solution of the problem
in the subinterval [tn, tn+1]. Then, for t ≡ tn + chn+1, c ∈ [0, 1], one has:

y(t) ≡ yn+1(chn+1)

= y0 + 1

Γ (α)

∫ tn+chn+1

0
(tn + chn+1 − x)α−1 f (y(x))dx

= y0 + 1

Γ (α)

∫ tn

0
(tn + chn+1 − x)α−1 f (y(x))dx

+ 1

Γ (α)

∫ tn+chn+1

tn
(tn + chn+1 − x)α−1 f (y(x))dx

= y0 + 1

Γ (α)

n∑
ν=1

∫ tν

tν−1

(tn + chn+1 − x)α−1 f (y(x))dx

+ 1

Γ (α)

∫ tn+chn+1

tn
(tn + chn+1 − x)α−1 f (y(x))dx

= y0 + 1

Γ (α)

n∑
ν=1

∫ hν

0
(tn − tν−1 + chn+1 − x)α−1 f (yν(x))dx

+ 1

Γ (α)

∫ chn+1

0
(chn+1 − x)α−1 f (yn+1(x))dx

= y0 + 1

Γ (α)

n∑
ν=1

hα
ν

∫ 1

0

(
rn−ν+1 − 1

r − 1
+ crn−ν+1 − τ

)α−1

f (yν(τhν))dτ

+ hα
n+1

Γ (α)

∫ c

0
(c − τ)α−1 f (yn+1(τhn+1))dτ

≡ Gα
n (c, y) + Iα f (yn+1(chn+1)),

having set the history term

Gα
n (c, y)

:= y0 + 1

Γ (α)

n∑
ν=1

hα
ν

∫ 1

0

(
rn−ν+1 − 1

r − 1
+ crn−ν+1 − τ

)α−1

f (yν(τhν))dτ, (41)

which is a known quantity, since it only depends on y1, . . . , yn [see (35)]. Consequently, we
have obtained

yn+1(chn+1) = Gα
n (c, y) + Iα f (yn+1(chn+1)), c ∈ [0, 1], (42)

123

Journal of Scientific Computing (2024) 99 :48 Page 11 of 28 48

which reduces to (5), when n = 0 and t ∈ [0, h]. Further, by considering the expansion

f (yn+1(chn+1)) =
∑
j≥0

γ j (yn+1)Pj (c), c ∈ [0, 1], (43)

with the Fourier coefficients given by

γ j (yn+1) = α

∫ 1

0
(1 − c)α−1Pj (c) f (yn+1(chn+1))dc, j ≥ 0, (44)

one obtains that (42) can be rewritten as

yn+1(chn+1) = Gα
n (c, y) + hα

n+1

Γ (α)

∑
j≥0

γ j (yn+1)I
αPj (c), c ∈ [0, 1], (45)

with the value at t = h given by:

y(tn+1) ≡ yn+1(hn+1) = Gα
n (1, y) + hα

n+1

Γ (α + 1)
γ0(yn+1). (46)

The corresponding approximation is obtained by truncating the series in (42) after s terms,
and approximating the corresponding Fourier coefficients via the Gauss–Jacobi quadrature
of order 2k,

σn+1(chn+1) = φα
n (c, σ) + hα

n+1

Γ (α)

s−1∑
j=0

γ n+1
j IαPj (c), c ∈ [0, 1], (47)

and

ȳn+1 := σn+1(hn+1) = φα
n (1, σ) + hα

n+1

Γ (α + 1)
γ n+1
0 , (48)

with φα
n (c, σ) an approximation of Gα

n (c, y) in (41), defined as follows5:

φα
n (c, σ)

:= y0 + 1

Γ (α)

n∑
ν=1

hα
ν

∫ 1

0

(
rn−ν+1 − 1

r − 1
+ crn−ν+1 − τ

)α−1 s−1∑
j=0

Pj (τ)γ ν
j dτ

= y0 + 1

Γ (α)

n∑
ν=1

hα
ν

s−1∑
j=0

∫ 1

0

(
rn−ν+1 − 1

r − 1
+ crn−ν+1 − τ

)α−1

Pj (τ)dτγ ν
j

≡ y0 + 1

Γ (α)

n∑
ν=1

hα
ν

s−1∑
j=0

Jα
j

(
rn−ν+1 − 1

r − 1
+ crn−ν+1

)
γ ν
j , (49)

having set

Jα
j (x) :=

∫ 1

0
(x − τ)α−1Pj (τ)dτ, j = 0, . . . , s − 1, x > 1, (50)

which, as we shall see in Sect. 3.3, can be accurately and efficiently computed.

5 As anticipated above, from (49) it follows that φα
0 (c, σ) ≡ y0, c ∈ [0, 1], so that (47) reduces to (31),

whereas φα
n (c, σ), n > 1, only depends on σ1, . . . , σn .

123

48 Page 12 of 28 Journal of Scientific Computing (2024) 99 :48

As is clear, in (49) we have used the approximation

f (σν(τh)) =
s−1∑
j=0

Pj (τ)γ ν
j + Rα

ν (τ), (51)

with the error term given by [see (17)–(18) and (25)]:

Rα
ν (τ) :=

s−1∑
j=0

Pj (τ)
[
γ j (σν) − γ ν

j

]
+

=: Eα
ν (τ)︷ ︸︸ ︷∑

j≥s

Pj (τ)γ j (σν)

≡
s−1∑
j=0

Pj (τ)Σα
j (σν, hν)

︸ ︷︷ ︸
=: Sα

ν (τ)

+ Eα
ν (τ) ≡ Sα

ν (τ) + Eα
ν (τ). (52)

Because of the results of Sect. 2, we shall hereafter assume that

∣∣∣Σα
j (σν, hν)

∣∣∣ ≤
{

O(hα
1), ν = 1,

O(h2k− j
ν), ν > 1,

∣∣Eα
ν (τ)

∣∣ ≤
{
O(hα

1), ν = 1,
O(hsν), ν > 1.

(53)

Consequently, considering that k ≥ s, α ∈ (0, 1), and j = 0, . . . , s − 1, one deduces:

∣∣Sα
ν (τ)

∣∣ ≤
{

O(hα
1), ν = 1,

O(hs+1
ν), ν > 1,

∣∣Rα
ν (τ)

∣∣ ≤
{
O(hα

1), ν = 1,
O(hsν), ν > 1.

(54)

In so doing, see (47), the Fourier coefficients satisfy the system of equations:

γ n+1
j =

k∑
�=1

b�Pj (c�) fn+1

(
φα
n (c�, σ) + hα

n+1

s−1∑
i=0

γ n+1
i IαPi (c�h)

)
, j = 0, . . . , s − 1,

(55)

having (block)-size s, independently of the considered value of k.
Clearly,

γ n+1
j = γ j (σn+1) + Σα

j (σn+1, hn+1), j = 0, . . . , s − 1,

with γ j (σn+1) formally defined as in (44), upon replacing yn+1 with σn+1, and

Σα
j (σn+1, hn+1) = O(h2k− j

n+1), j = 0, . . . , s − 1,

the corresponding quadrature errors.

3.2 Solving the Discrete Problems

The discrete problem (55), to be solved at each integration step, can be better cast in vector
form by introducing the matrices

Ps =
⎛
⎜⎝

P0(c1) . . . Ps−1(c1)
...

...

P0(ck) . . . Ps−1(ck)

⎞
⎟⎠ , Iα

s =
⎛
⎜⎝

IαP0(c1) . . . IαPs−1(c1)
...

...

IαPc(ck) . . . IαPs−1(ck)

⎞
⎟⎠ ∈ R

k×s,

123

Journal of Scientific Computing (2024) 99 :48 Page 13 of 28 48

Ω =
⎛
⎜⎝
b1

. . .

bk

⎞
⎟⎠ ,

and the (block) vectors:

γ n+1 =
⎛
⎜⎝

γ n+1
0
...

γ n+1
s−1

⎞
⎟⎠ ∈ R

sm, φα
n =

⎛
⎜⎝

φα
n (c1, σ)

...

φα
n (ck, σ)

⎞
⎟⎠ ∈ R

km .

In fact, in so doing (55) can be rewritten as6:

γ n+1 = P�
s Ω ⊗ Im f

(
φα
n + hα

n+1Iα
s ⊗ Imγ n+1) , (56)

This formulation is very similar to that used for HBVMs in the case α = 1 [10]. The
formulation (56) has a twofold use:

– it shows that, assuming, for example, f Lipschitz continuous, then the solution exists
and is unique, for all sufficiently small timesteps hn+1;

– it induces a straightforward fixed-point iteration:

γ n+1,0 = 0,

γ n+1,� = P�
s Ω ⊗ Im f

(
φα
n + hα

n+1Iα
s ⊗ Imγ n+1,�−1

)
, � = 1, 2, . . . , (57)

which we shall use for the numerical tests.

Concerning the first point, the following result holds true.

Theorem 2 Assume f be Lipschitz with constant L in in the interval [tn, tn+1]. Then, the
iteration (57) is convergent for all timesteps hn+1 such that

hα
n+1L‖P�

s Ω‖‖Iα
s ‖ < 1. (58)

Proof In fact, one has:

‖γ n+1,�+1 − γ n+1,�‖
= ‖P�

s Ω ⊗ Im
[
f
(
φα
n + hα

n+1Iα
s ⊗ Imγ n+1,�

)
− f

(
φα
n + hα

n+1Iα
s ⊗ Imγ n+1,�−1

)]
‖

≤ hα
n+1L‖P�

s Ω‖‖Iα
s ‖ · ‖γ n+1,� − γ n+1,�−1‖,

hence the iteration function defined at (57) is a contraction, when (58) holds true. �	
A simplified Newton-type iteration, akin to that defined in [10] for HBVMs, will be the

subject of future investigations.

Remark 6 We observe that the discrete problem (56) can be cast in a Runge-Kutta type form.
In fact, the vector

Yn+1 := φα
n + hα

n+1Iα
s ⊗ Imγ n+1, (59)

in argument to the function f at the r.h.s. in (56), can be regarded as the stage vector of a
Runge–Kutta method, tailored for the problem at hand. Substituting (56) into (59), and using
Yn+1 as argument of f , then gives

Yn+1 = φα
n + hα

n+1Iα
s P�

s Ω ⊗ Im f (Yn+1). (60)

6 As is usual, the function f , here evaluated in a (block) vector of dimension k, denotes the (block) vector
made up by f evaluated in each (block) entry of the input argument.

123

48 Page 14 of 28 Journal of Scientific Computing (2024) 99 :48

It is worth noticing that (60) has (block) dimension k, instead of s. However, by considering
that usually k > s (see Sect. 5), it follows that solving (60) is less efficient than solving (56).

This fact is akin to what happens for a HBVM(k, s)method [7, 8, 11], which is the k-stage
Runge–Kutta method obtained when α = 1. In fact, for such a method, the discrete problem
can also be cast in the form (56), then having (block) dimension s, independently of k (which
is usually much larger than s).

From (59), one easily derives that the Butcher tableau of the Runge–Kutta type method
is given by:

c Iα
s P�

s Ω

b�
(61)

where b, c ∈ R
k are the vectors with the Gauss–Jacobi weights and abscissae, respectively.

As anticipated above, when α = 1, (61) becomes the Butcher tableau of a HBVM(k, s)
method [7, 8, 11].

Because of what exposed in the previous remark, we give the following definition.

Definition 1 The Runge–Kutta type method defined by (61), with α ∈ (0, 1), will be referred
to as a Fractional HBVM(k, s) method or, in short, FHBVM(k, s).

3.3 Computing the Integrals J˛j (x)

From (55) and (49), it follows that one needs to compute the integrals

Jα
j

(
rn−ν+1 − 1

r − 1
+ cir

n−ν+1
)

, i = 1, . . . , k, ν = 1, . . . , n, (62)

with {c1, . . . , ck} the abscissae of the Gauss–Jacobi quadrature (16). As an example, in Fig. 1
we plot the Gauss–Jacobi abscissae for α = 0.5 and k = 5, 10, 15, 20, 25, 30.

Further, there is numerical evidence that a sufficiently high-orderGauss–Legendre formula
can compute the integrals (50) up to round-off, when x ≥ 1.5. Namely,

Jα
j

(
rn−ν+1 − 1

r − 1
+ cir

n−ν+1
)

, i = 1, . . . , k, ν = 1, . . . , n − 1, (63)

and
Jα
j (1 + cir) , s.t. cir ≥ 0.5, j = 0, . . . , s − 1. (64)

However, this is no more the case, when computing:

Jα
j (1 + cir) , s.t. cir < 0.5, j = 0, . . . , s − 1. (65)

Consequently, there is the problem of accurately and efficiently computing these latter
integrals.

Remark 7 We observe that the evaluation of the integrals (63)–(64), j = 0, . . . , s − 1, via a
2p-order Gauss–Legendre formula is inexpensive. As matter of fact, only the values Pj (ξi)

need to be computed, j = 0, . . . , s − 1, with

{ξ1, . . . , ξp} (66)

123

Journal of Scientific Computing (2024) 99 :48 Page 15 of 28 48

Fig. 1 Gauss–Jacobi abscissae for α = 0.5

the Gauss–Legendre abscissae of the considered formula. Further, we observe that, with
reference to (62), only the integrals

Jα
j

(
rn − 1

r − 1
+ cir

n
)

, j = 0, . . . , s − 1, i = 1, . . . , k,

need to be actually computed: as matter of fact, the remaining integrals,

Jα
j

(
rν − 1

r − 1
+ cir

ν

)
, j = 0, . . . , s − 1, i = 1, . . . , k, ν = 1, . . . , n − 1,

are inherited from the previous steps.

The starting point to derive an efficient algorithm for computing the integrals (65), is that
the Jacobi polynomials (6) satisfy, as does any other family of orthogonal polynomials, a
three-term recurrence:

Pj+1(c) = (a j c − b j)Pj (c) − d j Pj−1(c), j = 0, 1, . . . ,

P0(c) ≡ 1, P−1(c) ≡ 0, (67)

with prescribed a j , b j , d j , j ≥ 0. In fact, by setting φ(c) = c, and using the scalar product
(9), to enforce (7), for P0, . . . , Ps−1, one obtains:

a j = 1

(Pj+1, φ · Pj)
, b j = (Pj , φ · Pj)

(Pj+1, φ · Pj)
, d j = (Pj , φ · Pj−1)

(Pj+1, φ · Pj)
, j = 0, . . . , s − 2.

(68)

Consequently, by recalling the definition (50), from (67) one has:

Jα
0 (x) = xα − (x − 1)α

α
, Jα−1(x) = 0, α > 0, x > 1,

123

48 Page 16 of 28 Journal of Scientific Computing (2024) 99 :48

and

Jα
j+1(x) =

∫ 1

0
(x − τ)α−1Pj+1(τ)dτ

= a j

∫ 1

0
(x − τ)α−1τ Pj (τ)dτ − b j J

α
j (x) − d j J

α
j−1(x)

= −a j

∫ 1

0
(x − τ)αPj (τ)dτ + [a j x − b j]Jα

j (x) − d j J
α
j−1(x)

= −a j J
α+1
j (x) + [a j x − b j]Jα

j (x) − d j J
α
j−1(x), j = 0, . . . , j − 2.

From the last two formulae, one derives that Jjalfa(a,b,d,alfa,1+ci*r) com-
putes all the integrals in (65) corresponding to the abscissa ci, with Jjalfa the Matlab©

function listed in Table 1, and the vectors a,b,d containing the scalars (68). An implemen-
tation of the previous function, using the standard variable precision arithmetic (i.e., using
vpa in Matlab©), allows handling values of s up to 20, at least.

4 Analysis of theMethod

From (45) and (47), and with reference to (51)–(54), one derives:

yn+1(chn+1) − σn+1(chn+1)

= [
Gα

n (c, y) − φα
n (c, σ)

] + hα
n+1

Γ (α)

s−1∑
j=0

[
γ j (yn+1) − γ n+1

j

]
IαPj (c)

+ hα
n+1

Γ (α)

∑
j≥s

γ j (yn+1)I
αPj (c)

= 1

Γ (α)

n∑
ν=1

hα
ν

∫ 1

0

(
rn−ν+1 − 1

r − 1
+ crn−ν+1 − τ

)α−1

[
f (yν(τhν)) − f (σν(τhν) + Rα

ν (τ)
]
dτ

+ hα
n+1

Γ (α)

s−1∑
j=0

[
γ j (yn+1) − γ j (σn+1) + Σ j (σn+1, hn+1)

]
IαPj (c)

+ hα
n+1

Γ (α)
Eα
n+1(c).

Assuming f Lipschitz with constant L in a suitable neighborhood of the solution, and
setting

Rα
ν := max

τ∈[0,1] |R
α
ν (τ)|, ν = 1, . . . , N − 1,

Eα
n+1 := max

c∈[0,1] |E
α
n+1(c)|, n = 1, . . . , N − 1,

en := max
c∈[0,1] |yn(chn) − σn(chn)|, n = 1, 2, . . . , N ,

123

Journal of Scientific Computing (2024) 99 :48 Page 17 of 28 48

Ta
bl
e
1

M
at
la
b©

fu
nc
tio

n
J
j
a
l
f
a

f
u
n
c
t
i
o
n

I
a
l
f
a

=
J
j
a
l
f
a
(

a
,

b
,

d
,

a
l
f
a
,

x
)

% %
M
a
t
l
a
b

f
u
n
c
t
i
o
n

f
o
r

c
o
m
p
u
t
i
n
g

t
h
e

i
n
t
e
g
r
a
l
s

J
_
j

∧ a
l
f
a
(
x
)
,

j
=
0
.
.
.
s
-
1
.

% s
1

=
l
e
n
g
t
h
(
a
)
;

%
s
1

=
=

s
-
1

I
a
l
f
a

=
z
e
r
o
s
(
s
1
+
1
,
1
)
;

v
a
l
f
a

=
a
l
f
a
+
(
0
:
s
1
)
;

I
1

=
(

x
.

∧ v
a
l
f
a

-
(
x
-
1
)
.

∧ v
a
l
f
a

)
.
/
v
a
l
f
a
;

I
a
l
f
a
(
1
)

=
I
1
(
1
)
;

i
f

s
1
>
=
1

I
2

=
(

a
(
1
)
*
x

-
b
(
1
)

)
*
I
1
(
1
:
s
1
)

-
a
(
1
)
*
I
1
(
2
:
s
1
+
1
)
;

I
a
l
f
a
(
2
)

=
I
2
(
1
)
;

f
o
r

j
=

2
:
s
1

I
0

=
I
1
;

I
1

=
I
2
;

I
2

=
(

a
(
j
)
*
x

-
b
(
j
)

)
*
I
1
(
1
:
s
1
-
j
+
1
)

-
a
(
j
)
*
I
1
(
2
:
s
1
-
j
+
2
)

-
d
(
j
)
*
I
0
(
1
:
s
1
-
j
+
1
)
;

I
a
l
f
a
(
j
+
1
)

=
I
2
(
1
)
;

e
n
d

e
n
d

r
e
t
u
r
n

123

48 Page 18 of 28 Journal of Scientific Computing (2024) 99 :48

one then obtains that, for hα
n+1 sufficiently small, and a suitable constant K1 > 0:

en+1 ≤ K1L

Γ (α)

n∑
ν=1

hα
ν

∫ 1

0

(
rn−ν+1 − 1

r − 1
− τ

)α−1

dτ eν

+ K1

Γ (α)

n∑
ν=1

hα
ν

∫ 1

0

(
rn−ν+1 − 1

r − 1
− τ

)α−1

dτ Rα
ν + gα

n+1, n = 1, . . . , N − 1,

with
gα
n+1 = O(hs+α

n+1). (69)

Considering that

1

Γ (α)

∫ 1

0

(
rn−ν+1 − 1

r − 1
− τ

)α−1

dτ

= 1

Γ (α + 1)

[(
rn−ν+1 − 1

r − 1

)α

−
(
rn−ν+1 − r

r − 1

)α
]

≤ 1

Γ (α + 1)
, ν = 1, . . . , n,

(70)

and [see (54)]

hα
1 R

α
1 ≤ O(h2α1), hα

ν R
α
ν ≤ O(hs+α

ν), ν > 1,

so that [see (40)], for a suitable constant K2 > 0,

K1

Γ (α + 1)

n∑
ν=1

hα
ν R

α
ν ≤ K2

(
h2α1 +

n∑
ν=2

hs+α
ν

)

= K2

(
h2α1 + hs+α

n

n−2∑
ν=0

(rs+α)−ν

)

≤ K2

(
h2α1 + hs+α

n

1 − r−(s+α)

)
,

one eventually obtains:

en+1 ≤ K1L

Γ (α)

n∑
ν=1

hα
ν

∫ 1

0

(
rn−ν+1 − 1

r − 1
− τ

)α−1

dτ eν + ψα
n , n = 1, . . . , N − 1,

with [see (40) and (69)]

ψα
n := K2

(
h2α1 + hs+α

n

1 − r−(s+α)

)
+ gα

n+1 = O(h2α1 + hs+α
n+1), n = 1, . . . , N − 1.

At last, by considering that, for n = 1, . . . , N − 1,

1

Γ (α)

n∑
ν=1

hα
ν

∫ 1

0

(
rn−ν+1 − 1

r − 1
− τ

)α−1

dτ

= 1

Γ (α + 1)

n∑
ν=1

[
hα

ν

(
rn−ν+1 − 1

r − 1

)α

− hα
ν+1

(
rn−ν − 1

r − 1

)α
]

= 1

Γ (α + 1)

[(
h1

rn − 1

r − 1

)α

− hα
n+1

]
≤ T α

Γ (α + 1)
, (71)

123

Journal of Scientific Computing (2024) 99 :48 Page 19 of 28 48

setting

ρ = exp

(
K1LT α

Γ (α + 1)

)
,

and considering that e1 ≤ O(h2α1), from the Gronwall lemma (see, e.g., [29]) one eventually
obtains, for a suitable K > 0:

en+1 ≤ Kρ

(
h2α1 +

n∑
ν=1

ψα
n

)
= Kρ

(
(n + 1)h2α1 + hs+α

n+1

1 − r−(s+α)

)

≤ Kρ

(
Nh2α1 + hs+α

N

1 − r−(s+α)

)
, n = 1, . . . , N − 1. (72)

Considering that [see (27) and (40)] N = logr (1 + T (r − 1)/h1), the error is optimal when
h2α1 ∼ hs+α

N .

Remark 8 In the case where the vector field of problem (1) is suitably smooth at t = 0, so
that a constant timestep h = T /N can be used, the estimate

en ≤ O(nhs+α), n = 1, . . . , N , (73)

can be derived for the error, by using similar arguments as above.

Remark 9 From (72) [or (73)], one deduces that, for a given prescribed accuracy, it is possible
to decrease the value of the number N of the time steps, by increasing the degree s of
the polynomial approximating the vector field. By considering that, as anticipated in the
introduction, one main difficulty in solving the problem (1) stems from the evaluation of the
memory terms, reducing N has a welcome impact on the overall complexity of the method.

5 Numerical Tests

We here report a few numerical tests to illustrate the theoretical findings. For all tests, when
not otherwise specified, we use k = 30 for the Gauss–Jacobi quadrature (16), and p = 30
for the Gauss–Legendre quadrature formula (66). Also, the following values of s will be
considered:

s ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20}.
All the numerical tests have been performed inMatlab© (Rel. 2023b) on a SiliconM2 laptop
with 16GB of shared memory. As anticipated, we use the fixed-point iteration (57) to solve
the generated discrete problems (56). The iteration is carried out until full machine accuracy
is gained.

5.1 Example 1

The first problem, taken from Garrappa [24], is given by:

y(0.6) = −10y, t ∈ [0, 5], y(0) = 1, (74)

123

48 Page 20 of 28 Journal of Scientific Computing (2024) 99 :48

Table 2 Maximum error for Problem (74), r = 1.01 and k = 30

h1 10-4 10-5 10-6 10-7 10-8 10-9

s \N 626 857 1088 1320 1551 1783

1 *** *** *** *** *** ***

2 3.73e−06 2.43e−07 5.40e−08 5.38e−08 5.37e−08 5.37e−08

3 5.81e−07 3.78e−08 2.40e−09 1.52e−10 4.64e−11 4.64e−11

4 1.47e−07 9.60e−09 6.11e−10 3.86e−11 2.44e−12 1.56e−13

5 5.29e−08 3.46e−09 2.20e−10 1.39e−11 8.79e−13 5.37e−14

6 2.04e−08 1.33e−09 8.49e−11 5.37e−12 3.41e−13 2.32e−14

7 1.19e−08 7.81e−10 4.98e−11 3.15e−12 1.97e−13 1.08e−14

8 4.26e−09 2.77e−10 1.76e−11 1.11e−12 7.18e−14 7.91e−15

9 4.56e−09 3.03e−10 1.94e−11 1.22e−12 7.57e−14 7.91e−15

10 1.89e−09 1.22e−10 7.79e−12 4.90e−13 2.96e−14 7.91e−15

20 1.84e−09 1.22e−10 7.77e−12 4.90e−13 2.96e−14 7.91e−15

whose solution is given by the following Mittag–Leffler function7:

E0.6(−10t0.6) =
∑
j≥0

(−10t0.6) j

Γ (0.6 j + 1)
.

In Table 2, we list the obtained results, in terms of maximum error, when using different
values of s and h1, with hN fixed, in order to ascertain the contribution of the first term of
the error in the bound (72). In order to satisfy the requirements:

tN = h1
r N − 1

r − 1
≈ 5, hN ≈ 0.05,

for all combinations of h1 and N , we use the value r = 1.01 in (40), and the number of
timesteps N is chosen in order that tN is the closest point to the end of the integration
interval. The ***, in the line corresponding to s = 1, means that the solution is not properly
evaluated: this is due to the failure of the fixed-point iteration (57) in the last integration
steps (the same notation will be used in the subsequent tables). As is expected from (72), the
error decreases as s increases and the initial timestep h1 decreases. Further, having a large
value of s is not effective, if h1 is not suitably small, and vice versa (again from the bound
(72)). Remarkably, by choosing s large enough and h1 suitably small, full machine accuracy
is gained (cf. the last 4 entries in the last column of the table, having the same error).

In Table 3 we list the results obtained by using k = s, which is the minimum value
allowed for k. In such a case, the accuracy is generally slightly worse, due to the fact that the
quadrature error is of the same order as the truncation error. It is, however, enough choosing
k only slightly larger than s, to achieve a comparable accuracy, as is shown in Table 4 for
k = s + 5. Nevertheless, it must be stressed that choosing larger values of k is not an issue,
since the discrete problem (56), to be solved at each integration step, has (block) size s,
independently of k.

7 We refer to [22] and the accompanying software, for its efficient Matlab© implementation.

123

Journal of Scientific Computing (2024) 99 :48 Page 21 of 28 48

Table 3 Maximum error for Problem (74), r = 1.01 and k = s

h1 10-4 10-5 10-6 10-7 10-8 10-9

s \N 626 857 1088 1320 1551 1783

1 *** *** *** *** *** ***

2 7.52e−06 4.99e−07 5.78e−08 5.76e−08 5.76e−08 5.76e−08

3 2.27e−06 1.51e−07 9.68e−09 6.13e−10 4.55e−11 4.55e−11

4 9.67e−07 6.41e−08 4.09e−09 2.59e−10 1.64e−11 1.03e−12

5 4.91e−07 3.26e−08 2.08e−09 1.32e−10 8.33e−12 5.23e−13

6 2.82e−07 1.87e−08 1.19e−09 7.56e−11 4.77e−12 2.99e−13

7 1.76e−07 1.16e−08 7.44e−10 4.71e−11 2.97e−12 1.85e−13

8 1.16e−07 7.71e−09 4.92e−10 3.12e−11 1.97e−12 1.22e−13

9 8.07e−08 5.35e−09 3.42e−10 2.16e−11 1.36e−12 8.42e−14

10 5.82e−08 3.86e−09 2.46e−10 1.56e−11 9.83e−13 6.01e−14

20 6.63e−09 4.39e−10 2.80e−11 1.77e−12 1.11e−13 7.80e−15

Table 4 Maximum error for Problem (74), r = 1.01 and k = s + 5

h1 10-4 10-5 10-6 10-7 10-8 10-9

s \N 626 857 1088 1320 1551 1783

1 *** *** *** *** *** ***

2 3.58e−06 2.33e−07 5.40e−08 5.38e−08 5.38e−08 5.37e−08

3 6.56e−07 4.29e−08 2.73e−09 1.73e−10 4.63e−11 4.63e−11

4 8.57e−08 5.43e−09 3.43e−10 2.16e−11 1.36e−12 8.76e−14

5 9.20e−08 6.12e−09 3.92e−10 2.48e−11 1.56e−12 9.70e−14

6 4.38e−08 2.87e−09 1.83e−10 1.16e−11 7.30e−13 4.41e−14

7 3.39e−08 2.28e−09 1.46e−10 9.25e−12 5.83e−13 3.51e−14

8 2.58e−08 1.70e−09 1.09e−10 6.87e−12 4.32e−13 2.53e−14

9 2.03e−08 1.35e−09 8.60e−11 5.44e−12 3.43e−13 1.97e−14

10 1.64e−08 1.09e−09 6.93e−11 4.38e−12 2.76e−13 1.54e−14

20 3.28e−09 2.17e−10 1.38e−11 8.74e−13 5.40e−14 8.19e−15

5.2 Example 2

The next problem that we consider is from Diethelm et al. [21] (see also [24]):

y(0.5) = −|y|1.5 + 40320

Γ (8.5)
t7.5 − 3

Γ (5.25)

Γ (4.75)
t3.75 +

(
3

2
t0.25 − t4

)3

+ 9

4
Γ (1.5),

t ∈ [0, 1], y(0) = 0, (75)

whose solution is

y(t) = t8 − 3 t4.25 + 9

4
t0.5. (76)

According to Garrappa [24], “this problem is surely of interest because, unlike several other
problems often proposed in the literature, it does not present an artificial smooth solution,
which is indeed not realistic in most of the fractional-order applications.” Despite this, a

123

48 Page 22 of 28 Journal of Scientific Computing (2024) 99 :48

Fig. 2 solution (continuous line) and vector field (dashed line) for problem (75)

Table 5 Maximum error for Problem (75), constant timestep h = 1/N

s \N 2 4 8 16 32

1 9.22e−01 5.65e−02 1.28e−02 1.35e−02 9.12e−03

2 7.48e−03 2.68e−03 5.15e−04 8.02e−05 1.91e−05

3 2.02e−03 1.96e−04 1.23e−05 2.04e−06 5.07e−07

4 2.29e−04 8.42e−06 2.72e−07 3.55e−08 3.70e−09

5 1.63e−05 3.52e−07 4.43e−09 3.44e−10 1.62e−11

6 7.61e−07 9.80e−09 6.57e−11 2.26e−12 1.47e−13

7 4.11e−08 3.71e−10 9.02e−12 3.46e−13 2.18e−14

8 1.24e−09 6.02e−11 1.87e−12 6.54e−14 4.22e−15

9 4.56e−10 1.44e−11 4.27e−13 1.65e−14 1.11e−15

10 1.40e−10 4.40e−12 1.33e−13 4.77e−15 8.88e−16

20 4.93e−14 1.33e−15 6.66e−16 6.66e−16 8.88e−16

constant timestep h = 1/N turns out to be appropriate since, unlike the solution (76), the
vector field (75) is very smooth at the origin, as one may see in Fig. 2. In Table 5 we list
the maximum error by using different values of N : as is clear, by using s ≥ 8, only 32 steps
are needed to gain full machine accuracy for the computed solution. Further, in Fig. 3 is
the work-precision diagram (i.e., execution time8 vs. computed accuracy) for the following
methods, used on a uniform grid with N + 1 points, with N = 2ν , as below specified:

– FHBVM(30,1), ν = 5, 6, . . . , 12;

8 The execution time is measured in seconds.

123

Journal of Scientific Computing (2024) 99 :48 Page 23 of 28 48

Fig. 3 Work-precision diagram for Problem (75)

– FHBVM(30,2), ν = 4, 5, . . . , 12;
– FHBVM(30,5), ν = 2, 3, . . . , 8;
– HFBVM(30,10), ν = 2, 3, 4, 5;
– FHBVM(30,20), ν = 2, 3;
– the BDF-2 method implemented in the Matlab code flmm2 [23],9 ν = 6, . . . , 20.

The rationale for this choice is to use FHBVMs both as spectral methods and not, with a
further comparison with a state-of-art numerical code. In the plots, the computed accuracy
(ca) is measured as follows: if ei is the absolute error at the i-th grid point, then

ca = − log10 max
i=1,...,N

|ei |.

From the obtained results, one concludes that:

– low-order FHBVMs are less competitive than high-order ones;
– high-order FHBVMs require less time steps and are, therefore, able to obtain a fully

accurate solution;
– when used as spectrally accurate methods in time, FHBVMs are very effective, and

competitive with existing methods.

9 The code is called with parameters tol=1e−15 and itmax=1000.

123

48 Page 24 of 28 Journal of Scientific Computing (2024) 99 :48

Table 6 Maximum error for
Problems (77) and (79), r = 1.2
and h1 = 10−11

s Error (77) Error (79)

1 3.25e−02 ***

2 8.86e−05 5.13e−04

3 8.36e−07 4.21e−06

4 1.41e−08 7.55e−08

5 3.03e−10 1.63e−09

6 7.54e−12 3.95e−11

7 3.46e−13 1.06e−12

8 2.09e−13 2.09e−13

9 2.09e−13 2.09e−13

10 2.09e−13 2.09e−13

20 2.09e−13 2.09e−13

5.3 Example 3

We now consider the following problem taken from Satmari [38],

y(1/3) = t

10

[
y3 − (t2/3 + 1)3

] + Γ (5/3)

Γ (4/3)
t1/3, t ∈ [0, 1], y(0) = 1, (77)

whose solution is y(t) = t2/3 + 1. We solve it by using h1 = 10−11 and r = 1.2. In such
a case, N = 130 timesteps are needed to cover approximately the integration interval, with
hN ≤ 0.2. The obtained results, by considering increasing values of s, are listed in Table 6.
Also in this case, we obtain full accuracy starting from s = 8.

Remark 10 Concerning the choice of the parameters h1, r , and N for the graded mesh, one
has to consider that, in principle [see (72)]:

T ≡ tN = h1
r N − 1

r − 1
, hN = h1r

N−1, h2α1 ∼ hs+α
N .

It is then important to properly choose h1, and arrange the other parameters accordingly.
In such a case, one may reduce the number N of time steps by increasing s, as observed
in Remark 9. The optimal choice of such parameters, however, deserves to be further
investigated.

5.4 Example 4

Next, we consider the following problem, again taken from [38],

y(1/3) = 1

3

(
y3 − t4

) + Γ (7/3)t, t ∈ [0, 1], y(0) = 0, (78)

whose solution is y(t) = t4/3. We solve this problem by using a constant timestep h = 1/N :
in fact, the vector field can be seen to be a polynomial of degree 1. The obtained results are
listed in Table 7: an order 1 convergence can be observed for s = 1 [which is consistent with
(73)], whereas full machine accuracy is obtained for s ≥ 2, due to the fact that, as anticipated
above, the vector field of problem (78) is a polynomial of degree 1 in t and, consequently,
(13) and (21) coincide, for all s ≥ 2.

123

Journal of Scientific Computing (2024) 99 :48 Page 25 of 28 48

Table 7 Maximum error for Problem (78), constant timestep h = 1/N

s \N 2 4 8 16 32 64

1 *** 1.56e−01 7.01e−02 3.59e−02 1.87e−02 9.75e−03

2 8.88e−16 1.33e−15 8.88e−16 8.88e−16 8.88e−16 8.88e−16

3 4.44e−16 6.66e−16 4.44e−16 4.44e−16 3.33e−16 4.44e−16

4 6.66e−16 6.66e−16 5.55e−16 2.22e−16 3.33e−16 5.55e−16

5 9.99e−16 9.99e−16 6.66e−16 5.55e−16 2.22e−16 5.55e−16

6 1.33e−15 7.77e−16 8.88e−16 6.66e−16 3.33e−16 5.55e−16

7 1.33e−15 8.88e−16 7.77e−16 4.44e−16 4.44e−16 7.77e−16

8 1.78e−15 1.11e−15 7.77e−16 6.66e−16 4.44e−16 6.66e−16

9 2.00e−15 1.22e−15 8.88e−16 8.88e−16 4.44e−16 6.66e−16

10 2.00e−15 1.22e−15 8.88e−16 8.88e−16 4.44e−16 7.77e−16

20 2.78e−15 1.89e−15 1.44e−15 1.11e−15 6.66e−16 8.88e−16

5.5 Example 5

Finally, we reformulate the two problems (77) and (78) as a system of two equations, having
the same solutions as above, as follows:

y(1/3)
1 = t

10

[
y31 − (y1/22 + 1)3

]
+ Γ (5/3)

Γ (4/3)
t1/3, y1(0) = 1,

y(1/3)
2 = 1

3

(
y32 − (y1 − 1)6

) + Γ (7/3)t, y2(0) = 0, t ∈ [0, 1]. (79)

We solve Problem (79) by using the same parameters used for Problem (77): h1 = 10−11,
r = 1.2, and 130 timesteps. The obtained results are again listed in Table 6: it turns out
that they are similar to those obtained for Problem (77) and, also in this case, we obtain full
accuracy starting from s = 8.

6 Conclusions

In this paperwe have devised a novel step-by-step procedure for solving fractional differential
equations. The procedure, which generalizes that given in [2], relies on the expansion of the
vector field along a suitable orthonormal basis, here chosen as the shifted and orthonormal
Jacobi polynomial basis. The analysis of themethod has been given, alongwith its implemen-
tation details. These latter details show that the method can be very efficiently implemented.
A few numerical tests confirm the theoretical findings.

It is worth mentioning that systems with FDEs of different orders can be also solved by
slightly adapting the previous framework: as matter of fact, it suffices using different Jacobi
polynomials, corresponding to the different orders of the FDEs. This, in turn, allows easily
managing fractional differential equations of order α > 1, by casting them as a system of
�α� ODEs, coupled with a fractional equation of order β := α − �α� ∈ (0, 1).

As anticipated in Sect. 3.2, a future direction of investigation will concern the efficient
numerical solution of the generated discrete problems, which is crucial when using larger
stepsizes. Also the optimal choice of the parameters for the methods will be further inves-
tigated, in particular those for generating the graded mesh, as well as the possibility of

123

48 Page 26 of 28 Journal of Scientific Computing (2024) 99 :48

adaptively defining it. Further, the parallel implementation of the methods could be also
considered, following an approach similar to [1].

Acknowledgements The authors wish to thank two anonymous referees for their useful comments. L.
Brugnano and F. Iavernaro are members of GNCS-INdAM.

Funding Open access funding provided by Università degli Studi di Firenze within the CRUI-CARE
Agreement. No funding was received for conducting this study.

Data Availability All data reported in the manuscript have been obtained by a Matlab© implementation of the
methods presented. They can be made available on request.

Declarations

Conflict of interest The authors declare no Conflict of interest, nor Conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Amodio, P., Brugnano, L.: Parallel implementation of block boundary valuemethods forODEs. J.Comput.
Appl. Math. 78, 197–211 (1997). https://doi.org/10.1016/S0377-0427(96)00112-4

2. Amodio, P., Brugnano, L., Iavernaro, F.: Spectrally accurate solutions of nonlinear fractional initial value
problems. AIP Confer. Proc. 2116, 140005 (2019). https://doi.org/10.1063/1.5114132

3. Amodio, P., Brugnano, L., Iavernaro, F.: Analysis of Spectral Hamiltonian Boundary Value Methods
(SHBVMs) for the numerical solution of ODE problems. Numer. Algorithms 83, 1489–1508 (2020).
https://doi.org/10.1007/s11075-019-00733-7

4. Amodio, P., Brugnano, L., Iavernaro, F.: A note on a stable algorithm for computing the fractional integrals
of orthogonal polynomials. Appl. Math. Lett. 134, 108338 (2022). https://doi.org/10.1016/j.aml.2022.
108338

5. Amodio, P., Brugnano, L., Iavernaro, F.: (Spectral) Chebyshev collocationmethods for solving differential
equations. Numer. Algoritms 93, 1613–1638 (2023). https://doi.org/10.1007/s11075-022-01482-w

6. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Applications of a fractional advection-dispersion
equation. Water Resour. Res. 36(6), 1403–1412 (2000)

7. Brugnano, L., Iavernaro, F.: Line Integral Methods for Conservative Problems. Chapman et Hall/CRC,
Boca Raton (2016)

8. Brugnano, L., Iavernaro, F.: Line integral solution of differential problems. Axioms 7(2), 36 (2018).
https://doi.org/10.3390/axioms7020036

9. Brugnano, L., Iavernaro, F.: A general framework for solving differential equations. Ann. Univer. Ferrara
Sez. VII Sci. Mat. 68, 243–258 (2022). https://doi.org/10.1007/s11565-022-00409-6

10. Brugnano, L., Iavernaro, F., Trigiante, D.: A note on the efficient implementation of Hamiltonian BVMs.
J. Comput. Appl. Math. 236, 375–383 (2011). https://doi.org/10.1016/j.cam.2011.07.022

11. Brugnano, L., Iavernaro, F., Trigiante, D.: A simple framework for the derivation and analysis of effective
one-step methods for ODEs. Appl. Math. Comput. 218, 8475–8485 (2012). https://doi.org/10.1016/j.
amc.2012.01.074

12. Brugnano, L.,Montijano, J.I., Iavernaro, F., Randéz, L.: Spectrally accurate space-time solution of Hamil-
tonian PDEs. Numer. Algorithms 81, 1183–1202 (2019). https://doi.org/10.1007/s11075-018-0586-
z

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0377-0427(96)00112-4
https://doi.org/10.1063/1.5114132
https://doi.org/10.1007/s11075-019-00733-7
https://doi.org/10.1016/j.aml.2022.108338
https://doi.org/10.1016/j.aml.2022.108338
https://doi.org/10.1007/s11075-022-01482-w
https://doi.org/10.3390/axioms7020036
https://doi.org/10.1007/s11565-022-00409-6
https://doi.org/10.1016/j.cam.2011.07.022
https://doi.org/10.1016/j.amc.2012.01.074
https://doi.org/10.1016/j.amc.2012.01.074
https://doi.org/10.1007/s11075-018-0586-z
https://doi.org/10.1007/s11075-018-0586-z

Journal of Scientific Computing (2024) 99 :48 Page 27 of 28 48

13. Brugnano, L., Montijano, J.I., Iavernaro, F., Randéz, L.: On the effectiveness of spectral methods for the
numerical solution of multi-frequency highly-oscillatory Hamiltonian problems. Numer. Algorithms 81,
345–376 (2019). https://doi.org/10.1007/s11075-018-0552-9

14. Brugnano,L., Frasca-Caccia,G., Iavernaro, F.,Vespri,V.:Anew framework for polynomial approximation
to differential equations. Adv. Comput. Math. 48, 76 (2022). https://doi.org/10.1007/s10444-022-09992-
w

15. Bueno-Orovio, A., Burrage, K.: Exact solutions to the fractional time-space Bloch–Torrey equation for
magnetic resonance imaging. Commun. Nonlinear Sci. Numer. Simul. 52, 91–109 (2017)

16. Bueno-Orovio,A.,Kay,D., Burrage,K.: Fourier-spectralmethods for fractional in space reaction diffusion
equations. BIT 54, 937–954 (2014)

17. Bueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., Burrage, K.: Fractional diffusion models of cardiac
electrical propagation: role of structural heterogeneity in dispersion of repolarization. J. R. Soc. Interface
11(97), 20140352 (2014)

18. Cusimano, N., Bueno-Orovio, A., Turner, I., Burrage, K.: On the order of the fractional Laplacian in
determining the spatio-temporal evolution of a space fractional model of cardiac electrophysiology. PLoS
One 10(12), e0143938 (2015)

19. De Vore, R., Scott, L.R.: Error bounds for Gaussian quadrature and weighted-L1 polynomial approxima-
tion. SIAM J. Numer. Anal. 21(2), 400–412 (1984). https://doi.org/10.1137/0721030

20. Diethelm, K.: The Analysis of Fractional Differential Equations. An Application-oriented Exposition
using Differential Operators of Caputo Type. Lecture Notes in Math. Springer, Berlin (2010)

21. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer.
Algorithms 36, 31–52 (2004). https://doi.org/10.1023/B:NUMA.0000027736.85078.be

22. Garrappa, R.: Numerical evaluation of two and three parameterMittag–Leffler functions. SIAM J. Numer.
Anal. 53(3), 1350–1369 (2015). https://doi.org/10.1137/140971191

23. Garrappa, R.: Trapezoidal methods for fractional differential equations: theoretical and computational
aspects. Math. Comput. Simul. 110, 96–112 (2015). https://doi.org/10.1016/j.matcom.2013.09.012

24. Garrappa, R.: Numerical solution of fractional differential equations: a survey and a software tutorial.
Mathematics 6(2), 16 (2018). https://doi.org/10.3390/math6020016

25. Gautschi, W.: Orthogonal Polynomials Computation and Approximation. Oxford University Press (2004)
26. Henry, B.I., Langlands, T.A.M.: Fractional cable models for spiny neuronal dendrites. Phys. Rev. Letts.

100(12), 128103 (2008)
27. Henry, B.I., Langlands, T., Wearne, S.: Turing pattern formation in fractional activator-inhibitor systems.

Phys. Rev. E 72(2), 026101 (2005)
28. Hori, M., Fukunaga, I., Masutani, V., Taoka, T., Kamagata, K., Suzuki, Y., et al.: Visualising non Gaussian

diffusion—clinical application of q-space imaging and diffusional kurtosis imaging of the brain, and spine.
Magn. Reson. Med. Sc. 11, 221–233 (2012)

29. Lakshmikantham, V., Trigiante, D.: Theory of Difference Equations. Academic Press Inc, Boston (1988)
30. Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional

differential equations. J. Comput. Phys. 316, 614–631 (2016)
31. Lindenberg, K., Yuste, S.B.: Properties of the reaction front in a reaction-subdiffusion process. Noise

Complex Syst. Stoch. Dyn. II(5471), 20–28 (2004)
32. Lubich, Ch.: Fractional linear multistep methods for Abel–Volterra integral equations of the second kind.

Math. Comput. 45(172), 463–469 (1985). https://doi.org/10.1090/S0025-5718-1985-0804935-7
33. Lubich, Ch.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)
34. Magin, R., Feng, X., Baleanu, D.: Solving the fractional order Bloch equation. Concepts Magn. Res., Part

A 34A, 16–23 (2009)
35. Mastroianni, G., Milovanovic, G.: Interpolation processes. In: Basic Theory and Applications. Springer

Monogr. Math. Springer, Berlin (2008)
36. Orsingher, E., Beghin, L.: Fractional diffusion equations and processes with randomly varying time. Ann.

Probab. 37(1), 206–249 (2009)
37. Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional

Differential Equations, to Methods of their Solution and Some of their Applications. Academic Press,
Inc., San Diego (1999)

38. Satmari, Z.: Iterative Bernstein splines technique applied to fractional order differential equations. Math.
Found. Comput. 6, 41–53 (2023). https://doi.org/10.3934/mfc.2021039

39. Schädle, A., Lopez-Fernandez, M., Lubich, Ch.: Fast and oblivious convolution quadrature. SIAM J. Sci.
Comput. 28, 421–438 (2006)

40. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes
for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

123

https://doi.org/10.1007/s11075-018-0552-9
https://doi.org/10.1007/s10444-022-09992-w
https://doi.org/10.1007/s10444-022-09992-w
https://doi.org/10.1137/0721030
https://doi.org/10.1023/B:NUMA.0000027736.85078.be
https://doi.org/10.1137/140971191
https://doi.org/10.1016/j.matcom.2013.09.012
https://doi.org/10.3390/math6020016
https://doi.org/10.1090/S0025-5718-1985-0804935-7
https://doi.org/10.3934/mfc.2021039

48 Page 28 of 28 Journal of Scientific Computing (2024) 99 :48

41. Themistoclakis, W.: Some error bounds for Gauss–Jacobi quadrature rules. Appl. Numer. Math. 116,
286–293 (2017). https://doi.org/10.1016/j.apnum.2017.02.009

42. Zeng, F., Zhang, Z., Karniadakis, G.E.: Second order numerical methods for multi-term fractional
differential equations. Comput. Methods Appl. Mech. Eng. 327, 478–502 (2017)

43. Zeng, F., Turner, I., Burrage, K.: A stable fast time-stepping method for fractional integral and derivative
operators. J. Sci. Comput. 77, 283–307 (2018)

44. Zeng, F., Turner, I., Burrage, K., Karniadakis, G.: A new class of semi-implicit methods with linear
complexity for nonlinear fractional differential equations. SIAM J. Sci. Comput. 40(5), A2986–A3011
(2018). https://doi.org/10.1137/18M1168169

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1016/j.apnum.2017.02.009
https://doi.org/10.1137/18M1168169

	A Spectrally Accurate Step-by-Step Method for the Numerical Solution of Fractional Differential Equations
	Abstract
	1 Introduction
	2 Orthonormal Jacobi Polynomials
	3 Piecewise Quasi-Polynomial Approximation
	3.1 The General Procedure
	3.2 Solving the Discrete Problems
	3.3 Computing the Integrals Jjα(x)

	4 Analysis of the Method
	5 Numerical Tests
	5.1 Example 1
	5.2 Example 2
	5.3 Example 3
	5.4 Example 4
	5.5 Example 5

	6 Conclusions
	Acknowledgements
	References

